1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Ops to work with `SparseTensor`."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21from tensorflow.python.framework import dtypes
22from tensorflow.python.framework import ops
23from tensorflow.python.framework import sparse_tensor
24from tensorflow.python.ops import array_ops
25from tensorflow.python.ops import math_ops
26from tensorflow.python.util import compat
27
28
29def _multiplier_helper(shape):
30  """Returns moving offset for each dimension given shape."""
31  multipliers = []
32  for dim in reversed(shape):
33    if multipliers:
34      multipliers.append(dim * multipliers[-1])
35    else:
36      multipliers.append(dim)
37  multipliers.reverse()
38  return multipliers
39
40
41def _ignore_value_tensor(dtype, ignore_value=None):
42  """Create `Tensor` from provided `ignore_value` and  `dtype`."""
43  if ignore_value is None:
44    if dtype == dtypes.string:
45      # Exception due to TF strings are converted to numpy objects by default.
46      ignore_value = ""
47    else:
48      # NOTE: `as_numpy_dtype` is a property, so with the parentheses this is
49      # constructing a new numpy object of the given type, which yields the
50      # default value for that type.
51      ignore_value = dtype.as_numpy_dtype()
52  return math_ops.cast(ignore_value, dtype, name="ignore_value")
53
54
55def dense_to_sparse_tensor(dense_tensor, ignore_value=None):
56  """Converts dense `Tensor` to `SparseTensor`, dropping `ignore_value` cells.
57
58  Args:
59    dense_tensor: A `Tensor`.
60    ignore_value: Entries in `dense_tensor` equal to this value will be
61      absent from the return `SparseTensor`. If `None`, default value of
62      `dense_tensor` dtype will be used (e.g. '' for `str`, 0 for `int`).
63
64  Returns:
65    A `SparseTensor` with the same shape as `dense_tensor`.
66
67  Raises:
68    ValueError: when `dense_tensor`'s rank is `None`.
69  """
70  with ops.name_scope("DenseToSparseTensor"):
71    dense_tensor = ops.convert_to_tensor(dense_tensor)
72    ignore_value = _ignore_value_tensor(dense_tensor.dtype, ignore_value)
73    indices = array_ops.where(
74        math_ops.not_equal(dense_tensor, ignore_value), name="indices")
75    return sparse_tensor.SparseTensor(
76        indices=indices,
77        values=array_ops.gather_nd(dense_tensor, indices, name="values"),
78        dense_shape=array_ops.shape(
79            dense_tensor, out_type=dtypes.int64, name="dense_shape"))
80
81
82def indicators_to_sparse_ids(indicators, ignore_value=None, dtype=dtypes.int64):
83  """Convert a dense indicator tensor to sparse IDs.
84
85  This is commonly used for converting a dense classification label to sparse.
86  In the following example, we have an input of shape (2, 2, num_classes),
87  where num_classes=4.
88
89  ```python
90  indicators = [
91    [
92      [0, 0, 1, 0],
93      [0, 0, 0, 0]
94    ], [
95      [1, 0, 1, 1],
96      [0, 0, 1, 0]
97    ]
98  ]
99  sparse_ids = indicator_to_sparse_ids(indicators)
100  ```
101
102  `sparse_ids` in "jagged" format:
103  [
104    [
105      [2],
106      []
107    ], [
108      [0, 2, 3],
109      [2]
110    ]
111  ]
112
113  `sparse_ids` in `SparseTensor` format:
114  ```python
115  {
116    indices: [[0, 0, 1], [1, 0, 0], [1, 0, 1], [1, 0, 2], [1, 1, 0]],
117    values: [2, 0, 2, 3, 2],
118    dense_shape: [2, 2, 3]
119  }
120  ```
121
122  Args:
123    indicators: Dense `Tensor` of shape `(d0, ..., dn, num_classes)`.
124      `ignore_value` values are ignored. For other values (typically, ones), the
125      index along the last dimension is returned.
126    ignore_value: Entries in `indicators` equal to this value will be
127      absent from the returned `SparseTensor`. If `None`, default value of
128      `indicators` dtype will be used (e.g. '' for `str`, 0 for `int`).
129    dtype: Type of result, must be integer type.
130
131  Returns:
132    `SparseTensor` of type `dtype` and shape `(d0, ..., dn, max_num_labels)`,
133      where `max_num_labels` is the maximum number of non-zero values in any
134      row (in the example above, row (1, 1) has 3 non-zero values, so the result
135      shape is (2, 2, 3)). The values of this `SparseTensor` are in the range
136      `[0, num_classes)` and correspond to the index of non-ignore values along
137      the last dimension of `indicators`.
138
139  Raises:
140    ValueError: if `dtype` is not integer.
141  """
142  if not dtype.is_integer:
143    raise ValueError("Invalid dtype {} not integer.".format(dtype))
144  with ops.name_scope(
145      None, "indicators_to_sparse_ids", (indicators, ignore_value)):
146    # Convert indicators to binary ones and zeros. We use int64 since
147    # SparseTensor requires int64 indices.
148    indicators = ops.convert_to_tensor(indicators, name="indicators")
149    missing_indicators = math_ops.equal(
150        indicators, _ignore_value_tensor(indicators.dtype, ignore_value),
151        name="missing")
152    zeros_like_indicators = array_ops.zeros_like(
153        indicators, dtype=dtypes.int64, name="zeros")
154    binary_indicators = array_ops.where(
155        missing_indicators, zeros_like_indicators,
156        array_ops.ones_like(indicators, dtype=dtypes.int64, name="ones"),
157        name="binary_indicators")
158
159    # Use cumsum along the last dimension to generate per-row indexes.
160    # Note that these are 1-based (since 0 indicates missing values), so they're
161    # off-by-1 from the actual indices. We'll subtract 1 below. Since they're
162    # off-by-one, the max value is the size of the last dimension (i.e.,
163    # last_index + 1).
164    row_index_indicators = array_ops.where(
165        missing_indicators, zeros_like_indicators,
166        math_ops.cumsum(binary_indicators, axis=-1), "row_index_indicators")
167    result_last_dim = array_ops.reshape(
168        math_ops.reduce_max(row_index_indicators), shape=(1,),
169        name="result_last_dim")
170
171    # Convert to a SparseTensor. The values of this SparseTensor are the last
172    # indices of our result, and the last indices of this SparseTensor (i.e.,
173    # the class IDs indicated by `indicators`) are the values of our result, so
174    # we use tensor slicing and concat to swap them.
175    sparse_row_index_indicators = dense_to_sparse_tensor(
176        row_index_indicators, ignore_value=0)
177    return sparse_tensor.SparseTensor(
178        indices=array_ops.concat((
179            sparse_row_index_indicators.indices[:, :-1],
180            array_ops.reshape(sparse_row_index_indicators.values - 1, (-1, 1))
181        ), axis=1, name="indices"),
182        values=math_ops.cast(
183            sparse_row_index_indicators.indices[:, -1], dtype=dtype,
184            name="values"),
185        dense_shape=array_ops.concat(
186            (sparse_row_index_indicators.dense_shape[0:-1], result_last_dim),
187            axis=0, name="dense_shape"))
188
189
190def sparse_row_envelope(sparse_input, row_axis=0, col_axis=1, name=None):
191  """Returns the length of each 'row' in a `SparseTensor`.
192
193  For example, if `sparse_input` has indices `[[0,0], [2, 0], [2, 1], [2, 2]]`
194  and shape `[3, 3]`, this function will return `[1, 0, 3]`.
195
196  Args:
197    sparse_input: a `SparseTensor` of rank at least 2.
198    row_axis: An integer. The axis for the row of the envelope matrix. Default
199      is 0.
200    col_axis: An integer. The axis for the col of the envelope matrix. Default
201      is 1.
202    name: A name for the operation (optional).
203
204  Returns:
205    A one-dimensional `Tensor` whose entries correspond to the length of each
206    row of `SparseTensor`.
207
208  Raises:
209    ValueError: If row_axis and col_axis are the same axis or they are not
210      integers.
211  """
212  if not (isinstance(row_axis, compat.integral_types) and
213          isinstance(col_axis, compat.integral_types)):
214    raise ValueError("`row_axis` and `col_axis` must be integers.")
215
216  if row_axis == col_axis:
217    raise ValueError("Row and column can not be the same axis.")
218
219  with ops.name_scope(name, "sparse_row_envelope", [sparse_input]):
220    indices = sparse_input.indices
221    row_indices = indices[:, row_axis]
222    col_indices = indices[:, col_axis]
223    num_rows = math_ops.cast(sparse_input.dense_shape[row_axis], dtypes.int32)
224    row_envelope = math_ops.unsorted_segment_max(
225        col_indices + 1, row_indices, num_rows, name=name)
226    zeros = array_ops.zeros_like(row_envelope)
227    return array_ops.where(row_envelope > zeros, row_envelope, zeros)
228