1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_S390
6 
7 #include "src/assembler-inl.h"
8 #include "src/code-factory.h"
9 #include "src/code-stubs.h"
10 #include "src/debug/debug.h"
11 #include "src/deoptimizer.h"
12 #include "src/frame-constants.h"
13 #include "src/frames.h"
14 #include "src/objects/js-generator.h"
15 #include "src/runtime/runtime.h"
16 #include "src/wasm/wasm-objects.h"
17 
18 namespace v8 {
19 namespace internal {
20 
21 #define __ ACCESS_MASM(masm)
22 
Generate_Adaptor(MacroAssembler * masm,Address address,ExitFrameType exit_frame_type)23 void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
24                                 ExitFrameType exit_frame_type) {
25   __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
26   if (exit_frame_type == BUILTIN_EXIT) {
27     __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
28             RelocInfo::CODE_TARGET);
29   } else {
30     DCHECK(exit_frame_type == EXIT);
31     __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame),
32             RelocInfo::CODE_TARGET);
33   }
34 }
35 
Generate_InternalArrayConstructor(MacroAssembler * masm)36 void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
37   // ----------- S t a t e -------------
38   //  -- r2     : number of arguments
39   //  -- lr     : return address
40   //  -- sp[...]: constructor arguments
41   // -----------------------------------
42   Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
43 
44   if (FLAG_debug_code) {
45     // Initial map for the builtin InternalArray functions should be maps.
46     __ LoadP(r4, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
47     __ TestIfSmi(r4);
48     __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction,
49               cr0);
50     __ CompareObjectType(r4, r5, r6, MAP_TYPE);
51     __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
52   }
53 
54   // Run the native code for the InternalArray function called as a normal
55   // function.
56   // tail call a stub
57   __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
58   __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl),
59           RelocInfo::CODE_TARGET);
60 }
61 
GenerateTailCallToReturnedCode(MacroAssembler * masm,Runtime::FunctionId function_id)62 static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
63                                            Runtime::FunctionId function_id) {
64   // ----------- S t a t e -------------
65   //  -- r2 : argument count (preserved for callee)
66   //  -- r3 : target function (preserved for callee)
67   //  -- r5 : new target (preserved for callee)
68   // -----------------------------------
69   {
70     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
71     // Push the number of arguments to the callee.
72     // Push a copy of the target function and the new target.
73     // Push function as parameter to the runtime call.
74     __ SmiTag(r2);
75     __ Push(r2, r3, r5, r3);
76 
77     __ CallRuntime(function_id, 1);
78     __ LoadRR(r4, r2);
79 
80     // Restore target function and new target.
81     __ Pop(r2, r3, r5);
82     __ SmiUntag(r2);
83   }
84   static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
85   __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
86   __ JumpToJSEntry(r4);
87 }
88 
89 namespace {
90 
Generate_JSBuiltinsConstructStubHelper(MacroAssembler * masm)91 void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
92   Label post_instantiation_deopt_entry;
93   // ----------- S t a t e -------------
94   //  -- r2     : number of arguments
95   //  -- r3     : constructor function
96   //  -- r5     : new target
97   //  -- cp     : context
98   //  -- lr     : return address
99   //  -- sp[...]: constructor arguments
100   // -----------------------------------
101 
102   // Enter a construct frame.
103   {
104     FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
105 
106     // Preserve the incoming parameters on the stack.
107     __ SmiTag(r2);
108     __ Push(cp, r2);
109     __ SmiUntag(r2);
110     // The receiver for the builtin/api call.
111     __ PushRoot(Heap::kTheHoleValueRootIndex);
112     // Set up pointer to last argument.
113     __ la(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset));
114 
115     // Copy arguments and receiver to the expression stack.
116     // r2: number of arguments
117     // r3: constructor function
118     // r4: address of last argument (caller sp)
119     // r5: new target
120     // cr0: condition indicating whether r2 is zero
121     // sp[0]: receiver
122     // sp[1]: receiver
123     // sp[2]: number of arguments (smi-tagged)
124     Label loop, no_args;
125     __ beq(&no_args);
126     __ ShiftLeftP(ip, r2, Operand(kPointerSizeLog2));
127     __ SubP(sp, sp, ip);
128     __ LoadRR(r1, r2);
129     __ bind(&loop);
130     __ lay(ip, MemOperand(ip, -kPointerSize));
131     __ LoadP(r0, MemOperand(ip, r6));
132     __ StoreP(r0, MemOperand(ip, sp));
133     __ BranchOnCount(r1, &loop);
134     __ bind(&no_args);
135 
136     // Call the function.
137     // r2: number of arguments
138     // r3: constructor function
139     // r5: new target
140 
141     ParameterCount actual(r2);
142     __ InvokeFunction(r3, r5, actual, CALL_FUNCTION);
143 
144     // Restore context from the frame.
145     __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
146     // Restore smi-tagged arguments count from the frame.
147     __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
148 
149     // Leave construct frame.
150   }
151   // Remove caller arguments from the stack and return.
152   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
153 
154   __ SmiToPtrArrayOffset(r3, r3);
155   __ AddP(sp, sp, r3);
156   __ AddP(sp, sp, Operand(kPointerSize));
157   __ Ret();
158 }
159 
160 }  // namespace
161 
162 // The construct stub for ES5 constructor functions and ES6 class constructors.
Generate_JSConstructStubGeneric(MacroAssembler * masm)163 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
164   // ----------- S t a t e -------------
165   //  --      r2: number of arguments (untagged)
166   //  --      r3: constructor function
167   //  --      r5: new target
168   //  --      cp: context
169   //  --      lr: return address
170   //  -- sp[...]: constructor arguments
171   // -----------------------------------
172 
173   // Enter a construct frame.
174   {
175     FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
176     Label post_instantiation_deopt_entry, not_create_implicit_receiver;
177 
178     // Preserve the incoming parameters on the stack.
179     __ SmiTag(r2);
180     __ Push(cp, r2, r3);
181     __ PushRoot(Heap::kUndefinedValueRootIndex);
182     __ Push(r5);
183 
184     // ----------- S t a t e -------------
185     //  --        sp[0*kPointerSize]: new target
186     //  --        sp[1*kPointerSize]: padding
187     //  -- r3 and sp[2*kPointerSize]: constructor function
188     //  --        sp[3*kPointerSize]: number of arguments (tagged)
189     //  --        sp[4*kPointerSize]: context
190     // -----------------------------------
191 
192     __ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
193     __ LoadlW(r6, FieldMemOperand(r6, SharedFunctionInfo::kFlagsOffset));
194     __ TestBitMask(r6, SharedFunctionInfo::IsDerivedConstructorBit::kMask, r0);
195     __ bne(&not_create_implicit_receiver);
196 
197     // If not derived class constructor: Allocate the new receiver object.
198     __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
199                         r6, r7);
200     __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
201             RelocInfo::CODE_TARGET);
202     __ b(&post_instantiation_deopt_entry);
203 
204     // Else: use TheHoleValue as receiver for constructor call
205     __ bind(&not_create_implicit_receiver);
206     __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
207 
208     // ----------- S t a t e -------------
209     //  --                          r2: receiver
210     //  -- Slot 4 / sp[0*kPointerSize]: new target
211     //  -- Slot 3 / sp[1*kPointerSize]: padding
212     //  -- Slot 2 / sp[2*kPointerSize]: constructor function
213     //  -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged)
214     //  -- Slot 0 / sp[4*kPointerSize]: context
215     // -----------------------------------
216     // Deoptimizer enters here.
217     masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
218         masm->pc_offset());
219     __ bind(&post_instantiation_deopt_entry);
220 
221     // Restore new target.
222     __ Pop(r5);
223     // Push the allocated receiver to the stack. We need two copies
224     // because we may have to return the original one and the calling
225     // conventions dictate that the called function pops the receiver.
226     __ Push(r2, r2);
227 
228     // ----------- S t a t e -------------
229     //  --                 r5: new target
230     //  -- sp[0*kPointerSize]: implicit receiver
231     //  -- sp[1*kPointerSize]: implicit receiver
232     //  -- sp[2*kPointerSize]: padding
233     //  -- sp[3*kPointerSize]: constructor function
234     //  -- sp[4*kPointerSize]: number of arguments (tagged)
235     //  -- sp[5*kPointerSize]: context
236     // -----------------------------------
237 
238     // Restore constructor function and argument count.
239     __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
240     __ LoadP(r2, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
241     __ SmiUntag(r2);
242 
243     // Set up pointer to last argument.
244     __ la(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset));
245 
246     // Copy arguments and receiver to the expression stack.
247     Label loop, no_args;
248     // ----------- S t a t e -------------
249     //  --                        r2: number of arguments (untagged)
250     //  --                        r5: new target
251     //  --                        r6: pointer to last argument
252     //  --                        cr0: condition indicating whether r2 is zero
253     //  --        sp[0*kPointerSize]: implicit receiver
254     //  --        sp[1*kPointerSize]: implicit receiver
255     //  --        sp[2*kPointerSize]: padding
256     //  -- r3 and sp[3*kPointerSize]: constructor function
257     //  --        sp[4*kPointerSize]: number of arguments (tagged)
258     //  --        sp[5*kPointerSize]: context
259     // -----------------------------------
260 
261     __ beq(&no_args);
262     __ ShiftLeftP(ip, r2, Operand(kPointerSizeLog2));
263     __ SubP(sp, sp, ip);
264     __ LoadRR(r1, r2);
265     __ bind(&loop);
266     __ lay(ip, MemOperand(ip, -kPointerSize));
267     __ LoadP(r0, MemOperand(ip, r6));
268     __ StoreP(r0, MemOperand(ip, sp));
269     __ BranchOnCount(r1, &loop);
270     __ bind(&no_args);
271 
272     // Call the function.
273     ParameterCount actual(r2);
274     __ InvokeFunction(r3, r5, actual, CALL_FUNCTION);
275 
276     // ----------- S t a t e -------------
277     //  --                 r0: constructor result
278     //  -- sp[0*kPointerSize]: implicit receiver
279     //  -- sp[1*kPointerSize]: padding
280     //  -- sp[2*kPointerSize]: constructor function
281     //  -- sp[3*kPointerSize]: number of arguments
282     //  -- sp[4*kPointerSize]: context
283     // -----------------------------------
284 
285     // Store offset of return address for deoptimizer.
286     masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
287         masm->pc_offset());
288 
289     // Restore the context from the frame.
290     __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
291 
292     // If the result is an object (in the ECMA sense), we should get rid
293     // of the receiver and use the result; see ECMA-262 section 13.2.2-7
294     // on page 74.
295     Label use_receiver, do_throw, leave_frame;
296 
297     // If the result is undefined, we jump out to using the implicit receiver.
298     __ JumpIfRoot(r2, Heap::kUndefinedValueRootIndex, &use_receiver);
299 
300     // Otherwise we do a smi check and fall through to check if the return value
301     // is a valid receiver.
302 
303     // If the result is a smi, it is *not* an object in the ECMA sense.
304     __ JumpIfSmi(r2, &use_receiver);
305 
306     // If the type of the result (stored in its map) is less than
307     // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
308     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
309     __ CompareObjectType(r2, r6, r6, FIRST_JS_RECEIVER_TYPE);
310     __ bge(&leave_frame);
311     __ b(&use_receiver);
312 
313     __ bind(&do_throw);
314     __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
315 
316     // Throw away the result of the constructor invocation and use the
317     // on-stack receiver as the result.
318     __ bind(&use_receiver);
319     __ LoadP(r2, MemOperand(sp));
320     __ JumpIfRoot(r2, Heap::kTheHoleValueRootIndex, &do_throw);
321 
322     __ bind(&leave_frame);
323     // Restore smi-tagged arguments count from the frame.
324     __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
325     // Leave construct frame.
326   }
327 
328   // Remove caller arguments from the stack and return.
329   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
330 
331   __ SmiToPtrArrayOffset(r3, r3);
332   __ AddP(sp, sp, r3);
333   __ AddP(sp, sp, Operand(kPointerSize));
334   __ Ret();
335 }
336 
Generate_JSBuiltinsConstructStub(MacroAssembler * masm)337 void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
338   Generate_JSBuiltinsConstructStubHelper(masm);
339 }
340 
GetSharedFunctionInfoBytecode(MacroAssembler * masm,Register sfi_data,Register scratch1)341 static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
342                                           Register sfi_data,
343                                           Register scratch1) {
344   Label done;
345 
346   __ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE);
347   __ bne(&done, Label::kNear);
348   __ LoadP(sfi_data,
349            FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
350   __ bind(&done);
351 }
352 
353 // static
Generate_ResumeGeneratorTrampoline(MacroAssembler * masm)354 void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
355   // ----------- S t a t e -------------
356   //  -- r2 : the value to pass to the generator
357   //  -- r3 : the JSGeneratorObject to resume
358   //  -- lr : return address
359   // -----------------------------------
360   __ AssertGeneratorObject(r3);
361 
362   // Store input value into generator object.
363   __ StoreP(r2, FieldMemOperand(r3, JSGeneratorObject::kInputOrDebugPosOffset),
364             r0);
365   __ RecordWriteField(r3, JSGeneratorObject::kInputOrDebugPosOffset, r2, r5,
366                       kLRHasNotBeenSaved, kDontSaveFPRegs);
367 
368   // Load suspended function and context.
369   __ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
370   __ LoadP(cp, FieldMemOperand(r6, JSFunction::kContextOffset));
371 
372   // Flood function if we are stepping.
373   Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
374   Label stepping_prepared;
375   ExternalReference debug_hook =
376       ExternalReference::debug_hook_on_function_call_address(masm->isolate());
377   __ Move(ip, debug_hook);
378   __ LoadB(ip, MemOperand(ip));
379   __ CmpSmiLiteral(ip, Smi::kZero, r0);
380   __ bne(&prepare_step_in_if_stepping);
381 
382   // Flood function if we need to continue stepping in the suspended generator.
383 
384   ExternalReference debug_suspended_generator =
385       ExternalReference::debug_suspended_generator_address(masm->isolate());
386 
387   __ Move(ip, debug_suspended_generator);
388   __ LoadP(ip, MemOperand(ip));
389   __ CmpP(ip, r3);
390   __ beq(&prepare_step_in_suspended_generator);
391   __ bind(&stepping_prepared);
392 
393   // Check the stack for overflow. We are not trying to catch interruptions
394   // (i.e. debug break and preemption) here, so check the "real stack limit".
395   Label stack_overflow;
396   __ CompareRoot(sp, Heap::kRealStackLimitRootIndex);
397   __ blt(&stack_overflow);
398 
399   // Push receiver.
400   __ LoadP(ip, FieldMemOperand(r3, JSGeneratorObject::kReceiverOffset));
401   __ Push(ip);
402 
403   // ----------- S t a t e -------------
404   //  -- r3    : the JSGeneratorObject to resume
405   //  -- r6    : generator function
406   //  -- cp    : generator context
407   //  -- lr    : return address
408   //  -- sp[0] : generator receiver
409   // -----------------------------------
410 
411   // Copy the function arguments from the generator object's register file.
412   __ LoadP(r5, FieldMemOperand(r6, JSFunction::kSharedFunctionInfoOffset));
413   __ LoadLogicalHalfWordP(
414       r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset));
415   __ LoadP(r4, FieldMemOperand(
416                    r3, JSGeneratorObject::kParametersAndRegistersOffset));
417   {
418     Label loop, done_loop;
419     __ ShiftLeftP(r5, r5, Operand(kPointerSizeLog2));
420     __ SubP(sp, r5);
421 
422     // ip = stack offset
423     // r5 = parameter array offset
424     __ LoadImmP(ip, Operand::Zero());
425     __ SubP(r5, Operand(kPointerSize));
426     __ blt(&done_loop);
427 
428     __ lgfi(r1, Operand(-kPointerSize));
429 
430     __ bind(&loop);
431 
432     // parameter copy loop
433     __ LoadP(r0, FieldMemOperand(r4, r5, FixedArray::kHeaderSize));
434     __ StoreP(r0, MemOperand(sp, ip));
435 
436     // update offsets
437     __ lay(ip, MemOperand(ip, kPointerSize));
438 
439     __ BranchRelativeOnIdxHighP(r5, r1, &loop);
440 
441     __ bind(&done_loop);
442   }
443 
444   // Underlying function needs to have bytecode available.
445   if (FLAG_debug_code) {
446     __ LoadP(r5, FieldMemOperand(r6, JSFunction::kSharedFunctionInfoOffset));
447     __ LoadP(r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset));
448     GetSharedFunctionInfoBytecode(masm, r5, ip);
449     __ CompareObjectType(r5, r5, r5, BYTECODE_ARRAY_TYPE);
450     __ Assert(eq, AbortReason::kMissingBytecodeArray);
451   }
452 
453   // Resume (Ignition/TurboFan) generator object.
454   {
455     // We abuse new.target both to indicate that this is a resume call and to
456     // pass in the generator object.  In ordinary calls, new.target is always
457     // undefined because generator functions are non-constructable.
458     __ LoadRR(r5, r3);
459     __ LoadRR(r3, r6);
460     static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
461     __ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
462     __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
463     __ JumpToJSEntry(r4);
464   }
465 
466   __ bind(&prepare_step_in_if_stepping);
467   {
468     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
469     __ Push(r3, r6);
470     // Push hole as receiver since we do not use it for stepping.
471     __ PushRoot(Heap::kTheHoleValueRootIndex);
472     __ CallRuntime(Runtime::kDebugOnFunctionCall);
473     __ Pop(r3);
474     __ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
475   }
476   __ b(&stepping_prepared);
477 
478   __ bind(&prepare_step_in_suspended_generator);
479   {
480     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
481     __ Push(r3);
482     __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
483     __ Pop(r3);
484     __ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
485   }
486   __ b(&stepping_prepared);
487 
488   __ bind(&stack_overflow);
489   {
490     FrameScope scope(masm, StackFrame::INTERNAL);
491     __ CallRuntime(Runtime::kThrowStackOverflow);
492     __ bkpt(0);  // This should be unreachable.
493   }
494 }
495 
Generate_ConstructedNonConstructable(MacroAssembler * masm)496 void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
497   FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
498   __ push(r3);
499   __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
500 }
501 
502 // Clobbers r4; preserves all other registers.
Generate_CheckStackOverflow(MacroAssembler * masm,Register argc)503 static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc) {
504   // Check the stack for overflow. We are not trying to catch
505   // interruptions (e.g. debug break and preemption) here, so the "real stack
506   // limit" is checked.
507   Label okay;
508   __ LoadRoot(r4, Heap::kRealStackLimitRootIndex);
509   // Make r4 the space we have left. The stack might already be overflowed
510   // here which will cause r4 to become negative.
511   __ SubP(r4, sp, r4);
512   // Check if the arguments will overflow the stack.
513   __ ShiftLeftP(r0, argc, Operand(kPointerSizeLog2));
514   __ CmpP(r4, r0);
515   __ bgt(&okay);  // Signed comparison.
516 
517   // Out of stack space.
518   __ CallRuntime(Runtime::kThrowStackOverflow);
519 
520   __ bind(&okay);
521 }
522 
Generate_JSEntryTrampolineHelper(MacroAssembler * masm,bool is_construct)523 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
524                                              bool is_construct) {
525   // Called from Generate_JS_Entry
526   // r2: new.target
527   // r3: function
528   // r4: receiver
529   // r5: argc
530   // r6: argv
531   // r0,r7-r9, cp may be clobbered
532   ProfileEntryHookStub::MaybeCallEntryHook(masm);
533 
534   // Enter an internal frame.
535   {
536     // FrameScope ends up calling MacroAssembler::EnterFrame here
537     FrameScope scope(masm, StackFrame::INTERNAL);
538 
539     // Setup the context (we need to use the caller context from the isolate).
540     ExternalReference context_address = ExternalReference::Create(
541         IsolateAddressId::kContextAddress, masm->isolate());
542     __ Move(cp, context_address);
543     __ LoadP(cp, MemOperand(cp));
544 
545     // Push the function and the receiver onto the stack.
546     __ Push(r3, r4);
547 
548     // Check if we have enough stack space to push all arguments.
549     // Clobbers r4.
550     Generate_CheckStackOverflow(masm, r5);
551 
552     // Copy arguments to the stack in a loop from argv to sp.
553     // The arguments are actually placed in reverse order on sp
554     // compared to argv (i.e. arg1 is highest memory in sp).
555     // r3: function
556     // r5: argc
557     // r6: argv, i.e. points to first arg
558     // r7: scratch reg to hold scaled argc
559     // r8: scratch reg to hold arg handle
560     // r9: scratch reg to hold index into argv
561     Label argLoop, argExit;
562     intptr_t zero = 0;
563     __ ShiftLeftP(r7, r5, Operand(kPointerSizeLog2));
564     __ SubRR(sp, r7);                // Buy the stack frame to fit args
565     __ LoadImmP(r9, Operand(zero));  // Initialize argv index
566     __ bind(&argLoop);
567     __ CmpPH(r7, Operand(zero));
568     __ beq(&argExit, Label::kNear);
569     __ lay(r7, MemOperand(r7, -kPointerSize));
570     __ LoadP(r8, MemOperand(r9, r6));         // read next parameter
571     __ la(r9, MemOperand(r9, kPointerSize));  // r9++;
572     __ LoadP(r0, MemOperand(r8));             // dereference handle
573     __ StoreP(r0, MemOperand(r7, sp));        // push parameter
574     __ b(&argLoop);
575     __ bind(&argExit);
576 
577     // Setup new.target and argc.
578     __ LoadRR(r6, r2);
579     __ LoadRR(r2, r5);
580     __ LoadRR(r5, r6);
581 
582     // Initialize all JavaScript callee-saved registers, since they will be seen
583     // by the garbage collector as part of handlers.
584     __ LoadRoot(r6, Heap::kUndefinedValueRootIndex);
585     __ LoadRR(r7, r6);
586     __ LoadRR(r8, r6);
587     __ LoadRR(r9, r6);
588 
589     // Invoke the code.
590     Handle<Code> builtin = is_construct
591                                ? BUILTIN_CODE(masm->isolate(), Construct)
592                                : masm->isolate()->builtins()->Call();
593     __ Call(builtin, RelocInfo::CODE_TARGET);
594 
595     // Exit the JS frame and remove the parameters (except function), and
596     // return.
597   }
598   __ b(r14);
599 
600   // r2: result
601 }
602 
Generate_JSEntryTrampoline(MacroAssembler * masm)603 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
604   Generate_JSEntryTrampolineHelper(masm, false);
605 }
606 
Generate_JSConstructEntryTrampoline(MacroAssembler * masm)607 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
608   Generate_JSEntryTrampolineHelper(masm, true);
609 }
610 
ReplaceClosureCodeWithOptimizedCode(MacroAssembler * masm,Register optimized_code,Register closure,Register scratch1,Register scratch2,Register scratch3)611 static void ReplaceClosureCodeWithOptimizedCode(
612     MacroAssembler* masm, Register optimized_code, Register closure,
613     Register scratch1, Register scratch2, Register scratch3) {
614   // Store code entry in the closure.
615   __ StoreP(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset),
616             r0);
617   __ LoadRR(scratch1,
618             optimized_code);  // Write barrier clobbers scratch1 below.
619   __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
620                       kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
621                       OMIT_SMI_CHECK);
622 }
623 
LeaveInterpreterFrame(MacroAssembler * masm,Register scratch)624 static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
625   Register args_count = scratch;
626 
627   // Get the arguments + receiver count.
628   __ LoadP(args_count,
629            MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
630   __ LoadlW(args_count,
631             FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));
632 
633   // Leave the frame (also dropping the register file).
634   __ LeaveFrame(StackFrame::INTERPRETED);
635 
636   __ AddP(sp, sp, args_count);
637 }
638 
639 // Tail-call |function_id| if |smi_entry| == |marker|
TailCallRuntimeIfMarkerEquals(MacroAssembler * masm,Register smi_entry,OptimizationMarker marker,Runtime::FunctionId function_id)640 static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
641                                           Register smi_entry,
642                                           OptimizationMarker marker,
643                                           Runtime::FunctionId function_id) {
644   Label no_match;
645   __ CmpSmiLiteral(smi_entry, Smi::FromEnum(marker), r0);
646   __ bne(&no_match);
647   GenerateTailCallToReturnedCode(masm, function_id);
648   __ bind(&no_match);
649 }
650 
MaybeTailCallOptimizedCodeSlot(MacroAssembler * masm,Register feedback_vector,Register scratch1,Register scratch2,Register scratch3)651 static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
652                                            Register feedback_vector,
653                                            Register scratch1, Register scratch2,
654                                            Register scratch3) {
655   // ----------- S t a t e -------------
656   //  -- r0 : argument count (preserved for callee if needed, and caller)
657   //  -- r3 : new target (preserved for callee if needed, and caller)
658   //  -- r1 : target function (preserved for callee if needed, and caller)
659   //  -- feedback vector (preserved for caller if needed)
660   // -----------------------------------
661   DCHECK(
662       !AreAliased(feedback_vector, r2, r3, r5, scratch1, scratch2, scratch3));
663 
664   Label optimized_code_slot_is_weak_ref, fallthrough;
665 
666   Register closure = r3;
667   Register optimized_code_entry = scratch1;
668 
669   __ LoadP(
670       optimized_code_entry,
671       FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset));
672 
673   // Check if the code entry is a Smi. If yes, we interpret it as an
674   // optimisation marker. Otherwise, interpret it as a weak reference to a code
675   // object.
676   __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref);
677 
678   {
679     // Optimized code slot is a Smi optimization marker.
680 
681     // Fall through if no optimization trigger.
682     __ CmpSmiLiteral(optimized_code_entry,
683                      Smi::FromEnum(OptimizationMarker::kNone), r0);
684     __ beq(&fallthrough);
685 
686     TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
687                                   OptimizationMarker::kLogFirstExecution,
688                                   Runtime::kFunctionFirstExecution);
689     TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
690                                   OptimizationMarker::kCompileOptimized,
691                                   Runtime::kCompileOptimized_NotConcurrent);
692     TailCallRuntimeIfMarkerEquals(
693         masm, optimized_code_entry,
694         OptimizationMarker::kCompileOptimizedConcurrent,
695         Runtime::kCompileOptimized_Concurrent);
696 
697     {
698       // Otherwise, the marker is InOptimizationQueue, so fall through hoping
699       // that an interrupt will eventually update the slot with optimized code.
700       if (FLAG_debug_code) {
701         __ CmpSmiLiteral(
702             optimized_code_entry,
703             Smi::FromEnum(OptimizationMarker::kInOptimizationQueue), r0);
704         __ Assert(eq, AbortReason::kExpectedOptimizationSentinel);
705       }
706       __ b(&fallthrough, Label::kNear);
707     }
708   }
709 
710   {
711     // Optimized code slot is a weak reference.
712     __ bind(&optimized_code_slot_is_weak_ref);
713 
714     __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough);
715 
716     // Check if the optimized code is marked for deopt. If it is, call the
717     // runtime to clear it.
718     Label found_deoptimized_code;
719     __ LoadP(scratch2, FieldMemOperand(optimized_code_entry,
720                                        Code::kCodeDataContainerOffset));
721     __ LoadW(
722         scratch2,
723         FieldMemOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset));
724     __ TestBit(scratch2, Code::kMarkedForDeoptimizationBit, r0);
725     __ bne(&found_deoptimized_code);
726 
727     // Optimized code is good, get it into the closure and link the closure into
728     // the optimized functions list, then tail call the optimized code.
729     // The feedback vector is no longer used, so re-use it as a scratch
730     // register.
731     ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
732                                         scratch2, scratch3, feedback_vector);
733     static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
734     __ AddP(r4, optimized_code_entry,
735             Operand(Code::kHeaderSize - kHeapObjectTag));
736     __ Jump(r4);
737 
738     // Optimized code slot contains deoptimized code, evict it and re-enter the
739     // closure's code.
740     __ bind(&found_deoptimized_code);
741     GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
742   }
743 
744   // Fall-through if the optimized code cell is clear and there is no
745   // optimization marker.
746   __ bind(&fallthrough);
747 }
748 
749 // Advance the current bytecode offset. This simulates what all bytecode
750 // handlers do upon completion of the underlying operation. Will bail out to a
751 // label if the bytecode (without prefix) is a return bytecode.
AdvanceBytecodeOffsetOrReturn(MacroAssembler * masm,Register bytecode_array,Register bytecode_offset,Register bytecode,Register scratch1,Label * if_return)752 static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
753                                           Register bytecode_array,
754                                           Register bytecode_offset,
755                                           Register bytecode, Register scratch1,
756                                           Label* if_return) {
757   Register bytecode_size_table = scratch1;
758   Register scratch2 = bytecode;
759   DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
760                      bytecode));
761   __ Move(bytecode_size_table,
762           ExternalReference::bytecode_size_table_address());
763 
764   // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
765   Label process_bytecode, extra_wide;
766   STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
767   STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
768   STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
769   STATIC_ASSERT(3 ==
770                 static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
771   __ CmpP(bytecode, Operand(0x3));
772   __ bgt(&process_bytecode);
773   __ tmll(bytecode, Operand(0x1));
774   __ bne(&extra_wide);
775 
776   // Load the next bytecode and update table to the wide scaled table.
777   __ AddP(bytecode_offset, bytecode_offset, Operand(1));
778   __ LoadlB(bytecode, MemOperand(bytecode_array, bytecode_offset));
779   __ AddP(bytecode_size_table, bytecode_size_table,
780           Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount));
781   __ b(&process_bytecode);
782 
783   __ bind(&extra_wide);
784   // Load the next bytecode and update table to the extra wide scaled table.
785   __ AddP(bytecode_offset, bytecode_offset, Operand(1));
786   __ LoadlB(bytecode, MemOperand(bytecode_array, bytecode_offset));
787   __ AddP(bytecode_size_table, bytecode_size_table,
788           Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
789 
790   // Load the size of the current bytecode.
791   __ bind(&process_bytecode);
792 
793 // Bailout to the return label if this is a return bytecode.
794 #define JUMP_IF_EQUAL(NAME)                                           \
795   __ CmpP(bytecode,                                                   \
796           Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \
797   __ beq(if_return);
798   RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
799 #undef JUMP_IF_EQUAL
800 
801   // Otherwise, load the size of the current bytecode and advance the offset.
802   __ ShiftLeftP(scratch2, bytecode, Operand(2));
803   __ LoadlW(scratch2, MemOperand(bytecode_size_table, scratch2));
804   __ AddP(bytecode_offset, bytecode_offset, scratch2);
805 }
806 
807 // Generate code for entering a JS function with the interpreter.
808 // On entry to the function the receiver and arguments have been pushed on the
809 // stack left to right.  The actual argument count matches the formal parameter
810 // count expected by the function.
811 //
812 // The live registers are:
813 //   o r3: the JS function object being called.
814 //   o r5: the incoming new target or generator object
815 //   o cp: our context
816 //   o pp: the caller's constant pool pointer (if enabled)
817 //   o fp: the caller's frame pointer
818 //   o sp: stack pointer
819 //   o lr: return address
820 //
821 // The function builds an interpreter frame.  See InterpreterFrameConstants in
822 // frames.h for its layout.
Generate_InterpreterEntryTrampoline(MacroAssembler * masm)823 void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
824   ProfileEntryHookStub::MaybeCallEntryHook(masm);
825 
826   Register closure = r3;
827   Register feedback_vector = r4;
828 
829   // Load the feedback vector from the closure.
830   __ LoadP(feedback_vector,
831            FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
832   __ LoadP(feedback_vector,
833            FieldMemOperand(feedback_vector, Cell::kValueOffset));
834   // Read off the optimized code slot in the feedback vector, and if there
835   // is optimized code or an optimization marker, call that instead.
836   MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, r6, r8, r7);
837 
838   // Open a frame scope to indicate that there is a frame on the stack.  The
839   // MANUAL indicates that the scope shouldn't actually generate code to set up
840   // the frame (that is done below).
841   FrameScope frame_scope(masm, StackFrame::MANUAL);
842   __ PushStandardFrame(closure);
843 
844   // Get the bytecode array from the function object and load it into
845   // kInterpreterBytecodeArrayRegister.
846   __ LoadP(r2, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
847   // Load original bytecode array or the debug copy.
848   __ LoadP(kInterpreterBytecodeArrayRegister,
849            FieldMemOperand(r2, SharedFunctionInfo::kFunctionDataOffset));
850   GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, r6);
851 
852   // Increment invocation count for the function.
853   __ LoadW(r1, FieldMemOperand(feedback_vector,
854                                FeedbackVector::kInvocationCountOffset));
855   __ AddP(r1, r1, Operand(1));
856   __ StoreW(r1, FieldMemOperand(feedback_vector,
857                                 FeedbackVector::kInvocationCountOffset));
858 
859   // Check function data field is actually a BytecodeArray object.
860   if (FLAG_debug_code) {
861     __ TestIfSmi(kInterpreterBytecodeArrayRegister);
862     __ Assert(
863         ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
864     __ CompareObjectType(kInterpreterBytecodeArrayRegister, r2, no_reg,
865                          BYTECODE_ARRAY_TYPE);
866     __ Assert(
867         eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
868   }
869 
870   // Reset code age.
871   __ mov(r1, Operand(BytecodeArray::kNoAgeBytecodeAge));
872   __ StoreByte(r1, FieldMemOperand(kInterpreterBytecodeArrayRegister,
873                                    BytecodeArray::kBytecodeAgeOffset),
874                r0);
875 
876   // Load the initial bytecode offset.
877   __ mov(kInterpreterBytecodeOffsetRegister,
878          Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
879 
880   // Push bytecode array and Smi tagged bytecode array offset.
881   __ SmiTag(r4, kInterpreterBytecodeOffsetRegister);
882   __ Push(kInterpreterBytecodeArrayRegister, r4);
883 
884   // Allocate the local and temporary register file on the stack.
885   {
886     // Load frame size (word) from the BytecodeArray object.
887     __ LoadlW(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
888                                   BytecodeArray::kFrameSizeOffset));
889 
890     // Do a stack check to ensure we don't go over the limit.
891     Label ok;
892     __ SubP(r8, sp, r4);
893     __ LoadRoot(r0, Heap::kRealStackLimitRootIndex);
894     __ CmpLogicalP(r8, r0);
895     __ bge(&ok);
896     __ CallRuntime(Runtime::kThrowStackOverflow);
897     __ bind(&ok);
898 
899     // If ok, push undefined as the initial value for all register file entries.
900     // TODO(rmcilroy): Consider doing more than one push per loop iteration.
901     Label loop, no_args;
902     __ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
903     __ ShiftRightP(r4, r4, Operand(kPointerSizeLog2));
904     __ LoadAndTestP(r4, r4);
905     __ beq(&no_args);
906     __ LoadRR(r1, r4);
907     __ bind(&loop);
908     __ push(r8);
909     __ SubP(r1, Operand(1));
910     __ bne(&loop);
911     __ bind(&no_args);
912   }
913 
914   // If the bytecode array has a valid incoming new target or generator object
915   // register, initialize it with incoming value which was passed in r6.
916   Label no_incoming_new_target_or_generator_register;
917   __ LoadW(r8, FieldMemOperand(
918                    kInterpreterBytecodeArrayRegister,
919                    BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
920   __ CmpP(r8, Operand::Zero());
921   __ beq(&no_incoming_new_target_or_generator_register);
922   __ ShiftLeftP(r8, r8, Operand(kPointerSizeLog2));
923   __ StoreP(r5, MemOperand(fp, r8));
924   __ bind(&no_incoming_new_target_or_generator_register);
925 
926   // Load accumulator with undefined.
927   __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
928   // Load the dispatch table into a register and dispatch to the bytecode
929   // handler at the current bytecode offset.
930   Label do_dispatch;
931   __ bind(&do_dispatch);
932   __ mov(kInterpreterDispatchTableRegister,
933          Operand(ExternalReference::interpreter_dispatch_table_address(
934              masm->isolate())));
935 
936   __ LoadlB(r5, MemOperand(kInterpreterBytecodeArrayRegister,
937                            kInterpreterBytecodeOffsetRegister));
938   __ ShiftLeftP(r5, r5, Operand(kPointerSizeLog2));
939   __ LoadP(kJavaScriptCallCodeStartRegister,
940            MemOperand(kInterpreterDispatchTableRegister, r5));
941   __ Call(kJavaScriptCallCodeStartRegister);
942 
943   masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
944 
945   // Any returns to the entry trampoline are either due to the return bytecode
946   // or the interpreter tail calling a builtin and then a dispatch.
947 
948   // Get bytecode array and bytecode offset from the stack frame.
949   __ LoadP(kInterpreterBytecodeArrayRegister,
950            MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
951   __ LoadP(kInterpreterBytecodeOffsetRegister,
952            MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
953   __ SmiUntag(kInterpreterBytecodeOffsetRegister);
954 
955   // Either return, or advance to the next bytecode and dispatch.
956   Label do_return;
957   __ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister,
958                            kInterpreterBytecodeOffsetRegister));
959   AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
960                                 kInterpreterBytecodeOffsetRegister, r3, r4,
961                                 &do_return);
962   __ b(&do_dispatch);
963 
964   __ bind(&do_return);
965   // The return value is in r2.
966   LeaveInterpreterFrame(masm, r4);
967   __ Ret();
968 }
969 
Generate_StackOverflowCheck(MacroAssembler * masm,Register num_args,Register scratch,Label * stack_overflow)970 static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
971                                         Register scratch,
972                                         Label* stack_overflow) {
973   // Check the stack for overflow. We are not trying to catch
974   // interruptions (e.g. debug break and preemption) here, so the "real stack
975   // limit" is checked.
976   __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
977   // Make scratch the space we have left. The stack might already be overflowed
978   // here which will cause scratch to become negative.
979   __ SubP(scratch, sp, scratch);
980   // Check if the arguments will overflow the stack.
981   __ ShiftLeftP(r0, num_args, Operand(kPointerSizeLog2));
982   __ CmpP(scratch, r0);
983   __ ble(stack_overflow);  // Signed comparison.
984 }
985 
Generate_InterpreterPushArgs(MacroAssembler * masm,Register num_args,Register index,Register count,Register scratch)986 static void Generate_InterpreterPushArgs(MacroAssembler* masm,
987                                          Register num_args, Register index,
988                                          Register count, Register scratch) {
989   Label loop, skip;
990   __ CmpP(count, Operand::Zero());
991   __ beq(&skip);
992   __ AddP(index, index, Operand(kPointerSize));  // Bias up for LoadPU
993   __ LoadRR(r0, count);
994   __ bind(&loop);
995   __ LoadP(scratch, MemOperand(index, -kPointerSize));
996   __ lay(index, MemOperand(index, -kPointerSize));
997   __ push(scratch);
998   __ SubP(r0, Operand(1));
999   __ bne(&loop);
1000   __ bind(&skip);
1001 }
1002 
1003 // static
Generate_InterpreterPushArgsThenCallImpl(MacroAssembler * masm,ConvertReceiverMode receiver_mode,InterpreterPushArgsMode mode)1004 void Builtins::Generate_InterpreterPushArgsThenCallImpl(
1005     MacroAssembler* masm, ConvertReceiverMode receiver_mode,
1006     InterpreterPushArgsMode mode) {
1007   DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
1008   // ----------- S t a t e -------------
1009   //  -- r2 : the number of arguments (not including the receiver)
1010   //  -- r4 : the address of the first argument to be pushed. Subsequent
1011   //          arguments should be consecutive above this, in the same order as
1012   //          they are to be pushed onto the stack.
1013   //  -- r3 : the target to call (can be any Object).
1014   // -----------------------------------
1015   Label stack_overflow;
1016 
1017   // Calculate number of arguments (AddP one for receiver).
1018   __ AddP(r5, r2, Operand(1));
1019   Generate_StackOverflowCheck(masm, r5, ip, &stack_overflow);
1020 
1021   // Push "undefined" as the receiver arg if we need to.
1022   if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
1023     __ PushRoot(Heap::kUndefinedValueRootIndex);
1024     __ LoadRR(r5, r2);  // Argument count is correct.
1025   }
1026 
1027   // Push the arguments.
1028   Generate_InterpreterPushArgs(masm, r5, r4, r5, r6);
1029   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1030     __ Pop(r4);                   // Pass the spread in a register
1031     __ SubP(r2, r2, Operand(1));  // Subtract one for spread
1032   }
1033 
1034   // Call the target.
1035   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1036     __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
1037             RelocInfo::CODE_TARGET);
1038   } else {
1039     __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
1040             RelocInfo::CODE_TARGET);
1041   }
1042 
1043   __ bind(&stack_overflow);
1044   {
1045     __ TailCallRuntime(Runtime::kThrowStackOverflow);
1046     // Unreachable Code.
1047     __ bkpt(0);
1048   }
1049 }
1050 
1051 // static
Generate_InterpreterPushArgsThenConstructImpl(MacroAssembler * masm,InterpreterPushArgsMode mode)1052 void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
1053     MacroAssembler* masm, InterpreterPushArgsMode mode) {
1054   // ----------- S t a t e -------------
1055   // -- r2 : argument count (not including receiver)
1056   // -- r5 : new target
1057   // -- r3 : constructor to call
1058   // -- r4 : allocation site feedback if available, undefined otherwise.
1059   // -- r6 : address of the first argument
1060   // -----------------------------------
1061   Label stack_overflow;
1062 
1063   // Push a slot for the receiver to be constructed.
1064   __ LoadImmP(r0, Operand::Zero());
1065   __ push(r0);
1066 
1067   // Push the arguments (skip if none).
1068   Label skip;
1069   __ CmpP(r2, Operand::Zero());
1070   __ beq(&skip);
1071   Generate_StackOverflowCheck(masm, r2, ip, &stack_overflow);
1072   Generate_InterpreterPushArgs(masm, r2, r6, r2, r7);
1073   __ bind(&skip);
1074 
1075   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1076     __ Pop(r4);                   // Pass the spread in a register
1077     __ SubP(r2, r2, Operand(1));  // Subtract one for spread
1078   } else {
1079     __ AssertUndefinedOrAllocationSite(r4, r7);
1080   }
1081   if (mode == InterpreterPushArgsMode::kArrayFunction) {
1082     __ AssertFunction(r3);
1083 
1084     // Tail call to the array construct stub (still in the caller
1085     // context at this point).
1086     Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
1087     __ Jump(code, RelocInfo::CODE_TARGET);
1088   } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1089     // Call the constructor with r2, r3, and r5 unmodified.
1090     __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
1091             RelocInfo::CODE_TARGET);
1092   } else {
1093     DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
1094     // Call the constructor with r2, r3, and r5 unmodified.
1095     __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
1096   }
1097 
1098   __ bind(&stack_overflow);
1099   {
1100     __ TailCallRuntime(Runtime::kThrowStackOverflow);
1101     // Unreachable Code.
1102     __ bkpt(0);
1103   }
1104 }
1105 
Generate_InterpreterEnterBytecode(MacroAssembler * masm)1106 static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
1107   // Set the return address to the correct point in the interpreter entry
1108   // trampoline.
1109   Label builtin_trampoline, trampoline_loaded;
1110   Smi* interpreter_entry_return_pc_offset(
1111       masm->isolate()->heap()->interpreter_entry_return_pc_offset());
1112   DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
1113 
1114   // If the SFI function_data is an InterpreterData, get the trampoline stored
1115   // in it, otherwise get the trampoline from the builtins list.
1116   __ LoadP(r4, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
1117   __ LoadP(r4, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
1118   __ LoadP(r4, FieldMemOperand(r4, SharedFunctionInfo::kFunctionDataOffset));
1119   __ CompareObjectType(r4, kInterpreterDispatchTableRegister,
1120                        kInterpreterDispatchTableRegister,
1121                        INTERPRETER_DATA_TYPE);
1122   __ bne(&builtin_trampoline);
1123 
1124   __ LoadP(r4,
1125            FieldMemOperand(r4, InterpreterData::kInterpreterTrampolineOffset));
1126   __ b(&trampoline_loaded);
1127 
1128   __ bind(&builtin_trampoline);
1129   __ Move(r4, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline));
1130 
1131   __ bind(&trampoline_loaded);
1132   __ AddP(r14, r4, Operand(interpreter_entry_return_pc_offset->value() +
1133                            Code::kHeaderSize - kHeapObjectTag));
1134 
1135   // Initialize the dispatch table register.
1136   __ Move(
1137       kInterpreterDispatchTableRegister,
1138       ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
1139 
1140   // Get the bytecode array pointer from the frame.
1141   __ LoadP(kInterpreterBytecodeArrayRegister,
1142            MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1143 
1144   if (FLAG_debug_code) {
1145     // Check function data field is actually a BytecodeArray object.
1146     __ TestIfSmi(kInterpreterBytecodeArrayRegister);
1147     __ Assert(
1148         ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1149     __ CompareObjectType(kInterpreterBytecodeArrayRegister, r3, no_reg,
1150                          BYTECODE_ARRAY_TYPE);
1151     __ Assert(
1152         eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1153   }
1154 
1155   // Get the target bytecode offset from the frame.
1156   __ LoadP(kInterpreterBytecodeOffsetRegister,
1157            MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1158   __ SmiUntag(kInterpreterBytecodeOffsetRegister);
1159 
1160   // Dispatch to the target bytecode.
1161   __ LoadlB(ip, MemOperand(kInterpreterBytecodeArrayRegister,
1162                            kInterpreterBytecodeOffsetRegister));
1163   __ ShiftLeftP(ip, ip, Operand(kPointerSizeLog2));
1164   __ LoadP(kJavaScriptCallCodeStartRegister,
1165            MemOperand(kInterpreterDispatchTableRegister, ip));
1166   __ Jump(kJavaScriptCallCodeStartRegister);
1167 }
1168 
Generate_InterpreterEnterBytecodeAdvance(MacroAssembler * masm)1169 void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
1170   // Get bytecode array and bytecode offset from the stack frame.
1171   __ LoadP(kInterpreterBytecodeArrayRegister,
1172            MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1173   __ LoadP(kInterpreterBytecodeOffsetRegister,
1174            MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1175   __ SmiUntag(kInterpreterBytecodeOffsetRegister);
1176 
1177   // Load the current bytecode.
1178   __ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister,
1179                            kInterpreterBytecodeOffsetRegister));
1180 
1181   // Advance to the next bytecode.
1182   Label if_return;
1183   AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
1184                                 kInterpreterBytecodeOffsetRegister, r3, r4,
1185                                 &if_return);
1186 
1187   // Convert new bytecode offset to a Smi and save in the stackframe.
1188   __ SmiTag(r4, kInterpreterBytecodeOffsetRegister);
1189   __ StoreP(r4,
1190             MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1191 
1192   Generate_InterpreterEnterBytecode(masm);
1193 
1194   // We should never take the if_return path.
1195   __ bind(&if_return);
1196   __ Abort(AbortReason::kInvalidBytecodeAdvance);
1197 }
1198 
Generate_InterpreterEnterBytecodeDispatch(MacroAssembler * masm)1199 void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
1200   Generate_InterpreterEnterBytecode(masm);
1201 }
1202 
Generate_InstantiateAsmJs(MacroAssembler * masm)1203 void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
1204   // ----------- S t a t e -------------
1205   //  -- r2 : argument count (preserved for callee)
1206   //  -- r3 : new target (preserved for callee)
1207   //  -- r5 : target function (preserved for callee)
1208   // -----------------------------------
1209   Label failed;
1210   {
1211     FrameScope scope(masm, StackFrame::INTERNAL);
1212     // Preserve argument count for later compare.
1213     __ Move(r6, r2);
1214     // Push a copy of the target function and the new target.
1215     __ SmiTag(r2);
1216     // Push another copy as a parameter to the runtime call.
1217     __ Push(r2, r3, r5, r3);
1218 
1219     // Copy arguments from caller (stdlib, foreign, heap).
1220     Label args_done;
1221     for (int j = 0; j < 4; ++j) {
1222       Label over;
1223       if (j < 3) {
1224         __ CmpP(r6, Operand(j));
1225         __ b(ne, &over);
1226       }
1227       for (int i = j - 1; i >= 0; --i) {
1228         __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
1229                                         i * kPointerSize));
1230         __ push(r6);
1231       }
1232       for (int i = 0; i < 3 - j; ++i) {
1233         __ PushRoot(Heap::kUndefinedValueRootIndex);
1234       }
1235       if (j < 3) {
1236         __ jmp(&args_done);
1237         __ bind(&over);
1238       }
1239     }
1240     __ bind(&args_done);
1241 
1242     // Call runtime, on success unwind frame, and parent frame.
1243     __ CallRuntime(Runtime::kInstantiateAsmJs, 4);
1244     // A smi 0 is returned on failure, an object on success.
1245     __ JumpIfSmi(r2, &failed);
1246 
1247     __ Drop(2);
1248     __ pop(r6);
1249     __ SmiUntag(r6);
1250     scope.GenerateLeaveFrame();
1251 
1252     __ AddP(r6, r6, Operand(1));
1253     __ Drop(r6);
1254     __ Ret();
1255 
1256     __ bind(&failed);
1257     // Restore target function and new target.
1258     __ Pop(r2, r3, r5);
1259     __ SmiUntag(r2);
1260   }
1261   // On failure, tail call back to regular js by re-calling the function
1262   // which has be reset to the compile lazy builtin.
1263   static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
1264   __ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
1265   __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
1266   __ JumpToJSEntry(r4);
1267 }
1268 
1269 namespace {
Generate_ContinueToBuiltinHelper(MacroAssembler * masm,bool java_script_builtin,bool with_result)1270 void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
1271                                       bool java_script_builtin,
1272                                       bool with_result) {
1273   const RegisterConfiguration* config(RegisterConfiguration::Default());
1274   int allocatable_register_count = config->num_allocatable_general_registers();
1275   if (with_result) {
1276     // Overwrite the hole inserted by the deoptimizer with the return value from
1277     // the LAZY deopt point.
1278     __ StoreP(
1279         r2, MemOperand(
1280                 sp, config->num_allocatable_general_registers() * kPointerSize +
1281                         BuiltinContinuationFrameConstants::kFixedFrameSize));
1282   }
1283   for (int i = allocatable_register_count - 1; i >= 0; --i) {
1284     int code = config->GetAllocatableGeneralCode(i);
1285     __ Pop(Register::from_code(code));
1286     if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
1287       __ SmiUntag(Register::from_code(code));
1288     }
1289   }
1290   __ LoadP(
1291       fp,
1292       MemOperand(sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
1293   __ Pop(ip);
1294   __ AddP(sp, sp,
1295           Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
1296   __ Pop(r0);
1297   __ LoadRR(r14, r0);
1298   __ AddP(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
1299   __ Jump(ip);
1300 }
1301 }  // namespace
1302 
Generate_ContinueToCodeStubBuiltin(MacroAssembler * masm)1303 void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
1304   Generate_ContinueToBuiltinHelper(masm, false, false);
1305 }
1306 
Generate_ContinueToCodeStubBuiltinWithResult(MacroAssembler * masm)1307 void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
1308     MacroAssembler* masm) {
1309   Generate_ContinueToBuiltinHelper(masm, false, true);
1310 }
1311 
Generate_ContinueToJavaScriptBuiltin(MacroAssembler * masm)1312 void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
1313   Generate_ContinueToBuiltinHelper(masm, true, false);
1314 }
1315 
Generate_ContinueToJavaScriptBuiltinWithResult(MacroAssembler * masm)1316 void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
1317     MacroAssembler* masm) {
1318   Generate_ContinueToBuiltinHelper(masm, true, true);
1319 }
1320 
Generate_NotifyDeoptimized(MacroAssembler * masm)1321 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1322   {
1323     FrameScope scope(masm, StackFrame::INTERNAL);
1324     __ CallRuntime(Runtime::kNotifyDeoptimized);
1325   }
1326 
1327   DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r2.code());
1328   __ pop(r2);
1329   __ Ret();
1330 }
1331 
Generate_OnStackReplacementHelper(MacroAssembler * masm,bool has_handler_frame)1332 static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
1333                                               bool has_handler_frame) {
1334   // Lookup the function in the JavaScript frame.
1335   if (has_handler_frame) {
1336     __ LoadP(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1337     __ LoadP(r2, MemOperand(r2, JavaScriptFrameConstants::kFunctionOffset));
1338   } else {
1339     __ LoadP(r2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1340   }
1341 
1342   {
1343     FrameScope scope(masm, StackFrame::INTERNAL);
1344     // Pass function as argument.
1345     __ push(r2);
1346     __ CallRuntime(Runtime::kCompileForOnStackReplacement);
1347   }
1348 
1349   // If the code object is null, just return to the caller.
1350   Label skip;
1351   __ CmpSmiLiteral(r2, Smi::kZero, r0);
1352   __ bne(&skip);
1353   __ Ret();
1354 
1355   __ bind(&skip);
1356 
1357   // Drop any potential handler frame that is be sitting on top of the actual
1358   // JavaScript frame. This is the case then OSR is triggered from bytecode.
1359   if (has_handler_frame) {
1360     __ LeaveFrame(StackFrame::STUB);
1361   }
1362 
1363   // Load deoptimization data from the code object.
1364   // <deopt_data> = <code>[#deoptimization_data_offset]
1365   __ LoadP(r3, FieldMemOperand(r2, Code::kDeoptimizationDataOffset));
1366 
1367   // Load the OSR entrypoint offset from the deoptimization data.
1368   // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1369   __ LoadP(r3, FieldMemOperand(r3, FixedArray::OffsetOfElementAt(
1370                                        DeoptimizationData::kOsrPcOffsetIndex)));
1371   __ SmiUntag(r3);
1372 
1373   // Compute the target address = code_obj + header_size + osr_offset
1374   // <entry_addr> = <code_obj> + #header_size + <osr_offset>
1375   __ AddP(r2, r3);
1376   __ AddP(r0, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
1377   __ LoadRR(r14, r0);
1378 
1379   // And "return" to the OSR entry point of the function.
1380   __ Ret();
1381 }
1382 
Generate_OnStackReplacement(MacroAssembler * masm)1383 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1384   Generate_OnStackReplacementHelper(masm, false);
1385 }
1386 
Generate_InterpreterOnStackReplacement(MacroAssembler * masm)1387 void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
1388   Generate_OnStackReplacementHelper(masm, true);
1389 }
1390 
1391 // static
Generate_FunctionPrototypeApply(MacroAssembler * masm)1392 void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
1393   // ----------- S t a t e -------------
1394   //  -- r2    : argc
1395   //  -- sp[0] : argArray
1396   //  -- sp[4] : thisArg
1397   //  -- sp[8] : receiver
1398   // -----------------------------------
1399 
1400   // 1. Load receiver into r3, argArray into r4 (if present), remove all
1401   // arguments from the stack (including the receiver), and push thisArg (if
1402   // present) instead.
1403   {
1404     Label skip;
1405     Register arg_size = r7;
1406     Register new_sp = r5;
1407     Register scratch = r6;
1408     __ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2));
1409     __ AddP(new_sp, sp, arg_size);
1410     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
1411     __ LoadRR(r4, scratch);
1412     __ LoadP(r3, MemOperand(new_sp, 0));  // receiver
1413     __ CmpP(arg_size, Operand(kPointerSize));
1414     __ blt(&skip);
1415     __ LoadP(scratch, MemOperand(new_sp, 1 * -kPointerSize));  // thisArg
1416     __ beq(&skip);
1417     __ LoadP(r4, MemOperand(new_sp, 2 * -kPointerSize));  // argArray
1418     __ bind(&skip);
1419     __ LoadRR(sp, new_sp);
1420     __ StoreP(scratch, MemOperand(sp, 0));
1421   }
1422 
1423   // ----------- S t a t e -------------
1424   //  -- r4    : argArray
1425   //  -- r3    : receiver
1426   //  -- sp[0] : thisArg
1427   // -----------------------------------
1428 
1429   // 2. We don't need to check explicitly for callable receiver here,
1430   // since that's the first thing the Call/CallWithArrayLike builtins
1431   // will do.
1432 
1433   // 3. Tail call with no arguments if argArray is null or undefined.
1434   Label no_arguments;
1435   __ JumpIfRoot(r4, Heap::kNullValueRootIndex, &no_arguments);
1436   __ JumpIfRoot(r4, Heap::kUndefinedValueRootIndex, &no_arguments);
1437 
1438   // 4a. Apply the receiver to the given argArray.
1439   __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1440           RelocInfo::CODE_TARGET);
1441 
1442   // 4b. The argArray is either null or undefined, so we tail call without any
1443   // arguments to the receiver.
1444   __ bind(&no_arguments);
1445   {
1446     __ LoadImmP(r2, Operand::Zero());
1447     __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1448   }
1449 }
1450 
1451 // static
Generate_FunctionPrototypeCall(MacroAssembler * masm)1452 void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
1453   // 1. Make sure we have at least one argument.
1454   // r2: actual number of arguments
1455   {
1456     Label done;
1457     __ CmpP(r2, Operand::Zero());
1458     __ bne(&done, Label::kNear);
1459     __ PushRoot(Heap::kUndefinedValueRootIndex);
1460     __ AddP(r2, Operand(1));
1461     __ bind(&done);
1462   }
1463 
1464   // r2: actual number of arguments
1465   // 2. Get the callable to call (passed as receiver) from the stack.
1466   __ ShiftLeftP(r4, r2, Operand(kPointerSizeLog2));
1467   __ LoadP(r3, MemOperand(sp, r4));
1468 
1469   // 3. Shift arguments and return address one slot down on the stack
1470   //    (overwriting the original receiver).  Adjust argument count to make
1471   //    the original first argument the new receiver.
1472   // r2: actual number of arguments
1473   // r3: callable
1474   {
1475     Label loop;
1476     // Calculate the copy start address (destination). Copy end address is sp.
1477     __ AddP(r4, sp, r4);
1478 
1479     __ bind(&loop);
1480     __ LoadP(ip, MemOperand(r4, -kPointerSize));
1481     __ StoreP(ip, MemOperand(r4));
1482     __ SubP(r4, Operand(kPointerSize));
1483     __ CmpP(r4, sp);
1484     __ bne(&loop);
1485     // Adjust the actual number of arguments and remove the top element
1486     // (which is a copy of the last argument).
1487     __ SubP(r2, Operand(1));
1488     __ pop();
1489   }
1490 
1491   // 4. Call the callable.
1492   __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1493 }
1494 
Generate_ReflectApply(MacroAssembler * masm)1495 void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
1496   // ----------- S t a t e -------------
1497   //  -- r2     : argc
1498   //  -- sp[0]  : argumentsList
1499   //  -- sp[4]  : thisArgument
1500   //  -- sp[8]  : target
1501   //  -- sp[12] : receiver
1502   // -----------------------------------
1503 
1504   // 1. Load target into r3 (if present), argumentsList into r4 (if present),
1505   // remove all arguments from the stack (including the receiver), and push
1506   // thisArgument (if present) instead.
1507   {
1508     Label skip;
1509     Register arg_size = r7;
1510     Register new_sp = r5;
1511     Register scratch = r6;
1512     __ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2));
1513     __ AddP(new_sp, sp, arg_size);
1514     __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
1515     __ LoadRR(scratch, r3);
1516     __ LoadRR(r4, r3);
1517     __ CmpP(arg_size, Operand(kPointerSize));
1518     __ blt(&skip);
1519     __ LoadP(r3, MemOperand(new_sp, 1 * -kPointerSize));  // target
1520     __ beq(&skip);
1521     __ LoadP(scratch, MemOperand(new_sp, 2 * -kPointerSize));  // thisArgument
1522     __ CmpP(arg_size, Operand(2 * kPointerSize));
1523     __ beq(&skip);
1524     __ LoadP(r4, MemOperand(new_sp, 3 * -kPointerSize));  // argumentsList
1525     __ bind(&skip);
1526     __ LoadRR(sp, new_sp);
1527     __ StoreP(scratch, MemOperand(sp, 0));
1528   }
1529 
1530   // ----------- S t a t e -------------
1531   //  -- r4    : argumentsList
1532   //  -- r3    : target
1533   //  -- sp[0] : thisArgument
1534   // -----------------------------------
1535 
1536   // 2. We don't need to check explicitly for callable target here,
1537   // since that's the first thing the Call/CallWithArrayLike builtins
1538   // will do.
1539 
1540   // 3 Apply the target to the given argumentsList.
1541   __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1542           RelocInfo::CODE_TARGET);
1543 }
1544 
Generate_ReflectConstruct(MacroAssembler * masm)1545 void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
1546   // ----------- S t a t e -------------
1547   //  -- r2     : argc
1548   //  -- sp[0]  : new.target (optional)
1549   //  -- sp[4]  : argumentsList
1550   //  -- sp[8]  : target
1551   //  -- sp[12] : receiver
1552   // -----------------------------------
1553 
1554   // 1. Load target into r3 (if present), argumentsList into r4 (if present),
1555   // new.target into r5 (if present, otherwise use target), remove all
1556   // arguments from the stack (including the receiver), and push thisArgument
1557   // (if present) instead.
1558   {
1559     Label skip;
1560     Register arg_size = r7;
1561     Register new_sp = r6;
1562     __ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2));
1563     __ AddP(new_sp, sp, arg_size);
1564     __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
1565     __ LoadRR(r4, r3);
1566     __ LoadRR(r5, r3);
1567     __ StoreP(r3, MemOperand(new_sp, 0));  // receiver (undefined)
1568     __ CmpP(arg_size, Operand(kPointerSize));
1569     __ blt(&skip);
1570     __ LoadP(r3, MemOperand(new_sp, 1 * -kPointerSize));  // target
1571     __ LoadRR(r5, r3);  // new.target defaults to target
1572     __ beq(&skip);
1573     __ LoadP(r4, MemOperand(new_sp, 2 * -kPointerSize));  // argumentsList
1574     __ CmpP(arg_size, Operand(2 * kPointerSize));
1575     __ beq(&skip);
1576     __ LoadP(r5, MemOperand(new_sp, 3 * -kPointerSize));  // new.target
1577     __ bind(&skip);
1578     __ LoadRR(sp, new_sp);
1579   }
1580 
1581   // ----------- S t a t e -------------
1582   //  -- r4    : argumentsList
1583   //  -- r5    : new.target
1584   //  -- r3    : target
1585   //  -- sp[0] : receiver (undefined)
1586   // -----------------------------------
1587 
1588   // 2. We don't need to check explicitly for constructor target here,
1589   // since that's the first thing the Construct/ConstructWithArrayLike
1590   // builtins will do.
1591 
1592   // 3. We don't need to check explicitly for constructor new.target here,
1593   // since that's the second thing the Construct/ConstructWithArrayLike
1594   // builtins will do.
1595 
1596   // 4. Construct the target with the given new.target and argumentsList.
1597   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
1598           RelocInfo::CODE_TARGET);
1599 }
1600 
EnterArgumentsAdaptorFrame(MacroAssembler * masm)1601 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1602   __ SmiTag(r2);
1603   __ Load(r6, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1604   // Stack updated as such:
1605   //    old SP --->
1606   //                 R14 Return Addr
1607   //                 Old FP                     <--- New FP
1608   //                 Argument Adapter SMI
1609   //                 Function
1610   //                 ArgC as SMI
1611   //                 Padding                    <--- New SP
1612   __ lay(sp, MemOperand(sp, -5 * kPointerSize));
1613 
1614   // Cleanse the top nibble of 31-bit pointers.
1615   __ CleanseP(r14);
1616   __ StoreP(r14, MemOperand(sp, 4 * kPointerSize));
1617   __ StoreP(fp, MemOperand(sp, 3 * kPointerSize));
1618   __ StoreP(r6, MemOperand(sp, 2 * kPointerSize));
1619   __ StoreP(r3, MemOperand(sp, 1 * kPointerSize));
1620   __ StoreP(r2, MemOperand(sp, 0 * kPointerSize));
1621   __ Push(Smi::kZero);  // Padding.
1622   __ la(fp,
1623         MemOperand(sp, ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp));
1624 }
1625 
LeaveArgumentsAdaptorFrame(MacroAssembler * masm)1626 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1627   // ----------- S t a t e -------------
1628   //  -- r2 : result being passed through
1629   // -----------------------------------
1630   // Get the number of arguments passed (as a smi), tear down the frame and
1631   // then tear down the parameters.
1632   __ LoadP(r3, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
1633   int stack_adjustment = kPointerSize;  // adjust for receiver
1634   __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment);
1635   __ SmiToPtrArrayOffset(r3, r3);
1636   __ lay(sp, MemOperand(sp, r3));
1637 }
1638 
1639 // static
Generate_CallOrConstructVarargs(MacroAssembler * masm,Handle<Code> code)1640 void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
1641                                                Handle<Code> code) {
1642   // ----------- S t a t e -------------
1643   //  -- r3 : target
1644   //  -- r2 : number of parameters on the stack (not including the receiver)
1645   //  -- r4 : arguments list (a FixedArray)
1646   //  -- r6 : len (number of elements to push from args)
1647   //  -- r5 : new.target (for [[Construct]])
1648   // -----------------------------------
1649 
1650   Register scratch = ip;
1651 
1652   if (masm->emit_debug_code()) {
1653     // Allow r4 to be a FixedArray, or a FixedDoubleArray if r6 == 0.
1654     Label ok, fail;
1655     __ AssertNotSmi(r4);
1656     __ LoadP(scratch, FieldMemOperand(r4, HeapObject::kMapOffset));
1657     __ LoadHalfWordP(scratch,
1658                      FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1659     __ CmpP(scratch, Operand(FIXED_ARRAY_TYPE));
1660     __ beq(&ok);
1661     __ CmpP(scratch, Operand(FIXED_DOUBLE_ARRAY_TYPE));
1662     __ bne(&fail);
1663     __ CmpP(r6, Operand::Zero());
1664     __ beq(&ok);
1665     // Fall through.
1666     __ bind(&fail);
1667     __ Abort(AbortReason::kOperandIsNotAFixedArray);
1668 
1669     __ bind(&ok);
1670   }
1671 
1672   // Check for stack overflow.
1673   {
1674     // Check the stack for overflow. We are not trying to catch interruptions
1675     // (i.e. debug break and preemption) here, so check the "real stack limit".
1676     Label done;
1677     __ LoadRoot(ip, Heap::kRealStackLimitRootIndex);
1678     // Make ip the space we have left. The stack might already be overflowed
1679     // here which will cause ip to become negative.
1680     __ SubP(ip, sp, ip);
1681     // Check if the arguments will overflow the stack.
1682     __ ShiftLeftP(r0, r6, Operand(kPointerSizeLog2));
1683     __ CmpP(ip, r0);  // Signed comparison.
1684     __ bgt(&done);
1685     __ TailCallRuntime(Runtime::kThrowStackOverflow);
1686     __ bind(&done);
1687   }
1688 
1689   // Push arguments onto the stack (thisArgument is already on the stack).
1690   {
1691     Label loop, no_args, skip;
1692     __ CmpP(r6, Operand::Zero());
1693     __ beq(&no_args);
1694     __ AddP(r4, r4,
1695             Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
1696     __ LoadRR(r1, r6);
1697     __ bind(&loop);
1698     __ LoadP(ip, MemOperand(r4, kPointerSize));
1699     __ la(r4, MemOperand(r4, kPointerSize));
1700     __ CompareRoot(ip, Heap::kTheHoleValueRootIndex);
1701     __ bne(&skip, Label::kNear);
1702     __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1703     __ bind(&skip);
1704     __ push(ip);
1705     __ BranchOnCount(r1, &loop);
1706     __ bind(&no_args);
1707     __ AddP(r2, r2, r6);
1708   }
1709 
1710   // Tail-call to the actual Call or Construct builtin.
1711   __ Jump(code, RelocInfo::CODE_TARGET);
1712 }
1713 
1714 // static
Generate_CallOrConstructForwardVarargs(MacroAssembler * masm,CallOrConstructMode mode,Handle<Code> code)1715 void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
1716                                                       CallOrConstructMode mode,
1717                                                       Handle<Code> code) {
1718   // ----------- S t a t e -------------
1719   //  -- r2 : the number of arguments (not including the receiver)
1720   //  -- r5 : the new.target (for [[Construct]] calls)
1721   //  -- r3 : the target to call (can be any Object)
1722   //  -- r4 : start index (to support rest parameters)
1723   // -----------------------------------
1724 
1725   Register scratch = r8;
1726 
1727   if (mode == CallOrConstructMode::kConstruct) {
1728     Label new_target_constructor, new_target_not_constructor;
1729     __ JumpIfSmi(r5, &new_target_not_constructor);
1730     __ LoadP(scratch, FieldMemOperand(r5, HeapObject::kMapOffset));
1731     __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
1732     __ tmll(scratch, Operand(Map::IsConstructorBit::kShift));
1733     __ bne(&new_target_constructor);
1734     __ bind(&new_target_not_constructor);
1735     {
1736       FrameScope scope(masm, StackFrame::MANUAL);
1737       __ EnterFrame(StackFrame::INTERNAL);
1738       __ Push(r5);
1739       __ CallRuntime(Runtime::kThrowNotConstructor);
1740     }
1741     __ bind(&new_target_constructor);
1742   }
1743 
1744   // Check if we have an arguments adaptor frame below the function frame.
1745   Label arguments_adaptor, arguments_done;
1746   __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1747   __ LoadP(ip, MemOperand(r6, CommonFrameConstants::kContextOrFrameTypeOffset));
1748   __ CmpP(ip, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1749   __ beq(&arguments_adaptor);
1750   {
1751     __ LoadP(r7, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1752     __ LoadP(r7, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset));
1753     __ LoadLogicalHalfWordP(
1754         r7,
1755         FieldMemOperand(r7, SharedFunctionInfo::kFormalParameterCountOffset));
1756     __ LoadRR(r6, fp);
1757   }
1758   __ b(&arguments_done);
1759   __ bind(&arguments_adaptor);
1760   {
1761     // Load the length from the ArgumentsAdaptorFrame.
1762     __ LoadP(r7, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
1763     __ SmiUntag(r7);
1764   }
1765   __ bind(&arguments_done);
1766 
1767   Label stack_done, stack_overflow;
1768   __ SubP(r7, r7, r4);
1769   __ CmpP(r7, Operand::Zero());
1770   __ ble(&stack_done);
1771   {
1772     // Check for stack overflow.
1773     Generate_StackOverflowCheck(masm, r7, r4, &stack_overflow);
1774 
1775     // Forward the arguments from the caller frame.
1776     {
1777       Label loop;
1778       __ AddP(r6, r6, Operand(kPointerSize));
1779       __ AddP(r2, r2, r7);
1780       __ bind(&loop);
1781       {
1782         __ ShiftLeftP(ip, r7, Operand(kPointerSizeLog2));
1783         __ LoadP(ip, MemOperand(r6, ip));
1784         __ push(ip);
1785         __ SubP(r7, r7, Operand(1));
1786         __ CmpP(r7, Operand::Zero());
1787         __ bne(&loop);
1788       }
1789     }
1790   }
1791   __ b(&stack_done);
1792   __ bind(&stack_overflow);
1793   __ TailCallRuntime(Runtime::kThrowStackOverflow);
1794   __ bind(&stack_done);
1795 
1796   // Tail-call to the {code} handler.
1797   __ Jump(code, RelocInfo::CODE_TARGET);
1798 }
1799 
1800 // static
Generate_CallFunction(MacroAssembler * masm,ConvertReceiverMode mode)1801 void Builtins::Generate_CallFunction(MacroAssembler* masm,
1802                                      ConvertReceiverMode mode) {
1803   // ----------- S t a t e -------------
1804   //  -- r2 : the number of arguments (not including the receiver)
1805   //  -- r3 : the function to call (checked to be a JSFunction)
1806   // -----------------------------------
1807   __ AssertFunction(r3);
1808 
1809   // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
1810   // Check that the function is not a "classConstructor".
1811   Label class_constructor;
1812   __ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
1813   __ LoadlW(r5, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset));
1814   __ TestBitMask(r5, SharedFunctionInfo::IsClassConstructorBit::kMask, r0);
1815   __ bne(&class_constructor);
1816 
1817   // Enter the context of the function; ToObject has to run in the function
1818   // context, and we also need to take the global proxy from the function
1819   // context in case of conversion.
1820   __ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset));
1821   // We need to convert the receiver for non-native sloppy mode functions.
1822   Label done_convert;
1823   __ AndP(r0, r5,
1824           Operand(SharedFunctionInfo::IsStrictBit::kMask |
1825                   SharedFunctionInfo::IsNativeBit::kMask));
1826   __ bne(&done_convert);
1827   {
1828     // ----------- S t a t e -------------
1829     //  -- r2 : the number of arguments (not including the receiver)
1830     //  -- r3 : the function to call (checked to be a JSFunction)
1831     //  -- r4 : the shared function info.
1832     //  -- cp : the function context.
1833     // -----------------------------------
1834 
1835     if (mode == ConvertReceiverMode::kNullOrUndefined) {
1836       // Patch receiver to global proxy.
1837       __ LoadGlobalProxy(r5);
1838     } else {
1839       Label convert_to_object, convert_receiver;
1840       __ ShiftLeftP(r5, r2, Operand(kPointerSizeLog2));
1841       __ LoadP(r5, MemOperand(sp, r5));
1842       __ JumpIfSmi(r5, &convert_to_object);
1843       STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
1844       __ CompareObjectType(r5, r6, r6, FIRST_JS_RECEIVER_TYPE);
1845       __ bge(&done_convert);
1846       if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
1847         Label convert_global_proxy;
1848         __ JumpIfRoot(r5, Heap::kUndefinedValueRootIndex,
1849                       &convert_global_proxy);
1850         __ JumpIfNotRoot(r5, Heap::kNullValueRootIndex, &convert_to_object);
1851         __ bind(&convert_global_proxy);
1852         {
1853           // Patch receiver to global proxy.
1854           __ LoadGlobalProxy(r5);
1855         }
1856         __ b(&convert_receiver);
1857       }
1858       __ bind(&convert_to_object);
1859       {
1860         // Convert receiver using ToObject.
1861         // TODO(bmeurer): Inline the allocation here to avoid building the frame
1862         // in the fast case? (fall back to AllocateInNewSpace?)
1863         FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1864         __ SmiTag(r2);
1865         __ Push(r2, r3);
1866         __ LoadRR(r2, r5);
1867         __ Push(cp);
1868         __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
1869                 RelocInfo::CODE_TARGET);
1870         __ Pop(cp);
1871         __ LoadRR(r5, r2);
1872         __ Pop(r2, r3);
1873         __ SmiUntag(r2);
1874       }
1875       __ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
1876       __ bind(&convert_receiver);
1877     }
1878     __ ShiftLeftP(r6, r2, Operand(kPointerSizeLog2));
1879     __ StoreP(r5, MemOperand(sp, r6));
1880   }
1881   __ bind(&done_convert);
1882 
1883   // ----------- S t a t e -------------
1884   //  -- r2 : the number of arguments (not including the receiver)
1885   //  -- r3 : the function to call (checked to be a JSFunction)
1886   //  -- r4 : the shared function info.
1887   //  -- cp : the function context.
1888   // -----------------------------------
1889 
1890   __ LoadLogicalHalfWordP(
1891       r4, FieldMemOperand(r4, SharedFunctionInfo::kFormalParameterCountOffset));
1892   ParameterCount actual(r2);
1893   ParameterCount expected(r4);
1894   __ InvokeFunctionCode(r3, no_reg, expected, actual, JUMP_FUNCTION);
1895 
1896   // The function is a "classConstructor", need to raise an exception.
1897   __ bind(&class_constructor);
1898   {
1899     FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL);
1900     __ push(r3);
1901     __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
1902   }
1903 }
1904 
1905 namespace {
1906 
Generate_PushBoundArguments(MacroAssembler * masm)1907 void Generate_PushBoundArguments(MacroAssembler* masm) {
1908   // ----------- S t a t e -------------
1909   //  -- r2 : the number of arguments (not including the receiver)
1910   //  -- r3 : target (checked to be a JSBoundFunction)
1911   //  -- r5 : new.target (only in case of [[Construct]])
1912   // -----------------------------------
1913 
1914   // Load [[BoundArguments]] into r4 and length of that into r6.
1915   Label no_bound_arguments;
1916   __ LoadP(r4, FieldMemOperand(r3, JSBoundFunction::kBoundArgumentsOffset));
1917   __ LoadP(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
1918   __ SmiUntag(r6);
1919   __ LoadAndTestP(r6, r6);
1920   __ beq(&no_bound_arguments);
1921   {
1922     // ----------- S t a t e -------------
1923     //  -- r2 : the number of arguments (not including the receiver)
1924     //  -- r3 : target (checked to be a JSBoundFunction)
1925     //  -- r4 : the [[BoundArguments]] (implemented as FixedArray)
1926     //  -- r5 : new.target (only in case of [[Construct]])
1927     //  -- r6 : the number of [[BoundArguments]]
1928     // -----------------------------------
1929 
1930     // Reserve stack space for the [[BoundArguments]].
1931     {
1932       Label done;
1933       __ LoadRR(r8, sp);  // preserve previous stack pointer
1934       __ ShiftLeftP(r9, r6, Operand(kPointerSizeLog2));
1935       __ SubP(sp, sp, r9);
1936       // Check the stack for overflow. We are not trying to catch interruptions
1937       // (i.e. debug break and preemption) here, so check the "real stack
1938       // limit".
1939       __ CompareRoot(sp, Heap::kRealStackLimitRootIndex);
1940       __ bgt(&done);  // Signed comparison.
1941       // Restore the stack pointer.
1942       __ LoadRR(sp, r8);
1943       {
1944         FrameScope scope(masm, StackFrame::MANUAL);
1945         __ EnterFrame(StackFrame::INTERNAL);
1946         __ CallRuntime(Runtime::kThrowStackOverflow);
1947       }
1948       __ bind(&done);
1949     }
1950 
1951     // Relocate arguments down the stack.
1952     //  -- r2 : the number of arguments (not including the receiver)
1953     //  -- r8 : the previous stack pointer
1954     //  -- r9: the size of the [[BoundArguments]]
1955     {
1956       Label skip, loop;
1957       __ LoadImmP(r7, Operand::Zero());
1958       __ CmpP(r2, Operand::Zero());
1959       __ beq(&skip);
1960       __ LoadRR(r1, r2);
1961       __ bind(&loop);
1962       __ LoadP(r0, MemOperand(r8, r7));
1963       __ StoreP(r0, MemOperand(sp, r7));
1964       __ AddP(r7, r7, Operand(kPointerSize));
1965       __ BranchOnCount(r1, &loop);
1966       __ bind(&skip);
1967     }
1968 
1969     // Copy [[BoundArguments]] to the stack (below the arguments).
1970     {
1971       Label loop;
1972       __ AddP(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1973       __ AddP(r4, r4, r9);
1974       __ LoadRR(r1, r6);
1975       __ bind(&loop);
1976       __ LoadP(r0, MemOperand(r4, -kPointerSize));
1977       __ lay(r4, MemOperand(r4, -kPointerSize));
1978       __ StoreP(r0, MemOperand(sp, r7));
1979       __ AddP(r7, r7, Operand(kPointerSize));
1980       __ BranchOnCount(r1, &loop);
1981       __ AddP(r2, r2, r6);
1982     }
1983   }
1984   __ bind(&no_bound_arguments);
1985 }
1986 
1987 }  // namespace
1988 
1989 // static
Generate_CallBoundFunctionImpl(MacroAssembler * masm)1990 void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
1991   // ----------- S t a t e -------------
1992   //  -- r2 : the number of arguments (not including the receiver)
1993   //  -- r3 : the function to call (checked to be a JSBoundFunction)
1994   // -----------------------------------
1995   __ AssertBoundFunction(r3);
1996 
1997   // Patch the receiver to [[BoundThis]].
1998   __ LoadP(ip, FieldMemOperand(r3, JSBoundFunction::kBoundThisOffset));
1999   __ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2));
2000   __ StoreP(ip, MemOperand(sp, r1));
2001 
2002   // Push the [[BoundArguments]] onto the stack.
2003   Generate_PushBoundArguments(masm);
2004 
2005   // Call the [[BoundTargetFunction]] via the Call builtin.
2006   __ LoadP(r3,
2007            FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset));
2008   __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
2009           RelocInfo::CODE_TARGET);
2010 }
2011 
2012 // static
Generate_Call(MacroAssembler * masm,ConvertReceiverMode mode)2013 void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
2014   // ----------- S t a t e -------------
2015   //  -- r2 : the number of arguments (not including the receiver)
2016   //  -- r3 : the target to call (can be any Object).
2017   // -----------------------------------
2018 
2019   Label non_callable, non_function, non_smi;
2020   __ JumpIfSmi(r3, &non_callable);
2021   __ bind(&non_smi);
2022   __ CompareObjectType(r3, r6, r7, JS_FUNCTION_TYPE);
2023   __ Jump(masm->isolate()->builtins()->CallFunction(mode),
2024           RelocInfo::CODE_TARGET, eq);
2025   __ CmpP(r7, Operand(JS_BOUND_FUNCTION_TYPE));
2026   __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
2027           RelocInfo::CODE_TARGET, eq);
2028 
2029   // Check if target has a [[Call]] internal method.
2030   __ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset));
2031   __ TestBit(r6, Map::IsCallableBit::kShift);
2032   __ beq(&non_callable);
2033 
2034   // Check if target is a proxy and call CallProxy external builtin
2035   __ CmpP(r7, Operand(JS_PROXY_TYPE));
2036   __ bne(&non_function);
2037   __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
2038 
2039   // 2. Call to something else, which might have a [[Call]] internal method (if
2040   // not we raise an exception).
2041   __ bind(&non_function);
2042   // Overwrite the original receiver the (original) target.
2043   __ ShiftLeftP(r7, r2, Operand(kPointerSizeLog2));
2044   __ StoreP(r3, MemOperand(sp, r7));
2045   // Let the "call_as_function_delegate" take care of the rest.
2046   __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r3);
2047   __ Jump(masm->isolate()->builtins()->CallFunction(
2048               ConvertReceiverMode::kNotNullOrUndefined),
2049           RelocInfo::CODE_TARGET);
2050 
2051   // 3. Call to something that is not callable.
2052   __ bind(&non_callable);
2053   {
2054     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2055     __ Push(r3);
2056     __ CallRuntime(Runtime::kThrowCalledNonCallable);
2057   }
2058 }
2059 
2060 // static
Generate_ConstructFunction(MacroAssembler * masm)2061 void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
2062   // ----------- S t a t e -------------
2063   //  -- r2 : the number of arguments (not including the receiver)
2064   //  -- r3 : the constructor to call (checked to be a JSFunction)
2065   //  -- r5 : the new target (checked to be a constructor)
2066   // -----------------------------------
2067   __ AssertConstructor(r3, r1);
2068   __ AssertFunction(r3);
2069 
2070   // Calling convention for function specific ConstructStubs require
2071   // r4 to contain either an AllocationSite or undefined.
2072   __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
2073 
2074   Label call_generic_stub;
2075 
2076   // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
2077   __ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
2078   __ LoadlW(r6, FieldMemOperand(r6, SharedFunctionInfo::kFlagsOffset));
2079   __ AndP(r6, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
2080   __ beq(&call_generic_stub);
2081 
2082   __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
2083           RelocInfo::CODE_TARGET);
2084 
2085   __ bind(&call_generic_stub);
2086   __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
2087           RelocInfo::CODE_TARGET);
2088 }
2089 
2090 // static
Generate_ConstructBoundFunction(MacroAssembler * masm)2091 void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
2092   // ----------- S t a t e -------------
2093   //  -- r2 : the number of arguments (not including the receiver)
2094   //  -- r3 : the function to call (checked to be a JSBoundFunction)
2095   //  -- r5 : the new target (checked to be a constructor)
2096   // -----------------------------------
2097   __ AssertConstructor(r3, r1);
2098   __ AssertBoundFunction(r3);
2099 
2100   // Push the [[BoundArguments]] onto the stack.
2101   Generate_PushBoundArguments(masm);
2102 
2103   // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
2104   Label skip;
2105   __ CmpP(r3, r5);
2106   __ bne(&skip);
2107   __ LoadP(r5,
2108            FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset));
2109   __ bind(&skip);
2110 
2111   // Construct the [[BoundTargetFunction]] via the Construct builtin.
2112   __ LoadP(r3,
2113            FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset));
2114   __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
2115 }
2116 
2117 // static
Generate_Construct(MacroAssembler * masm)2118 void Builtins::Generate_Construct(MacroAssembler* masm) {
2119   // ----------- S t a t e -------------
2120   //  -- r2 : the number of arguments (not including the receiver)
2121   //  -- r3 : the constructor to call (can be any Object)
2122   //  -- r5 : the new target (either the same as the constructor or
2123   //          the JSFunction on which new was invoked initially)
2124   // -----------------------------------
2125 
2126   // Check if target is a Smi.
2127   Label non_constructor, non_proxy;
2128   __ JumpIfSmi(r3, &non_constructor);
2129 
2130   // Check if target has a [[Construct]] internal method.
2131   __ LoadP(r6, FieldMemOperand(r3, HeapObject::kMapOffset));
2132   __ LoadlB(r4, FieldMemOperand(r6, Map::kBitFieldOffset));
2133   __ TestBit(r4, Map::IsConstructorBit::kShift);
2134   __ beq(&non_constructor);
2135 
2136   // Dispatch based on instance type.
2137   __ CompareInstanceType(r6, r7, JS_FUNCTION_TYPE);
2138   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
2139           RelocInfo::CODE_TARGET, eq);
2140 
2141   // Only dispatch to bound functions after checking whether they are
2142   // constructors.
2143   __ CmpP(r7, Operand(JS_BOUND_FUNCTION_TYPE));
2144   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
2145           RelocInfo::CODE_TARGET, eq);
2146 
2147   // Only dispatch to proxies after checking whether they are constructors.
2148   __ CmpP(r7, Operand(JS_PROXY_TYPE));
2149   __ bne(&non_proxy);
2150   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
2151           RelocInfo::CODE_TARGET);
2152 
2153   // Called Construct on an exotic Object with a [[Construct]] internal method.
2154   __ bind(&non_proxy);
2155   {
2156     // Overwrite the original receiver with the (original) target.
2157     __ ShiftLeftP(r7, r2, Operand(kPointerSizeLog2));
2158     __ StoreP(r3, MemOperand(sp, r7));
2159     // Let the "call_as_constructor_delegate" take care of the rest.
2160     __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r3);
2161     __ Jump(masm->isolate()->builtins()->CallFunction(),
2162             RelocInfo::CODE_TARGET);
2163   }
2164 
2165   // Called Construct on an Object that doesn't have a [[Construct]] internal
2166   // method.
2167   __ bind(&non_constructor);
2168   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
2169           RelocInfo::CODE_TARGET);
2170 }
2171 
Generate_ArgumentsAdaptorTrampoline(MacroAssembler * masm)2172 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
2173   // ----------- S t a t e -------------
2174   //  -- r2 : actual number of arguments
2175   //  -- r3 : function (passed through to callee)
2176   //  -- r4 : expected number of arguments
2177   //  -- r5 : new target (passed through to callee)
2178   // -----------------------------------
2179 
2180   Label invoke, dont_adapt_arguments, stack_overflow;
2181 
2182   Label enough, too_few;
2183   __ tmll(r4, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
2184   __ b(Condition(1), &dont_adapt_arguments);
2185   __ CmpLogicalP(r2, r4);
2186   __ blt(&too_few);
2187 
2188   {  // Enough parameters: actual >= expected
2189     __ bind(&enough);
2190     EnterArgumentsAdaptorFrame(masm);
2191     Generate_StackOverflowCheck(masm, r4, r7, &stack_overflow);
2192 
2193     // Calculate copy start address into r2 and copy end address into r6.
2194     // r2: actual number of arguments as a smi
2195     // r3: function
2196     // r4: expected number of arguments
2197     // r5: new target (passed through to callee)
2198     __ SmiToPtrArrayOffset(r2, r2);
2199     __ AddP(r2, fp);
2200     // adjust for return address and receiver
2201     __ AddP(r2, r2, Operand(2 * kPointerSize));
2202     __ ShiftLeftP(r6, r4, Operand(kPointerSizeLog2));
2203     __ SubP(r6, r2, r6);
2204 
2205     // Copy the arguments (including the receiver) to the new stack frame.
2206     // r2: copy start address
2207     // r3: function
2208     // r4: expected number of arguments
2209     // r5: new target (passed through to callee)
2210     // r6: copy end address
2211 
2212     Label copy;
2213     __ bind(&copy);
2214     __ LoadP(r0, MemOperand(r2, 0));
2215     __ push(r0);
2216     __ CmpP(r2, r6);  // Compare before moving to next argument.
2217     __ lay(r2, MemOperand(r2, -kPointerSize));
2218     __ bne(&copy);
2219 
2220     __ b(&invoke);
2221   }
2222 
2223   {  // Too few parameters: Actual < expected
2224     __ bind(&too_few);
2225 
2226     EnterArgumentsAdaptorFrame(masm);
2227     Generate_StackOverflowCheck(masm, r4, r7, &stack_overflow);
2228 
2229     // Calculate copy start address into r0 and copy end address is fp.
2230     // r2: actual number of arguments as a smi
2231     // r3: function
2232     // r4: expected number of arguments
2233     // r5: new target (passed through to callee)
2234     __ SmiToPtrArrayOffset(r2, r2);
2235     __ lay(r2, MemOperand(r2, fp));
2236 
2237     // Copy the arguments (including the receiver) to the new stack frame.
2238     // r2: copy start address
2239     // r3: function
2240     // r4: expected number of arguments
2241     // r5: new target (passed through to callee)
2242     Label copy;
2243     __ bind(&copy);
2244     // Adjust load for return address and receiver.
2245     __ LoadP(r0, MemOperand(r2, 2 * kPointerSize));
2246     __ push(r0);
2247     __ CmpP(r2, fp);  // Compare before moving to next argument.
2248     __ lay(r2, MemOperand(r2, -kPointerSize));
2249     __ bne(&copy);
2250 
2251     // Fill the remaining expected arguments with undefined.
2252     // r3: function
2253     // r4: expected number of argumentus
2254     __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
2255     __ ShiftLeftP(r6, r4, Operand(kPointerSizeLog2));
2256     __ SubP(r6, fp, r6);
2257     // Adjust for frame.
2258     __ SubP(r6, r6,
2259             Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp +
2260                     kPointerSize));
2261 
2262     Label fill;
2263     __ bind(&fill);
2264     __ push(r0);
2265     __ CmpP(sp, r6);
2266     __ bne(&fill);
2267   }
2268 
2269   // Call the entry point.
2270   __ bind(&invoke);
2271   __ LoadRR(r2, r4);
2272   // r2 : expected number of arguments
2273   // r3 : function (passed through to callee)
2274   // r5 : new target (passed through to callee)
2275   static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
2276   __ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
2277   __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
2278   __ CallJSEntry(r4);
2279 
2280   // Store offset of return address for deoptimizer.
2281   masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
2282 
2283   // Exit frame and return.
2284   LeaveArgumentsAdaptorFrame(masm);
2285   __ Ret();
2286 
2287   // -------------------------------------------
2288   // Dont adapt arguments.
2289   // -------------------------------------------
2290   __ bind(&dont_adapt_arguments);
2291   static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
2292   __ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
2293   __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
2294   __ JumpToJSEntry(r4);
2295 
2296   __ bind(&stack_overflow);
2297   {
2298     FrameScope frame(masm, StackFrame::MANUAL);
2299     __ CallRuntime(Runtime::kThrowStackOverflow);
2300     __ bkpt(0);
2301   }
2302 }
2303 
Generate_WasmCompileLazy(MacroAssembler * masm)2304 void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
2305   // The function index was put in r7 by the jump table trampoline.
2306   // Convert to Smi for the runtime call.
2307   __ SmiTag(r7, r7);
2308   {
2309     HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2310     FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
2311 
2312     // Save all parameter registers (see wasm-linkage.cc). They might be
2313     // overwritten in the runtime call below. We don't have any callee-saved
2314     // registers in wasm, so no need to store anything else.
2315     constexpr RegList gp_regs = Register::ListOf<r2, r3, r4, r5, r6>();
2316 #if V8_TARGET_ARCH_S390X
2317     constexpr RegList fp_regs = DoubleRegister::ListOf<d0, d2, d4, d6>();
2318 #else
2319     constexpr RegList fp_regs = DoubleRegister::ListOf<d0, d2>();
2320 #endif
2321     __ MultiPush(gp_regs);
2322     __ MultiPushDoubles(fp_regs);
2323 
2324     // Pass instance and function index as explicit arguments to the runtime
2325     // function.
2326     __ Push(kWasmInstanceRegister, r7);
2327     // Load the correct CEntry builtin from the instance object.
2328     __ LoadP(r4, FieldMemOperand(kWasmInstanceRegister,
2329                                  WasmInstanceObject::kCEntryStubOffset));
2330     // Initialize the JavaScript context with 0. CEntry will use it to
2331     // set the current context on the isolate.
2332     __ LoadSmiLiteral(cp, Smi::kZero);
2333     __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, r4);
2334     // The entrypoint address is the return value.
2335     __ LoadRR(ip, r2);
2336 
2337     // Restore registers.
2338     __ MultiPopDoubles(fp_regs);
2339     __ MultiPop(gp_regs);
2340   }
2341   // Finally, jump to the entrypoint.
2342   __ Jump(ip);
2343 }
2344 
Generate_CEntry(MacroAssembler * masm,int result_size,SaveFPRegsMode save_doubles,ArgvMode argv_mode,bool builtin_exit_frame)2345 void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
2346                                SaveFPRegsMode save_doubles, ArgvMode argv_mode,
2347                                bool builtin_exit_frame) {
2348   // Called from JavaScript; parameters are on stack as if calling JS function.
2349   // r2: number of arguments including receiver
2350   // r3: pointer to builtin function
2351   // fp: frame pointer  (restored after C call)
2352   // sp: stack pointer  (restored as callee's sp after C call)
2353   // cp: current context  (C callee-saved)
2354   //
2355   // If argv_mode == kArgvInRegister:
2356   // r4: pointer to the first argument
2357   ProfileEntryHookStub::MaybeCallEntryHook(masm);
2358 
2359   __ LoadRR(r7, r3);
2360 
2361   if (argv_mode == kArgvInRegister) {
2362     // Move argv into the correct register.
2363     __ LoadRR(r3, r4);
2364   } else {
2365     // Compute the argv pointer.
2366     __ ShiftLeftP(r3, r2, Operand(kPointerSizeLog2));
2367     __ lay(r3, MemOperand(r3, sp, -kPointerSize));
2368   }
2369 
2370   // Enter the exit frame that transitions from JavaScript to C++.
2371   FrameScope scope(masm, StackFrame::MANUAL);
2372 
2373   // Need at least one extra slot for return address location.
2374   int arg_stack_space = 1;
2375 
2376   // Pass buffer for return value on stack if necessary
2377   bool needs_return_buffer =
2378       result_size == 2 && !ABI_RETURNS_OBJECTPAIR_IN_REGS;
2379   if (needs_return_buffer) {
2380     arg_stack_space += result_size;
2381   }
2382 
2383 #if V8_TARGET_ARCH_S390X
2384   // 64-bit linux pass Argument object by reference not value
2385   arg_stack_space += 2;
2386 #endif
2387 
2388   __ EnterExitFrame(
2389       save_doubles, arg_stack_space,
2390       builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
2391 
2392   // Store a copy of argc, argv in callee-saved registers for later.
2393   __ LoadRR(r6, r2);
2394   __ LoadRR(r8, r3);
2395   // r2, r6: number of arguments including receiver  (C callee-saved)
2396   // r3, r8: pointer to the first argument
2397   // r7: pointer to builtin function  (C callee-saved)
2398 
2399   // Result returned in registers or stack, depending on result size and ABI.
2400 
2401   Register isolate_reg = r4;
2402   if (needs_return_buffer) {
2403     // The return value is 16-byte non-scalar value.
2404     // Use frame storage reserved by calling function to pass return
2405     // buffer as implicit first argument in R2.  Shfit original parameters
2406     // by one register each.
2407     __ LoadRR(r4, r3);
2408     __ LoadRR(r3, r2);
2409     __ la(r2, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
2410     isolate_reg = r5;
2411   }
2412   // Call C built-in.
2413   __ Move(isolate_reg, ExternalReference::isolate_address(masm->isolate()));
2414 
2415   Register target = r7;
2416 
2417   // To let the GC traverse the return address of the exit frames, we need to
2418   // know where the return address is. The CEntryStub is unmovable, so
2419   // we can store the address on the stack to be able to find it again and
2420   // we never have to restore it, because it will not change.
2421   {
2422     Label return_label;
2423     __ larl(r14, &return_label);  // Generate the return addr of call later.
2424     __ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize));
2425 
2426     // zLinux ABI requires caller's frame to have sufficient space for callee
2427     // preserved regsiter save area.
2428     // __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize));
2429     __ b(target);
2430     __ bind(&return_label);
2431     // __ la(sp, MemOperand(sp, +kCalleeRegisterSaveAreaSize));
2432   }
2433 
2434   // If return value is on the stack, pop it to registers.
2435   if (needs_return_buffer) {
2436     __ LoadP(r3, MemOperand(r2, kPointerSize));
2437     __ LoadP(r2, MemOperand(r2));
2438   }
2439 
2440   // Check result for exception sentinel.
2441   Label exception_returned;
2442   __ CompareRoot(r2, Heap::kExceptionRootIndex);
2443   __ beq(&exception_returned, Label::kNear);
2444 
2445   // Check that there is no pending exception, otherwise we
2446   // should have returned the exception sentinel.
2447   if (FLAG_debug_code) {
2448     Label okay;
2449     ExternalReference pending_exception_address = ExternalReference::Create(
2450         IsolateAddressId::kPendingExceptionAddress, masm->isolate());
2451     __ Move(r1, pending_exception_address);
2452     __ LoadP(r1, MemOperand(r1));
2453     __ CompareRoot(r1, Heap::kTheHoleValueRootIndex);
2454     // Cannot use check here as it attempts to generate call into runtime.
2455     __ beq(&okay, Label::kNear);
2456     __ stop("Unexpected pending exception");
2457     __ bind(&okay);
2458   }
2459 
2460   // Exit C frame and return.
2461   // r2:r3: result
2462   // sp: stack pointer
2463   // fp: frame pointer
2464   Register argc = argv_mode == kArgvInRegister
2465                       // We don't want to pop arguments so set argc to no_reg.
2466                       ? no_reg
2467                       // r6: still holds argc (callee-saved).
2468                       : r6;
2469   __ LeaveExitFrame(save_doubles, argc);
2470   __ b(r14);
2471 
2472   // Handling of exception.
2473   __ bind(&exception_returned);
2474 
2475   ExternalReference pending_handler_context_address = ExternalReference::Create(
2476       IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
2477   ExternalReference pending_handler_entrypoint_address =
2478       ExternalReference::Create(
2479           IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
2480   ExternalReference pending_handler_fp_address = ExternalReference::Create(
2481       IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
2482   ExternalReference pending_handler_sp_address = ExternalReference::Create(
2483       IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
2484 
2485   // Ask the runtime for help to determine the handler. This will set r3 to
2486   // contain the current pending exception, don't clobber it.
2487   ExternalReference find_handler =
2488       ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
2489   {
2490     FrameScope scope(masm, StackFrame::MANUAL);
2491     __ PrepareCallCFunction(3, 0, r2);
2492     __ LoadImmP(r2, Operand::Zero());
2493     __ LoadImmP(r3, Operand::Zero());
2494     __ Move(r4, ExternalReference::isolate_address(masm->isolate()));
2495     __ CallCFunction(find_handler, 3);
2496   }
2497 
2498   // Retrieve the handler context, SP and FP.
2499   __ Move(cp, pending_handler_context_address);
2500   __ LoadP(cp, MemOperand(cp));
2501   __ Move(sp, pending_handler_sp_address);
2502   __ LoadP(sp, MemOperand(sp));
2503   __ Move(fp, pending_handler_fp_address);
2504   __ LoadP(fp, MemOperand(fp));
2505 
2506   // If the handler is a JS frame, restore the context to the frame. Note that
2507   // the context will be set to (cp == 0) for non-JS frames.
2508   Label skip;
2509   __ CmpP(cp, Operand::Zero());
2510   __ beq(&skip, Label::kNear);
2511   __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2512   __ bind(&skip);
2513 
2514   // Reset the masking register.
2515   if (FLAG_branch_load_poisoning) {
2516     __ ResetSpeculationPoisonRegister();
2517   }
2518 
2519   // Compute the handler entry address and jump to it.
2520   __ Move(r3, pending_handler_entrypoint_address);
2521   __ LoadP(r3, MemOperand(r3));
2522   __ Jump(r3);
2523 }
2524 
Generate_DoubleToI(MacroAssembler * masm)2525 void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
2526   Label out_of_range, only_low, negate, done, fastpath_done;
2527   Register result_reg = r2;
2528 
2529   HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2530 
2531   // Immediate values for this stub fit in instructions, so it's safe to use ip.
2532   Register scratch = GetRegisterThatIsNotOneOf(result_reg);
2533   Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch);
2534   Register scratch_high =
2535       GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low);
2536   DoubleRegister double_scratch = kScratchDoubleReg;
2537 
2538   __ Push(result_reg, scratch);
2539   // Account for saved regs.
2540   int argument_offset = 2 * kPointerSize;
2541 
2542   // Load double input.
2543   __ LoadDouble(double_scratch, MemOperand(sp, argument_offset));
2544 
2545   // Do fast-path convert from double to int.
2546   __ ConvertDoubleToInt64(result_reg, double_scratch);
2547 
2548   // Test for overflow
2549   __ TestIfInt32(result_reg);
2550   __ beq(&fastpath_done, Label::kNear);
2551 
2552   __ Push(scratch_high, scratch_low);
2553   // Account for saved regs.
2554   argument_offset += 2 * kPointerSize;
2555 
2556   __ LoadlW(scratch_high,
2557             MemOperand(sp, argument_offset + Register::kExponentOffset));
2558   __ LoadlW(scratch_low,
2559             MemOperand(sp, argument_offset + Register::kMantissaOffset));
2560 
2561   __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
2562   // Load scratch with exponent - 1. This is faster than loading
2563   // with exponent because Bias + 1 = 1024 which is a *S390* immediate value.
2564   STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
2565   __ SubP(scratch, Operand(HeapNumber::kExponentBias + 1));
2566   // If exponent is greater than or equal to 84, the 32 less significant
2567   // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
2568   // the result is 0.
2569   // Compare exponent with 84 (compare exponent - 1 with 83).
2570   __ CmpP(scratch, Operand(83));
2571   __ bge(&out_of_range, Label::kNear);
2572 
2573   // If we reach this code, 31 <= exponent <= 83.
2574   // So, we don't have to handle cases where 0 <= exponent <= 20 for
2575   // which we would need to shift right the high part of the mantissa.
2576   // Scratch contains exponent - 1.
2577   // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
2578   __ Load(r0, Operand(51));
2579   __ SubP(scratch, r0, scratch);
2580   __ CmpP(scratch, Operand::Zero());
2581   __ ble(&only_low, Label::kNear);
2582   // 21 <= exponent <= 51, shift scratch_low and scratch_high
2583   // to generate the result.
2584   __ ShiftRight(scratch_low, scratch_low, scratch);
2585   // Scratch contains: 52 - exponent.
2586   // We needs: exponent - 20.
2587   // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
2588   __ Load(r0, Operand(32));
2589   __ SubP(scratch, r0, scratch);
2590   __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
2591   // Set the implicit 1 before the mantissa part in scratch_high.
2592   STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
2593   __ Load(r0, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16)));
2594   __ ShiftLeftP(r0, r0, Operand(16));
2595   __ OrP(result_reg, result_reg, r0);
2596   __ ShiftLeft(r0, result_reg, scratch);
2597   __ OrP(result_reg, scratch_low, r0);
2598   __ b(&negate, Label::kNear);
2599 
2600   __ bind(&out_of_range);
2601   __ mov(result_reg, Operand::Zero());
2602   __ b(&done, Label::kNear);
2603 
2604   __ bind(&only_low);
2605   // 52 <= exponent <= 83, shift only scratch_low.
2606   // On entry, scratch contains: 52 - exponent.
2607   __ LoadComplementRR(scratch, scratch);
2608   __ ShiftLeft(result_reg, scratch_low, scratch);
2609 
2610   __ bind(&negate);
2611   // If input was positive, scratch_high ASR 31 equals 0 and
2612   // scratch_high LSR 31 equals zero.
2613   // New result = (result eor 0) + 0 = result.
2614   // If the input was negative, we have to negate the result.
2615   // Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1.
2616   // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result.
2617   __ ShiftRightArith(r0, scratch_high, Operand(31));
2618 #if V8_TARGET_ARCH_S390X
2619   __ lgfr(r0, r0);
2620   __ ShiftRightP(r0, r0, Operand(32));
2621 #endif
2622   __ XorP(result_reg, r0);
2623   __ ShiftRight(r0, scratch_high, Operand(31));
2624   __ AddP(result_reg, r0);
2625 
2626   __ bind(&done);
2627   __ Pop(scratch_high, scratch_low);
2628   argument_offset -= 2 * kPointerSize;
2629 
2630   __ bind(&fastpath_done);
2631   __ StoreP(result_reg, MemOperand(sp, argument_offset));
2632   __ Pop(result_reg, scratch);
2633 
2634   __ Ret();
2635 }
2636 
Generate_MathPowInternal(MacroAssembler * masm)2637 void Builtins::Generate_MathPowInternal(MacroAssembler* masm) {
2638   const Register exponent = r4;
2639   const DoubleRegister double_base = d1;
2640   const DoubleRegister double_exponent = d2;
2641   const DoubleRegister double_result = d3;
2642   const DoubleRegister double_scratch = d0;
2643   const Register scratch = r1;
2644   const Register scratch2 = r9;
2645 
2646   Label call_runtime, done, int_exponent;
2647 
2648   // Detect integer exponents stored as double.
2649   __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2, double_scratch);
2650   __ beq(&int_exponent, Label::kNear);
2651 
2652   __ push(r14);
2653   {
2654     AllowExternalCallThatCantCauseGC scope(masm);
2655     __ PrepareCallCFunction(0, 2, scratch);
2656     __ MovToFloatParameters(double_base, double_exponent);
2657     __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2);
2658   }
2659   __ pop(r14);
2660   __ MovFromFloatResult(double_result);
2661   __ b(&done);
2662 
2663   // Calculate power with integer exponent.
2664   __ bind(&int_exponent);
2665 
2666   // Get two copies of exponent in the registers scratch and exponent.
2667   // Exponent has previously been stored into scratch as untagged integer.
2668   __ LoadRR(exponent, scratch);
2669 
2670   __ ldr(double_scratch, double_base);  // Back up base.
2671   __ LoadImmP(scratch2, Operand(1));
2672   __ ConvertIntToDouble(double_result, scratch2);
2673 
2674   // Get absolute value of exponent.
2675   Label positive_exponent;
2676   __ CmpP(scratch, Operand::Zero());
2677   __ bge(&positive_exponent, Label::kNear);
2678   __ LoadComplementRR(scratch, scratch);
2679   __ bind(&positive_exponent);
2680 
2681   Label while_true, no_carry, loop_end;
2682   __ bind(&while_true);
2683   __ mov(scratch2, Operand(1));
2684   __ AndP(scratch2, scratch);
2685   __ beq(&no_carry, Label::kNear);
2686   __ mdbr(double_result, double_scratch);
2687   __ bind(&no_carry);
2688   __ ShiftRightP(scratch, scratch, Operand(1));
2689   __ LoadAndTestP(scratch, scratch);
2690   __ beq(&loop_end, Label::kNear);
2691   __ mdbr(double_scratch, double_scratch);
2692   __ b(&while_true);
2693   __ bind(&loop_end);
2694 
2695   __ CmpP(exponent, Operand::Zero());
2696   __ bge(&done);
2697 
2698   // get 1/double_result:
2699   __ ldr(double_scratch, double_result);
2700   __ LoadImmP(scratch2, Operand(1));
2701   __ ConvertIntToDouble(double_result, scratch2);
2702   __ ddbr(double_result, double_scratch);
2703 
2704   // Test whether result is zero.  Bail out to check for subnormal result.
2705   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
2706   __ lzdr(kDoubleRegZero);
2707   __ cdbr(double_result, kDoubleRegZero);
2708   __ bne(&done, Label::kNear);
2709   // double_exponent may not containe the exponent value if the input was a
2710   // smi.  We set it with exponent value before bailing out.
2711   __ ConvertIntToDouble(double_exponent, exponent);
2712 
2713   // Returning or bailing out.
2714   __ push(r14);
2715   {
2716     AllowExternalCallThatCantCauseGC scope(masm);
2717     __ PrepareCallCFunction(0, 2, scratch);
2718     __ MovToFloatParameters(double_base, double_exponent);
2719     __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2);
2720   }
2721   __ pop(r14);
2722   __ MovFromFloatResult(double_result);
2723 
2724   __ bind(&done);
2725   __ Ret();
2726 }
2727 
2728 namespace {
2729 
GenerateInternalArrayConstructorCase(MacroAssembler * masm,ElementsKind kind)2730 void GenerateInternalArrayConstructorCase(MacroAssembler* masm,
2731                                           ElementsKind kind) {
2732   __ CmpLogicalP(r2, Operand(1));
2733 
2734   __ Jump(CodeFactory::InternalArrayNoArgumentConstructor(masm->isolate(), kind)
2735               .code(),
2736           RelocInfo::CODE_TARGET, lt);
2737 
2738   __ Jump(BUILTIN_CODE(masm->isolate(), ArrayNArgumentsConstructor),
2739           RelocInfo::CODE_TARGET, gt);
2740 
2741   if (IsFastPackedElementsKind(kind)) {
2742     // We might need to create a holey array
2743     // look at the first argument
2744     __ LoadP(r5, MemOperand(sp, 0));
2745     __ CmpP(r5, Operand::Zero());
2746 
2747     __ Jump(CodeFactory::InternalArraySingleArgumentConstructor(
2748                 masm->isolate(), GetHoleyElementsKind(kind))
2749                 .code(),
2750             RelocInfo::CODE_TARGET, ne);
2751   }
2752 
2753   __ Jump(
2754       CodeFactory::InternalArraySingleArgumentConstructor(masm->isolate(), kind)
2755           .code(),
2756       RelocInfo::CODE_TARGET);
2757 }
2758 
2759 }  // namespace
2760 
Generate_InternalArrayConstructorImpl(MacroAssembler * masm)2761 void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) {
2762   // ----------- S t a t e -------------
2763   //  -- r2 : argc
2764   //  -- r3 : constructor
2765   //  -- sp[0] : return address
2766   //  -- sp[4] : last argument
2767   // -----------------------------------
2768 
2769   if (FLAG_debug_code) {
2770     // The array construct code is only set for the global and natives
2771     // builtin Array functions which always have maps.
2772 
2773     // Initial map for the builtin Array function should be a map.
2774     __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
2775     // Will both indicate a nullptr and a Smi.
2776     __ TestIfSmi(r5);
2777     __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, cr0);
2778     __ CompareObjectType(r5, r5, r6, MAP_TYPE);
2779     __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction);
2780   }
2781 
2782   // Figure out the right elements kind
2783   __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
2784   // Load the map's "bit field 2" into |result|.
2785   __ LoadlB(r5, FieldMemOperand(r5, Map::kBitField2Offset));
2786   // Retrieve elements_kind from bit field 2.
2787   __ DecodeField<Map::ElementsKindBits>(r5);
2788 
2789   if (FLAG_debug_code) {
2790     Label done;
2791     __ CmpP(r5, Operand(PACKED_ELEMENTS));
2792     __ beq(&done);
2793     __ CmpP(r5, Operand(HOLEY_ELEMENTS));
2794     __ Assert(
2795         eq,
2796         AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray);
2797     __ bind(&done);
2798   }
2799 
2800   Label fast_elements_case;
2801   __ CmpP(r5, Operand(PACKED_ELEMENTS));
2802   __ beq(&fast_elements_case);
2803   GenerateInternalArrayConstructorCase(masm, HOLEY_ELEMENTS);
2804 
2805   __ bind(&fast_elements_case);
2806   GenerateInternalArrayConstructorCase(masm, PACKED_ELEMENTS);
2807 }
2808 
2809 #undef __
2810 
2811 }  // namespace internal
2812 }  // namespace v8
2813 
2814 #endif  // V8_TARGET_ARCH_S390
2815