1 // The MIT License (MIT)
2 //
3 // Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file).
4 //
5 // Permission is hereby granted, free of charge, to any person obtaining a copy
6 // of this software and associated documentation files (the "Software"), to deal
7 // in the Software without restriction, including without limitation the rights
8 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 // copies of the Software, and to permit persons to whom the Software is
10 // furnished to do so, subject to the following conditions:
11 //
12 // The above copyright notice and this permission notice shall be included in all
13 // copies or substantial portions of the Software.
14 //
15 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 // SOFTWARE.
22 
23 #ifndef OPENSSL_HEADER_CURVE25519_INTERNAL_H
24 #define OPENSSL_HEADER_CURVE25519_INTERNAL_H
25 
26 #if defined(__cplusplus)
27 extern "C" {
28 #endif
29 
30 #include <openssl/base.h>
31 
32 #include "../../crypto/internal.h"
33 
34 
35 #if defined(OPENSSL_ARM) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_APPLE)
36 #define BORINGSSL_X25519_NEON
37 
38 // x25519_NEON is defined in asm/x25519-arm.S.
39 void x25519_NEON(uint8_t out[32], const uint8_t scalar[32],
40                  const uint8_t point[32]);
41 #endif
42 
43 #if defined(BORINGSSL_HAS_UINT128)
44 #define BORINGSSL_CURVE25519_64BIT
45 #endif
46 
47 #if defined(BORINGSSL_CURVE25519_64BIT)
48 // fe means field element. Here the field is \Z/(2^255-19). An element t,
49 // entries t[0]...t[4], represents the integer t[0]+2^51 t[1]+2^102 t[2]+2^153
50 // t[3]+2^204 t[4].
51 // fe limbs are bounded by 1.125*2^51.
52 // Multiplication and carrying produce fe from fe_loose.
53 typedef struct fe { uint64_t v[5]; } fe;
54 
55 // fe_loose limbs are bounded by 3.375*2^51.
56 // Addition and subtraction produce fe_loose from (fe, fe).
57 typedef struct fe_loose { uint64_t v[5]; } fe_loose;
58 #else
59 // fe means field element. Here the field is \Z/(2^255-19). An element t,
60 // entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
61 // t[3]+2^102 t[4]+...+2^230 t[9].
62 // fe limbs are bounded by 1.125*2^26,1.125*2^25,1.125*2^26,1.125*2^25,etc.
63 // Multiplication and carrying produce fe from fe_loose.
64 typedef struct fe { uint32_t v[10]; } fe;
65 
66 // fe_loose limbs are bounded by 3.375*2^26,3.375*2^25,3.375*2^26,3.375*2^25,etc.
67 // Addition and subtraction produce fe_loose from (fe, fe).
68 typedef struct fe_loose { uint32_t v[10]; } fe_loose;
69 #endif
70 
71 // ge means group element.
72 //
73 // Here the group is the set of pairs (x,y) of field elements (see fe.h)
74 // satisfying -x^2 + y^2 = 1 + d x^2y^2
75 // where d = -121665/121666.
76 //
77 // Representations:
78 //   ge_p2 (projective): (X:Y:Z) satisfying x=X/Z, y=Y/Z
79 //   ge_p3 (extended): (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT
80 //   ge_p1p1 (completed): ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T
81 //   ge_precomp (Duif): (y+x,y-x,2dxy)
82 
83 typedef struct {
84   fe X;
85   fe Y;
86   fe Z;
87 } ge_p2;
88 
89 typedef struct {
90   fe X;
91   fe Y;
92   fe Z;
93   fe T;
94 } ge_p3;
95 
96 typedef struct {
97   fe_loose X;
98   fe_loose Y;
99   fe_loose Z;
100   fe_loose T;
101 } ge_p1p1;
102 
103 typedef struct {
104   fe_loose yplusx;
105   fe_loose yminusx;
106   fe_loose xy2d;
107 } ge_precomp;
108 
109 typedef struct {
110   fe_loose YplusX;
111   fe_loose YminusX;
112   fe_loose Z;
113   fe_loose T2d;
114 } ge_cached;
115 
116 void x25519_ge_tobytes(uint8_t s[32], const ge_p2 *h);
117 int x25519_ge_frombytes_vartime(ge_p3 *h, const uint8_t *s);
118 void x25519_ge_p3_to_cached(ge_cached *r, const ge_p3 *p);
119 void x25519_ge_p1p1_to_p2(ge_p2 *r, const ge_p1p1 *p);
120 void x25519_ge_p1p1_to_p3(ge_p3 *r, const ge_p1p1 *p);
121 void x25519_ge_add(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q);
122 void x25519_ge_sub(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q);
123 void x25519_ge_scalarmult_small_precomp(
124     ge_p3 *h, const uint8_t a[32], const uint8_t precomp_table[15 * 2 * 32]);
125 void x25519_ge_scalarmult_base(ge_p3 *h, const uint8_t a[32]);
126 void x25519_ge_scalarmult(ge_p2 *r, const uint8_t *scalar, const ge_p3 *A);
127 void x25519_sc_reduce(uint8_t s[64]);
128 
129 enum spake2_state_t {
130   spake2_state_init = 0,
131   spake2_state_msg_generated,
132   spake2_state_key_generated,
133 };
134 
135 struct spake2_ctx_st {
136   uint8_t private_key[32];
137   uint8_t my_msg[32];
138   uint8_t password_scalar[32];
139   uint8_t password_hash[64];
140   uint8_t *my_name;
141   size_t my_name_len;
142   uint8_t *their_name;
143   size_t their_name_len;
144   enum spake2_role_t my_role;
145   enum spake2_state_t state;
146   char disable_password_scalar_hack;
147 };
148 
149 
150 #if defined(__cplusplus)
151 }  // extern C
152 #endif
153 
154 #endif  // OPENSSL_HEADER_CURVE25519_INTERNAL_H
155