1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/DerivedUser.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/Statepoint.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/ManagedStatic.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 
40 using namespace llvm;
41 
42 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
43     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
44     cl::desc("Maximum size for the name of non-global values."));
45 
46 //===----------------------------------------------------------------------===//
47 //                                Value Class
48 //===----------------------------------------------------------------------===//
checkType(Type * Ty)49 static inline Type *checkType(Type *Ty) {
50   assert(Ty && "Value defined with a null type: Error!");
51   return Ty;
52 }
53 
Value(Type * ty,unsigned scid)54 Value::Value(Type *ty, unsigned scid)
55     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
56       HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
57       NumUserOperands(0), IsUsedByMD(false), HasName(false) {
58   static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
59   // FIXME: Why isn't this in the subclass gunk??
60   // Note, we cannot call isa<CallInst> before the CallInst has been
61   // constructed.
62   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
63     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
64            "invalid CallInst type!");
65   else if (SubclassID != BasicBlockVal &&
66            (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
67     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
68            "Cannot create non-first-class values except for constants!");
69   static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
70                 "Value too big");
71 }
72 
~Value()73 Value::~Value() {
74   // Notify all ValueHandles (if present) that this value is going away.
75   if (HasValueHandle)
76     ValueHandleBase::ValueIsDeleted(this);
77   if (isUsedByMetadata())
78     ValueAsMetadata::handleDeletion(this);
79 
80 #ifndef NDEBUG      // Only in -g mode...
81   // Check to make sure that there are no uses of this value that are still
82   // around when the value is destroyed.  If there are, then we have a dangling
83   // reference and something is wrong.  This code is here to print out where
84   // the value is still being referenced.
85   //
86   if (!use_empty()) {
87     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
88     for (auto *U : users())
89       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
90   }
91 #endif
92   assert(use_empty() && "Uses remain when a value is destroyed!");
93 
94   // If this value is named, destroy the name.  This should not be in a symtab
95   // at this point.
96   destroyValueName();
97 }
98 
deleteValue()99 void Value::deleteValue() {
100   switch (getValueID()) {
101 #define HANDLE_VALUE(Name)                                                     \
102   case Value::Name##Val:                                                       \
103     delete static_cast<Name *>(this);                                          \
104     break;
105 #define HANDLE_MEMORY_VALUE(Name)                                              \
106   case Value::Name##Val:                                                       \
107     static_cast<DerivedUser *>(this)->DeleteValue(                             \
108         static_cast<DerivedUser *>(this));                                     \
109     break;
110 #define HANDLE_INSTRUCTION(Name)  /* nothing */
111 #include "llvm/IR/Value.def"
112 
113 #define HANDLE_INST(N, OPC, CLASS)                                             \
114   case Value::InstructionVal + Instruction::OPC:                               \
115     delete static_cast<CLASS *>(this);                                         \
116     break;
117 #define HANDLE_USER_INST(N, OPC, CLASS)
118 #include "llvm/IR/Instruction.def"
119 
120   default:
121     llvm_unreachable("attempting to delete unknown value kind");
122   }
123 }
124 
destroyValueName()125 void Value::destroyValueName() {
126   ValueName *Name = getValueName();
127   if (Name)
128     Name->Destroy();
129   setValueName(nullptr);
130 }
131 
hasNUses(unsigned N) const132 bool Value::hasNUses(unsigned N) const {
133   const_use_iterator UI = use_begin(), E = use_end();
134 
135   for (; N; --N, ++UI)
136     if (UI == E) return false;  // Too few.
137   return UI == E;
138 }
139 
hasNUsesOrMore(unsigned N) const140 bool Value::hasNUsesOrMore(unsigned N) const {
141   const_use_iterator UI = use_begin(), E = use_end();
142 
143   for (; N; --N, ++UI)
144     if (UI == E) return false;  // Too few.
145 
146   return true;
147 }
148 
isUsedInBasicBlock(const BasicBlock * BB) const149 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
150   // This can be computed either by scanning the instructions in BB, or by
151   // scanning the use list of this Value. Both lists can be very long, but
152   // usually one is quite short.
153   //
154   // Scan both lists simultaneously until one is exhausted. This limits the
155   // search to the shorter list.
156   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
157   const_user_iterator UI = user_begin(), UE = user_end();
158   for (; BI != BE && UI != UE; ++BI, ++UI) {
159     // Scan basic block: Check if this Value is used by the instruction at BI.
160     if (is_contained(BI->operands(), this))
161       return true;
162     // Scan use list: Check if the use at UI is in BB.
163     const auto *User = dyn_cast<Instruction>(*UI);
164     if (User && User->getParent() == BB)
165       return true;
166   }
167   return false;
168 }
169 
getNumUses() const170 unsigned Value::getNumUses() const {
171   return (unsigned)std::distance(use_begin(), use_end());
172 }
173 
getSymTab(Value * V,ValueSymbolTable * & ST)174 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
175   ST = nullptr;
176   if (Instruction *I = dyn_cast<Instruction>(V)) {
177     if (BasicBlock *P = I->getParent())
178       if (Function *PP = P->getParent())
179         ST = PP->getValueSymbolTable();
180   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
181     if (Function *P = BB->getParent())
182       ST = P->getValueSymbolTable();
183   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
184     if (Module *P = GV->getParent())
185       ST = &P->getValueSymbolTable();
186   } else if (Argument *A = dyn_cast<Argument>(V)) {
187     if (Function *P = A->getParent())
188       ST = P->getValueSymbolTable();
189   } else {
190     assert(isa<Constant>(V) && "Unknown value type!");
191     return true;  // no name is setable for this.
192   }
193   return false;
194 }
195 
getValueName() const196 ValueName *Value::getValueName() const {
197   if (!HasName) return nullptr;
198 
199   LLVMContext &Ctx = getContext();
200   auto I = Ctx.pImpl->ValueNames.find(this);
201   assert(I != Ctx.pImpl->ValueNames.end() &&
202          "No name entry found!");
203 
204   return I->second;
205 }
206 
setValueName(ValueName * VN)207 void Value::setValueName(ValueName *VN) {
208   LLVMContext &Ctx = getContext();
209 
210   assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
211          "HasName bit out of sync!");
212 
213   if (!VN) {
214     if (HasName)
215       Ctx.pImpl->ValueNames.erase(this);
216     HasName = false;
217     return;
218   }
219 
220   HasName = true;
221   Ctx.pImpl->ValueNames[this] = VN;
222 }
223 
getName() const224 StringRef Value::getName() const {
225   // Make sure the empty string is still a C string. For historical reasons,
226   // some clients want to call .data() on the result and expect it to be null
227   // terminated.
228   if (!hasName())
229     return StringRef("", 0);
230   return getValueName()->getKey();
231 }
232 
setNameImpl(const Twine & NewName)233 void Value::setNameImpl(const Twine &NewName) {
234   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
235   if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
236     return;
237 
238   // Fast path for common IRBuilder case of setName("") when there is no name.
239   if (NewName.isTriviallyEmpty() && !hasName())
240     return;
241 
242   SmallString<256> NameData;
243   StringRef NameRef = NewName.toStringRef(NameData);
244   assert(NameRef.find_first_of(0) == StringRef::npos &&
245          "Null bytes are not allowed in names");
246 
247   // Name isn't changing?
248   if (getName() == NameRef)
249     return;
250 
251   // Cap the size of non-GlobalValue names.
252   if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
253     NameRef =
254         NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
255 
256   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
257 
258   // Get the symbol table to update for this object.
259   ValueSymbolTable *ST;
260   if (getSymTab(this, ST))
261     return;  // Cannot set a name on this value (e.g. constant).
262 
263   if (!ST) { // No symbol table to update?  Just do the change.
264     if (NameRef.empty()) {
265       // Free the name for this value.
266       destroyValueName();
267       return;
268     }
269 
270     // NOTE: Could optimize for the case the name is shrinking to not deallocate
271     // then reallocated.
272     destroyValueName();
273 
274     // Create the new name.
275     setValueName(ValueName::Create(NameRef));
276     getValueName()->setValue(this);
277     return;
278   }
279 
280   // NOTE: Could optimize for the case the name is shrinking to not deallocate
281   // then reallocated.
282   if (hasName()) {
283     // Remove old name.
284     ST->removeValueName(getValueName());
285     destroyValueName();
286 
287     if (NameRef.empty())
288       return;
289   }
290 
291   // Name is changing to something new.
292   setValueName(ST->createValueName(NameRef, this));
293 }
294 
setName(const Twine & NewName)295 void Value::setName(const Twine &NewName) {
296   setNameImpl(NewName);
297   if (Function *F = dyn_cast<Function>(this))
298     F->recalculateIntrinsicID();
299 }
300 
takeName(Value * V)301 void Value::takeName(Value *V) {
302   ValueSymbolTable *ST = nullptr;
303   // If this value has a name, drop it.
304   if (hasName()) {
305     // Get the symtab this is in.
306     if (getSymTab(this, ST)) {
307       // We can't set a name on this value, but we need to clear V's name if
308       // it has one.
309       if (V->hasName()) V->setName("");
310       return;  // Cannot set a name on this value (e.g. constant).
311     }
312 
313     // Remove old name.
314     if (ST)
315       ST->removeValueName(getValueName());
316     destroyValueName();
317   }
318 
319   // Now we know that this has no name.
320 
321   // If V has no name either, we're done.
322   if (!V->hasName()) return;
323 
324   // Get this's symtab if we didn't before.
325   if (!ST) {
326     if (getSymTab(this, ST)) {
327       // Clear V's name.
328       V->setName("");
329       return;  // Cannot set a name on this value (e.g. constant).
330     }
331   }
332 
333   // Get V's ST, this should always succed, because V has a name.
334   ValueSymbolTable *VST;
335   bool Failure = getSymTab(V, VST);
336   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
337 
338   // If these values are both in the same symtab, we can do this very fast.
339   // This works even if both values have no symtab yet.
340   if (ST == VST) {
341     // Take the name!
342     setValueName(V->getValueName());
343     V->setValueName(nullptr);
344     getValueName()->setValue(this);
345     return;
346   }
347 
348   // Otherwise, things are slightly more complex.  Remove V's name from VST and
349   // then reinsert it into ST.
350 
351   if (VST)
352     VST->removeValueName(V->getValueName());
353   setValueName(V->getValueName());
354   V->setValueName(nullptr);
355   getValueName()->setValue(this);
356 
357   if (ST)
358     ST->reinsertValue(this);
359 }
360 
assertModuleIsMaterializedImpl() const361 void Value::assertModuleIsMaterializedImpl() const {
362 #ifndef NDEBUG
363   const GlobalValue *GV = dyn_cast<GlobalValue>(this);
364   if (!GV)
365     return;
366   const Module *M = GV->getParent();
367   if (!M)
368     return;
369   assert(M->isMaterialized());
370 #endif
371 }
372 
373 #ifndef NDEBUG
contains(SmallPtrSetImpl<ConstantExpr * > & Cache,ConstantExpr * Expr,Constant * C)374 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
375                      Constant *C) {
376   if (!Cache.insert(Expr).second)
377     return false;
378 
379   for (auto &O : Expr->operands()) {
380     if (O == C)
381       return true;
382     auto *CE = dyn_cast<ConstantExpr>(O);
383     if (!CE)
384       continue;
385     if (contains(Cache, CE, C))
386       return true;
387   }
388   return false;
389 }
390 
contains(Value * Expr,Value * V)391 static bool contains(Value *Expr, Value *V) {
392   if (Expr == V)
393     return true;
394 
395   auto *C = dyn_cast<Constant>(V);
396   if (!C)
397     return false;
398 
399   auto *CE = dyn_cast<ConstantExpr>(Expr);
400   if (!CE)
401     return false;
402 
403   SmallPtrSet<ConstantExpr *, 4> Cache;
404   return contains(Cache, CE, C);
405 }
406 #endif // NDEBUG
407 
doRAUW(Value * New,bool NoMetadata)408 void Value::doRAUW(Value *New, bool NoMetadata) {
409   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
410   assert(!contains(New, this) &&
411          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
412   assert(New->getType() == getType() &&
413          "replaceAllUses of value with new value of different type!");
414 
415   // Notify all ValueHandles (if present) that this value is going away.
416   if (HasValueHandle)
417     ValueHandleBase::ValueIsRAUWd(this, New);
418   if (!NoMetadata && isUsedByMetadata())
419     ValueAsMetadata::handleRAUW(this, New);
420 
421   while (!materialized_use_empty()) {
422     Use &U = *UseList;
423     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
424     // constant because they are uniqued.
425     if (auto *C = dyn_cast<Constant>(U.getUser())) {
426       if (!isa<GlobalValue>(C)) {
427         C->handleOperandChange(this, New);
428         continue;
429       }
430     }
431 
432     U.set(New);
433   }
434 
435   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
436     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
437 }
438 
replaceAllUsesWith(Value * New)439 void Value::replaceAllUsesWith(Value *New) {
440   doRAUW(New, false /* NoMetadata */);
441 }
442 
replaceNonMetadataUsesWith(Value * New)443 void Value::replaceNonMetadataUsesWith(Value *New) {
444   doRAUW(New, true /* NoMetadata */);
445 }
446 
447 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
448 // This routine leaves uses within BB.
replaceUsesOutsideBlock(Value * New,BasicBlock * BB)449 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
450   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
451   assert(!contains(New, this) &&
452          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
453   assert(New->getType() == getType() &&
454          "replaceUses of value with new value of different type!");
455   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
456 
457   use_iterator UI = use_begin(), E = use_end();
458   for (; UI != E;) {
459     Use &U = *UI;
460     ++UI;
461     auto *Usr = dyn_cast<Instruction>(U.getUser());
462     if (Usr && Usr->getParent() == BB)
463       continue;
464     U.set(New);
465   }
466 }
467 
468 namespace {
469 // Various metrics for how much to strip off of pointers.
470 enum PointerStripKind {
471   PSK_ZeroIndices,
472   PSK_ZeroIndicesAndAliases,
473   PSK_ZeroIndicesAndAliasesAndInvariantGroups,
474   PSK_InBoundsConstantIndices,
475   PSK_InBounds
476 };
477 
478 template <PointerStripKind StripKind>
stripPointerCastsAndOffsets(const Value * V)479 static const Value *stripPointerCastsAndOffsets(const Value *V) {
480   if (!V->getType()->isPointerTy())
481     return V;
482 
483   // Even though we don't look through PHI nodes, we could be called on an
484   // instruction in an unreachable block, which may be on a cycle.
485   SmallPtrSet<const Value *, 4> Visited;
486 
487   Visited.insert(V);
488   do {
489     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
490       switch (StripKind) {
491       case PSK_ZeroIndicesAndAliases:
492       case PSK_ZeroIndicesAndAliasesAndInvariantGroups:
493       case PSK_ZeroIndices:
494         if (!GEP->hasAllZeroIndices())
495           return V;
496         break;
497       case PSK_InBoundsConstantIndices:
498         if (!GEP->hasAllConstantIndices())
499           return V;
500         LLVM_FALLTHROUGH;
501       case PSK_InBounds:
502         if (!GEP->isInBounds())
503           return V;
504         break;
505       }
506       V = GEP->getPointerOperand();
507     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
508                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
509       V = cast<Operator>(V)->getOperand(0);
510     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
511       if (StripKind == PSK_ZeroIndices || GA->isInterposable())
512         return V;
513       V = GA->getAliasee();
514     } else {
515       if (auto CS = ImmutableCallSite(V)) {
516         if (const Value *RV = CS.getReturnedArgOperand()) {
517           V = RV;
518           continue;
519         }
520         // The result of launder.invariant.group must alias it's argument,
521         // but it can't be marked with returned attribute, that's why it needs
522         // special case.
523         if (StripKind == PSK_ZeroIndicesAndAliasesAndInvariantGroups &&
524             (CS.getIntrinsicID() == Intrinsic::launder_invariant_group ||
525              CS.getIntrinsicID() == Intrinsic::strip_invariant_group)) {
526           V = CS.getArgOperand(0);
527           continue;
528         }
529       }
530       return V;
531     }
532     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
533   } while (Visited.insert(V).second);
534 
535   return V;
536 }
537 } // end anonymous namespace
538 
stripPointerCasts() const539 const Value *Value::stripPointerCasts() const {
540   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
541 }
542 
stripPointerCastsNoFollowAliases() const543 const Value *Value::stripPointerCastsNoFollowAliases() const {
544   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
545 }
546 
stripInBoundsConstantOffsets() const547 const Value *Value::stripInBoundsConstantOffsets() const {
548   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
549 }
550 
stripPointerCastsAndInvariantGroups() const551 const Value *Value::stripPointerCastsAndInvariantGroups() const {
552   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliasesAndInvariantGroups>(
553       this);
554 }
555 
556 const Value *
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset) const557 Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
558                                                  APInt &Offset) const {
559   if (!getType()->isPointerTy())
560     return this;
561 
562   assert(Offset.getBitWidth() == DL.getIndexSizeInBits(cast<PointerType>(
563                                      getType())->getAddressSpace()) &&
564          "The offset bit width does not match the DL specification.");
565 
566   // Even though we don't look through PHI nodes, we could be called on an
567   // instruction in an unreachable block, which may be on a cycle.
568   SmallPtrSet<const Value *, 4> Visited;
569   Visited.insert(this);
570   const Value *V = this;
571   do {
572     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
573       if (!GEP->isInBounds())
574         return V;
575       APInt GEPOffset(Offset);
576       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
577         return V;
578       Offset = GEPOffset;
579       V = GEP->getPointerOperand();
580     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
581       V = cast<Operator>(V)->getOperand(0);
582     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
583       V = GA->getAliasee();
584     } else {
585       if (auto CS = ImmutableCallSite(V))
586         if (const Value *RV = CS.getReturnedArgOperand()) {
587           V = RV;
588           continue;
589         }
590 
591       return V;
592     }
593     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
594   } while (Visited.insert(V).second);
595 
596   return V;
597 }
598 
stripInBoundsOffsets() const599 const Value *Value::stripInBoundsOffsets() const {
600   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
601 }
602 
getPointerDereferenceableBytes(const DataLayout & DL,bool & CanBeNull) const603 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
604                                                bool &CanBeNull) const {
605   assert(getType()->isPointerTy() && "must be pointer");
606 
607   uint64_t DerefBytes = 0;
608   CanBeNull = false;
609   if (const Argument *A = dyn_cast<Argument>(this)) {
610     DerefBytes = A->getDereferenceableBytes();
611     if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
612       Type *PT = cast<PointerType>(A->getType())->getElementType();
613       if (PT->isSized())
614         DerefBytes = DL.getTypeStoreSize(PT);
615     }
616     if (DerefBytes == 0) {
617       DerefBytes = A->getDereferenceableOrNullBytes();
618       CanBeNull = true;
619     }
620   } else if (auto CS = ImmutableCallSite(this)) {
621     DerefBytes = CS.getDereferenceableBytes(AttributeList::ReturnIndex);
622     if (DerefBytes == 0) {
623       DerefBytes = CS.getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
624       CanBeNull = true;
625     }
626   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
627     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
628       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
629       DerefBytes = CI->getLimitedValue();
630     }
631     if (DerefBytes == 0) {
632       if (MDNode *MD =
633               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
634         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
635         DerefBytes = CI->getLimitedValue();
636       }
637       CanBeNull = true;
638     }
639   } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
640     if (!AI->isArrayAllocation()) {
641       DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
642       CanBeNull = false;
643     }
644   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
645     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
646       // TODO: Don't outright reject hasExternalWeakLinkage but set the
647       // CanBeNull flag.
648       DerefBytes = DL.getTypeStoreSize(GV->getValueType());
649       CanBeNull = false;
650     }
651   }
652   return DerefBytes;
653 }
654 
getPointerAlignment(const DataLayout & DL) const655 unsigned Value::getPointerAlignment(const DataLayout &DL) const {
656   assert(getType()->isPointerTy() && "must be pointer");
657 
658   unsigned Align = 0;
659   if (auto *GO = dyn_cast<GlobalObject>(this)) {
660     // Don't make any assumptions about function pointer alignment. Some
661     // targets use the LSBs to store additional information.
662     if (isa<Function>(GO))
663       return 0;
664     Align = GO->getAlignment();
665     if (Align == 0) {
666       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
667         Type *ObjectType = GVar->getValueType();
668         if (ObjectType->isSized()) {
669           // If the object is defined in the current Module, we'll be giving
670           // it the preferred alignment. Otherwise, we have to assume that it
671           // may only have the minimum ABI alignment.
672           if (GVar->isStrongDefinitionForLinker())
673             Align = DL.getPreferredAlignment(GVar);
674           else
675             Align = DL.getABITypeAlignment(ObjectType);
676         }
677       }
678     }
679   } else if (const Argument *A = dyn_cast<Argument>(this)) {
680     Align = A->getParamAlignment();
681 
682     if (!Align && A->hasStructRetAttr()) {
683       // An sret parameter has at least the ABI alignment of the return type.
684       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
685       if (EltTy->isSized())
686         Align = DL.getABITypeAlignment(EltTy);
687     }
688   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
689     Align = AI->getAlignment();
690     if (Align == 0) {
691       Type *AllocatedType = AI->getAllocatedType();
692       if (AllocatedType->isSized())
693         Align = DL.getPrefTypeAlignment(AllocatedType);
694     }
695   } else if (auto CS = ImmutableCallSite(this))
696     Align = CS.getAttributes().getRetAlignment();
697   else if (const LoadInst *LI = dyn_cast<LoadInst>(this))
698     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
699       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
700       Align = CI->getLimitedValue();
701     }
702 
703   return Align;
704 }
705 
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB) const706 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
707                                      const BasicBlock *PredBB) const {
708   auto *PN = dyn_cast<PHINode>(this);
709   if (PN && PN->getParent() == CurBB)
710     return PN->getIncomingValueForBlock(PredBB);
711   return this;
712 }
713 
getContext() const714 LLVMContext &Value::getContext() const { return VTy->getContext(); }
715 
reverseUseList()716 void Value::reverseUseList() {
717   if (!UseList || !UseList->Next)
718     // No need to reverse 0 or 1 uses.
719     return;
720 
721   Use *Head = UseList;
722   Use *Current = UseList->Next;
723   Head->Next = nullptr;
724   while (Current) {
725     Use *Next = Current->Next;
726     Current->Next = Head;
727     Head->setPrev(&Current->Next);
728     Head = Current;
729     Current = Next;
730   }
731   UseList = Head;
732   Head->setPrev(&UseList);
733 }
734 
isSwiftError() const735 bool Value::isSwiftError() const {
736   auto *Arg = dyn_cast<Argument>(this);
737   if (Arg)
738     return Arg->hasSwiftErrorAttr();
739   auto *Alloca = dyn_cast<AllocaInst>(this);
740   if (!Alloca)
741     return false;
742   return Alloca->isSwiftError();
743 }
744 
745 //===----------------------------------------------------------------------===//
746 //                             ValueHandleBase Class
747 //===----------------------------------------------------------------------===//
748 
AddToExistingUseList(ValueHandleBase ** List)749 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
750   assert(List && "Handle list is null?");
751 
752   // Splice ourselves into the list.
753   Next = *List;
754   *List = this;
755   setPrevPtr(List);
756   if (Next) {
757     Next->setPrevPtr(&Next);
758     assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
759   }
760 }
761 
AddToExistingUseListAfter(ValueHandleBase * List)762 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
763   assert(List && "Must insert after existing node");
764 
765   Next = List->Next;
766   setPrevPtr(&List->Next);
767   List->Next = this;
768   if (Next)
769     Next->setPrevPtr(&Next);
770 }
771 
AddToUseList()772 void ValueHandleBase::AddToUseList() {
773   assert(getValPtr() && "Null pointer doesn't have a use list!");
774 
775   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
776 
777   if (getValPtr()->HasValueHandle) {
778     // If this value already has a ValueHandle, then it must be in the
779     // ValueHandles map already.
780     ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
781     assert(Entry && "Value doesn't have any handles?");
782     AddToExistingUseList(&Entry);
783     return;
784   }
785 
786   // Ok, it doesn't have any handles yet, so we must insert it into the
787   // DenseMap.  However, doing this insertion could cause the DenseMap to
788   // reallocate itself, which would invalidate all of the PrevP pointers that
789   // point into the old table.  Handle this by checking for reallocation and
790   // updating the stale pointers only if needed.
791   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
792   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
793 
794   ValueHandleBase *&Entry = Handles[getValPtr()];
795   assert(!Entry && "Value really did already have handles?");
796   AddToExistingUseList(&Entry);
797   getValPtr()->HasValueHandle = true;
798 
799   // If reallocation didn't happen or if this was the first insertion, don't
800   // walk the table.
801   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
802       Handles.size() == 1) {
803     return;
804   }
805 
806   // Okay, reallocation did happen.  Fix the Prev Pointers.
807   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
808        E = Handles.end(); I != E; ++I) {
809     assert(I->second && I->first == I->second->getValPtr() &&
810            "List invariant broken!");
811     I->second->setPrevPtr(&I->second);
812   }
813 }
814 
RemoveFromUseList()815 void ValueHandleBase::RemoveFromUseList() {
816   assert(getValPtr() && getValPtr()->HasValueHandle &&
817          "Pointer doesn't have a use list!");
818 
819   // Unlink this from its use list.
820   ValueHandleBase **PrevPtr = getPrevPtr();
821   assert(*PrevPtr == this && "List invariant broken");
822 
823   *PrevPtr = Next;
824   if (Next) {
825     assert(Next->getPrevPtr() == &Next && "List invariant broken");
826     Next->setPrevPtr(PrevPtr);
827     return;
828   }
829 
830   // If the Next pointer was null, then it is possible that this was the last
831   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
832   // map.
833   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
834   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
835   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
836     Handles.erase(getValPtr());
837     getValPtr()->HasValueHandle = false;
838   }
839 }
840 
ValueIsDeleted(Value * V)841 void ValueHandleBase::ValueIsDeleted(Value *V) {
842   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
843 
844   // Get the linked list base, which is guaranteed to exist since the
845   // HasValueHandle flag is set.
846   LLVMContextImpl *pImpl = V->getContext().pImpl;
847   ValueHandleBase *Entry = pImpl->ValueHandles[V];
848   assert(Entry && "Value bit set but no entries exist");
849 
850   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
851   // and remove themselves from the list without breaking our iteration.  This
852   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
853   // Note that we deliberately do not the support the case when dropping a value
854   // handle results in a new value handle being permanently added to the list
855   // (as might occur in theory for CallbackVH's): the new value handle will not
856   // be processed and the checking code will mete out righteous punishment if
857   // the handle is still present once we have finished processing all the other
858   // value handles (it is fine to momentarily add then remove a value handle).
859   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
860     Iterator.RemoveFromUseList();
861     Iterator.AddToExistingUseListAfter(Entry);
862     assert(Entry->Next == &Iterator && "Loop invariant broken.");
863 
864     switch (Entry->getKind()) {
865     case Assert:
866       break;
867     case Weak:
868     case WeakTracking:
869       // WeakTracking and Weak just go to null, which unlinks them
870       // from the list.
871       Entry->operator=(nullptr);
872       break;
873     case Callback:
874       // Forward to the subclass's implementation.
875       static_cast<CallbackVH*>(Entry)->deleted();
876       break;
877     }
878   }
879 
880   // All callbacks, weak references, and assertingVHs should be dropped by now.
881   if (V->HasValueHandle) {
882 #ifndef NDEBUG      // Only in +Asserts mode...
883     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
884            << "\n";
885     if (pImpl->ValueHandles[V]->getKind() == Assert)
886       llvm_unreachable("An asserting value handle still pointed to this"
887                        " value!");
888 
889 #endif
890     llvm_unreachable("All references to V were not removed?");
891   }
892 }
893 
ValueIsRAUWd(Value * Old,Value * New)894 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
895   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
896   assert(Old != New && "Changing value into itself!");
897   assert(Old->getType() == New->getType() &&
898          "replaceAllUses of value with new value of different type!");
899 
900   // Get the linked list base, which is guaranteed to exist since the
901   // HasValueHandle flag is set.
902   LLVMContextImpl *pImpl = Old->getContext().pImpl;
903   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
904 
905   assert(Entry && "Value bit set but no entries exist");
906 
907   // We use a local ValueHandleBase as an iterator so that
908   // ValueHandles can add and remove themselves from the list without
909   // breaking our iteration.  This is not really an AssertingVH; we
910   // just have to give ValueHandleBase some kind.
911   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
912     Iterator.RemoveFromUseList();
913     Iterator.AddToExistingUseListAfter(Entry);
914     assert(Entry->Next == &Iterator && "Loop invariant broken.");
915 
916     switch (Entry->getKind()) {
917     case Assert:
918     case Weak:
919       // Asserting and Weak handles do not follow RAUW implicitly.
920       break;
921     case WeakTracking:
922       // Weak goes to the new value, which will unlink it from Old's list.
923       Entry->operator=(New);
924       break;
925     case Callback:
926       // Forward to the subclass's implementation.
927       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
928       break;
929     }
930   }
931 
932 #ifndef NDEBUG
933   // If any new weak value handles were added while processing the
934   // list, then complain about it now.
935   if (Old->HasValueHandle)
936     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
937       switch (Entry->getKind()) {
938       case WeakTracking:
939         dbgs() << "After RAUW from " << *Old->getType() << " %"
940                << Old->getName() << " to " << *New->getType() << " %"
941                << New->getName() << "\n";
942         llvm_unreachable(
943             "A weak tracking value handle still pointed to the  old value!\n");
944       default:
945         break;
946       }
947 #endif
948 }
949 
950 // Pin the vtable to this file.
anchor()951 void CallbackVH::anchor() {}
952