1 //
2 // Book:      OpenGL(R) ES 2.0 Programming Guide
3 // Authors:   Aaftab Munshi, Dan Ginsburg, Dave Shreiner
4 // ISBN-10:   0321502795
5 // ISBN-13:   9780321502797
6 // Publisher: Addison-Wesley Professional
7 // URLs:      http://safari.informit.com/9780321563835
8 //            http://www.opengles-book.com
9 //
10 
11 /*
12  * (c) 2009 Aaftab Munshi, Dan Ginsburg, Dave Shreiner
13  *
14  * Permission is hereby granted, free of charge, to any person obtaining a
15  * copy of this software and associated documentation files (the "Software"),
16  * to deal in the Software without restriction, including without limitation
17  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
18  * and/or sell copies of the Software, and to permit persons to whom the
19  * Software is furnished to do so, subject to the following conditions:
20  *
21  * The above copyright notice and this permission notice shall be included
22  * in all copies or substantial portions of the Software.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30  * DEALINGS IN THE SOFTWARE.
31  */
32 
33 // ESUtil.c
34 //
35 //    A utility library for OpenGL ES.  This library provides a
36 //    basic common framework for the example applications in the
37 //    OpenGL ES 2.0 Programming Guide.
38 //
39 
40 ///
41 //  Includes
42 //
43 #include "esTransform.h"
44 #include <math.h>
45 #include <string.h>
46 
47 #define PI 3.1415926535897932384626433832795f
48 
49 void
esScale(ESMatrix * result,GLfloat sx,GLfloat sy,GLfloat sz)50 esScale(ESMatrix *result, GLfloat sx, GLfloat sy, GLfloat sz)
51 {
52 	result->m[0][0] *= sx;
53 	result->m[0][1] *= sx;
54 	result->m[0][2] *= sx;
55 	result->m[0][3] *= sx;
56 
57 	result->m[1][0] *= sy;
58 	result->m[1][1] *= sy;
59 	result->m[1][2] *= sy;
60 	result->m[1][3] *= sy;
61 
62 	result->m[2][0] *= sz;
63 	result->m[2][1] *= sz;
64 	result->m[2][2] *= sz;
65 	result->m[2][3] *= sz;
66 }
67 
68 void
esTranslate(ESMatrix * result,GLfloat tx,GLfloat ty,GLfloat tz)69 esTranslate(ESMatrix *result, GLfloat tx, GLfloat ty, GLfloat tz)
70 {
71 	result->m[3][0] += (result->m[0][0] * tx + result->m[1][0] * ty + result->m[2][0] * tz);
72 	result->m[3][1] += (result->m[0][1] * tx + result->m[1][1] * ty + result->m[2][1] * tz);
73 	result->m[3][2] += (result->m[0][2] * tx + result->m[1][2] * ty + result->m[2][2] * tz);
74 	result->m[3][3] += (result->m[0][3] * tx + result->m[1][3] * ty + result->m[2][3] * tz);
75 }
76 
77 void
esRotate(ESMatrix * result,GLfloat angle,GLfloat x,GLfloat y,GLfloat z)78 esRotate(ESMatrix *result, GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
79 {
80 	GLfloat sinAngle, cosAngle;
81 	GLfloat mag = sqrtf(x * x + y * y + z * z);
82 
83 	sinAngle = sinf ( angle * PI / 180.0f );
84 	cosAngle = cosf ( angle * PI / 180.0f );
85 	if ( mag > 0.0f )
86 	{
87 		GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs;
88 		GLfloat oneMinusCos;
89 		ESMatrix rotMat;
90 
91 		x /= mag;
92 		y /= mag;
93 		z /= mag;
94 
95 		xx = x * x;
96 		yy = y * y;
97 		zz = z * z;
98 		xy = x * y;
99 		yz = y * z;
100 		zx = z * x;
101 		xs = x * sinAngle;
102 		ys = y * sinAngle;
103 		zs = z * sinAngle;
104 		oneMinusCos = 1.0f - cosAngle;
105 
106 		rotMat.m[0][0] = (oneMinusCos * xx) + cosAngle;
107 		rotMat.m[0][1] = (oneMinusCos * xy) - zs;
108 		rotMat.m[0][2] = (oneMinusCos * zx) + ys;
109 		rotMat.m[0][3] = 0.0F;
110 
111 		rotMat.m[1][0] = (oneMinusCos * xy) + zs;
112 		rotMat.m[1][1] = (oneMinusCos * yy) + cosAngle;
113 		rotMat.m[1][2] = (oneMinusCos * yz) - xs;
114 		rotMat.m[1][3] = 0.0F;
115 
116 		rotMat.m[2][0] = (oneMinusCos * zx) - ys;
117 		rotMat.m[2][1] = (oneMinusCos * yz) + xs;
118 		rotMat.m[2][2] = (oneMinusCos * zz) + cosAngle;
119 		rotMat.m[2][3] = 0.0F;
120 
121 		rotMat.m[3][0] = 0.0F;
122 		rotMat.m[3][1] = 0.0F;
123 		rotMat.m[3][2] = 0.0F;
124 		rotMat.m[3][3] = 1.0F;
125 
126 		esMatrixMultiply( result, &rotMat, result );
127 	}
128 }
129 
130 void
esFrustum(ESMatrix * result,float left,float right,float bottom,float top,float nearZ,float farZ)131 esFrustum(ESMatrix *result, float left, float right, float bottom, float top, float nearZ, float farZ)
132 {
133 	float       deltaX = right - left;
134 	float       deltaY = top - bottom;
135 	float       deltaZ = farZ - nearZ;
136 	ESMatrix    frust;
137 
138 	if ( (nearZ <= 0.0f) || (farZ <= 0.0f) ||
139 			(deltaX <= 0.0f) || (deltaY <= 0.0f) || (deltaZ <= 0.0f) )
140 		return;
141 
142 	frust.m[0][0] = 2.0f * nearZ / deltaX;
143 	frust.m[0][1] = frust.m[0][2] = frust.m[0][3] = 0.0f;
144 
145 	frust.m[1][1] = 2.0f * nearZ / deltaY;
146 	frust.m[1][0] = frust.m[1][2] = frust.m[1][3] = 0.0f;
147 
148 	frust.m[2][0] = (right + left) / deltaX;
149 	frust.m[2][1] = (top + bottom) / deltaY;
150 	frust.m[2][2] = -(nearZ + farZ) / deltaZ;
151 	frust.m[2][3] = -1.0f;
152 
153 	frust.m[3][2] = -2.0f * nearZ * farZ / deltaZ;
154 	frust.m[3][0] = frust.m[3][1] = frust.m[3][3] = 0.0f;
155 
156 	esMatrixMultiply(result, &frust, result);
157 }
158 
159 
160 void
esPerspective(ESMatrix * result,float fovy,float aspect,float nearZ,float farZ)161 esPerspective(ESMatrix *result, float fovy, float aspect, float nearZ, float farZ)
162 {
163 	GLfloat frustumW, frustumH;
164 
165 	frustumH = tanf( fovy / 360.0f * PI ) * nearZ;
166 	frustumW = frustumH * aspect;
167 
168 	esFrustum( result, -frustumW, frustumW, -frustumH, frustumH, nearZ, farZ );
169 }
170 
171 void
esOrtho(ESMatrix * result,float left,float right,float bottom,float top,float nearZ,float farZ)172 esOrtho(ESMatrix *result, float left, float right, float bottom, float top, float nearZ, float farZ)
173 {
174 	float       deltaX = right - left;
175 	float       deltaY = top - bottom;
176 	float       deltaZ = farZ - nearZ;
177 	ESMatrix    ortho;
178 
179 	if ( (deltaX == 0.0f) || (deltaY == 0.0f) || (deltaZ == 0.0f) )
180 		return;
181 
182 	esMatrixLoadIdentity(&ortho);
183 	ortho.m[0][0] = 2.0f / deltaX;
184 	ortho.m[3][0] = -(right + left) / deltaX;
185 	ortho.m[1][1] = 2.0f / deltaY;
186 	ortho.m[3][1] = -(top + bottom) / deltaY;
187 	ortho.m[2][2] = -2.0f / deltaZ;
188 	ortho.m[3][2] = -(nearZ + farZ) / deltaZ;
189 
190 	esMatrixMultiply(result, &ortho, result);
191 }
192 
193 
194 void
esMatrixMultiply(ESMatrix * result,ESMatrix * srcA,ESMatrix * srcB)195 esMatrixMultiply(ESMatrix *result, ESMatrix *srcA, ESMatrix *srcB)
196 {
197 	ESMatrix    tmp;
198 	int         i;
199 
200 	for (i=0; i<4; i++)
201 	{
202 		tmp.m[i][0] =	(srcA->m[i][0] * srcB->m[0][0]) +
203 				(srcA->m[i][1] * srcB->m[1][0]) +
204 				(srcA->m[i][2] * srcB->m[2][0]) +
205 				(srcA->m[i][3] * srcB->m[3][0]) ;
206 
207 		tmp.m[i][1] =	(srcA->m[i][0] * srcB->m[0][1]) +
208 				(srcA->m[i][1] * srcB->m[1][1]) +
209 				(srcA->m[i][2] * srcB->m[2][1]) +
210 				(srcA->m[i][3] * srcB->m[3][1]) ;
211 
212 		tmp.m[i][2] =	(srcA->m[i][0] * srcB->m[0][2]) +
213 				(srcA->m[i][1] * srcB->m[1][2]) +
214 				(srcA->m[i][2] * srcB->m[2][2]) +
215 				(srcA->m[i][3] * srcB->m[3][2]) ;
216 
217 		tmp.m[i][3] =	(srcA->m[i][0] * srcB->m[0][3]) +
218 				(srcA->m[i][1] * srcB->m[1][3]) +
219 				(srcA->m[i][2] * srcB->m[2][3]) +
220 				(srcA->m[i][3] * srcB->m[3][3]) ;
221 	}
222 	memcpy(result, &tmp, sizeof(ESMatrix));
223 }
224 
225 
226 void
esMatrixLoadIdentity(ESMatrix * result)227 esMatrixLoadIdentity(ESMatrix *result)
228 {
229 	memset(result, 0x0, sizeof(ESMatrix));
230 	result->m[0][0] = 1.0f;
231 	result->m[1][1] = 1.0f;
232 	result->m[2][2] = 1.0f;
233 	result->m[3][3] = 1.0f;
234 }
235 
236