1 //=======- X86FrameLowering.cpp - X86 Frame Information --------*- C++ -*-====//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of TargetFrameLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86FrameLowering.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/Function.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCSymbol.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetOptions.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/ADT/SmallSet.h"
32 
33 using namespace llvm;
34 
35 // FIXME: completely move here.
36 extern cl::opt<bool> ForceStackAlign;
37 
hasReservedCallFrame(const MachineFunction & MF) const38 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
39   return !MF.getFrameInfo()->hasVarSizedObjects();
40 }
41 
42 /// hasFP - Return true if the specified function should have a dedicated frame
43 /// pointer register.  This is true if the function has variable sized allocas
44 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const45 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
46   const MachineFrameInfo *MFI = MF.getFrameInfo();
47   const MachineModuleInfo &MMI = MF.getMMI();
48   const TargetRegisterInfo *RI = TM.getRegisterInfo();
49 
50   return (DisableFramePointerElim(MF) ||
51           RI->needsStackRealignment(MF) ||
52           MFI->hasVarSizedObjects() ||
53           MFI->isFrameAddressTaken() ||
54           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
55           MMI.callsUnwindInit());
56 }
57 
getSUBriOpcode(unsigned is64Bit,int64_t Imm)58 static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) {
59   if (is64Bit) {
60     if (isInt<8>(Imm))
61       return X86::SUB64ri8;
62     return X86::SUB64ri32;
63   } else {
64     if (isInt<8>(Imm))
65       return X86::SUB32ri8;
66     return X86::SUB32ri;
67   }
68 }
69 
getADDriOpcode(unsigned is64Bit,int64_t Imm)70 static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) {
71   if (is64Bit) {
72     if (isInt<8>(Imm))
73       return X86::ADD64ri8;
74     return X86::ADD64ri32;
75   } else {
76     if (isInt<8>(Imm))
77       return X86::ADD32ri8;
78     return X86::ADD32ri;
79   }
80 }
81 
82 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
83 /// when it reaches the "return" instruction. We can then pop a stack object
84 /// to this register without worry about clobbering it.
findDeadCallerSavedReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const TargetRegisterInfo & TRI,bool Is64Bit)85 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
86                                        MachineBasicBlock::iterator &MBBI,
87                                        const TargetRegisterInfo &TRI,
88                                        bool Is64Bit) {
89   const MachineFunction *MF = MBB.getParent();
90   const Function *F = MF->getFunction();
91   if (!F || MF->getMMI().callsEHReturn())
92     return 0;
93 
94   static const unsigned CallerSavedRegs32Bit[] = {
95     X86::EAX, X86::EDX, X86::ECX, 0
96   };
97 
98   static const unsigned CallerSavedRegs64Bit[] = {
99     X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
100     X86::R8,  X86::R9,  X86::R10, X86::R11, 0
101   };
102 
103   unsigned Opc = MBBI->getOpcode();
104   switch (Opc) {
105   default: return 0;
106   case X86::RET:
107   case X86::RETI:
108   case X86::TCRETURNdi:
109   case X86::TCRETURNri:
110   case X86::TCRETURNmi:
111   case X86::TCRETURNdi64:
112   case X86::TCRETURNri64:
113   case X86::TCRETURNmi64:
114   case X86::EH_RETURN:
115   case X86::EH_RETURN64: {
116     SmallSet<unsigned, 8> Uses;
117     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
118       MachineOperand &MO = MBBI->getOperand(i);
119       if (!MO.isReg() || MO.isDef())
120         continue;
121       unsigned Reg = MO.getReg();
122       if (!Reg)
123         continue;
124       for (const unsigned *AsI = TRI.getOverlaps(Reg); *AsI; ++AsI)
125         Uses.insert(*AsI);
126     }
127 
128     const unsigned *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
129     for (; *CS; ++CS)
130       if (!Uses.count(*CS))
131         return *CS;
132   }
133   }
134 
135   return 0;
136 }
137 
138 
139 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
140 /// stack pointer by a constant value.
141 static
emitSPUpdate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,unsigned StackPtr,int64_t NumBytes,bool Is64Bit,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI)142 void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
143                   unsigned StackPtr, int64_t NumBytes,
144                   bool Is64Bit, const TargetInstrInfo &TII,
145                   const TargetRegisterInfo &TRI) {
146   bool isSub = NumBytes < 0;
147   uint64_t Offset = isSub ? -NumBytes : NumBytes;
148   unsigned Opc = isSub ?
149     getSUBriOpcode(Is64Bit, Offset) :
150     getADDriOpcode(Is64Bit, Offset);
151   uint64_t Chunk = (1LL << 31) - 1;
152   DebugLoc DL = MBB.findDebugLoc(MBBI);
153 
154   while (Offset) {
155     uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
156     if (ThisVal == (Is64Bit ? 8 : 4)) {
157       // Use push / pop instead.
158       unsigned Reg = isSub
159         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
160         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
161       if (Reg) {
162         Opc = isSub
163           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
164           : (Is64Bit ? X86::POP64r  : X86::POP32r);
165         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
166           .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
167         if (isSub)
168           MI->setFlag(MachineInstr::FrameSetup);
169         Offset -= ThisVal;
170         continue;
171       }
172     }
173 
174     MachineInstr *MI =
175       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
176       .addReg(StackPtr)
177       .addImm(ThisVal);
178     if (isSub)
179       MI->setFlag(MachineInstr::FrameSetup);
180     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
181     Offset -= ThisVal;
182   }
183 }
184 
185 /// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
186 static
mergeSPUpdatesUp(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,unsigned StackPtr,uint64_t * NumBytes=NULL)187 void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
188                       unsigned StackPtr, uint64_t *NumBytes = NULL) {
189   if (MBBI == MBB.begin()) return;
190 
191   MachineBasicBlock::iterator PI = prior(MBBI);
192   unsigned Opc = PI->getOpcode();
193   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
194        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
195       PI->getOperand(0).getReg() == StackPtr) {
196     if (NumBytes)
197       *NumBytes += PI->getOperand(2).getImm();
198     MBB.erase(PI);
199   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
200               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
201              PI->getOperand(0).getReg() == StackPtr) {
202     if (NumBytes)
203       *NumBytes -= PI->getOperand(2).getImm();
204     MBB.erase(PI);
205   }
206 }
207 
208 /// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower iterator.
209 static
mergeSPUpdatesDown(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,unsigned StackPtr,uint64_t * NumBytes=NULL)210 void mergeSPUpdatesDown(MachineBasicBlock &MBB,
211                         MachineBasicBlock::iterator &MBBI,
212                         unsigned StackPtr, uint64_t *NumBytes = NULL) {
213   // FIXME: THIS ISN'T RUN!!!
214   return;
215 
216   if (MBBI == MBB.end()) return;
217 
218   MachineBasicBlock::iterator NI = llvm::next(MBBI);
219   if (NI == MBB.end()) return;
220 
221   unsigned Opc = NI->getOpcode();
222   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
223        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
224       NI->getOperand(0).getReg() == StackPtr) {
225     if (NumBytes)
226       *NumBytes -= NI->getOperand(2).getImm();
227     MBB.erase(NI);
228     MBBI = NI;
229   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
230               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
231              NI->getOperand(0).getReg() == StackPtr) {
232     if (NumBytes)
233       *NumBytes += NI->getOperand(2).getImm();
234     MBB.erase(NI);
235     MBBI = NI;
236   }
237 }
238 
239 /// mergeSPUpdates - Checks the instruction before/after the passed
240 /// instruction. If it is an ADD/SUB instruction it is deleted argument and the
241 /// stack adjustment is returned as a positive value for ADD and a negative for
242 /// SUB.
mergeSPUpdates(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,unsigned StackPtr,bool doMergeWithPrevious)243 static int mergeSPUpdates(MachineBasicBlock &MBB,
244                            MachineBasicBlock::iterator &MBBI,
245                            unsigned StackPtr,
246                            bool doMergeWithPrevious) {
247   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
248       (!doMergeWithPrevious && MBBI == MBB.end()))
249     return 0;
250 
251   MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
252   MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI);
253   unsigned Opc = PI->getOpcode();
254   int Offset = 0;
255 
256   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
257        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
258       PI->getOperand(0).getReg() == StackPtr){
259     Offset += PI->getOperand(2).getImm();
260     MBB.erase(PI);
261     if (!doMergeWithPrevious) MBBI = NI;
262   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
263               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
264              PI->getOperand(0).getReg() == StackPtr) {
265     Offset -= PI->getOperand(2).getImm();
266     MBB.erase(PI);
267     if (!doMergeWithPrevious) MBBI = NI;
268   }
269 
270   return Offset;
271 }
272 
isEAXLiveIn(MachineFunction & MF)273 static bool isEAXLiveIn(MachineFunction &MF) {
274   for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
275        EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
276     unsigned Reg = II->first;
277 
278     if (Reg == X86::EAX || Reg == X86::AX ||
279         Reg == X86::AH || Reg == X86::AL)
280       return true;
281   }
282 
283   return false;
284 }
285 
emitCalleeSavedFrameMoves(MachineFunction & MF,MCSymbol * Label,unsigned FramePtr) const286 void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF,
287                                                  MCSymbol *Label,
288                                                  unsigned FramePtr) const {
289   MachineFrameInfo *MFI = MF.getFrameInfo();
290   MachineModuleInfo &MMI = MF.getMMI();
291 
292   // Add callee saved registers to move list.
293   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
294   if (CSI.empty()) return;
295 
296   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
297   const TargetData *TD = TM.getTargetData();
298   bool HasFP = hasFP(MF);
299 
300   // Calculate amount of bytes used for return address storing.
301   int stackGrowth = -TD->getPointerSize();
302 
303   // FIXME: This is dirty hack. The code itself is pretty mess right now.
304   // It should be rewritten from scratch and generalized sometimes.
305 
306   // Determine maximum offset (minimum due to stack growth).
307   int64_t MaxOffset = 0;
308   for (std::vector<CalleeSavedInfo>::const_iterator
309          I = CSI.begin(), E = CSI.end(); I != E; ++I)
310     MaxOffset = std::min(MaxOffset,
311                          MFI->getObjectOffset(I->getFrameIdx()));
312 
313   // Calculate offsets.
314   int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
315   for (std::vector<CalleeSavedInfo>::const_iterator
316          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
317     int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
318     unsigned Reg = I->getReg();
319     Offset = MaxOffset - Offset + saveAreaOffset;
320 
321     // Don't output a new machine move if we're re-saving the frame
322     // pointer. This happens when the PrologEpilogInserter has inserted an extra
323     // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
324     // generates one when frame pointers are used. If we generate a "machine
325     // move" for this extra "PUSH", the linker will lose track of the fact that
326     // the frame pointer should have the value of the first "PUSH" when it's
327     // trying to unwind.
328     //
329     // FIXME: This looks inelegant. It's possibly correct, but it's covering up
330     //        another bug. I.e., one where we generate a prolog like this:
331     //
332     //          pushl  %ebp
333     //          movl   %esp, %ebp
334     //          pushl  %ebp
335     //          pushl  %esi
336     //           ...
337     //
338     //        The immediate re-push of EBP is unnecessary. At the least, it's an
339     //        optimization bug. EBP can be used as a scratch register in certain
340     //        cases, but probably not when we have a frame pointer.
341     if (HasFP && FramePtr == Reg)
342       continue;
343 
344     MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
345     MachineLocation CSSrc(Reg);
346     Moves.push_back(MachineMove(Label, CSDst, CSSrc));
347   }
348 }
349 
350 /// getCompactUnwindRegNum - Get the compact unwind number for a given
351 /// register. The number corresponds to the enum lists in
352 /// compact_unwind_encoding.h.
getCompactUnwindRegNum(const unsigned * CURegs,unsigned Reg)353 static int getCompactUnwindRegNum(const unsigned *CURegs, unsigned Reg) {
354   int Idx = 1;
355   for (; *CURegs; ++CURegs, ++Idx)
356     if (*CURegs == Reg)
357       return Idx;
358 
359   return -1;
360 }
361 
362 /// encodeCompactUnwindRegistersWithoutFrame - Create the permutation encoding
363 /// used with frameless stacks. It is passed the number of registers to be saved
364 /// and an array of the registers saved.
encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[6],unsigned RegCount,bool Is64Bit)365 static uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[6],
366                                                          unsigned RegCount,
367                                                          bool Is64Bit) {
368   // The saved registers are numbered from 1 to 6. In order to encode the order
369   // in which they were saved, we re-number them according to their place in the
370   // register order. The re-numbering is relative to the last re-numbered
371   // register. E.g., if we have registers {6, 2, 4, 5} saved in that order:
372   //
373   //    Orig  Re-Num
374   //    ----  ------
375   //     6       6
376   //     2       2
377   //     4       3
378   //     5       3
379   //
380   static const unsigned CU32BitRegs[] = {
381     X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
382   };
383   static const unsigned CU64BitRegs[] = {
384     X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
385   };
386   const unsigned *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
387 
388   uint32_t RenumRegs[6];
389   for (unsigned i = 6 - RegCount; i < 6; ++i) {
390     int CUReg = getCompactUnwindRegNum(CURegs, SavedRegs[i]);
391     if (CUReg == -1) return ~0U;
392     SavedRegs[i] = CUReg;
393 
394     unsigned Countless = 0;
395     for (unsigned j = 6 - RegCount; j < i; ++j)
396       if (SavedRegs[j] < SavedRegs[i])
397         ++Countless;
398 
399     RenumRegs[i] = SavedRegs[i] - Countless - 1;
400   }
401 
402   // Take the renumbered values and encode them into a 10-bit number.
403   uint32_t permutationEncoding = 0;
404   switch (RegCount) {
405   case 6:
406     permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
407                            + 6 * RenumRegs[2] +  2 * RenumRegs[3]
408                            +     RenumRegs[4];
409     break;
410   case 5:
411     permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
412                            + 6 * RenumRegs[3] +  2 * RenumRegs[4]
413                            +     RenumRegs[5];
414     break;
415   case 4:
416     permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
417                            + 3 * RenumRegs[4] +      RenumRegs[5];
418     break;
419   case 3:
420     permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
421                            +     RenumRegs[5];
422     break;
423   case 2:
424     permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
425     break;
426   case 1:
427     permutationEncoding |=       RenumRegs[5];
428     break;
429   }
430 
431   assert((permutationEncoding & 0x3FF) == permutationEncoding &&
432          "Invalid compact register encoding!");
433   return permutationEncoding;
434 }
435 
436 /// encodeCompactUnwindRegistersWithFrame - Return the registers encoded for a
437 /// compact encoding with a frame pointer.
encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[6],bool Is64Bit)438 static uint32_t encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[6],
439                                                       bool Is64Bit) {
440   static const unsigned CU32BitRegs[] = {
441     X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
442   };
443   static const unsigned CU64BitRegs[] = {
444     X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
445   };
446   const unsigned *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
447 
448   // Encode the registers in the order they were saved, 3-bits per register. The
449   // registers are numbered from 1 to 6.
450   uint32_t RegEnc = 0;
451   for (int I = 5; I >= 0; --I) {
452     unsigned Reg = SavedRegs[I];
453     if (Reg == 0) break;
454     int CURegNum = getCompactUnwindRegNum(CURegs, Reg);
455     if (CURegNum == -1)
456       return ~0U;
457     RegEnc |= (CURegNum & 0x7) << (5 - I);
458   }
459 
460   assert((RegEnc & 0x7FFF) == RegEnc && "Invalid compact register encoding!");
461   return RegEnc;
462 }
463 
getCompactUnwindEncoding(MachineFunction & MF) const464 uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
465   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
466   unsigned FramePtr = RegInfo->getFrameRegister(MF);
467   unsigned StackPtr = RegInfo->getStackRegister();
468 
469   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
470   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
471 
472   bool Is64Bit = STI.is64Bit();
473   bool HasFP = hasFP(MF);
474 
475   unsigned SavedRegs[6] = { 0, 0, 0, 0, 0, 0 };
476   int SavedRegIdx = 6;
477 
478   unsigned OffsetSize = (Is64Bit ? 8 : 4);
479 
480   unsigned PushInstr = (Is64Bit ? X86::PUSH64r : X86::PUSH32r);
481   unsigned PushInstrSize = 1;
482   unsigned MoveInstr = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
483   unsigned MoveInstrSize = (Is64Bit ? 3 : 2);
484   unsigned SubtractInstr = getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta);
485   unsigned SubtractInstrIdx = (Is64Bit ? 3 : 2);
486 
487   unsigned StackDivide = (Is64Bit ? 8 : 4);
488 
489   unsigned InstrOffset = 0;
490   unsigned CFAOffset = 0;
491   unsigned StackAdjust = 0;
492 
493   MachineBasicBlock &MBB = MF.front(); // Prologue is in entry BB.
494   bool ExpectEnd = false;
495   for (MachineBasicBlock::iterator
496          MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ++MBBI) {
497     MachineInstr &MI = *MBBI;
498     unsigned Opc = MI.getOpcode();
499     if (Opc == X86::PROLOG_LABEL) continue;
500     if (!MI.getFlag(MachineInstr::FrameSetup)) break;
501 
502     // We don't exect any more prolog instructions.
503     if (ExpectEnd) return 0;
504 
505     if (Opc == PushInstr) {
506       // If there are too many saved registers, we cannot use compact encoding.
507       if (--SavedRegIdx < 0) return 0;
508 
509       SavedRegs[SavedRegIdx] = MI.getOperand(0).getReg();
510       CFAOffset += OffsetSize;
511       InstrOffset += PushInstrSize;
512     } else if (Opc == MoveInstr) {
513       unsigned SrcReg = MI.getOperand(1).getReg();
514       unsigned DstReg = MI.getOperand(0).getReg();
515 
516       if (DstReg != FramePtr || SrcReg != StackPtr)
517         return 0;
518 
519       CFAOffset = 0;
520       memset(SavedRegs, 0, sizeof(SavedRegs));
521       InstrOffset += MoveInstrSize;
522     } else if (Opc == SubtractInstr) {
523       if (StackAdjust)
524         // We all ready have a stack pointer adjustment.
525         return 0;
526 
527       if (!MI.getOperand(0).isReg() ||
528           MI.getOperand(0).getReg() != MI.getOperand(1).getReg() ||
529           MI.getOperand(0).getReg() != StackPtr || !MI.getOperand(2).isImm())
530         // We need this to be a stack adjustment pointer. Something like:
531         //
532         //   %RSP<def> = SUB64ri8 %RSP, 48
533         return 0;
534 
535       StackAdjust = MI.getOperand(2).getImm() / StackDivide;
536       SubtractInstrIdx += InstrOffset;
537       ExpectEnd = true;
538     }
539   }
540 
541   // Encode that we are using EBP/RBP as the frame pointer.
542   uint32_t CompactUnwindEncoding = 0;
543   CFAOffset /= StackDivide;
544   if (HasFP) {
545     if ((CFAOffset & 0xFF) != CFAOffset)
546       // Offset was too big for compact encoding.
547       return 0;
548 
549     // Get the encoding of the saved registers when we have a frame pointer.
550     uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(SavedRegs, Is64Bit);
551     if (RegEnc == ~0U)
552       return 0;
553 
554     CompactUnwindEncoding |= 0x01000000;
555     CompactUnwindEncoding |= (CFAOffset & 0xFF) << 16;
556     CompactUnwindEncoding |= RegEnc & 0x7FFF;
557   } else {
558     unsigned FullOffset = CFAOffset + StackAdjust;
559     if ((FullOffset & 0xFF) == FullOffset) {
560       // Frameless stack.
561       CompactUnwindEncoding |= 0x02000000;
562       CompactUnwindEncoding |= (FullOffset & 0xFF) << 16;
563     } else {
564       if ((CFAOffset & 0x7) != CFAOffset)
565         // The extra stack adjustments are too big for us to handle.
566         return 0;
567 
568       // Frameless stack with an offset too large for us to encode compactly.
569       CompactUnwindEncoding |= 0x03000000;
570 
571       // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
572       // instruction.
573       CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
574 
575       // Encode any extra stack stack changes (done via push instructions).
576       CompactUnwindEncoding |= (CFAOffset & 0x7) << 13;
577     }
578 
579     // Get the encoding of the saved registers when we don't have a frame
580     // pointer.
581     uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegs,
582                                                                6 - SavedRegIdx,
583                                                                Is64Bit);
584     if (RegEnc == ~0U) return 0;
585     CompactUnwindEncoding |= RegEnc & 0x3FF;
586   }
587 
588   return CompactUnwindEncoding;
589 }
590 
591 /// emitPrologue - Push callee-saved registers onto the stack, which
592 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
593 /// space for local variables. Also emit labels used by the exception handler to
594 /// generate the exception handling frames.
emitPrologue(MachineFunction & MF) const595 void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
596   MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
597   MachineBasicBlock::iterator MBBI = MBB.begin();
598   MachineFrameInfo *MFI = MF.getFrameInfo();
599   const Function *Fn = MF.getFunction();
600   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
601   const X86InstrInfo &TII = *TM.getInstrInfo();
602   MachineModuleInfo &MMI = MF.getMMI();
603   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
604   bool needsFrameMoves = MMI.hasDebugInfo() ||
605     Fn->needsUnwindTableEntry();
606   uint64_t MaxAlign  = MFI->getMaxAlignment(); // Desired stack alignment.
607   uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
608   bool HasFP = hasFP(MF);
609   bool Is64Bit = STI.is64Bit();
610   bool IsWin64 = STI.isTargetWin64();
611   unsigned StackAlign = getStackAlignment();
612   unsigned SlotSize = RegInfo->getSlotSize();
613   unsigned FramePtr = RegInfo->getFrameRegister(MF);
614   unsigned StackPtr = RegInfo->getStackRegister();
615   DebugLoc DL;
616 
617   // If we're forcing a stack realignment we can't rely on just the frame
618   // info, we need to know the ABI stack alignment as well in case we
619   // have a call out.  Otherwise just make sure we have some alignment - we'll
620   // go with the minimum SlotSize.
621   if (ForceStackAlign) {
622     if (MFI->hasCalls())
623       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
624     else if (MaxAlign < SlotSize)
625       MaxAlign = SlotSize;
626   }
627 
628   // Add RETADDR move area to callee saved frame size.
629   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
630   if (TailCallReturnAddrDelta < 0)
631     X86FI->setCalleeSavedFrameSize(
632       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
633 
634   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
635   // function, and use up to 128 bytes of stack space, don't have a frame
636   // pointer, calls, or dynamic alloca then we do not need to adjust the
637   // stack pointer (we fit in the Red Zone).
638   if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) &&
639       !RegInfo->needsStackRealignment(MF) &&
640       !MFI->hasVarSizedObjects() &&                // No dynamic alloca.
641       !MFI->adjustsStack() &&                      // No calls.
642       !IsWin64 &&                                  // Win64 has no Red Zone
643       !EnableSegmentedStacks) {                    // Regular stack
644     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
645     if (HasFP) MinSize += SlotSize;
646     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
647     MFI->setStackSize(StackSize);
648   }
649 
650   // Insert stack pointer adjustment for later moving of return addr.  Only
651   // applies to tail call optimized functions where the callee argument stack
652   // size is bigger than the callers.
653   if (TailCallReturnAddrDelta < 0) {
654     MachineInstr *MI =
655       BuildMI(MBB, MBBI, DL,
656               TII.get(getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta)),
657               StackPtr)
658         .addReg(StackPtr)
659         .addImm(-TailCallReturnAddrDelta)
660         .setMIFlag(MachineInstr::FrameSetup);
661     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
662   }
663 
664   // Mapping for machine moves:
665   //
666   //   DST: VirtualFP AND
667   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
668   //        ELSE                        => DW_CFA_def_cfa
669   //
670   //   SRC: VirtualFP AND
671   //        DST: Register               => DW_CFA_def_cfa_register
672   //
673   //   ELSE
674   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
675   //        REG < 64                    => DW_CFA_offset + Reg
676   //        ELSE                        => DW_CFA_offset_extended
677 
678   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
679   const TargetData *TD = MF.getTarget().getTargetData();
680   uint64_t NumBytes = 0;
681   int stackGrowth = -TD->getPointerSize();
682 
683   if (HasFP) {
684     // Calculate required stack adjustment.
685     uint64_t FrameSize = StackSize - SlotSize;
686     if (RegInfo->needsStackRealignment(MF))
687       FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
688 
689     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
690 
691     // Get the offset of the stack slot for the EBP register, which is
692     // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
693     // Update the frame offset adjustment.
694     MFI->setOffsetAdjustment(-NumBytes);
695 
696     // Save EBP/RBP into the appropriate stack slot.
697     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
698       .addReg(FramePtr, RegState::Kill)
699       .setMIFlag(MachineInstr::FrameSetup);
700 
701     if (needsFrameMoves) {
702       // Mark the place where EBP/RBP was saved.
703       MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
704       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
705         .addSym(FrameLabel);
706 
707       // Define the current CFA rule to use the provided offset.
708       if (StackSize) {
709         MachineLocation SPDst(MachineLocation::VirtualFP);
710         MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth);
711         Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
712       } else {
713         MachineLocation SPDst(StackPtr);
714         MachineLocation SPSrc(StackPtr, stackGrowth);
715         Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
716       }
717 
718       // Change the rule for the FramePtr to be an "offset" rule.
719       MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth);
720       MachineLocation FPSrc(FramePtr);
721       Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
722     }
723 
724     // Update EBP with the new base value.
725     BuildMI(MBB, MBBI, DL,
726             TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
727         .addReg(StackPtr)
728         .setMIFlag(MachineInstr::FrameSetup);
729 
730     if (needsFrameMoves) {
731       // Mark effective beginning of when frame pointer becomes valid.
732       MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
733       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
734         .addSym(FrameLabel);
735 
736       // Define the current CFA to use the EBP/RBP register.
737       MachineLocation FPDst(FramePtr);
738       MachineLocation FPSrc(MachineLocation::VirtualFP);
739       Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
740     }
741 
742     // Mark the FramePtr as live-in in every block except the entry.
743     for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
744          I != E; ++I)
745       I->addLiveIn(FramePtr);
746 
747     // Realign stack
748     if (RegInfo->needsStackRealignment(MF)) {
749       MachineInstr *MI =
750         BuildMI(MBB, MBBI, DL,
751                 TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr)
752         .addReg(StackPtr)
753         .addImm(-MaxAlign)
754         .setMIFlag(MachineInstr::FrameSetup);
755 
756       // The EFLAGS implicit def is dead.
757       MI->getOperand(3).setIsDead();
758     }
759   } else {
760     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
761   }
762 
763   // Skip the callee-saved push instructions.
764   bool PushedRegs = false;
765   int StackOffset = 2 * stackGrowth;
766 
767   while (MBBI != MBB.end() &&
768          (MBBI->getOpcode() == X86::PUSH32r ||
769           MBBI->getOpcode() == X86::PUSH64r)) {
770     PushedRegs = true;
771     MBBI->setFlag(MachineInstr::FrameSetup);
772     ++MBBI;
773 
774     if (!HasFP && needsFrameMoves) {
775       // Mark callee-saved push instruction.
776       MCSymbol *Label = MMI.getContext().CreateTempSymbol();
777       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label);
778 
779       // Define the current CFA rule to use the provided offset.
780       unsigned Ptr = StackSize ? MachineLocation::VirtualFP : StackPtr;
781       MachineLocation SPDst(Ptr);
782       MachineLocation SPSrc(Ptr, StackOffset);
783       Moves.push_back(MachineMove(Label, SPDst, SPSrc));
784       StackOffset += stackGrowth;
785     }
786   }
787 
788   DL = MBB.findDebugLoc(MBBI);
789 
790   // If there is an SUB32ri of ESP immediately before this instruction, merge
791   // the two. This can be the case when tail call elimination is enabled and
792   // the callee has more arguments then the caller.
793   NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
794 
795   // If there is an ADD32ri or SUB32ri of ESP immediately after this
796   // instruction, merge the two instructions.
797   mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
798 
799   // Adjust stack pointer: ESP -= numbytes.
800 
801   // Windows and cygwin/mingw require a prologue helper routine when allocating
802   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
803   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
804   // stack and adjust the stack pointer in one go.  The 64-bit version of
805   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
806   // responsible for adjusting the stack pointer.  Touching the stack at 4K
807   // increments is necessary to ensure that the guard pages used by the OS
808   // virtual memory manager are allocated in correct sequence.
809   if (NumBytes >= 4096 && STI.isTargetCOFF() && !STI.isTargetEnvMacho()) {
810     const char *StackProbeSymbol;
811     bool isSPUpdateNeeded = false;
812 
813     if (Is64Bit) {
814       if (STI.isTargetCygMing())
815         StackProbeSymbol = "___chkstk";
816       else {
817         StackProbeSymbol = "__chkstk";
818         isSPUpdateNeeded = true;
819       }
820     } else if (STI.isTargetCygMing())
821       StackProbeSymbol = "_alloca";
822     else
823       StackProbeSymbol = "_chkstk";
824 
825     // Check whether EAX is livein for this function.
826     bool isEAXAlive = isEAXLiveIn(MF);
827 
828     if (isEAXAlive) {
829       // Sanity check that EAX is not livein for this function.
830       // It should not be, so throw an assert.
831       assert(!Is64Bit && "EAX is livein in x64 case!");
832 
833       // Save EAX
834       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
835         .addReg(X86::EAX, RegState::Kill)
836         .setMIFlag(MachineInstr::FrameSetup);
837     }
838 
839     if (Is64Bit) {
840       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
841       // Function prologue is responsible for adjusting the stack pointer.
842       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
843         .addImm(NumBytes)
844         .setMIFlag(MachineInstr::FrameSetup);
845     } else {
846       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
847       // We'll also use 4 already allocated bytes for EAX.
848       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
849         .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
850         .setMIFlag(MachineInstr::FrameSetup);
851     }
852 
853     if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
854       // For the large code model, we have to call through a register. Use R11,
855       // as it is unused and clobbered by all probe functions.
856       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
857           .addExternalSymbol(StackProbeSymbol);
858       BuildMI(MBB, MBBI, DL, TII.get(X86::CALL64r))
859           .addReg(X86::R11)
860           .addReg(StackPtr, RegState::Define | RegState::Implicit)
861           .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
862           .setMIFlag(MachineInstr::FrameSetup);
863     } else {
864       BuildMI(MBB, MBBI, DL,
865               TII.get(STI.is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32))
866           .addExternalSymbol(StackProbeSymbol)
867           .addReg(StackPtr, RegState::Define | RegState::Implicit)
868           .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
869           .setMIFlag(MachineInstr::FrameSetup);
870     }
871 
872     // MSVC x64's __chkstk needs to adjust %rsp.
873     // FIXME: %rax preserves the offset and should be available.
874     if (isSPUpdateNeeded)
875       emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit,
876                    TII, *RegInfo);
877 
878     if (isEAXAlive) {
879         // Restore EAX
880         MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
881                                                 X86::EAX),
882                                         StackPtr, false, NumBytes - 4);
883         MI->setFlag(MachineInstr::FrameSetup);
884         MBB.insert(MBBI, MI);
885     }
886   } else if (NumBytes)
887     emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit,
888                  TII, *RegInfo);
889 
890   if (( (!HasFP && NumBytes) || PushedRegs) && needsFrameMoves) {
891     // Mark end of stack pointer adjustment.
892     MCSymbol *Label = MMI.getContext().CreateTempSymbol();
893     BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
894       .addSym(Label);
895 
896     if (!HasFP && NumBytes) {
897       // Define the current CFA rule to use the provided offset.
898       if (StackSize) {
899         MachineLocation SPDst(MachineLocation::VirtualFP);
900         MachineLocation SPSrc(MachineLocation::VirtualFP,
901                               -StackSize + stackGrowth);
902         Moves.push_back(MachineMove(Label, SPDst, SPSrc));
903       } else {
904         MachineLocation SPDst(StackPtr);
905         MachineLocation SPSrc(StackPtr, stackGrowth);
906         Moves.push_back(MachineMove(Label, SPDst, SPSrc));
907       }
908     }
909 
910     // Emit DWARF info specifying the offsets of the callee-saved registers.
911     if (PushedRegs)
912       emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr);
913   }
914 
915   // Darwin 10.7 and greater has support for compact unwind encoding.
916   if (STI.getTargetTriple().isMacOSX() &&
917       !STI.getTargetTriple().isMacOSXVersionLT(10, 7))
918     MMI.setCompactUnwindEncoding(getCompactUnwindEncoding(MF));
919 }
920 
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const921 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
922                                     MachineBasicBlock &MBB) const {
923   const MachineFrameInfo *MFI = MF.getFrameInfo();
924   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
925   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
926   const X86InstrInfo &TII = *TM.getInstrInfo();
927   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
928   assert(MBBI != MBB.end() && "Returning block has no instructions");
929   unsigned RetOpcode = MBBI->getOpcode();
930   DebugLoc DL = MBBI->getDebugLoc();
931   bool Is64Bit = STI.is64Bit();
932   unsigned StackAlign = getStackAlignment();
933   unsigned SlotSize = RegInfo->getSlotSize();
934   unsigned FramePtr = RegInfo->getFrameRegister(MF);
935   unsigned StackPtr = RegInfo->getStackRegister();
936 
937   switch (RetOpcode) {
938   default:
939     llvm_unreachable("Can only insert epilog into returning blocks");
940   case X86::RET:
941   case X86::RETI:
942   case X86::TCRETURNdi:
943   case X86::TCRETURNri:
944   case X86::TCRETURNmi:
945   case X86::TCRETURNdi64:
946   case X86::TCRETURNri64:
947   case X86::TCRETURNmi64:
948   case X86::EH_RETURN:
949   case X86::EH_RETURN64:
950     break;  // These are ok
951   }
952 
953   // Get the number of bytes to allocate from the FrameInfo.
954   uint64_t StackSize = MFI->getStackSize();
955   uint64_t MaxAlign  = MFI->getMaxAlignment();
956   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
957   uint64_t NumBytes = 0;
958 
959   // If we're forcing a stack realignment we can't rely on just the frame
960   // info, we need to know the ABI stack alignment as well in case we
961   // have a call out.  Otherwise just make sure we have some alignment - we'll
962   // go with the minimum.
963   if (ForceStackAlign) {
964     if (MFI->hasCalls())
965       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
966     else
967       MaxAlign = MaxAlign ? MaxAlign : 4;
968   }
969 
970   if (hasFP(MF)) {
971     // Calculate required stack adjustment.
972     uint64_t FrameSize = StackSize - SlotSize;
973     if (RegInfo->needsStackRealignment(MF))
974       FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
975 
976     NumBytes = FrameSize - CSSize;
977 
978     // Pop EBP.
979     BuildMI(MBB, MBBI, DL,
980             TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
981   } else {
982     NumBytes = StackSize - CSSize;
983   }
984 
985   // Skip the callee-saved pop instructions.
986   MachineBasicBlock::iterator LastCSPop = MBBI;
987   while (MBBI != MBB.begin()) {
988     MachineBasicBlock::iterator PI = prior(MBBI);
989     unsigned Opc = PI->getOpcode();
990 
991     if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
992         !PI->getDesc().isTerminator())
993       break;
994 
995     --MBBI;
996   }
997 
998   DL = MBBI->getDebugLoc();
999 
1000   // If there is an ADD32ri or SUB32ri of ESP immediately before this
1001   // instruction, merge the two instructions.
1002   if (NumBytes || MFI->hasVarSizedObjects())
1003     mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
1004 
1005   // If dynamic alloca is used, then reset esp to point to the last callee-saved
1006   // slot before popping them off! Same applies for the case, when stack was
1007   // realigned.
1008   if (RegInfo->needsStackRealignment(MF)) {
1009     // We cannot use LEA here, because stack pointer was realigned. We need to
1010     // deallocate local frame back.
1011     if (CSSize) {
1012       emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII, *RegInfo);
1013       MBBI = prior(LastCSPop);
1014     }
1015 
1016     BuildMI(MBB, MBBI, DL,
1017             TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1018             StackPtr).addReg(FramePtr);
1019   } else if (MFI->hasVarSizedObjects()) {
1020     if (CSSize) {
1021       unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
1022       MachineInstr *MI =
1023         addRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
1024                      FramePtr, false, -CSSize);
1025       MBB.insert(MBBI, MI);
1026     } else {
1027       BuildMI(MBB, MBBI, DL,
1028               TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr)
1029         .addReg(FramePtr);
1030     }
1031   } else if (NumBytes) {
1032     // Adjust stack pointer back: ESP += numbytes.
1033     emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII, *RegInfo);
1034   }
1035 
1036   // We're returning from function via eh_return.
1037   if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
1038     MBBI = MBB.getLastNonDebugInstr();
1039     MachineOperand &DestAddr  = MBBI->getOperand(0);
1040     assert(DestAddr.isReg() && "Offset should be in register!");
1041     BuildMI(MBB, MBBI, DL,
1042             TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1043             StackPtr).addReg(DestAddr.getReg());
1044   } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
1045              RetOpcode == X86::TCRETURNmi ||
1046              RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
1047              RetOpcode == X86::TCRETURNmi64) {
1048     bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
1049     // Tail call return: adjust the stack pointer and jump to callee.
1050     MBBI = MBB.getLastNonDebugInstr();
1051     MachineOperand &JumpTarget = MBBI->getOperand(0);
1052     MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
1053     assert(StackAdjust.isImm() && "Expecting immediate value.");
1054 
1055     // Adjust stack pointer.
1056     int StackAdj = StackAdjust.getImm();
1057     int MaxTCDelta = X86FI->getTCReturnAddrDelta();
1058     int Offset = 0;
1059     assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
1060 
1061     // Incoporate the retaddr area.
1062     Offset = StackAdj-MaxTCDelta;
1063     assert(Offset >= 0 && "Offset should never be negative");
1064 
1065     if (Offset) {
1066       // Check for possible merge with preceding ADD instruction.
1067       Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1068       emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII, *RegInfo);
1069     }
1070 
1071     // Jump to label or value in register.
1072     if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
1073       MachineInstrBuilder MIB =
1074         BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
1075                                        ? X86::TAILJMPd : X86::TAILJMPd64));
1076       if (JumpTarget.isGlobal())
1077         MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
1078                              JumpTarget.getTargetFlags());
1079       else {
1080         assert(JumpTarget.isSymbol());
1081         MIB.addExternalSymbol(JumpTarget.getSymbolName(),
1082                               JumpTarget.getTargetFlags());
1083       }
1084     } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
1085       MachineInstrBuilder MIB =
1086         BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
1087                                        ? X86::TAILJMPm : X86::TAILJMPm64));
1088       for (unsigned i = 0; i != 5; ++i)
1089         MIB.addOperand(MBBI->getOperand(i));
1090     } else if (RetOpcode == X86::TCRETURNri64) {
1091       BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
1092         addReg(JumpTarget.getReg(), RegState::Kill);
1093     } else {
1094       BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
1095         addReg(JumpTarget.getReg(), RegState::Kill);
1096     }
1097 
1098     MachineInstr *NewMI = prior(MBBI);
1099     for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i)
1100       NewMI->addOperand(MBBI->getOperand(i));
1101 
1102     // Delete the pseudo instruction TCRETURN.
1103     MBB.erase(MBBI);
1104   } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
1105              (X86FI->getTCReturnAddrDelta() < 0)) {
1106     // Add the return addr area delta back since we are not tail calling.
1107     int delta = -1*X86FI->getTCReturnAddrDelta();
1108     MBBI = MBB.getLastNonDebugInstr();
1109 
1110     // Check for possible merge with preceding ADD instruction.
1111     delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1112     emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII, *RegInfo);
1113   }
1114 }
1115 
getFrameIndexOffset(const MachineFunction & MF,int FI) const1116 int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const {
1117   const X86RegisterInfo *RI =
1118     static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
1119   const MachineFrameInfo *MFI = MF.getFrameInfo();
1120   int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1121   uint64_t StackSize = MFI->getStackSize();
1122 
1123   if (RI->needsStackRealignment(MF)) {
1124     if (FI < 0) {
1125       // Skip the saved EBP.
1126       Offset += RI->getSlotSize();
1127     } else {
1128       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1129       return Offset + StackSize;
1130     }
1131     // FIXME: Support tail calls
1132   } else {
1133     if (!hasFP(MF))
1134       return Offset + StackSize;
1135 
1136     // Skip the saved EBP.
1137     Offset += RI->getSlotSize();
1138 
1139     // Skip the RETADDR move area
1140     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1141     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1142     if (TailCallReturnAddrDelta < 0)
1143       Offset -= TailCallReturnAddrDelta;
1144   }
1145 
1146   return Offset;
1147 }
1148 
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const1149 bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1150                                              MachineBasicBlock::iterator MI,
1151                                         const std::vector<CalleeSavedInfo> &CSI,
1152                                           const TargetRegisterInfo *TRI) const {
1153   if (CSI.empty())
1154     return false;
1155 
1156   DebugLoc DL = MBB.findDebugLoc(MI);
1157 
1158   MachineFunction &MF = *MBB.getParent();
1159 
1160   unsigned SlotSize = STI.is64Bit() ? 8 : 4;
1161   unsigned FPReg = TRI->getFrameRegister(MF);
1162   unsigned CalleeFrameSize = 0;
1163 
1164   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
1165   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1166 
1167   // Push GPRs. It increases frame size.
1168   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
1169   for (unsigned i = CSI.size(); i != 0; --i) {
1170     unsigned Reg = CSI[i-1].getReg();
1171     if (!X86::GR64RegClass.contains(Reg) &&
1172         !X86::GR32RegClass.contains(Reg))
1173       continue;
1174     // Add the callee-saved register as live-in. It's killed at the spill.
1175     MBB.addLiveIn(Reg);
1176     if (Reg == FPReg)
1177       // X86RegisterInfo::emitPrologue will handle spilling of frame register.
1178       continue;
1179     CalleeFrameSize += SlotSize;
1180     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
1181       .setMIFlag(MachineInstr::FrameSetup);
1182   }
1183 
1184   X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
1185 
1186   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
1187   // It can be done by spilling XMMs to stack frame.
1188   // Note that only Win64 ABI might spill XMMs.
1189   for (unsigned i = CSI.size(); i != 0; --i) {
1190     unsigned Reg = CSI[i-1].getReg();
1191     if (X86::GR64RegClass.contains(Reg) ||
1192         X86::GR32RegClass.contains(Reg))
1193       continue;
1194     // Add the callee-saved register as live-in. It's killed at the spill.
1195     MBB.addLiveIn(Reg);
1196     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1197     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
1198                             RC, TRI);
1199   }
1200 
1201   return true;
1202 }
1203 
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const1204 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1205                                                MachineBasicBlock::iterator MI,
1206                                         const std::vector<CalleeSavedInfo> &CSI,
1207                                           const TargetRegisterInfo *TRI) const {
1208   if (CSI.empty())
1209     return false;
1210 
1211   DebugLoc DL = MBB.findDebugLoc(MI);
1212 
1213   MachineFunction &MF = *MBB.getParent();
1214   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
1215 
1216   // Reload XMMs from stack frame.
1217   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1218     unsigned Reg = CSI[i].getReg();
1219     if (X86::GR64RegClass.contains(Reg) ||
1220         X86::GR32RegClass.contains(Reg))
1221       continue;
1222     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1223     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
1224                              RC, TRI);
1225   }
1226 
1227   // POP GPRs.
1228   unsigned FPReg = TRI->getFrameRegister(MF);
1229   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
1230   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1231     unsigned Reg = CSI[i].getReg();
1232     if (!X86::GR64RegClass.contains(Reg) &&
1233         !X86::GR32RegClass.contains(Reg))
1234       continue;
1235     if (Reg == FPReg)
1236       // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
1237       continue;
1238     BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
1239   }
1240   return true;
1241 }
1242 
1243 void
processFunctionBeforeCalleeSavedScan(MachineFunction & MF,RegScavenger * RS) const1244 X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
1245                                                    RegScavenger *RS) const {
1246   MachineFrameInfo *MFI = MF.getFrameInfo();
1247   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
1248   unsigned SlotSize = RegInfo->getSlotSize();
1249 
1250   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1251   int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1252 
1253   if (TailCallReturnAddrDelta < 0) {
1254     // create RETURNADDR area
1255     //   arg
1256     //   arg
1257     //   RETADDR
1258     //   { ...
1259     //     RETADDR area
1260     //     ...
1261     //   }
1262     //   [EBP]
1263     MFI->CreateFixedObject(-TailCallReturnAddrDelta,
1264                            (-1U*SlotSize)+TailCallReturnAddrDelta, true);
1265   }
1266 
1267   if (hasFP(MF)) {
1268     assert((TailCallReturnAddrDelta <= 0) &&
1269            "The Delta should always be zero or negative");
1270     const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
1271 
1272     // Create a frame entry for the EBP register that must be saved.
1273     int FrameIdx = MFI->CreateFixedObject(SlotSize,
1274                                           -(int)SlotSize +
1275                                           TFI.getOffsetOfLocalArea() +
1276                                           TailCallReturnAddrDelta,
1277                                           true);
1278     assert(FrameIdx == MFI->getObjectIndexBegin() &&
1279            "Slot for EBP register must be last in order to be found!");
1280     (void)FrameIdx;
1281   }
1282 }
1283 
1284 static bool
HasNestArgument(const MachineFunction * MF)1285 HasNestArgument(const MachineFunction *MF) {
1286   const Function *F = MF->getFunction();
1287   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1288        I != E; I++) {
1289     if (I->hasNestAttr())
1290       return true;
1291   }
1292   return false;
1293 }
1294 
1295 static unsigned
GetScratchRegister(bool Is64Bit,const MachineFunction & MF)1296 GetScratchRegister(bool Is64Bit, const MachineFunction &MF) {
1297   if (Is64Bit) {
1298     return X86::R11;
1299   } else {
1300     CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
1301     bool IsNested = HasNestArgument(&MF);
1302 
1303     if (CallingConvention == CallingConv::X86_FastCall) {
1304       if (IsNested) {
1305         report_fatal_error("Segmented stacks does not support fastcall with "
1306                            "nested function.");
1307         return -1;
1308       } else {
1309         return X86::EAX;
1310       }
1311     } else {
1312       if (IsNested)
1313         return X86::EDX;
1314       else
1315         return X86::ECX;
1316     }
1317   }
1318 }
1319 
1320 void
adjustForSegmentedStacks(MachineFunction & MF) const1321 X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
1322   MachineBasicBlock &prologueMBB = MF.front();
1323   MachineFrameInfo *MFI = MF.getFrameInfo();
1324   const X86InstrInfo &TII = *TM.getInstrInfo();
1325   uint64_t StackSize;
1326   bool Is64Bit = STI.is64Bit();
1327   unsigned TlsReg, TlsOffset;
1328   DebugLoc DL;
1329   const X86Subtarget *ST = &MF.getTarget().getSubtarget<X86Subtarget>();
1330 
1331   unsigned ScratchReg = GetScratchRegister(Is64Bit, MF);
1332   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
1333          "Scratch register is live-in");
1334 
1335   if (MF.getFunction()->isVarArg())
1336     report_fatal_error("Segmented stacks do not support vararg functions.");
1337   if (!ST->isTargetLinux())
1338     report_fatal_error("Segmented stacks supported only on linux.");
1339 
1340   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
1341   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
1342   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1343   bool IsNested = false;
1344 
1345   // We need to know if the function has a nest argument only in 64 bit mode.
1346   if (Is64Bit)
1347     IsNested = HasNestArgument(&MF);
1348 
1349   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
1350   // allocMBB needs to be last (terminating) instruction.
1351   MachineBasicBlock *restoreR10MBB = NULL;
1352   if (IsNested)
1353     restoreR10MBB = MF.CreateMachineBasicBlock();
1354 
1355   for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
1356          e = prologueMBB.livein_end(); i != e; i++) {
1357     allocMBB->addLiveIn(*i);
1358     checkMBB->addLiveIn(*i);
1359 
1360     if (IsNested)
1361       restoreR10MBB->addLiveIn(*i);
1362   }
1363 
1364   if (IsNested) {
1365     allocMBB->addLiveIn(X86::R10);
1366     restoreR10MBB->addLiveIn(X86::RAX);
1367   }
1368 
1369   if (IsNested)
1370     MF.push_front(restoreR10MBB);
1371   MF.push_front(allocMBB);
1372   MF.push_front(checkMBB);
1373 
1374   // Eventually StackSize will be calculated by a link-time pass; which will
1375   // also decide whether checking code needs to be injected into this particular
1376   // prologue.
1377   StackSize = MFI->getStackSize();
1378 
1379   // Read the limit off the current stacklet off the stack_guard location.
1380   if (Is64Bit) {
1381     TlsReg = X86::FS;
1382     TlsOffset = 0x70;
1383 
1384     BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
1385       .addImm(0).addReg(0).addImm(-StackSize).addReg(0);
1386     BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
1387       .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
1388   } else {
1389     TlsReg = X86::GS;
1390     TlsOffset = 0x30;
1391 
1392     BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
1393       .addImm(0).addReg(0).addImm(-StackSize).addReg(0);
1394     BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
1395       .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
1396   }
1397 
1398   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
1399   // It jumps to normal execution of the function body.
1400   BuildMI(checkMBB, DL, TII.get(X86::JG_4)).addMBB(&prologueMBB);
1401 
1402   // On 32 bit we first push the arguments size and then the frame size. On 64
1403   // bit, we pass the stack frame size in r10 and the argument size in r11.
1404   if (Is64Bit) {
1405     // Functions with nested arguments use R10, so it needs to be saved across
1406     // the call to _morestack
1407 
1408     if (IsNested)
1409       BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10);
1410 
1411     BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10)
1412       .addImm(StackSize);
1413     BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11)
1414       .addImm(X86FI->getArgumentStackSize());
1415     MF.getRegInfo().setPhysRegUsed(X86::R10);
1416     MF.getRegInfo().setPhysRegUsed(X86::R11);
1417   } else {
1418     // Since we'll call __morestack, stack alignment needs to be preserved.
1419     BuildMI(allocMBB, DL, TII.get(X86::SUB32ri), X86::ESP).addReg(X86::ESP)
1420       .addImm(8);
1421     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
1422       .addImm(X86FI->getArgumentStackSize());
1423     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
1424       .addImm(StackSize);
1425   }
1426 
1427   // __morestack is in libgcc
1428   if (Is64Bit)
1429     BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
1430       .addExternalSymbol("__morestack");
1431   else
1432     BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
1433       .addExternalSymbol("__morestack");
1434 
1435   // __morestack only seems to remove 8 bytes off the stack. Add back the
1436   // additional 8 bytes we added before pushing the arguments.
1437   if (!Is64Bit)
1438     BuildMI(allocMBB, DL, TII.get(X86::ADD32ri), X86::ESP).addReg(X86::ESP)
1439       .addImm(8);
1440   BuildMI(allocMBB, DL, TII.get(X86::RET));
1441 
1442   if (IsNested)
1443     BuildMI(restoreR10MBB, DL, TII.get(X86::MOV64rr), X86::R10)
1444       .addReg(X86::RAX);
1445 
1446   if (IsNested) {
1447     allocMBB->addSuccessor(restoreR10MBB);
1448     restoreR10MBB->addSuccessor(&prologueMBB);
1449   } else {
1450     allocMBB->addSuccessor(&prologueMBB);
1451   }
1452 
1453   checkMBB->addSuccessor(allocMBB);
1454   checkMBB->addSuccessor(&prologueMBB);
1455 
1456 #ifdef XDEBUG
1457   MF.verify();
1458 #endif
1459 }
1460