1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/handles.h"
6 
7 #include "src/address-map.h"
8 #include "src/api.h"
9 #include "src/base/logging.h"
10 #include "src/identity-map.h"
11 #include "src/maybe-handles.h"
12 #include "src/objects-inl.h"
13 
14 namespace v8 {
15 namespace internal {
16 
17 // Handles should be trivially copyable so that they can be efficiently passed
18 // by value. If they are not trivially copyable, they cannot be passed in
19 // registers.
20 ASSERT_TRIVIALLY_COPYABLE(HandleBase);
21 ASSERT_TRIVIALLY_COPYABLE(Handle<Object>);
22 ASSERT_TRIVIALLY_COPYABLE(MaybeHandle<Object>);
23 
24 #ifdef DEBUG
IsDereferenceAllowed(DereferenceCheckMode mode) const25 bool HandleBase::IsDereferenceAllowed(DereferenceCheckMode mode) const {
26   DCHECK_NOT_NULL(location_);
27   Object* object = *location_;
28   if (object->IsSmi()) return true;
29   HeapObject* heap_object = HeapObject::cast(object);
30   Isolate* isolate;
31   if (!Isolate::FromWritableHeapObject(heap_object, &isolate)) return true;
32   Heap* heap = isolate->heap();
33   Object** roots_array_start = heap->roots_array_start();
34   if (roots_array_start <= location_ &&
35       location_ < roots_array_start + Heap::kStrongRootListLength &&
36       heap->RootCanBeTreatedAsConstant(
37           static_cast<Heap::RootListIndex>(location_ - roots_array_start))) {
38     return true;
39   }
40   if (!AllowHandleDereference::IsAllowed()) return false;
41   if (mode == INCLUDE_DEFERRED_CHECK &&
42       !AllowDeferredHandleDereference::IsAllowed()) {
43     // Accessing cells, maps and internalized strings is safe.
44     if (heap_object->IsCell()) return true;
45     if (heap_object->IsMap()) return true;
46     if (heap_object->IsInternalizedString()) return true;
47     return !isolate->IsDeferredHandle(location_);
48   }
49   return true;
50 }
51 #endif
52 
53 
NumberOfHandles(Isolate * isolate)54 int HandleScope::NumberOfHandles(Isolate* isolate) {
55   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
56   int n = static_cast<int>(impl->blocks()->size());
57   if (n == 0) return 0;
58   return ((n - 1) * kHandleBlockSize) +
59          static_cast<int>(
60              (isolate->handle_scope_data()->next - impl->blocks()->back()));
61 }
62 
63 
Extend(Isolate * isolate)64 Object** HandleScope::Extend(Isolate* isolate) {
65   HandleScopeData* current = isolate->handle_scope_data();
66 
67   Object** result = current->next;
68 
69   DCHECK(result == current->limit);
70   // Make sure there's at least one scope on the stack and that the
71   // top of the scope stack isn't a barrier.
72   if (!Utils::ApiCheck(current->level != current->sealed_level,
73                        "v8::HandleScope::CreateHandle()",
74                        "Cannot create a handle without a HandleScope")) {
75     return nullptr;
76   }
77   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
78   // If there's more room in the last block, we use that. This is used
79   // for fast creation of scopes after scope barriers.
80   if (!impl->blocks()->empty()) {
81     Object** limit = &impl->blocks()->back()[kHandleBlockSize];
82     if (current->limit != limit) {
83       current->limit = limit;
84       DCHECK_LT(limit - current->next, kHandleBlockSize);
85     }
86   }
87 
88   // If we still haven't found a slot for the handle, we extend the
89   // current handle scope by allocating a new handle block.
90   if (result == current->limit) {
91     // If there's a spare block, use it for growing the current scope.
92     result = impl->GetSpareOrNewBlock();
93     // Add the extension to the global list of blocks, but count the
94     // extension as part of the current scope.
95     impl->blocks()->push_back(result);
96     current->limit = &result[kHandleBlockSize];
97   }
98 
99   return result;
100 }
101 
102 
DeleteExtensions(Isolate * isolate)103 void HandleScope::DeleteExtensions(Isolate* isolate) {
104   HandleScopeData* current = isolate->handle_scope_data();
105   isolate->handle_scope_implementer()->DeleteExtensions(current->limit);
106 }
107 
108 
109 #ifdef ENABLE_HANDLE_ZAPPING
ZapRange(Object ** start,Object ** end)110 void HandleScope::ZapRange(Object** start, Object** end) {
111   DCHECK_LE(end - start, kHandleBlockSize);
112   for (Object** p = start; p != end; p++) {
113     *reinterpret_cast<Address*>(p) = static_cast<Address>(kHandleZapValue);
114   }
115 }
116 #endif
117 
118 
current_level_address(Isolate * isolate)119 Address HandleScope::current_level_address(Isolate* isolate) {
120   return reinterpret_cast<Address>(&isolate->handle_scope_data()->level);
121 }
122 
123 
current_next_address(Isolate * isolate)124 Address HandleScope::current_next_address(Isolate* isolate) {
125   return reinterpret_cast<Address>(&isolate->handle_scope_data()->next);
126 }
127 
128 
current_limit_address(Isolate * isolate)129 Address HandleScope::current_limit_address(Isolate* isolate) {
130   return reinterpret_cast<Address>(&isolate->handle_scope_data()->limit);
131 }
132 
CanonicalHandleScope(Isolate * isolate)133 CanonicalHandleScope::CanonicalHandleScope(Isolate* isolate)
134     : isolate_(isolate), zone_(isolate->allocator(), ZONE_NAME) {
135   HandleScopeData* handle_scope_data = isolate_->handle_scope_data();
136   prev_canonical_scope_ = handle_scope_data->canonical_scope;
137   handle_scope_data->canonical_scope = this;
138   root_index_map_ = new RootIndexMap(isolate);
139   identity_map_ = new IdentityMap<Object**, ZoneAllocationPolicy>(
140       isolate->heap(), ZoneAllocationPolicy(&zone_));
141   canonical_level_ = handle_scope_data->level;
142 }
143 
144 
~CanonicalHandleScope()145 CanonicalHandleScope::~CanonicalHandleScope() {
146   delete root_index_map_;
147   delete identity_map_;
148   isolate_->handle_scope_data()->canonical_scope = prev_canonical_scope_;
149 }
150 
151 
Lookup(Object * object)152 Object** CanonicalHandleScope::Lookup(Object* object) {
153   DCHECK_LE(canonical_level_, isolate_->handle_scope_data()->level);
154   if (isolate_->handle_scope_data()->level != canonical_level_) {
155     // We are in an inner handle scope. Do not canonicalize since we will leave
156     // this handle scope while still being in the canonical scope.
157     return HandleScope::CreateHandle(isolate_, object);
158   }
159   if (object->IsHeapObject()) {
160     int index = root_index_map_->Lookup(HeapObject::cast(object));
161     if (index != RootIndexMap::kInvalidRootIndex) {
162       return isolate_->heap()
163           ->root_handle(static_cast<Heap::RootListIndex>(index))
164           .location();
165     }
166   }
167   Object*** entry = identity_map_->Get(object);
168   if (*entry == nullptr) {
169     // Allocate new handle location.
170     *entry = HandleScope::CreateHandle(isolate_, object);
171   }
172   return reinterpret_cast<Object**>(*entry);
173 }
174 
175 
DeferredHandleScope(Isolate * isolate)176 DeferredHandleScope::DeferredHandleScope(Isolate* isolate)
177     : impl_(isolate->handle_scope_implementer()) {
178   impl_->BeginDeferredScope();
179   HandleScopeData* data = impl_->isolate()->handle_scope_data();
180   Object** new_next = impl_->GetSpareOrNewBlock();
181   Object** new_limit = &new_next[kHandleBlockSize];
182   // Check that at least one HandleScope with at least one Handle in it exists,
183   // see the class description.
184   DCHECK(!impl_->blocks()->empty());
185   // Check that we are not in a SealedHandleScope.
186   DCHECK(data->limit == &impl_->blocks()->back()[kHandleBlockSize]);
187   impl_->blocks()->push_back(new_next);
188 
189 #ifdef DEBUG
190   prev_level_ = data->level;
191 #endif
192   data->level++;
193   prev_limit_ = data->limit;
194   prev_next_ = data->next;
195   data->next = new_next;
196   data->limit = new_limit;
197 }
198 
199 
~DeferredHandleScope()200 DeferredHandleScope::~DeferredHandleScope() {
201   impl_->isolate()->handle_scope_data()->level--;
202   DCHECK(handles_detached_);
203   DCHECK(impl_->isolate()->handle_scope_data()->level == prev_level_);
204 }
205 
206 
Detach()207 DeferredHandles* DeferredHandleScope::Detach() {
208   DeferredHandles* deferred = impl_->Detach(prev_limit_);
209   HandleScopeData* data = impl_->isolate()->handle_scope_data();
210   data->next = prev_next_;
211   data->limit = prev_limit_;
212 #ifdef DEBUG
213   handles_detached_ = true;
214 #endif
215   return deferred;
216 }
217 
218 }  // namespace internal
219 }  // namespace v8
220