1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: kenton@google.com (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // RepeatedField and RepeatedPtrField are used by generated protocol message
36 // classes to manipulate repeated fields. These classes are very similar to
37 // STL's vector, but include a number of optimizations found to be useful
38 // specifically in the case of Protocol Buffers. RepeatedPtrField is
39 // particularly different from STL vector as it manages ownership of the
40 // pointers that it contains.
41 //
42 // Typically, clients should not need to access RepeatedField objects directly,
43 // but should instead use the accessor functions generated automatically by the
44 // protocol compiler.
45
46 #ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
47 #define GOOGLE_PROTOBUF_REPEATED_FIELD_H__
48
49 #ifdef _MSC_VER
50 // This is required for min/max on VS2013 only.
51 #include <algorithm>
52 #endif
53
54 #include <string>
55 #include <iterator>
56 #include <google/protobuf/stubs/casts.h>
57 #include <google/protobuf/stubs/logging.h>
58 #include <google/protobuf/stubs/common.h>
59 #include <google/protobuf/stubs/type_traits.h>
60 #include <google/protobuf/arena.h>
61 #include <google/protobuf/generated_message_util.h>
62 #include <google/protobuf/message_lite.h>
63
64 namespace google {
65
66 namespace upb {
67 namespace google_opensource {
68 class GMR_Handlers;
69 } // namespace google_opensource
70 } // namespace upb
71
72 namespace protobuf {
73
74 class Message;
75
76 namespace internal {
77
78 static const int kMinRepeatedFieldAllocationSize = 4;
79
80 // A utility function for logging that doesn't need any template types.
81 void LogIndexOutOfBounds(int index, int size);
82
83 template <typename Iter>
CalculateReserve(Iter begin,Iter end,std::forward_iterator_tag)84 inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) {
85 return std::distance(begin, end);
86 }
87
88 template <typename Iter>
CalculateReserve(Iter,Iter,std::input_iterator_tag)89 inline int CalculateReserve(Iter /*begin*/, Iter /*end*/,
90 std::input_iterator_tag /*unused*/) {
91 return -1;
92 }
93
94 template <typename Iter>
CalculateReserve(Iter begin,Iter end)95 inline int CalculateReserve(Iter begin, Iter end) {
96 typedef typename std::iterator_traits<Iter>::iterator_category Category;
97 return CalculateReserve(begin, end, Category());
98 }
99 } // namespace internal
100
101
102 // RepeatedField is used to represent repeated fields of a primitive type (in
103 // other words, everything except strings and nested Messages). Most users will
104 // not ever use a RepeatedField directly; they will use the get-by-index,
105 // set-by-index, and add accessors that are generated for all repeated fields.
106 template <typename Element>
107 class RepeatedField {
108 public:
109 RepeatedField();
110 explicit RepeatedField(Arena* arena);
111 RepeatedField(const RepeatedField& other);
112 template <typename Iter>
113 RepeatedField(Iter begin, const Iter& end);
114 ~RepeatedField();
115
116 RepeatedField& operator=(const RepeatedField& other);
117
118 bool empty() const;
119 int size() const;
120
121 const Element& Get(int index) const;
122 Element* Mutable(int index);
123 void Set(int index, const Element& value);
124 void Add(const Element& value);
125 Element* Add();
126 // Remove the last element in the array.
127 void RemoveLast();
128
129 // Extract elements with indices in "[start .. start+num-1]".
130 // Copy them into "elements[0 .. num-1]" if "elements" is not NULL.
131 // Caution: implementation also moves elements with indices [start+num ..].
132 // Calling this routine inside a loop can cause quadratic behavior.
133 void ExtractSubrange(int start, int num, Element* elements);
134
135 void Clear();
136 void MergeFrom(const RepeatedField& other);
137 void CopyFrom(const RepeatedField& other);
138
139 // Reserve space to expand the field to at least the given size. If the
140 // array is grown, it will always be at least doubled in size.
141 void Reserve(int new_size);
142
143 // Resize the RepeatedField to a new, smaller size. This is O(1).
144 void Truncate(int new_size);
145
146 void AddAlreadyReserved(const Element& value);
147 Element* AddAlreadyReserved();
148 int Capacity() const;
149
150 // Like STL resize. Uses value to fill appended elements.
151 // Like Truncate() if new_size <= size(), otherwise this is
152 // O(new_size - size()).
153 void Resize(int new_size, const Element& value);
154
155 // Gets the underlying array. This pointer is possibly invalidated by
156 // any add or remove operation.
157 Element* mutable_data();
158 const Element* data() const;
159
160 // Swap entire contents with "other". If they are separate arenas then, copies
161 // data between each other.
162 void Swap(RepeatedField* other);
163
164 // Swap entire contents with "other". Should be called only if the caller can
165 // guarantee that both repeated fields are on the same arena or are on the
166 // heap. Swapping between different arenas is disallowed and caught by a
167 // GOOGLE_DCHECK (see API docs for details).
168 void UnsafeArenaSwap(RepeatedField* other);
169
170 // Swap two elements.
171 void SwapElements(int index1, int index2);
172
173 // STL-like iterator support
174 typedef Element* iterator;
175 typedef const Element* const_iterator;
176 typedef Element value_type;
177 typedef value_type& reference;
178 typedef const value_type& const_reference;
179 typedef value_type* pointer;
180 typedef const value_type* const_pointer;
181 typedef int size_type;
182 typedef ptrdiff_t difference_type;
183
184 iterator begin();
185 const_iterator begin() const;
186 const_iterator cbegin() const;
187 iterator end();
188 const_iterator end() const;
189 const_iterator cend() const;
190
191 // Reverse iterator support
192 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
193 typedef std::reverse_iterator<iterator> reverse_iterator;
rbegin()194 reverse_iterator rbegin() {
195 return reverse_iterator(end());
196 }
rbegin()197 const_reverse_iterator rbegin() const {
198 return const_reverse_iterator(end());
199 }
rend()200 reverse_iterator rend() {
201 return reverse_iterator(begin());
202 }
rend()203 const_reverse_iterator rend() const {
204 return const_reverse_iterator(begin());
205 }
206
207 // Returns the number of bytes used by the repeated field, excluding
208 // sizeof(*this)
209 int SpaceUsedExcludingSelf() const;
210
211 // Removes the element referenced by position.
212 //
213 // Returns an iterator to the element immediately following the removed
214 // element.
215 //
216 // Invalidates all iterators at or after the removed element, including end().
217 iterator erase(const_iterator position);
218
219 // Removes the elements in the range [first, last).
220 //
221 // Returns an iterator to the element immediately following the removed range.
222 //
223 // Invalidates all iterators at or after the removed range, including end().
224 iterator erase(const_iterator first, const_iterator last);
225
226 // Get the Arena on which this RepeatedField stores its elements.
GetArena()227 ::google::protobuf::Arena* GetArena() const {
228 return GetArenaNoVirtual();
229 }
230
231 private:
232 static const int kInitialSize = 0;
233 // A note on the representation here (see also comment below for
234 // RepeatedPtrFieldBase's struct Rep):
235 //
236 // We maintain the same sizeof(RepeatedField) as before we added arena support
237 // so that we do not degrade performance by bloating memory usage. Directly
238 // adding an arena_ element to RepeatedField is quite costly. By using
239 // indirection in this way, we keep the same size when the RepeatedField is
240 // empty (common case), and add only an 8-byte header to the elements array
241 // when non-empty. We make sure to place the size fields directly in the
242 // RepeatedField class to avoid costly cache misses due to the indirection.
243 int current_size_;
244 int total_size_;
245 struct Rep {
246 Arena* arena;
247 Element elements[1];
248 };
249 // We can not use sizeof(Rep) - sizeof(Element) due to the trailing padding on
250 // the struct. We can not use sizeof(Arena*) as well because there might be
251 // a "gap" after the field arena and before the field elements (e.g., when
252 // Element is double and pointer is 32bit).
253 static const size_t kRepHeaderSize;
254 // Contains arena ptr and the elements array. We also keep the invariant that
255 // if rep_ is NULL, then arena is NULL.
256 Rep* rep_;
257
258 friend class Arena;
259 typedef void InternalArenaConstructable_;
260
261 // Move the contents of |from| into |to|, possibly clobbering |from| in the
262 // process. For primitive types this is just a memcpy(), but it could be
263 // specialized for non-primitive types to, say, swap each element instead.
264 void MoveArray(Element* to, Element* from, int size);
265
266 // Copy the elements of |from| into |to|.
267 void CopyArray(Element* to, const Element* from, int size);
268
269 inline void InternalSwap(RepeatedField* other);
270
271 // Internal helper expected by Arena methods.
GetArenaNoVirtual()272 inline Arena* GetArenaNoVirtual() const {
273 return (rep_ == NULL) ? NULL : rep_->arena;
274 }
275
276 // Internal helper to delete all elements and deallocate the storage.
277 // If Element has a trivial destructor (for example, if it's a fundamental
278 // type, like int32), the loop will be removed by the optimizer.
InternalDeallocate(Rep * rep,int size)279 void InternalDeallocate(Rep* rep, int size) {
280 if (rep != NULL) {
281 Element* e = &rep->elements[0];
282 Element* limit = &rep->elements[size];
283 for (; e < limit; e++) {
284 e->Element::~Element();
285 }
286 if (rep->arena == NULL) {
287 delete[] reinterpret_cast<char*>(rep);
288 }
289 }
290 }
291 };
292
293 template<typename Element>
294 const size_t RepeatedField<Element>::kRepHeaderSize =
295 reinterpret_cast<size_t>(&reinterpret_cast<Rep*>(16)->elements[0]) - 16;
296
297 namespace internal {
298 template <typename It> class RepeatedPtrIterator;
299 template <typename It, typename VoidPtr> class RepeatedPtrOverPtrsIterator;
300 } // namespace internal
301
302 namespace internal {
303
304 // This is a helper template to copy an array of elements effeciently when they
305 // have a trivial copy constructor, and correctly otherwise. This really
306 // shouldn't be necessary, but our compiler doesn't optimize std::copy very
307 // effectively.
308 template <typename Element,
309 bool HasTrivialCopy = has_trivial_copy<Element>::value>
310 struct ElementCopier {
311 void operator()(Element* to, const Element* from, int array_size);
312 };
313
314 } // namespace internal
315
316 namespace internal {
317
318 // type-traits helper for RepeatedPtrFieldBase: we only want to invoke
319 // arena-related "copy if on different arena" behavior if the necessary methods
320 // exist on the contained type. In particular, we rely on MergeFrom() existing
321 // as a general proxy for the fact that a copy will work, and we also provide a
322 // specific override for string*.
323 template<typename T>
324 struct TypeImplementsMergeBehavior {
325 typedef char HasMerge;
326 typedef long HasNoMerge;
327
328 // We accept either of:
329 // - void MergeFrom(const T& other)
330 // - bool MergeFrom(const T& other)
331 //
332 // We mangle these names a bit to avoid compatibility issues in 'unclean'
333 // include environments that may have, e.g., "#define test ..." (yes, this
334 // exists).
335 template<typename U, typename RetType, RetType (U::*)(const U& arg)>
336 struct CheckType;
337 template<typename U> static HasMerge Check(
338 CheckType<U, void, &U::MergeFrom>*);
339 template<typename U> static HasMerge Check(
340 CheckType<U, bool, &U::MergeFrom>*);
341 template<typename U> static HasNoMerge Check(...);
342
343 // Resovles to either google::protobuf::internal::true_type or google::protobuf::internal::false_type.
344 typedef google::protobuf::internal::integral_constant<bool,
345 (sizeof(Check<T>(0)) == sizeof(HasMerge))> type;
346 };
347
348 template<>
349 struct TypeImplementsMergeBehavior< ::std::string > {
350 typedef google::protobuf::internal::true_type type;
351 };
352
353 // This is the common base class for RepeatedPtrFields. It deals only in void*
354 // pointers. Users should not use this interface directly.
355 //
356 // The methods of this interface correspond to the methods of RepeatedPtrField,
357 // but may have a template argument called TypeHandler. Its signature is:
358 // class TypeHandler {
359 // public:
360 // typedef MyType Type;
361 // static Type* New();
362 // static void Delete(Type*);
363 // static void Clear(Type*);
364 // static void Merge(const Type& from, Type* to);
365 //
366 // // Only needs to be implemented if SpaceUsedExcludingSelf() is called.
367 // static int SpaceUsed(const Type&);
368 // };
369 class LIBPROTOBUF_EXPORT RepeatedPtrFieldBase {
370 protected:
371 // The reflection implementation needs to call protected methods directly,
372 // reinterpreting pointers as being to Message instead of a specific Message
373 // subclass.
374 friend class GeneratedMessageReflection;
375
376 // ExtensionSet stores repeated message extensions as
377 // RepeatedPtrField<MessageLite>, but non-lite ExtensionSets need to
378 // implement SpaceUsed(), and thus need to call SpaceUsedExcludingSelf()
379 // reinterpreting MessageLite as Message. ExtensionSet also needs to make
380 // use of AddFromCleared(), which is not part of the public interface.
381 friend class ExtensionSet;
382
383 // The MapFieldBase implementation needs to call protected methods directly,
384 // reinterpreting pointers as being to Message instead of a specific Message
385 // subclass.
386 friend class MapFieldBase;
387
388 // To parse directly into a proto2 generated class, the upb class GMR_Handlers
389 // needs to be able to modify a RepeatedPtrFieldBase directly.
390 friend class upb::google_opensource::GMR_Handlers;
391
392 RepeatedPtrFieldBase();
393 explicit RepeatedPtrFieldBase(::google::protobuf::Arena* arena);
394 ~RepeatedPtrFieldBase() {}
395
396 // Must be called from destructor.
397 template <typename TypeHandler>
398 void Destroy();
399
400 bool empty() const;
401 int size() const;
402
403 template <typename TypeHandler>
404 const typename TypeHandler::Type& Get(int index) const;
405 template <typename TypeHandler>
406 typename TypeHandler::Type* Mutable(int index);
407 template <typename TypeHandler>
408 void Delete(int index);
409 template <typename TypeHandler>
410 typename TypeHandler::Type* Add(typename TypeHandler::Type* prototype = NULL);
411
412 template <typename TypeHandler>
413 void RemoveLast();
414 template <typename TypeHandler>
415 void Clear();
416 template <typename TypeHandler>
417 void MergeFrom(const RepeatedPtrFieldBase& other);
418 template <typename TypeHandler>
419 void CopyFrom(const RepeatedPtrFieldBase& other);
420
421 void CloseGap(int start, int num);
422
423 void Reserve(int new_size);
424
425 int Capacity() const;
426
427 // Used for constructing iterators.
428 void* const* raw_data() const;
429 void** raw_mutable_data() const;
430
431 template <typename TypeHandler>
432 typename TypeHandler::Type** mutable_data();
433 template <typename TypeHandler>
434 const typename TypeHandler::Type* const* data() const;
435
436 template <typename TypeHandler>
437 GOOGLE_ATTRIBUTE_ALWAYS_INLINE void Swap(RepeatedPtrFieldBase* other);
438
439 void SwapElements(int index1, int index2);
440
441 template <typename TypeHandler>
442 int SpaceUsedExcludingSelf() const;
443
444
445 // Advanced memory management --------------------------------------
446
447 // Like Add(), but if there are no cleared objects to use, returns NULL.
448 template <typename TypeHandler>
449 typename TypeHandler::Type* AddFromCleared();
450
451 template<typename TypeHandler>
452 void AddAllocated(typename TypeHandler::Type* value) {
453 typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
454 AddAllocatedInternal<TypeHandler>(value, t);
455 }
456
457 template <typename TypeHandler>
458 void UnsafeArenaAddAllocated(typename TypeHandler::Type* value);
459
460 template <typename TypeHandler>
461 typename TypeHandler::Type* ReleaseLast() {
462 typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
463 return ReleaseLastInternal<TypeHandler>(t);
464 }
465
466 // Releases last element and returns it, but does not do out-of-arena copy.
467 // And just returns the raw pointer to the contained element in the arena.
468 template <typename TypeHandler>
469 typename TypeHandler::Type* UnsafeArenaReleaseLast();
470
471 int ClearedCount() const;
472 template <typename TypeHandler>
473 void AddCleared(typename TypeHandler::Type* value);
474 template <typename TypeHandler>
475 typename TypeHandler::Type* ReleaseCleared();
476
477 protected:
478 inline void InternalSwap(RepeatedPtrFieldBase* other);
479
480 template <typename TypeHandler>
481 void AddAllocatedInternal(typename TypeHandler::Type* value,
482 google::protobuf::internal::true_type);
483 template <typename TypeHandler>
484 void AddAllocatedInternal(typename TypeHandler::Type* value,
485 google::protobuf::internal::false_type);
486
487 template <typename TypeHandler> GOOGLE_ATTRIBUTE_NOINLINE
488 void AddAllocatedSlowWithCopy(typename TypeHandler::Type* value,
489 Arena* value_arena,
490 Arena* my_arena);
491 template <typename TypeHandler> GOOGLE_ATTRIBUTE_NOINLINE
492 void AddAllocatedSlowWithoutCopy(typename TypeHandler::Type* value);
493
494 template <typename TypeHandler>
495 typename TypeHandler::Type* ReleaseLastInternal(google::protobuf::internal::true_type);
496 template <typename TypeHandler>
497 typename TypeHandler::Type* ReleaseLastInternal(google::protobuf::internal::false_type);
498
499 template<typename TypeHandler> GOOGLE_ATTRIBUTE_NOINLINE
500 void SwapFallback(RepeatedPtrFieldBase* other);
501
502 inline Arena* GetArenaNoVirtual() const {
503 return arena_;
504 }
505
506 private:
507 static const int kInitialSize = 0;
508 // A few notes on internal representation:
509 //
510 // We use an indirected approach, with struct Rep, to keep
511 // sizeof(RepeatedPtrFieldBase) equivalent to what it was before arena support
512 // was added, namely, 3 8-byte machine words on x86-64. An instance of Rep is
513 // allocated only when the repeated field is non-empty, and it is a
514 // dynamically-sized struct (the header is directly followed by elements[]).
515 // We place arena_ and current_size_ directly in the object to avoid cache
516 // misses due to the indirection, because these fields are checked frequently.
517 // Placing all fields directly in the RepeatedPtrFieldBase instance costs
518 // significant performance for memory-sensitive workloads.
519 Arena* arena_;
520 int current_size_;
521 int total_size_;
522 struct Rep {
523 int allocated_size;
524 void* elements[1];
525 };
526 static const size_t kRepHeaderSize = sizeof(Rep) - sizeof(void*);
527 // Contains arena ptr and the elements array. We also keep the invariant that
528 // if rep_ is NULL, then arena is NULL.
529 Rep* rep_;
530
531 template <typename TypeHandler>
532 static inline typename TypeHandler::Type* cast(void* element) {
533 return reinterpret_cast<typename TypeHandler::Type*>(element);
534 }
535 template <typename TypeHandler>
536 static inline const typename TypeHandler::Type* cast(const void* element) {
537 return reinterpret_cast<const typename TypeHandler::Type*>(element);
538 }
539
540 // Non-templated inner function to avoid code duplication. Takes a function
541 // pointer to the type-specific (templated) inner allocate/merge loop.
542 void MergeFromInternal(
543 const RepeatedPtrFieldBase& other,
544 void (RepeatedPtrFieldBase::*inner_loop)(void**, void**, int, int));
545
546 template<typename TypeHandler>
547 void MergeFromInnerLoop(
548 void** our_elems, void** other_elems, int length, int already_allocated);
549
550 // Internal helper: extend array space if necessary to contain |extend_amount|
551 // more elements, and return a pointer to the element immediately following
552 // the old list of elements. This interface factors out common behavior from
553 // Reserve() and MergeFrom() to reduce code size. |extend_amount| must be > 0.
554 void** InternalExtend(int extend_amount);
555
556 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(RepeatedPtrFieldBase);
557 };
558
559 template <typename GenericType>
560 class GenericTypeHandler {
561 public:
562 typedef GenericType Type;
563 static inline GenericType* New(Arena* arena) {
564 return ::google::protobuf::Arena::CreateMaybeMessage<Type>(
565 arena, static_cast<GenericType*>(0));
566 }
567 // We force NewFromPrototype() to be non-inline to reduce code size:
568 // else, several other methods get inlined copies of message types'
569 // constructors.
570 GOOGLE_ATTRIBUTE_NOINLINE static GenericType* NewFromPrototype(
571 const GenericType* prototype, ::google::protobuf::Arena* arena = NULL);
572 static inline void Delete(GenericType* value, Arena* arena) {
573 if (arena == NULL) {
574 delete value;
575 }
576 }
577 static inline ::google::protobuf::Arena* GetArena(GenericType* value) {
578 return ::google::protobuf::Arena::GetArena<Type>(value);
579 }
580 static inline void* GetMaybeArenaPointer(GenericType* value) {
581 return ::google::protobuf::Arena::GetArena<Type>(value);
582 }
583
584 static inline void Clear(GenericType* value) { value->Clear(); }
585 GOOGLE_ATTRIBUTE_NOINLINE static void Merge(const GenericType& from,
586 GenericType* to);
587 static inline int SpaceUsed(const GenericType& value) {
588 return value.SpaceUsed();
589 }
590 static inline const Type& default_instance() {
591 return Type::default_instance();
592 }
593 };
594
595 template <typename GenericType>
596 GenericType* GenericTypeHandler<GenericType>::NewFromPrototype(
597 const GenericType* /* prototype */, ::google::protobuf::Arena* arena) {
598 return New(arena);
599 }
600 template <typename GenericType>
601 void GenericTypeHandler<GenericType>::Merge(const GenericType& from,
602 GenericType* to) {
603 to->MergeFrom(from);
604 }
605
606 // NewFromPrototype() and Merge() cannot be defined here; if they're declared
607 // inline the compiler will complain about not matching GOOGLE_ATTRIBUTE_NOINLINE
608 // above, and if not, compilation will result in multiple definitions. These
609 // are therefore declared as specializations here and defined in
610 // message_lite.cc.
611 template<>
612 MessageLite* GenericTypeHandler<MessageLite>::NewFromPrototype(
613 const MessageLite* prototype, google::protobuf::Arena* arena);
614 template<>
615 inline google::protobuf::Arena* GenericTypeHandler<MessageLite>::GetArena(
616 MessageLite* value) {
617 return value->GetArena();
618 }
619 template<>
620 inline void* GenericTypeHandler<MessageLite>::GetMaybeArenaPointer(
621 MessageLite* value) {
622 return value->GetMaybeArenaPointer();
623 }
624 template <>
625 void GenericTypeHandler<MessageLite>::Merge(const MessageLite& from,
626 MessageLite* to);
627 template<>
628 inline void GenericTypeHandler<string>::Clear(string* value) {
629 value->clear();
630 }
631 template<>
632 void GenericTypeHandler<string>::Merge(const string& from,
633 string* to);
634
635 // Declarations of the specialization as we cannot define them here, as the
636 // header that defines ProtocolMessage depends on types defined in this header.
637 #define DECLARE_SPECIALIZATIONS_FOR_BASE_PROTO_TYPES(TypeName) \
638 template<> \
639 TypeName* GenericTypeHandler<TypeName>::NewFromPrototype( \
640 const TypeName* prototype, google::protobuf::Arena* arena); \
641 template<> \
642 google::protobuf::Arena* GenericTypeHandler<TypeName>::GetArena( \
643 TypeName* value); \
644 template<> \
645 void* GenericTypeHandler<TypeName>::GetMaybeArenaPointer( \
646 TypeName* value);
647
648 // Message specialization bodies defined in message.cc. This split is necessary
649 // to allow proto2-lite (which includes this header) to be independent of
650 // Message.
651 DECLARE_SPECIALIZATIONS_FOR_BASE_PROTO_TYPES(Message)
652
653
654 #undef DECLARE_SPECIALIZATIONS_FOR_BASE_PROTO_TYPES
655
656 template <>
657 inline const MessageLite& GenericTypeHandler<MessageLite>::default_instance() {
658 // Yes, the behavior of the code is undefined, but this function is only
659 // called when we're already deep into the world of undefined, because the
660 // caller called Get(index) out of bounds.
661 MessageLite* null = NULL;
662 return *null;
663 }
664
665 template <>
666 inline const Message& GenericTypeHandler<Message>::default_instance() {
667 // Yes, the behavior of the code is undefined, but this function is only
668 // called when we're already deep into the world of undefined, because the
669 // caller called Get(index) out of bounds.
670 Message* null = NULL;
671 return *null;
672 }
673
674
675 // HACK: If a class is declared as DLL-exported in MSVC, it insists on
676 // generating copies of all its methods -- even inline ones -- to include
677 // in the DLL. But SpaceUsed() calls StringSpaceUsedExcludingSelf() which
678 // isn't in the lite library, therefore the lite library cannot link if
679 // StringTypeHandler is exported. So, we factor out StringTypeHandlerBase,
680 // export that, then make StringTypeHandler be a subclass which is NOT
681 // exported.
682 // TODO(kenton): Now that StringSpaceUsedExcludingSelf() is in the lite
683 // library, this can be cleaned up.
684 class LIBPROTOBUF_EXPORT StringTypeHandlerBase {
685 public:
686 typedef string Type;
687
688 static inline string* New(Arena* arena) {
689 return Arena::Create<string>(arena);
690 }
691 static inline string* NewFromPrototype(const string*,
692 ::google::protobuf::Arena* arena) {
693 return New(arena);
694 }
695 static inline ::google::protobuf::Arena* GetArena(string*) {
696 return NULL;
697 }
698 static inline void* GetMaybeArenaPointer(string* /* value */) {
699 return NULL;
700 }
701 static inline void Delete(string* value, Arena* arena) {
702 if (arena == NULL) {
703 delete value;
704 }
705 }
706 static inline void Clear(string* value) { value->clear(); }
707 static inline void Merge(const string& from, string* to) { *to = from; }
708 static inline const Type& default_instance() {
709 return ::google::protobuf::internal::GetEmptyString();
710 }
711 };
712
713 class StringTypeHandler : public StringTypeHandlerBase {
714 public:
715 static int SpaceUsed(const string& value) {
716 return static_cast<int>(sizeof(value)) + StringSpaceUsedExcludingSelf(value);
717 }
718 };
719
720
721 } // namespace internal
722
723 // RepeatedPtrField is like RepeatedField, but used for repeated strings or
724 // Messages.
725 template <typename Element>
726 class RepeatedPtrField : public internal::RepeatedPtrFieldBase {
727 public:
728 RepeatedPtrField();
729 explicit RepeatedPtrField(::google::protobuf::Arena* arena);
730
731 RepeatedPtrField(const RepeatedPtrField& other);
732 template <typename Iter>
733 RepeatedPtrField(Iter begin, const Iter& end);
734 ~RepeatedPtrField();
735
736 RepeatedPtrField& operator=(const RepeatedPtrField& other);
737
738 bool empty() const;
739 int size() const;
740
741 const Element& Get(int index) const;
742 Element* Mutable(int index);
743 Element* Add();
744
745 // Remove the last element in the array.
746 // Ownership of the element is retained by the array.
747 void RemoveLast();
748
749 // Delete elements with indices in the range [start .. start+num-1].
750 // Caution: implementation moves all elements with indices [start+num .. ].
751 // Calling this routine inside a loop can cause quadratic behavior.
752 void DeleteSubrange(int start, int num);
753
754 void Clear();
755 void MergeFrom(const RepeatedPtrField& other);
756 void CopyFrom(const RepeatedPtrField& other);
757
758 // Reserve space to expand the field to at least the given size. This only
759 // resizes the pointer array; it doesn't allocate any objects. If the
760 // array is grown, it will always be at least doubled in size.
761 void Reserve(int new_size);
762
763 int Capacity() const;
764
765 // Gets the underlying array. This pointer is possibly invalidated by
766 // any add or remove operation.
767 Element** mutable_data();
768 const Element* const* data() const;
769
770 // Swap entire contents with "other". If they are on separate arenas, then
771 // copies data.
772 void Swap(RepeatedPtrField* other);
773
774 // Swap entire contents with "other". Caller should guarantee that either both
775 // fields are on the same arena or both are on the heap. Swapping between
776 // different arenas with this function is disallowed and is caught via
777 // GOOGLE_DCHECK.
778 void UnsafeArenaSwap(RepeatedPtrField* other);
779
780 // Swap two elements.
781 void SwapElements(int index1, int index2);
782
783 // STL-like iterator support
784 typedef internal::RepeatedPtrIterator<Element> iterator;
785 typedef internal::RepeatedPtrIterator<const Element> const_iterator;
786 typedef Element value_type;
787 typedef value_type& reference;
788 typedef const value_type& const_reference;
789 typedef value_type* pointer;
790 typedef const value_type* const_pointer;
791 typedef int size_type;
792 typedef ptrdiff_t difference_type;
793
794 iterator begin();
795 const_iterator begin() const;
796 const_iterator cbegin() const;
797 iterator end();
798 const_iterator end() const;
799 const_iterator cend() const;
800
801 // Reverse iterator support
802 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
803 typedef std::reverse_iterator<iterator> reverse_iterator;
804 reverse_iterator rbegin() {
805 return reverse_iterator(end());
806 }
807 const_reverse_iterator rbegin() const {
808 return const_reverse_iterator(end());
809 }
810 reverse_iterator rend() {
811 return reverse_iterator(begin());
812 }
813 const_reverse_iterator rend() const {
814 return const_reverse_iterator(begin());
815 }
816
817 // Custom STL-like iterator that iterates over and returns the underlying
818 // pointers to Element rather than Element itself.
819 typedef internal::RepeatedPtrOverPtrsIterator<Element, void*>
820 pointer_iterator;
821 typedef internal::RepeatedPtrOverPtrsIterator<const Element, const void*>
822 const_pointer_iterator;
823 pointer_iterator pointer_begin();
824 const_pointer_iterator pointer_begin() const;
825 pointer_iterator pointer_end();
826 const_pointer_iterator pointer_end() const;
827
828 // Returns (an estimate of) the number of bytes used by the repeated field,
829 // excluding sizeof(*this).
830 int SpaceUsedExcludingSelf() const;
831
832 // Advanced memory management --------------------------------------
833 // When hardcore memory management becomes necessary -- as it sometimes
834 // does here at Google -- the following methods may be useful.
835
836 // Add an already-allocated object, passing ownership to the
837 // RepeatedPtrField.
838 //
839 // Note that some special behavior occurs with respect to arenas:
840 //
841 // (i) if this field holds submessages, the new submessage will be copied if
842 // the original is in an arena and this RepeatedPtrField is either in a
843 // different arena, or on the heap.
844 // (ii) if this field holds strings, the passed-in string *must* be
845 // heap-allocated, not arena-allocated. There is no way to dynamically check
846 // this at runtime, so User Beware.
847 void AddAllocated(Element* value);
848
849 // Remove the last element and return it, passing ownership to the caller.
850 // Requires: size() > 0
851 //
852 // If this RepeatedPtrField is on an arena, an object copy is required to pass
853 // ownership back to the user (for compatible semantics). Use
854 // UnsafeArenaReleaseLast() if this behavior is undesired.
855 Element* ReleaseLast();
856
857 // Add an already-allocated object, skipping arena-ownership checks. The user
858 // must guarantee that the given object is in the same arena as this
859 // RepeatedPtrField.
860 // It is also useful in legacy code that uses temporary ownership to avoid
861 // copies. Example:
862 // RepeatedPtrField<T> temp_field;
863 // temp_field.AddAllocated(new T);
864 // ... // Do something with temp_field
865 // temp_field.ExtractSubrange(0, temp_field.size(), NULL);
866 // If you put temp_field on the arena this fails, because the ownership
867 // transfers to the arena at the "AddAllocated" call and is not released
868 // anymore causing a double delete. UnsafeArenaAddAllocated prevents this.
869 void UnsafeArenaAddAllocated(Element* value);
870
871 // Remove the last element and return it. Works only when operating on an
872 // arena. The returned pointer is to the original object in the arena, hence
873 // has the arena's lifetime.
874 // Requires: current_size_ > 0
875 Element* UnsafeArenaReleaseLast();
876
877 // Extract elements with indices in the range "[start .. start+num-1]".
878 // The caller assumes ownership of the extracted elements and is responsible
879 // for deleting them when they are no longer needed.
880 // If "elements" is non-NULL, then pointers to the extracted elements
881 // are stored in "elements[0 .. num-1]" for the convenience of the caller.
882 // If "elements" is NULL, then the caller must use some other mechanism
883 // to perform any further operations (like deletion) on these elements.
884 // Caution: implementation also moves elements with indices [start+num ..].
885 // Calling this routine inside a loop can cause quadratic behavior.
886 //
887 // Memory copying behavior is identical to ReleaseLast(), described above: if
888 // this RepeatedPtrField is on an arena, an object copy is performed for each
889 // returned element, so that all returned element pointers are to
890 // heap-allocated copies. If this copy is not desired, the user should call
891 // UnsafeArenaExtractSubrange().
892 void ExtractSubrange(int start, int num, Element** elements);
893
894 // Identical to ExtractSubrange() described above, except that when this
895 // repeated field is on an arena, no object copies are performed. Instead, the
896 // raw object pointers are returned. Thus, if on an arena, the returned
897 // objects must not be freed, because they will not be heap-allocated objects.
898 void UnsafeArenaExtractSubrange(int start, int num, Element** elements);
899
900 // When elements are removed by calls to RemoveLast() or Clear(), they
901 // are not actually freed. Instead, they are cleared and kept so that
902 // they can be reused later. This can save lots of CPU time when
903 // repeatedly reusing a protocol message for similar purposes.
904 //
905 // Hardcore programs may choose to manipulate these cleared objects
906 // to better optimize memory management using the following routines.
907
908 // Get the number of cleared objects that are currently being kept
909 // around for reuse.
910 int ClearedCount() const;
911 // Add an element to the pool of cleared objects, passing ownership to
912 // the RepeatedPtrField. The element must be cleared prior to calling
913 // this method.
914 //
915 // This method cannot be called when the repeated field is on an arena or when
916 // |value| is; both cases will trigger a GOOGLE_DCHECK-failure.
917 void AddCleared(Element* value);
918 // Remove a single element from the cleared pool and return it, passing
919 // ownership to the caller. The element is guaranteed to be cleared.
920 // Requires: ClearedCount() > 0
921 //
922 //
923 // This method cannot be called when the repeated field is on an arena; doing
924 // so will trigger a GOOGLE_DCHECK-failure.
925 Element* ReleaseCleared();
926
927 // Removes the element referenced by position.
928 //
929 // Returns an iterator to the element immediately following the removed
930 // element.
931 //
932 // Invalidates all iterators at or after the removed element, including end().
933 iterator erase(const_iterator position);
934
935 // Removes the elements in the range [first, last).
936 //
937 // Returns an iterator to the element immediately following the removed range.
938 //
939 // Invalidates all iterators at or after the removed range, including end().
940 iterator erase(const_iterator first, const_iterator last);
941
942 // Gets the arena on which this RepeatedPtrField stores its elements.
943 ::google::protobuf::Arena* GetArena() const {
944 return GetArenaNoVirtual();
945 }
946
947 protected:
948 // Note: RepeatedPtrField SHOULD NOT be subclassed by users. We only
949 // subclass it in one place as a hack for compatibility with proto1. The
950 // subclass needs to know about TypeHandler in order to call protected
951 // methods on RepeatedPtrFieldBase.
952 class TypeHandler;
953
954 // Internal arena accessor expected by helpers in Arena.
955 inline Arena* GetArenaNoVirtual() const;
956
957 private:
958 // Implementations for ExtractSubrange(). The copying behavior must be
959 // included only if the type supports the necessary operations (e.g.,
960 // MergeFrom()), so we must resolve this at compile time. ExtractSubrange()
961 // uses SFINAE to choose one of the below implementations.
962 void ExtractSubrangeInternal(int start, int num, Element** elements,
963 google::protobuf::internal::true_type);
964 void ExtractSubrangeInternal(int start, int num, Element** elements,
965 google::protobuf::internal::false_type);
966
967 friend class Arena;
968 typedef void InternalArenaConstructable_;
969
970 };
971
972 // implementation ====================================================
973
974 template <typename Element>
975 inline RepeatedField<Element>::RepeatedField()
976 : current_size_(0),
977 total_size_(0),
978 rep_(NULL) {
979 }
980
981 template <typename Element>
982 inline RepeatedField<Element>::RepeatedField(Arena* arena)
983 : current_size_(0),
984 total_size_(0),
985 rep_(NULL) {
986 // In case arena is NULL, then we do not create rep_, as code has an invariant
987 // `rep_ == NULL then arena == NULL`.
988 if (arena != NULL) {
989 rep_ = reinterpret_cast<Rep*>(
990 ::google::protobuf::Arena::CreateArray<char>(arena, kRepHeaderSize));
991 rep_->arena = arena;
992 }
993 }
994
995 template <typename Element>
996 inline RepeatedField<Element>::RepeatedField(const RepeatedField& other)
997 : current_size_(0),
998 total_size_(0),
999 rep_(NULL) {
1000 CopyFrom(other);
1001 }
1002
1003 template <typename Element>
1004 template <typename Iter>
1005 RepeatedField<Element>::RepeatedField(Iter begin, const Iter& end)
1006 : current_size_(0),
1007 total_size_(0),
1008 rep_(NULL) {
1009 int reserve = internal::CalculateReserve(begin, end);
1010 if (reserve != -1) {
1011 Reserve(reserve);
1012 for (; begin != end; ++begin) {
1013 AddAlreadyReserved(*begin);
1014 }
1015 } else {
1016 for (; begin != end; ++begin) {
1017 Add(*begin);
1018 }
1019 }
1020 }
1021
1022 template <typename Element>
1023 RepeatedField<Element>::~RepeatedField() {
1024 // See explanation in Reserve(): we need to invoke destructors here for the
1025 // case that Element has a non-trivial destructor.
1026 InternalDeallocate(rep_, total_size_);
1027 }
1028
1029 template <typename Element>
1030 inline RepeatedField<Element>&
1031 RepeatedField<Element>::operator=(const RepeatedField& other) {
1032 if (this != &other)
1033 CopyFrom(other);
1034 return *this;
1035 }
1036
1037 template <typename Element>
1038 inline bool RepeatedField<Element>::empty() const {
1039 return current_size_ == 0;
1040 }
1041
1042 template <typename Element>
1043 inline int RepeatedField<Element>::size() const {
1044 return current_size_;
1045 }
1046
1047 template <typename Element>
1048 inline int RepeatedField<Element>::Capacity() const {
1049 return total_size_;
1050 }
1051
1052 template<typename Element>
1053 inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) {
1054 GOOGLE_DCHECK_LT(current_size_, total_size_);
1055 rep_->elements[current_size_++] = value;
1056 }
1057
1058 template<typename Element>
1059 inline Element* RepeatedField<Element>::AddAlreadyReserved() {
1060 GOOGLE_DCHECK_LT(current_size_, total_size_);
1061 return &rep_->elements[current_size_++];
1062 }
1063
1064 template<typename Element>
1065 inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
1066 GOOGLE_DCHECK_GE(new_size, 0);
1067 if (new_size > current_size_) {
1068 Reserve(new_size);
1069 std::fill(&rep_->elements[current_size_],
1070 &rep_->elements[new_size], value);
1071 }
1072 current_size_ = new_size;
1073 }
1074
1075 template <typename Element>
1076 inline const Element& RepeatedField<Element>::Get(int index) const {
1077 GOOGLE_DCHECK_GE(index, 0);
1078 GOOGLE_DCHECK_LT(index, current_size_);
1079 return rep_->elements[index];
1080 }
1081
1082 template <typename Element>
1083 inline Element* RepeatedField<Element>::Mutable(int index) {
1084 GOOGLE_DCHECK_GE(index, 0);
1085 GOOGLE_DCHECK_LT(index, current_size_);
1086 return &rep_->elements[index];
1087 }
1088
1089 template <typename Element>
1090 inline void RepeatedField<Element>::Set(int index, const Element& value) {
1091 GOOGLE_DCHECK_GE(index, 0);
1092 GOOGLE_DCHECK_LT(index, current_size_);
1093 rep_->elements[index] = value;
1094 }
1095
1096 template <typename Element>
1097 inline void RepeatedField<Element>::Add(const Element& value) {
1098 if (current_size_ == total_size_) Reserve(total_size_ + 1);
1099 rep_->elements[current_size_++] = value;
1100 }
1101
1102 template <typename Element>
1103 inline Element* RepeatedField<Element>::Add() {
1104 if (current_size_ == total_size_) Reserve(total_size_ + 1);
1105 return &rep_->elements[current_size_++];
1106 }
1107
1108 template <typename Element>
1109 inline void RepeatedField<Element>::RemoveLast() {
1110 GOOGLE_DCHECK_GT(current_size_, 0);
1111 current_size_--;
1112 }
1113
1114 template <typename Element>
1115 void RepeatedField<Element>::ExtractSubrange(
1116 int start, int num, Element* elements) {
1117 GOOGLE_DCHECK_GE(start, 0);
1118 GOOGLE_DCHECK_GE(num, 0);
1119 GOOGLE_DCHECK_LE(start + num, this->current_size_);
1120
1121 // Save the values of the removed elements if requested.
1122 if (elements != NULL) {
1123 for (int i = 0; i < num; ++i)
1124 elements[i] = this->Get(i + start);
1125 }
1126
1127 // Slide remaining elements down to fill the gap.
1128 if (num > 0) {
1129 for (int i = start + num; i < this->current_size_; ++i)
1130 this->Set(i - num, this->Get(i));
1131 this->Truncate(this->current_size_ - num);
1132 }
1133 }
1134
1135 template <typename Element>
1136 inline void RepeatedField<Element>::Clear() {
1137 current_size_ = 0;
1138 }
1139
1140 template <typename Element>
1141 inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
1142 GOOGLE_CHECK_NE(&other, this);
1143 if (other.current_size_ != 0) {
1144 Reserve(current_size_ + other.current_size_);
1145 CopyArray(rep_->elements + current_size_,
1146 other.rep_->elements, other.current_size_);
1147 current_size_ += other.current_size_;
1148 }
1149 }
1150
1151 template <typename Element>
1152 inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
1153 if (&other == this) return;
1154 Clear();
1155 MergeFrom(other);
1156 }
1157
1158 template <typename Element>
1159 inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
1160 const_iterator position) {
1161 return erase(position, position + 1);
1162 }
1163
1164 template <typename Element>
1165 inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
1166 const_iterator first, const_iterator last) {
1167 size_type first_offset = first - cbegin();
1168 if (first != last) {
1169 Truncate(std::copy(last, cend(), begin() + first_offset) - cbegin());
1170 }
1171 return begin() + first_offset;
1172 }
1173
1174 template <typename Element>
1175 inline Element* RepeatedField<Element>::mutable_data() {
1176 return rep_ ? rep_->elements : NULL;
1177 }
1178
1179 template <typename Element>
1180 inline const Element* RepeatedField<Element>::data() const {
1181 return rep_ ? rep_->elements : NULL;
1182 }
1183
1184
1185 template <typename Element>
1186 inline void RepeatedField<Element>::InternalSwap(RepeatedField* other) {
1187 std::swap(rep_, other->rep_);
1188 std::swap(current_size_, other->current_size_);
1189 std::swap(total_size_, other->total_size_);
1190 }
1191
1192 template <typename Element>
1193 void RepeatedField<Element>::Swap(RepeatedField* other) {
1194 if (this == other) return;
1195 if (GetArenaNoVirtual() == other->GetArenaNoVirtual()) {
1196 InternalSwap(other);
1197 } else {
1198 RepeatedField<Element> temp(other->GetArenaNoVirtual());
1199 temp.MergeFrom(*this);
1200 CopyFrom(*other);
1201 other->UnsafeArenaSwap(&temp);
1202 }
1203 }
1204
1205 template <typename Element>
1206 void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) {
1207 if (this == other) return;
1208 GOOGLE_DCHECK(GetArenaNoVirtual() == other->GetArenaNoVirtual());
1209 InternalSwap(other);
1210 }
1211
1212 template <typename Element>
1213 void RepeatedField<Element>::SwapElements(int index1, int index2) {
1214 using std::swap; // enable ADL with fallback
1215 swap(rep_->elements[index1], rep_->elements[index2]);
1216 }
1217
1218 template <typename Element>
1219 inline typename RepeatedField<Element>::iterator
1220 RepeatedField<Element>::begin() {
1221 return rep_ ? rep_->elements : NULL;
1222 }
1223 template <typename Element>
1224 inline typename RepeatedField<Element>::const_iterator
1225 RepeatedField<Element>::begin() const {
1226 return rep_ ? rep_->elements : NULL;
1227 }
1228 template <typename Element>
1229 inline typename RepeatedField<Element>::const_iterator
1230 RepeatedField<Element>::cbegin() const {
1231 return rep_ ? rep_->elements : NULL;
1232 }
1233 template <typename Element>
1234 inline typename RepeatedField<Element>::iterator
1235 RepeatedField<Element>::end() {
1236 return rep_ ? rep_->elements + current_size_ : NULL;
1237 }
1238 template <typename Element>
1239 inline typename RepeatedField<Element>::const_iterator
1240 RepeatedField<Element>::end() const {
1241 return rep_ ? rep_->elements + current_size_ : NULL;
1242 }
1243 template <typename Element>
1244 inline typename RepeatedField<Element>::const_iterator
1245 RepeatedField<Element>::cend() const {
1246 return rep_ ? rep_->elements + current_size_ : NULL;
1247 }
1248
1249 template <typename Element>
1250 inline int RepeatedField<Element>::SpaceUsedExcludingSelf() const {
1251 return rep_ ?
1252 (total_size_ * sizeof(Element) + kRepHeaderSize) : 0;
1253 }
1254
1255 // Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
1256 // amount of code bloat.
1257 template <typename Element>
1258 void RepeatedField<Element>::Reserve(int new_size) {
1259 if (total_size_ >= new_size) return;
1260 Rep* old_rep = rep_;
1261 Arena* arena = GetArenaNoVirtual();
1262 new_size = std::max(google::protobuf::internal::kMinRepeatedFieldAllocationSize,
1263 std::max(total_size_ * 2, new_size));
1264 GOOGLE_CHECK_LE(static_cast<size_t>(new_size),
1265 (std::numeric_limits<size_t>::max() - kRepHeaderSize) /
1266 sizeof(Element))
1267 << "Requested size is too large to fit into size_t.";
1268 if (arena == NULL) {
1269 rep_ = reinterpret_cast<Rep*>(
1270 new char[kRepHeaderSize + sizeof(Element) * new_size]);
1271 } else {
1272 rep_ = reinterpret_cast<Rep*>(
1273 ::google::protobuf::Arena::CreateArray<char>(arena,
1274 kRepHeaderSize + sizeof(Element) * new_size));
1275 }
1276 rep_->arena = arena;
1277 int old_total_size = total_size_;
1278 total_size_ = new_size;
1279 // Invoke placement-new on newly allocated elements. We shouldn't have to do
1280 // this, since Element is supposed to be POD, but a previous version of this
1281 // code allocated storage with "new Element[size]" and some code uses
1282 // RepeatedField with non-POD types, relying on constructor invocation. If
1283 // Element has a trivial constructor (e.g., int32), gcc (tested with -O2)
1284 // completely removes this loop because the loop body is empty, so this has no
1285 // effect unless its side-effects are required for correctness.
1286 // Note that we do this before MoveArray() below because Element's copy
1287 // assignment implementation will want an initialized instance first.
1288 Element* e = &rep_->elements[0];
1289 Element* limit = &rep_->elements[total_size_];
1290 for (; e < limit; e++) {
1291 new (e) Element();
1292 }
1293 if (current_size_ > 0) {
1294 MoveArray(rep_->elements, old_rep->elements, current_size_);
1295 }
1296
1297 // Likewise, we need to invoke destructors on the old array.
1298 InternalDeallocate(old_rep, old_total_size);
1299
1300 }
1301
1302 template <typename Element>
1303 inline void RepeatedField<Element>::Truncate(int new_size) {
1304 GOOGLE_DCHECK_LE(new_size, current_size_);
1305 if (current_size_ > 0) {
1306 current_size_ = new_size;
1307 }
1308 }
1309
1310 template <typename Element>
1311 inline void RepeatedField<Element>::MoveArray(
1312 Element* to, Element* from, int array_size) {
1313 CopyArray(to, from, array_size);
1314 }
1315
1316 template <typename Element>
1317 inline void RepeatedField<Element>::CopyArray(
1318 Element* to, const Element* from, int array_size) {
1319 internal::ElementCopier<Element>()(to, from, array_size);
1320 }
1321
1322 namespace internal {
1323
1324 template <typename Element, bool HasTrivialCopy>
1325 void ElementCopier<Element, HasTrivialCopy>::operator()(
1326 Element* to, const Element* from, int array_size) {
1327 std::copy(from, from + array_size, to);
1328 }
1329
1330 template <typename Element>
1331 struct ElementCopier<Element, true> {
1332 void operator()(Element* to, const Element* from, int array_size) {
1333 memcpy(to, from, array_size * sizeof(Element));
1334 }
1335 };
1336
1337 } // namespace internal
1338
1339
1340 // -------------------------------------------------------------------
1341
1342 namespace internal {
1343
1344 inline RepeatedPtrFieldBase::RepeatedPtrFieldBase()
1345 : arena_(NULL),
1346 current_size_(0),
1347 total_size_(0),
1348 rep_(NULL) {
1349 }
1350
1351 inline RepeatedPtrFieldBase::RepeatedPtrFieldBase(::google::protobuf::Arena* arena)
1352 : arena_(arena),
1353 current_size_(0),
1354 total_size_(0),
1355 rep_(NULL) {
1356 }
1357
1358 template <typename TypeHandler>
1359 void RepeatedPtrFieldBase::Destroy() {
1360 if (rep_ != NULL && arena_ == NULL) {
1361 int n = rep_->allocated_size;
1362 void* const* elements = rep_->elements;
1363 for (int i = 0; i < n; i++) {
1364 TypeHandler::Delete(cast<TypeHandler>(elements[i]), NULL);
1365 }
1366 delete[] reinterpret_cast<char*>(rep_);
1367 }
1368 rep_ = NULL;
1369 }
1370
1371 template <typename TypeHandler>
1372 inline void RepeatedPtrFieldBase::Swap(RepeatedPtrFieldBase* other) {
1373 if (other->GetArenaNoVirtual() == GetArenaNoVirtual()) {
1374 InternalSwap(other);
1375 } else {
1376 SwapFallback<TypeHandler>(other);
1377 }
1378 }
1379
1380 template <typename TypeHandler>
1381 void RepeatedPtrFieldBase::SwapFallback(RepeatedPtrFieldBase* other) {
1382 GOOGLE_DCHECK(other->GetArenaNoVirtual() != GetArenaNoVirtual());
1383
1384 // Copy semantics in this case. We try to improve efficiency by placing the
1385 // temporary on |other|'s arena so that messages are copied cross-arena only
1386 // once, not twice.
1387 RepeatedPtrFieldBase temp(other->GetArenaNoVirtual());
1388 temp.MergeFrom<TypeHandler>(*this);
1389 this->Clear<TypeHandler>();
1390 this->MergeFrom<TypeHandler>(*other);
1391 other->Clear<TypeHandler>();
1392 other->InternalSwap(&temp);
1393 temp.Destroy<TypeHandler>(); // Frees rep_ if `other` had no arena.
1394 }
1395
1396 inline bool RepeatedPtrFieldBase::empty() const {
1397 return current_size_ == 0;
1398 }
1399
1400 inline int RepeatedPtrFieldBase::size() const {
1401 return current_size_;
1402 }
1403
1404 template <typename TypeHandler>
1405 inline const typename TypeHandler::Type&
1406 RepeatedPtrFieldBase::Get(int index) const {
1407 GOOGLE_DCHECK_GE(index, 0);
1408 GOOGLE_DCHECK_LT(index, current_size_);
1409 return *cast<TypeHandler>(rep_->elements[index]);
1410 }
1411
1412
1413 template <typename TypeHandler>
1414 inline typename TypeHandler::Type*
1415 RepeatedPtrFieldBase::Mutable(int index) {
1416 GOOGLE_DCHECK_GE(index, 0);
1417 GOOGLE_DCHECK_LT(index, current_size_);
1418 return cast<TypeHandler>(rep_->elements[index]);
1419 }
1420
1421 template <typename TypeHandler>
1422 inline void RepeatedPtrFieldBase::Delete(int index) {
1423 GOOGLE_DCHECK_GE(index, 0);
1424 GOOGLE_DCHECK_LT(index, current_size_);
1425 TypeHandler::Delete(cast<TypeHandler>(rep_->elements[index]), arena_);
1426 }
1427
1428 template <typename TypeHandler>
1429 inline typename TypeHandler::Type* RepeatedPtrFieldBase::Add(
1430 typename TypeHandler::Type* prototype) {
1431 if (rep_ != NULL && current_size_ < rep_->allocated_size) {
1432 return cast<TypeHandler>(rep_->elements[current_size_++]);
1433 }
1434 if (!rep_ || rep_->allocated_size == total_size_) {
1435 Reserve(total_size_ + 1);
1436 }
1437 ++rep_->allocated_size;
1438 typename TypeHandler::Type* result =
1439 TypeHandler::NewFromPrototype(prototype, arena_);
1440 rep_->elements[current_size_++] = result;
1441 return result;
1442 }
1443
1444 template <typename TypeHandler>
1445 inline void RepeatedPtrFieldBase::RemoveLast() {
1446 GOOGLE_DCHECK_GT(current_size_, 0);
1447 TypeHandler::Clear(cast<TypeHandler>(rep_->elements[--current_size_]));
1448 }
1449
1450 template <typename TypeHandler>
1451 void RepeatedPtrFieldBase::Clear() {
1452 const int n = current_size_;
1453 GOOGLE_DCHECK_GE(n, 0);
1454 if (n > 0) {
1455 void* const* elements = rep_->elements;
1456 int i = 0;
1457 do {
1458 TypeHandler::Clear(cast<TypeHandler>(elements[i++]));
1459 } while (i < n);
1460 current_size_ = 0;
1461 }
1462 }
1463
1464 // To avoid unnecessary code duplication and reduce binary size, we use a
1465 // layered approach to implementing MergeFrom(). The toplevel method is
1466 // templated, so we get a small thunk per concrete message type in the binary.
1467 // This calls a shared implementation with most of the logic, passing a function
1468 // pointer to another type-specific piece of code that calls the object-allocate
1469 // and merge handlers.
1470 template <typename TypeHandler>
1471 inline void RepeatedPtrFieldBase::MergeFrom(const RepeatedPtrFieldBase& other) {
1472 GOOGLE_DCHECK_NE(&other, this);
1473 if (other.current_size_ == 0) return;
1474 MergeFromInternal(
1475 other, &RepeatedPtrFieldBase::MergeFromInnerLoop<TypeHandler>);
1476 }
1477
1478 inline void RepeatedPtrFieldBase::MergeFromInternal(
1479 const RepeatedPtrFieldBase& other,
1480 void (RepeatedPtrFieldBase::*inner_loop)(void**, void**, int, int)) {
1481 // Note: wrapper has already guaranteed that other.rep_ != NULL here.
1482 int other_size = other.current_size_;
1483 void** other_elements = other.rep_->elements;
1484 void** new_elements = InternalExtend(other_size);
1485 int allocated_elems = rep_->allocated_size - current_size_;
1486 (this->*inner_loop)(new_elements, other_elements,
1487 other_size, allocated_elems);
1488 current_size_ += other_size;
1489 if (rep_->allocated_size < current_size_) {
1490 rep_->allocated_size = current_size_;
1491 }
1492 }
1493
1494 // Merges other_elems to our_elems.
1495 template<typename TypeHandler>
1496 void RepeatedPtrFieldBase::MergeFromInnerLoop(
1497 void** our_elems, void** other_elems, int length, int already_allocated) {
1498 // Split into two loops, over ranges [0, allocated) and [allocated, length),
1499 // to avoid a branch within the loop.
1500 for (int i = 0; i < already_allocated && i < length; i++) {
1501 // Already allocated: use existing element.
1502 typename TypeHandler::Type* other_elem =
1503 reinterpret_cast<typename TypeHandler::Type*>(other_elems[i]);
1504 typename TypeHandler::Type* new_elem =
1505 reinterpret_cast<typename TypeHandler::Type*>(our_elems[i]);
1506 TypeHandler::Merge(*other_elem, new_elem);
1507 }
1508 Arena* arena = GetArenaNoVirtual();
1509 for (int i = already_allocated; i < length; i++) {
1510 // Not allocated: alloc a new element first, then merge it.
1511 typename TypeHandler::Type* other_elem =
1512 reinterpret_cast<typename TypeHandler::Type*>(other_elems[i]);
1513 typename TypeHandler::Type* new_elem =
1514 TypeHandler::NewFromPrototype(other_elem, arena);
1515 TypeHandler::Merge(*other_elem, new_elem);
1516 our_elems[i] = new_elem;
1517 }
1518 }
1519
1520 template <typename TypeHandler>
1521 inline void RepeatedPtrFieldBase::CopyFrom(const RepeatedPtrFieldBase& other) {
1522 if (&other == this) return;
1523 RepeatedPtrFieldBase::Clear<TypeHandler>();
1524 RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
1525 }
1526
1527 inline int RepeatedPtrFieldBase::Capacity() const {
1528 return total_size_;
1529 }
1530
1531 inline void* const* RepeatedPtrFieldBase::raw_data() const {
1532 return rep_ ? rep_->elements : NULL;
1533 }
1534
1535 inline void** RepeatedPtrFieldBase::raw_mutable_data() const {
1536 return rep_ ? const_cast<void**>(rep_->elements) : NULL;
1537 }
1538
1539 template <typename TypeHandler>
1540 inline typename TypeHandler::Type** RepeatedPtrFieldBase::mutable_data() {
1541 // TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
1542 // method entirely.
1543 return reinterpret_cast<typename TypeHandler::Type**>(raw_mutable_data());
1544 }
1545
1546 template <typename TypeHandler>
1547 inline const typename TypeHandler::Type* const*
1548 RepeatedPtrFieldBase::data() const {
1549 // TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
1550 // method entirely.
1551 return reinterpret_cast<const typename TypeHandler::Type* const*>(raw_data());
1552 }
1553
1554 inline void RepeatedPtrFieldBase::SwapElements(int index1, int index2) {
1555 using std::swap; // enable ADL with fallback
1556 swap(rep_->elements[index1], rep_->elements[index2]);
1557 }
1558
1559 template <typename TypeHandler>
1560 inline int RepeatedPtrFieldBase::SpaceUsedExcludingSelf() const {
1561 int allocated_bytes = total_size_ * sizeof(void*);
1562 if (rep_ != NULL) {
1563 for (int i = 0; i < rep_->allocated_size; ++i) {
1564 allocated_bytes += TypeHandler::SpaceUsed(
1565 *cast<TypeHandler>(rep_->elements[i]));
1566 }
1567 allocated_bytes += kRepHeaderSize;
1568 }
1569 return allocated_bytes;
1570 }
1571
1572 template <typename TypeHandler>
1573 inline typename TypeHandler::Type* RepeatedPtrFieldBase::AddFromCleared() {
1574 if (rep_ != NULL && current_size_ < rep_->allocated_size) {
1575 return cast<TypeHandler>(rep_->elements[current_size_++]);
1576 } else {
1577 return NULL;
1578 }
1579 }
1580
1581 // AddAllocated version that implements arena-safe copying behavior.
1582 template <typename TypeHandler>
1583 void RepeatedPtrFieldBase::AddAllocatedInternal(
1584 typename TypeHandler::Type* value,
1585 google::protobuf::internal::true_type) {
1586 Arena* element_arena = reinterpret_cast<Arena*>(
1587 TypeHandler::GetMaybeArenaPointer(value));
1588 Arena* arena = GetArenaNoVirtual();
1589 if (arena == element_arena && rep_ &&
1590 rep_->allocated_size < total_size_) {
1591 // Fast path: underlying arena representation (tagged pointer) is equal to
1592 // our arena pointer, and we can add to array without resizing it (at least
1593 // one slot that is not allocated).
1594 void** elems = rep_->elements;
1595 if (current_size_ < rep_->allocated_size) {
1596 // Make space at [current] by moving first allocated element to end of
1597 // allocated list.
1598 elems[rep_->allocated_size] = elems[current_size_];
1599 }
1600 elems[current_size_] = value;
1601 current_size_ = current_size_ + 1;
1602 rep_->allocated_size = rep_->allocated_size + 1;
1603 return;
1604 } else {
1605 AddAllocatedSlowWithCopy<TypeHandler>(
1606 value, TypeHandler::GetArena(value), arena);
1607 }
1608 }
1609
1610 // Slowpath handles all cases, copying if necessary.
1611 template<typename TypeHandler>
1612 void RepeatedPtrFieldBase::AddAllocatedSlowWithCopy(
1613 // Pass value_arena and my_arena to avoid duplicate virtual call (value) or
1614 // load (mine).
1615 typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena) {
1616 // Ensure that either the value is in the same arena, or if not, we do the
1617 // appropriate thing: Own() it (if it's on heap and we're in an arena) or copy
1618 // it to our arena/heap (otherwise).
1619 if (my_arena != NULL && value_arena == NULL) {
1620 my_arena->Own(value);
1621 } else if (my_arena != value_arena) {
1622 typename TypeHandler::Type* new_value =
1623 TypeHandler::NewFromPrototype(value, my_arena);
1624 TypeHandler::Merge(*value, new_value);
1625 TypeHandler::Delete(value, value_arena);
1626 value = new_value;
1627 }
1628
1629 UnsafeArenaAddAllocated<TypeHandler>(value);
1630 }
1631
1632 // AddAllocated version that does not implement arena-safe copying behavior.
1633 template <typename TypeHandler>
1634 void RepeatedPtrFieldBase::AddAllocatedInternal(
1635 typename TypeHandler::Type* value,
1636 google::protobuf::internal::false_type) {
1637 if (rep_ && rep_->allocated_size < total_size_) {
1638 // Fast path: underlying arena representation (tagged pointer) is equal to
1639 // our arena pointer, and we can add to array without resizing it (at least
1640 // one slot that is not allocated).
1641 void** elems = rep_->elements;
1642 if (current_size_ < rep_->allocated_size) {
1643 // Make space at [current] by moving first allocated element to end of
1644 // allocated list.
1645 elems[rep_->allocated_size] = elems[current_size_];
1646 }
1647 elems[current_size_] = value;
1648 current_size_ = current_size_ + 1;
1649 ++rep_->allocated_size;
1650 return;
1651 } else {
1652 UnsafeArenaAddAllocated<TypeHandler>(value);
1653 }
1654 }
1655
1656 template <typename TypeHandler>
1657 void RepeatedPtrFieldBase::UnsafeArenaAddAllocated(
1658 typename TypeHandler::Type* value) {
1659 // Make room for the new pointer.
1660 if (!rep_ || current_size_ == total_size_) {
1661 // The array is completely full with no cleared objects, so grow it.
1662 Reserve(total_size_ + 1);
1663 ++rep_->allocated_size;
1664 } else if (rep_->allocated_size == total_size_) {
1665 // There is no more space in the pointer array because it contains some
1666 // cleared objects awaiting reuse. We don't want to grow the array in this
1667 // case because otherwise a loop calling AddAllocated() followed by Clear()
1668 // would leak memory.
1669 TypeHandler::Delete(
1670 cast<TypeHandler>(rep_->elements[current_size_]), arena_);
1671 } else if (current_size_ < rep_->allocated_size) {
1672 // We have some cleared objects. We don't care about their order, so we
1673 // can just move the first one to the end to make space.
1674 rep_->elements[rep_->allocated_size] = rep_->elements[current_size_];
1675 ++rep_->allocated_size;
1676 } else {
1677 // There are no cleared objects.
1678 ++rep_->allocated_size;
1679 }
1680
1681 rep_->elements[current_size_++] = value;
1682 }
1683
1684 // ReleaseLast() for types that implement merge/copy behavior.
1685 template <typename TypeHandler>
1686 inline typename TypeHandler::Type*
1687 RepeatedPtrFieldBase::ReleaseLastInternal(google::protobuf::internal::true_type) {
1688 // First, release an element.
1689 typename TypeHandler::Type* result = UnsafeArenaReleaseLast<TypeHandler>();
1690 // Now perform a copy if we're on an arena.
1691 Arena* arena = GetArenaNoVirtual();
1692 if (arena == NULL) {
1693 return result;
1694 } else {
1695 typename TypeHandler::Type* new_result =
1696 TypeHandler::NewFromPrototype(result, NULL);
1697 TypeHandler::Merge(*result, new_result);
1698 return new_result;
1699 }
1700 }
1701
1702 // ReleaseLast() for types that *do not* implement merge/copy behavior -- this
1703 // is the same as UnsafeArenaReleaseLast(). Note that we GOOGLE_DCHECK-fail if we're on
1704 // an arena, since the user really should implement the copy operation in this
1705 // case.
1706 template <typename TypeHandler>
1707 inline typename TypeHandler::Type*
1708 RepeatedPtrFieldBase::ReleaseLastInternal(google::protobuf::internal::false_type) {
1709 GOOGLE_DCHECK(GetArenaNoVirtual() == NULL)
1710 << "ReleaseLast() called on a RepeatedPtrField that is on an arena, "
1711 << "with a type that does not implement MergeFrom. This is unsafe; "
1712 << "please implement MergeFrom for your type.";
1713 return UnsafeArenaReleaseLast<TypeHandler>();
1714 }
1715
1716 template <typename TypeHandler>
1717 inline typename TypeHandler::Type*
1718 RepeatedPtrFieldBase::UnsafeArenaReleaseLast() {
1719 GOOGLE_DCHECK_GT(current_size_, 0);
1720 typename TypeHandler::Type* result =
1721 cast<TypeHandler>(rep_->elements[--current_size_]);
1722 --rep_->allocated_size;
1723 if (current_size_ < rep_->allocated_size) {
1724 // There are cleared elements on the end; replace the removed element
1725 // with the last allocated element.
1726 rep_->elements[current_size_] = rep_->elements[rep_->allocated_size];
1727 }
1728 return result;
1729 }
1730
1731 inline int RepeatedPtrFieldBase::ClearedCount() const {
1732 return rep_ ? (rep_->allocated_size - current_size_) : 0;
1733 }
1734
1735 template <typename TypeHandler>
1736 inline void RepeatedPtrFieldBase::AddCleared(
1737 typename TypeHandler::Type* value) {
1738 GOOGLE_DCHECK(GetArenaNoVirtual() == NULL)
1739 << "AddCleared() can only be used on a RepeatedPtrField not on an arena.";
1740 GOOGLE_DCHECK(TypeHandler::GetArena(value) == NULL)
1741 << "AddCleared() can only accept values not on an arena.";
1742 if (!rep_ || rep_->allocated_size == total_size_) {
1743 Reserve(total_size_ + 1);
1744 }
1745 rep_->elements[rep_->allocated_size++] = value;
1746 }
1747
1748 template <typename TypeHandler>
1749 inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseCleared() {
1750 GOOGLE_DCHECK(GetArenaNoVirtual() == NULL)
1751 << "ReleaseCleared() can only be used on a RepeatedPtrField not on "
1752 << "an arena.";
1753 GOOGLE_DCHECK(GetArenaNoVirtual() == NULL);
1754 GOOGLE_DCHECK(rep_ != NULL);
1755 GOOGLE_DCHECK_GT(rep_->allocated_size, current_size_);
1756 return cast<TypeHandler>(rep_->elements[--rep_->allocated_size]);
1757 }
1758
1759 } // namespace internal
1760
1761 // -------------------------------------------------------------------
1762
1763 template <typename Element>
1764 class RepeatedPtrField<Element>::TypeHandler
1765 : public internal::GenericTypeHandler<Element> {
1766 };
1767
1768 template <>
1769 class RepeatedPtrField<string>::TypeHandler
1770 : public internal::StringTypeHandler {
1771 };
1772
1773
1774 template <typename Element>
1775 inline RepeatedPtrField<Element>::RepeatedPtrField()
1776 : RepeatedPtrFieldBase() {}
1777
1778 template <typename Element>
1779 inline RepeatedPtrField<Element>::RepeatedPtrField(::google::protobuf::Arena* arena) :
1780 RepeatedPtrFieldBase(arena) {}
1781
1782 template <typename Element>
1783 inline RepeatedPtrField<Element>::RepeatedPtrField(
1784 const RepeatedPtrField& other)
1785 : RepeatedPtrFieldBase() {
1786 CopyFrom(other);
1787 }
1788
1789 template <typename Element>
1790 template <typename Iter>
1791 inline RepeatedPtrField<Element>::RepeatedPtrField(
1792 Iter begin, const Iter& end) {
1793 int reserve = internal::CalculateReserve(begin, end);
1794 if (reserve != -1) {
1795 Reserve(reserve);
1796 }
1797 for (; begin != end; ++begin) {
1798 *Add() = *begin;
1799 }
1800 }
1801
1802 template <typename Element>
1803 RepeatedPtrField<Element>::~RepeatedPtrField() {
1804 Destroy<TypeHandler>();
1805 }
1806
1807 template <typename Element>
1808 inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
1809 const RepeatedPtrField& other) {
1810 if (this != &other)
1811 CopyFrom(other);
1812 return *this;
1813 }
1814
1815 template <typename Element>
1816 inline bool RepeatedPtrField<Element>::empty() const {
1817 return RepeatedPtrFieldBase::empty();
1818 }
1819
1820 template <typename Element>
1821 inline int RepeatedPtrField<Element>::size() const {
1822 return RepeatedPtrFieldBase::size();
1823 }
1824
1825 template <typename Element>
1826 inline const Element& RepeatedPtrField<Element>::Get(int index) const {
1827 return RepeatedPtrFieldBase::Get<TypeHandler>(index);
1828 }
1829
1830
1831 template <typename Element>
1832 inline Element* RepeatedPtrField<Element>::Mutable(int index) {
1833 return RepeatedPtrFieldBase::Mutable<TypeHandler>(index);
1834 }
1835
1836 template <typename Element>
1837 inline Element* RepeatedPtrField<Element>::Add() {
1838 return RepeatedPtrFieldBase::Add<TypeHandler>();
1839 }
1840
1841 template <typename Element>
1842 inline void RepeatedPtrField<Element>::RemoveLast() {
1843 RepeatedPtrFieldBase::RemoveLast<TypeHandler>();
1844 }
1845
1846 template <typename Element>
1847 inline void RepeatedPtrField<Element>::DeleteSubrange(int start, int num) {
1848 GOOGLE_DCHECK_GE(start, 0);
1849 GOOGLE_DCHECK_GE(num, 0);
1850 GOOGLE_DCHECK_LE(start + num, size());
1851 for (int i = 0; i < num; ++i) {
1852 RepeatedPtrFieldBase::Delete<TypeHandler>(start + i);
1853 }
1854 ExtractSubrange(start, num, NULL);
1855 }
1856
1857 template <typename Element>
1858 inline void RepeatedPtrField<Element>::ExtractSubrange(
1859 int start, int num, Element** elements) {
1860 typename internal::TypeImplementsMergeBehavior<
1861 typename TypeHandler::Type>::type t;
1862 ExtractSubrangeInternal(start, num, elements, t);
1863 }
1864
1865 // ExtractSubrange() implementation for types that implement merge/copy
1866 // behavior.
1867 template <typename Element>
1868 inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
1869 int start, int num, Element** elements, google::protobuf::internal::true_type) {
1870 GOOGLE_DCHECK_GE(start, 0);
1871 GOOGLE_DCHECK_GE(num, 0);
1872 GOOGLE_DCHECK_LE(start + num, size());
1873
1874 if (num > 0) {
1875 // Save the values of the removed elements if requested.
1876 if (elements != NULL) {
1877 if (GetArenaNoVirtual() != NULL) {
1878 // If we're on an arena, we perform a copy for each element so that the
1879 // returned elements are heap-allocated.
1880 for (int i = 0; i < num; ++i) {
1881 Element* element = RepeatedPtrFieldBase::
1882 Mutable<TypeHandler>(i + start);
1883 typename TypeHandler::Type* new_value =
1884 TypeHandler::NewFromPrototype(element, NULL);
1885 TypeHandler::Merge(*element, new_value);
1886 elements[i] = new_value;
1887 }
1888 } else {
1889 for (int i = 0; i < num; ++i) {
1890 elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
1891 }
1892 }
1893 }
1894 CloseGap(start, num);
1895 }
1896 }
1897
1898 // ExtractSubrange() implementation for types that do not implement merge/copy
1899 // behavior.
1900 template<typename Element>
1901 inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
1902 int start, int num, Element** elements, google::protobuf::internal::false_type) {
1903 // This case is identical to UnsafeArenaExtractSubrange(). However, since
1904 // ExtractSubrange() must return heap-allocated objects by contract, and we
1905 // cannot fulfill this contract if we are an on arena, we must GOOGLE_DCHECK() that
1906 // we are not on an arena.
1907 GOOGLE_DCHECK(GetArenaNoVirtual() == NULL)
1908 << "ExtractSubrange() when arena is non-NULL is only supported when "
1909 << "the Element type supplies a MergeFrom() operation to make copies.";
1910 UnsafeArenaExtractSubrange(start, num, elements);
1911 }
1912
1913 template <typename Element>
1914 inline void RepeatedPtrField<Element>::UnsafeArenaExtractSubrange(
1915 int start, int num, Element** elements) {
1916 GOOGLE_DCHECK_GE(start, 0);
1917 GOOGLE_DCHECK_GE(num, 0);
1918 GOOGLE_DCHECK_LE(start + num, size());
1919
1920 if (num > 0) {
1921 // Save the values of the removed elements if requested.
1922 if (elements != NULL) {
1923 for (int i = 0; i < num; ++i) {
1924 elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
1925 }
1926 }
1927 CloseGap(start, num);
1928 }
1929 }
1930
1931 template <typename Element>
1932 inline void RepeatedPtrField<Element>::Clear() {
1933 RepeatedPtrFieldBase::Clear<TypeHandler>();
1934 }
1935
1936 template <typename Element>
1937 inline void RepeatedPtrField<Element>::MergeFrom(
1938 const RepeatedPtrField& other) {
1939 RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
1940 }
1941
1942 template <typename Element>
1943 inline void RepeatedPtrField<Element>::CopyFrom(
1944 const RepeatedPtrField& other) {
1945 RepeatedPtrFieldBase::CopyFrom<TypeHandler>(other);
1946 }
1947
1948 template <typename Element>
1949 inline typename RepeatedPtrField<Element>::iterator
1950 RepeatedPtrField<Element>::erase(const_iterator position) {
1951 return erase(position, position + 1);
1952 }
1953
1954 template <typename Element>
1955 inline typename RepeatedPtrField<Element>::iterator
1956 RepeatedPtrField<Element>::erase(const_iterator first, const_iterator last) {
1957 size_type pos_offset = std::distance(cbegin(), first);
1958 size_type last_offset = std::distance(cbegin(), last);
1959 DeleteSubrange(pos_offset, last_offset - pos_offset);
1960 return begin() + pos_offset;
1961 }
1962
1963 template <typename Element>
1964 inline Element** RepeatedPtrField<Element>::mutable_data() {
1965 return RepeatedPtrFieldBase::mutable_data<TypeHandler>();
1966 }
1967
1968 template <typename Element>
1969 inline const Element* const* RepeatedPtrField<Element>::data() const {
1970 return RepeatedPtrFieldBase::data<TypeHandler>();
1971 }
1972
1973 template <typename Element>
1974 inline void RepeatedPtrField<Element>::Swap(RepeatedPtrField* other) {
1975 if (this == other)
1976 return;
1977 RepeatedPtrFieldBase::Swap<TypeHandler>(other);
1978 }
1979
1980 template <typename Element>
1981 inline void RepeatedPtrField<Element>::UnsafeArenaSwap(
1982 RepeatedPtrField* other) {
1983 GOOGLE_DCHECK(GetArenaNoVirtual() == other->GetArenaNoVirtual());
1984 if (this == other)
1985 return;
1986 RepeatedPtrFieldBase::InternalSwap(other);
1987 }
1988
1989 template <typename Element>
1990 inline void RepeatedPtrField<Element>::SwapElements(int index1, int index2) {
1991 RepeatedPtrFieldBase::SwapElements(index1, index2);
1992 }
1993
1994 template <typename Element>
1995 inline Arena* RepeatedPtrField<Element>::GetArenaNoVirtual() const {
1996 return RepeatedPtrFieldBase::GetArenaNoVirtual();
1997 }
1998
1999 template <typename Element>
2000 inline int RepeatedPtrField<Element>::SpaceUsedExcludingSelf() const {
2001 return RepeatedPtrFieldBase::SpaceUsedExcludingSelf<TypeHandler>();
2002 }
2003
2004 template <typename Element>
2005 inline void RepeatedPtrField<Element>::AddAllocated(Element* value) {
2006 RepeatedPtrFieldBase::AddAllocated<TypeHandler>(value);
2007 }
2008
2009 template <typename Element>
2010 inline void RepeatedPtrField<Element>::UnsafeArenaAddAllocated(Element* value) {
2011 RepeatedPtrFieldBase::UnsafeArenaAddAllocated<TypeHandler>(value);
2012 }
2013
2014 template <typename Element>
2015 inline Element* RepeatedPtrField<Element>::ReleaseLast() {
2016 return RepeatedPtrFieldBase::ReleaseLast<TypeHandler>();
2017 }
2018
2019 template <typename Element>
2020 inline Element* RepeatedPtrField<Element>::UnsafeArenaReleaseLast() {
2021 return RepeatedPtrFieldBase::UnsafeArenaReleaseLast<TypeHandler>();
2022 }
2023
2024 template <typename Element>
2025 inline int RepeatedPtrField<Element>::ClearedCount() const {
2026 return RepeatedPtrFieldBase::ClearedCount();
2027 }
2028
2029 template <typename Element>
2030 inline void RepeatedPtrField<Element>::AddCleared(Element* value) {
2031 return RepeatedPtrFieldBase::AddCleared<TypeHandler>(value);
2032 }
2033
2034 template <typename Element>
2035 inline Element* RepeatedPtrField<Element>::ReleaseCleared() {
2036 return RepeatedPtrFieldBase::ReleaseCleared<TypeHandler>();
2037 }
2038
2039 template <typename Element>
2040 inline void RepeatedPtrField<Element>::Reserve(int new_size) {
2041 return RepeatedPtrFieldBase::Reserve(new_size);
2042 }
2043
2044 template <typename Element>
2045 inline int RepeatedPtrField<Element>::Capacity() const {
2046 return RepeatedPtrFieldBase::Capacity();
2047 }
2048
2049 // -------------------------------------------------------------------
2050
2051 namespace internal {
2052
2053 // STL-like iterator implementation for RepeatedPtrField. You should not
2054 // refer to this class directly; use RepeatedPtrField<T>::iterator instead.
2055 //
2056 // The iterator for RepeatedPtrField<T>, RepeatedPtrIterator<T>, is
2057 // very similar to iterator_ptr<T**> in util/gtl/iterator_adaptors.h,
2058 // but adds random-access operators and is modified to wrap a void** base
2059 // iterator (since RepeatedPtrField stores its array as a void* array and
2060 // casting void** to T** would violate C++ aliasing rules).
2061 //
2062 // This code based on net/proto/proto-array-internal.h by Jeffrey Yasskin
2063 // (jyasskin@google.com).
2064 template<typename Element>
2065 class RepeatedPtrIterator
2066 : public std::iterator<
2067 std::random_access_iterator_tag, Element> {
2068 public:
2069 typedef RepeatedPtrIterator<Element> iterator;
2070 typedef std::iterator<
2071 std::random_access_iterator_tag, Element> superclass;
2072
2073 // Shadow the value_type in std::iterator<> because const_iterator::value_type
2074 // needs to be T, not const T.
2075 typedef typename remove_const<Element>::type value_type;
2076
2077 // Let the compiler know that these are type names, so we don't have to
2078 // write "typename" in front of them everywhere.
2079 typedef typename superclass::reference reference;
2080 typedef typename superclass::pointer pointer;
2081 typedef typename superclass::difference_type difference_type;
2082
2083 RepeatedPtrIterator() : it_(NULL) {}
2084 explicit RepeatedPtrIterator(void* const* it) : it_(it) {}
2085
2086 // Allow "upcasting" from RepeatedPtrIterator<T**> to
2087 // RepeatedPtrIterator<const T*const*>.
2088 template<typename OtherElement>
2089 RepeatedPtrIterator(const RepeatedPtrIterator<OtherElement>& other)
2090 : it_(other.it_) {
2091 // Force a compiler error if the other type is not convertible to ours.
2092 if (false) {
2093 implicit_cast<Element*, OtherElement*>(0);
2094 }
2095 }
2096
2097 // dereferenceable
2098 reference operator*() const { return *reinterpret_cast<Element*>(*it_); }
2099 pointer operator->() const { return &(operator*()); }
2100
2101 // {inc,dec}rementable
2102 iterator& operator++() { ++it_; return *this; }
2103 iterator operator++(int) { return iterator(it_++); }
2104 iterator& operator--() { --it_; return *this; }
2105 iterator operator--(int) { return iterator(it_--); }
2106
2107 // equality_comparable
2108 bool operator==(const iterator& x) const { return it_ == x.it_; }
2109 bool operator!=(const iterator& x) const { return it_ != x.it_; }
2110
2111 // less_than_comparable
2112 bool operator<(const iterator& x) const { return it_ < x.it_; }
2113 bool operator<=(const iterator& x) const { return it_ <= x.it_; }
2114 bool operator>(const iterator& x) const { return it_ > x.it_; }
2115 bool operator>=(const iterator& x) const { return it_ >= x.it_; }
2116
2117 // addable, subtractable
2118 iterator& operator+=(difference_type d) {
2119 it_ += d;
2120 return *this;
2121 }
2122 friend iterator operator+(iterator it, const difference_type d) {
2123 it += d;
2124 return it;
2125 }
2126 friend iterator operator+(const difference_type d, iterator it) {
2127 it += d;
2128 return it;
2129 }
2130 iterator& operator-=(difference_type d) {
2131 it_ -= d;
2132 return *this;
2133 }
2134 friend iterator operator-(iterator it, difference_type d) {
2135 it -= d;
2136 return it;
2137 }
2138
2139 // indexable
2140 reference operator[](difference_type d) const { return *(*this + d); }
2141
2142 // random access iterator
2143 difference_type operator-(const iterator& x) const { return it_ - x.it_; }
2144
2145 private:
2146 template<typename OtherElement>
2147 friend class RepeatedPtrIterator;
2148
2149 // The internal iterator.
2150 void* const* it_;
2151 };
2152
2153 // Provide an iterator that operates on pointers to the underlying objects
2154 // rather than the objects themselves as RepeatedPtrIterator does.
2155 // Consider using this when working with stl algorithms that change
2156 // the array.
2157 // The VoidPtr template parameter holds the type-agnostic pointer value
2158 // referenced by the iterator. It should either be "void *" for a mutable
2159 // iterator, or "const void *" for a constant iterator.
2160 template<typename Element, typename VoidPtr>
2161 class RepeatedPtrOverPtrsIterator
2162 : public std::iterator<std::random_access_iterator_tag, Element*> {
2163 public:
2164 typedef RepeatedPtrOverPtrsIterator<Element, VoidPtr> iterator;
2165 typedef std::iterator<
2166 std::random_access_iterator_tag, Element*> superclass;
2167
2168 // Shadow the value_type in std::iterator<> because const_iterator::value_type
2169 // needs to be T, not const T.
2170 typedef typename remove_const<Element*>::type value_type;
2171
2172 // Let the compiler know that these are type names, so we don't have to
2173 // write "typename" in front of them everywhere.
2174 typedef typename superclass::reference reference;
2175 typedef typename superclass::pointer pointer;
2176 typedef typename superclass::difference_type difference_type;
2177
2178 RepeatedPtrOverPtrsIterator() : it_(NULL) {}
2179 explicit RepeatedPtrOverPtrsIterator(VoidPtr* it) : it_(it) {}
2180
2181 // dereferenceable
2182 reference operator*() const { return *reinterpret_cast<Element**>(it_); }
2183 pointer operator->() const { return &(operator*()); }
2184
2185 // {inc,dec}rementable
2186 iterator& operator++() { ++it_; return *this; }
2187 iterator operator++(int) { return iterator(it_++); }
2188 iterator& operator--() { --it_; return *this; }
2189 iterator operator--(int) { return iterator(it_--); }
2190
2191 // equality_comparable
2192 bool operator==(const iterator& x) const { return it_ == x.it_; }
2193 bool operator!=(const iterator& x) const { return it_ != x.it_; }
2194
2195 // less_than_comparable
2196 bool operator<(const iterator& x) const { return it_ < x.it_; }
2197 bool operator<=(const iterator& x) const { return it_ <= x.it_; }
2198 bool operator>(const iterator& x) const { return it_ > x.it_; }
2199 bool operator>=(const iterator& x) const { return it_ >= x.it_; }
2200
2201 // addable, subtractable
2202 iterator& operator+=(difference_type d) {
2203 it_ += d;
2204 return *this;
2205 }
2206 friend iterator operator+(iterator it, difference_type d) {
2207 it += d;
2208 return it;
2209 }
2210 friend iterator operator+(difference_type d, iterator it) {
2211 it += d;
2212 return it;
2213 }
2214 iterator& operator-=(difference_type d) {
2215 it_ -= d;
2216 return *this;
2217 }
2218 friend iterator operator-(iterator it, difference_type d) {
2219 it -= d;
2220 return it;
2221 }
2222
2223 // indexable
2224 reference operator[](difference_type d) const { return *(*this + d); }
2225
2226 // random access iterator
2227 difference_type operator-(const iterator& x) const { return it_ - x.it_; }
2228
2229 private:
2230 template<typename OtherElement>
2231 friend class RepeatedPtrIterator;
2232
2233 // The internal iterator.
2234 VoidPtr* it_;
2235 };
2236
2237 void RepeatedPtrFieldBase::InternalSwap(RepeatedPtrFieldBase* other) {
2238 std::swap(rep_, other->rep_);
2239 std::swap(current_size_, other->current_size_);
2240 std::swap(total_size_, other->total_size_);
2241 }
2242
2243 } // namespace internal
2244
2245 template <typename Element>
2246 inline typename RepeatedPtrField<Element>::iterator
2247 RepeatedPtrField<Element>::begin() {
2248 return iterator(raw_data());
2249 }
2250 template <typename Element>
2251 inline typename RepeatedPtrField<Element>::const_iterator
2252 RepeatedPtrField<Element>::begin() const {
2253 return iterator(raw_data());
2254 }
2255 template <typename Element>
2256 inline typename RepeatedPtrField<Element>::const_iterator
2257 RepeatedPtrField<Element>::cbegin() const {
2258 return begin();
2259 }
2260 template <typename Element>
2261 inline typename RepeatedPtrField<Element>::iterator
2262 RepeatedPtrField<Element>::end() {
2263 return iterator(raw_data() + size());
2264 }
2265 template <typename Element>
2266 inline typename RepeatedPtrField<Element>::const_iterator
2267 RepeatedPtrField<Element>::end() const {
2268 return iterator(raw_data() + size());
2269 }
2270 template <typename Element>
2271 inline typename RepeatedPtrField<Element>::const_iterator
2272 RepeatedPtrField<Element>::cend() const {
2273 return end();
2274 }
2275
2276 template <typename Element>
2277 inline typename RepeatedPtrField<Element>::pointer_iterator
2278 RepeatedPtrField<Element>::pointer_begin() {
2279 return pointer_iterator(raw_mutable_data());
2280 }
2281 template <typename Element>
2282 inline typename RepeatedPtrField<Element>::const_pointer_iterator
2283 RepeatedPtrField<Element>::pointer_begin() const {
2284 return const_pointer_iterator(const_cast<const void**>(raw_mutable_data()));
2285 }
2286 template <typename Element>
2287 inline typename RepeatedPtrField<Element>::pointer_iterator
2288 RepeatedPtrField<Element>::pointer_end() {
2289 return pointer_iterator(raw_mutable_data() + size());
2290 }
2291 template <typename Element>
2292 inline typename RepeatedPtrField<Element>::const_pointer_iterator
2293 RepeatedPtrField<Element>::pointer_end() const {
2294 return const_pointer_iterator(
2295 const_cast<const void**>(raw_mutable_data() + size()));
2296 }
2297
2298
2299 // Iterators and helper functions that follow the spirit of the STL
2300 // std::back_insert_iterator and std::back_inserter but are tailor-made
2301 // for RepeatedField and RepeatedPtrField. Typical usage would be:
2302 //
2303 // std::copy(some_sequence.begin(), some_sequence.end(),
2304 // google::protobuf::RepeatedFieldBackInserter(proto.mutable_sequence()));
2305 //
2306 // Ported by johannes from util/gtl/proto-array-iterators.h
2307
2308 namespace internal {
2309 // A back inserter for RepeatedField objects.
2310 template<typename T> class RepeatedFieldBackInsertIterator
2311 : public std::iterator<std::output_iterator_tag, T> {
2312 public:
2313 explicit RepeatedFieldBackInsertIterator(
2314 RepeatedField<T>* const mutable_field)
2315 : field_(mutable_field) {
2316 }
2317 RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
2318 field_->Add(value);
2319 return *this;
2320 }
2321 RepeatedFieldBackInsertIterator<T>& operator*() {
2322 return *this;
2323 }
2324 RepeatedFieldBackInsertIterator<T>& operator++() {
2325 return *this;
2326 }
2327 RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
2328 return *this;
2329 }
2330
2331 private:
2332 RepeatedField<T>* field_;
2333 };
2334
2335 // A back inserter for RepeatedPtrField objects.
2336 template<typename T> class RepeatedPtrFieldBackInsertIterator
2337 : public std::iterator<std::output_iterator_tag, T> {
2338 public:
2339 RepeatedPtrFieldBackInsertIterator(
2340 RepeatedPtrField<T>* const mutable_field)
2341 : field_(mutable_field) {
2342 }
2343 RepeatedPtrFieldBackInsertIterator<T>& operator=(const T& value) {
2344 *field_->Add() = value;
2345 return *this;
2346 }
2347 RepeatedPtrFieldBackInsertIterator<T>& operator=(
2348 const T* const ptr_to_value) {
2349 *field_->Add() = *ptr_to_value;
2350 return *this;
2351 }
2352 RepeatedPtrFieldBackInsertIterator<T>& operator*() {
2353 return *this;
2354 }
2355 RepeatedPtrFieldBackInsertIterator<T>& operator++() {
2356 return *this;
2357 }
2358 RepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
2359 return *this;
2360 }
2361
2362 private:
2363 RepeatedPtrField<T>* field_;
2364 };
2365
2366 // A back inserter for RepeatedPtrFields that inserts by transferring ownership
2367 // of a pointer.
2368 template<typename T> class AllocatedRepeatedPtrFieldBackInsertIterator
2369 : public std::iterator<std::output_iterator_tag, T> {
2370 public:
2371 explicit AllocatedRepeatedPtrFieldBackInsertIterator(
2372 RepeatedPtrField<T>* const mutable_field)
2373 : field_(mutable_field) {
2374 }
2375 AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
2376 T* const ptr_to_value) {
2377 field_->AddAllocated(ptr_to_value);
2378 return *this;
2379 }
2380 AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
2381 return *this;
2382 }
2383 AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
2384 return *this;
2385 }
2386 AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
2387 int /* unused */) {
2388 return *this;
2389 }
2390
2391 private:
2392 RepeatedPtrField<T>* field_;
2393 };
2394
2395 // Almost identical to AllocatedRepeatedPtrFieldBackInsertIterator. This one
2396 // uses the UnsafeArenaAddAllocated instead.
2397 template<typename T>
2398 class UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator
2399 : public std::iterator<std::output_iterator_tag, T> {
2400 public:
2401 explicit UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator(
2402 ::google::protobuf::RepeatedPtrField<T>* const mutable_field)
2403 : field_(mutable_field) {
2404 }
2405 UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
2406 T const* const ptr_to_value) {
2407 field_->UnsafeArenaAddAllocated(const_cast<T*>(ptr_to_value));
2408 return *this;
2409 }
2410 UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
2411 return *this;
2412 }
2413 UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
2414 return *this;
2415 }
2416 UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
2417 int /* unused */) {
2418 return *this;
2419 }
2420
2421 private:
2422 ::google::protobuf::RepeatedPtrField<T>* field_;
2423 };
2424
2425 } // namespace internal
2426
2427 // Provides a back insert iterator for RepeatedField instances,
2428 // similar to std::back_inserter().
2429 template<typename T> internal::RepeatedFieldBackInsertIterator<T>
2430 RepeatedFieldBackInserter(RepeatedField<T>* const mutable_field) {
2431 return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
2432 }
2433
2434 // Provides a back insert iterator for RepeatedPtrField instances,
2435 // similar to std::back_inserter().
2436 template<typename T> internal::RepeatedPtrFieldBackInsertIterator<T>
2437 RepeatedPtrFieldBackInserter(RepeatedPtrField<T>* const mutable_field) {
2438 return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
2439 }
2440
2441 // Special back insert iterator for RepeatedPtrField instances, just in
2442 // case someone wants to write generic template code that can access both
2443 // RepeatedFields and RepeatedPtrFields using a common name.
2444 template<typename T> internal::RepeatedPtrFieldBackInsertIterator<T>
2445 RepeatedFieldBackInserter(RepeatedPtrField<T>* const mutable_field) {
2446 return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
2447 }
2448
2449 // Provides a back insert iterator for RepeatedPtrField instances
2450 // similar to std::back_inserter() which transfers the ownership while
2451 // copying elements.
2452 template<typename T> internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>
2453 AllocatedRepeatedPtrFieldBackInserter(
2454 RepeatedPtrField<T>* const mutable_field) {
2455 return internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>(
2456 mutable_field);
2457 }
2458
2459 // Similar to AllocatedRepeatedPtrFieldBackInserter, using
2460 // UnsafeArenaAddAllocated instead of AddAllocated.
2461 // This is slightly faster if that matters. It is also useful in legacy code
2462 // that uses temporary ownership to avoid copies. Example:
2463 // RepeatedPtrField<T> temp_field;
2464 // temp_field.AddAllocated(new T);
2465 // ... // Do something with temp_field
2466 // temp_field.ExtractSubrange(0, temp_field.size(), NULL);
2467 // If you put temp_field on the arena this fails, because the ownership
2468 // transfers to the arena at the "AddAllocated" call and is not released anymore
2469 // causing a double delete. Using UnsafeArenaAddAllocated prevents this.
2470 template<typename T>
2471 internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>
2472 UnsafeArenaAllocatedRepeatedPtrFieldBackInserter(
2473 ::google::protobuf::RepeatedPtrField<T>* const mutable_field) {
2474 return internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>(
2475 mutable_field);
2476 }
2477
2478 } // namespace protobuf
2479
2480 } // namespace google
2481 #endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__
2482