1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2013
4  * Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc
5  */
6 
7 /* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */
8 
9 #ifdef CCDM_ID_DEBUG
10 #define DEBUG
11 #endif
12 
13 #include <common.h>
14 #include <malloc.h>
15 #include <fs.h>
16 #include <i2c.h>
17 #include <mmc.h>
18 #include <tpm-v1.h>
19 #include <u-boot/sha1.h>
20 #include <asm/byteorder.h>
21 #include <asm/unaligned.h>
22 #include <pca9698.h>
23 
24 #undef CCDM_FIRST_STAGE
25 #undef CCDM_SECOND_STAGE
26 #undef CCDM_AUTO_FIRST_STAGE
27 
28 #ifdef CONFIG_DEVELOP
29 #define CCDM_DEVELOP
30 #endif
31 
32 #ifdef CONFIG_TRAILBLAZER
33 #define CCDM_FIRST_STAGE
34 #undef CCDM_SECOND_STAGE
35 #else
36 #undef CCDM_FIRST_STAGE
37 #define CCDM_SECOND_STAGE
38 #endif
39 
40 #if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \
41 	!defined(CCCM_FIRST_STAGE)
42 #define CCDM_AUTO_FIRST_STAGE
43 #endif
44 
45 /* CCDM specific contants */
46 enum {
47 	/* NV indices */
48 	NV_COMMON_DATA_INDEX	= 0x40000001,
49 	/* magics for key blob chains */
50 	MAGIC_KEY_PROGRAM	= 0x68726500,
51 	MAGIC_HMAC		= 0x68616300,
52 	MAGIC_END_OF_CHAIN	= 0x00000000,
53 	/* sizes */
54 	NV_COMMON_DATA_MIN_SIZE	= 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t),
55 };
56 
57 /* other constants */
58 enum {
59 	ESDHC_BOOT_IMAGE_SIG_OFS	= 0x40,
60 	ESDHC_BOOT_IMAGE_SIZE_OFS	= 0x48,
61 	ESDHC_BOOT_IMAGE_ADDR_OFS	= 0x50,
62 	ESDHC_BOOT_IMAGE_TARGET_OFS	= 0x58,
63 	ESDHC_BOOT_IMAGE_ENTRY_OFS	= 0x60,
64 };
65 
66 enum {
67 	I2C_SOC_0 = 0,
68 	I2C_SOC_1 = 1,
69 };
70 
71 struct key_program {
72 	uint32_t magic;
73 	uint32_t code_crc;
74 	uint32_t code_size;
75 	uint8_t code[];
76 };
77 
78 struct h_reg {
79 	bool valid;
80 	uint8_t digest[20];
81 };
82 
83 
84 enum access_mode {
85 	HREG_NONE	= 0,
86 	HREG_RD		= 1,
87 	HREG_WR		= 2,
88 	HREG_RDWR	= 3,
89 };
90 
91 /* register constants */
92 enum {
93 	FIX_HREG_DEVICE_ID_HASH	= 0,
94 	FIX_HREG_SELF_HASH	= 1,
95 	FIX_HREG_STAGE2_HASH	= 2,
96 	FIX_HREG_VENDOR		= 3,
97 	COUNT_FIX_HREGS
98 };
99 
100 
101 /* hre opcodes */
102 enum {
103 	/* opcodes w/o data */
104 	HRE_NOP		= 0x00,
105 	HRE_SYNC	= HRE_NOP,
106 	HRE_CHECK0	= 0x01,
107 	/* opcodes w/o data, w/ sync dst */
108 	/* opcodes w/ data */
109 	HRE_LOAD	= 0x81,
110 	/* opcodes w/data, w/sync dst */
111 	HRE_XOR		= 0xC1,
112 	HRE_AND		= 0xC2,
113 	HRE_OR		= 0xC3,
114 	HRE_EXTEND	= 0xC4,
115 	HRE_LOADKEY	= 0xC5,
116 };
117 
118 /* hre errors */
119 enum {
120 	HRE_E_OK	= 0,
121 	HRE_E_TPM_FAILURE,
122 	HRE_E_INVALID_HREG,
123 };
124 
125 static uint64_t device_id;
126 static uint64_t device_cl;
127 static uint64_t device_type;
128 
129 static uint32_t platform_key_handle;
130 
131 static void(*bl2_entry)(void);
132 
133 static struct h_reg pcr_hregs[24];
134 static struct h_reg fix_hregs[COUNT_FIX_HREGS];
135 static struct h_reg var_hregs[8];
136 static uint32_t hre_tpm_err;
137 static int hre_err = HRE_E_OK;
138 
139 #define IS_PCR_HREG(spec) ((spec) & 0x20)
140 #define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08)
141 #define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10)
142 #define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7))
143 
144 static const uint8_t vendor[] = "Guntermann & Drunck";
145 
146 /**
147  * @brief read a bunch of data from MMC into memory.
148  *
149  * @param mmc	pointer to the mmc structure to use.
150  * @param src	offset where the data starts on MMC/SD device (in bytes).
151  * @param dst	pointer to the location where the read data should be stored.
152  * @param size	number of bytes to read from the MMC/SD device.
153  * @return number of bytes read or -1 on error.
154  */
ccdm_mmc_read(struct mmc * mmc,u64 src,u8 * dst,int size)155 static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size)
156 {
157 	int result = 0;
158 	u32 blk_len, ofs;
159 	ulong block_no, n, cnt;
160 	u8 *tmp_buf = NULL;
161 
162 	if (size <= 0)
163 		goto end;
164 
165 	blk_len = mmc->read_bl_len;
166 	tmp_buf = malloc(blk_len);
167 	if (!tmp_buf)
168 		goto failure;
169 	block_no = src / blk_len;
170 	ofs = src % blk_len;
171 
172 	if (ofs) {
173 		n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
174 			tmp_buf);
175 		if (!n)
176 			goto failure;
177 		result = min(size, (int)(blk_len - ofs));
178 		memcpy(dst, tmp_buf + ofs, result);
179 		dst += result;
180 		size -= result;
181 	}
182 	cnt = size / blk_len;
183 	if (cnt) {
184 		n = mmc->block_dev.block_read(&mmc->block_dev, block_no, cnt,
185 			dst);
186 		if (n != cnt)
187 			goto failure;
188 		size -= cnt * blk_len;
189 		result += cnt * blk_len;
190 		dst += cnt * blk_len;
191 		block_no += cnt;
192 	}
193 	if (size) {
194 		n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
195 			tmp_buf);
196 		if (!n)
197 			goto failure;
198 		memcpy(dst, tmp_buf, size);
199 		result += size;
200 	}
201 	goto end;
202 failure:
203 	result = -1;
204 end:
205 	if (tmp_buf)
206 		free(tmp_buf);
207 	return result;
208 }
209 
210 /**
211  * @brief returns a location where the 2nd stage bootloader can be(/ is) placed.
212  *
213  * @return pointer to the location for/of the 2nd stage bootloader
214  */
get_2nd_stage_bl_location(ulong target_addr)215 static u8 *get_2nd_stage_bl_location(ulong target_addr)
216 {
217 	ulong addr;
218 #ifdef CCDM_SECOND_STAGE
219 	addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
220 #else
221 	addr = target_addr;
222 #endif
223 	return (u8 *)(addr);
224 }
225 
226 
227 #ifdef CCDM_SECOND_STAGE
228 /**
229  * @brief returns a location where the image can be(/ is) placed.
230  *
231  * @return pointer to the location for/of the image
232  */
get_image_location(void)233 static u8 *get_image_location(void)
234 {
235 	ulong addr;
236 	/* TODO use other area? */
237 	addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
238 	return (u8 *)(addr);
239 }
240 #endif
241 
242 /**
243  * @brief get the size of a given (TPM) NV area
244  * @param index	NV index of the area to get size for
245  * @param size	pointer to the size
246  * @return 0 on success, != 0 on error
247  */
get_tpm_nv_size(uint32_t index,uint32_t * size)248 static int get_tpm_nv_size(uint32_t index, uint32_t *size)
249 {
250 	uint32_t err;
251 	uint8_t info[72];
252 	uint8_t *ptr;
253 	uint16_t v16;
254 
255 	err = tpm_get_capability(TPM_CAP_NV_INDEX, index,
256 		info, sizeof(info));
257 	if (err) {
258 		printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n",
259 		       index, err);
260 		return 1;
261 	}
262 
263 	/* skip tag and nvIndex */
264 	ptr = info + 6;
265 	/* skip 2 pcr info fields */
266 	v16 = get_unaligned_be16(ptr);
267 	ptr += 2 + v16 + 1 + 20;
268 	v16 = get_unaligned_be16(ptr);
269 	ptr += 2 + v16 + 1 + 20;
270 	/* skip permission and flags */
271 	ptr += 6 + 3;
272 
273 	*size = get_unaligned_be32(ptr);
274 	return 0;
275 }
276 
277 /**
278  * @brief search for a key by usage auth and pub key hash.
279  * @param auth	usage auth of the key to search for
280  * @param pubkey_digest	(SHA1) hash of the pub key structure of the key
281  * @param[out] handle	the handle of the key iff found
282  * @return 0 if key was found in TPM; != 0 if not.
283  */
find_key(const uint8_t auth[20],const uint8_t pubkey_digest[20],uint32_t * handle)284 static int find_key(const uint8_t auth[20], const uint8_t pubkey_digest[20],
285 		uint32_t *handle)
286 {
287 	uint16_t key_count;
288 	uint32_t key_handles[10];
289 	uint8_t buf[288];
290 	uint8_t *ptr;
291 	uint32_t err;
292 	uint8_t digest[20];
293 	size_t buf_len;
294 	unsigned int i;
295 
296 	/* fetch list of already loaded keys in the TPM */
297 	err = tpm_get_capability(TPM_CAP_HANDLE, TPM_RT_KEY, buf, sizeof(buf));
298 	if (err)
299 		return -1;
300 	key_count = get_unaligned_be16(buf);
301 	ptr = buf + 2;
302 	for (i = 0; i < key_count; ++i, ptr += 4)
303 		key_handles[i] = get_unaligned_be32(ptr);
304 
305 	/* now search a(/ the) key which we can access with the given auth */
306 	for (i = 0; i < key_count; ++i) {
307 		buf_len = sizeof(buf);
308 		err = tpm_get_pub_key_oiap(key_handles[i], auth, buf, &buf_len);
309 		if (err && err != TPM_AUTHFAIL)
310 			return -1;
311 		if (err)
312 			continue;
313 		sha1_csum(buf, buf_len, digest);
314 		if (!memcmp(digest, pubkey_digest, 20)) {
315 			*handle = key_handles[i];
316 			return 0;
317 		}
318 	}
319 	return 1;
320 }
321 
322 /**
323  * @brief read CCDM common data from TPM NV
324  * @return 0 if CCDM common data was found and read, !=0 if something failed.
325  */
read_common_data(void)326 static int read_common_data(void)
327 {
328 	uint32_t size;
329 	uint32_t err;
330 	uint8_t buf[256];
331 	sha1_context ctx;
332 
333 	if (get_tpm_nv_size(NV_COMMON_DATA_INDEX, &size) ||
334 	    size < NV_COMMON_DATA_MIN_SIZE)
335 		return 1;
336 	err = tpm_nv_read_value(NV_COMMON_DATA_INDEX,
337 		buf, min(sizeof(buf), size));
338 	if (err) {
339 		printf("tpm_nv_read_value() failed: %u\n", err);
340 		return 1;
341 	}
342 
343 	device_id = get_unaligned_be64(buf);
344 	device_cl = get_unaligned_be64(buf + 8);
345 	device_type = get_unaligned_be64(buf + 16);
346 
347 	sha1_starts(&ctx);
348 	sha1_update(&ctx, buf, 24);
349 	sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest);
350 	fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true;
351 
352 	platform_key_handle = get_unaligned_be32(buf + 24);
353 
354 	return 0;
355 }
356 
357 /**
358  * @brief compute hash of bootloader itself.
359  * @param[out] dst	hash register where the hash should be stored
360  * @return 0 on success, != 0 on failure.
361  *
362  * @note MUST be called at a time where the boot loader is accessible at the
363  * configured location (; so take care when code is reallocated).
364  */
compute_self_hash(struct h_reg * dst)365 static int compute_self_hash(struct h_reg *dst)
366 {
367 	sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE,
368 		  CONFIG_SYS_MONITOR_LEN, dst->digest);
369 	dst->valid = true;
370 	return 0;
371 }
372 
ccdm_compute_self_hash(void)373 int ccdm_compute_self_hash(void)
374 {
375 	if (!fix_hregs[FIX_HREG_SELF_HASH].valid)
376 		compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]);
377 	return 0;
378 }
379 
380 /**
381  * @brief compute the hash of the 2nd stage boot loader (on SD card)
382  * @param[out] dst	hash register to store the computed hash
383  * @return 0 on success, != 0 on failure
384  *
385  * Determines the size and location of the 2nd stage boot loader on SD card,
386  * loads the 2nd stage boot loader and computes the (SHA1) hash value.
387  * Within the 1st stage boot loader, the 2nd stage boot loader is loaded at
388  * the desired memory location and the variable @a bl2_entry is set.
389  *
390  * @note This sets the variable @a bl2_entry to the entry point when the
391  * 2nd stage boot loader is loaded at its configured memory location.
392  */
compute_second_stage_hash(struct h_reg * dst)393 static int compute_second_stage_hash(struct h_reg *dst)
394 {
395 	int result = 0;
396 	u32 code_len, code_offset, target_addr, exec_entry;
397 	struct mmc *mmc;
398 	u8 *load_addr = NULL;
399 	u8 buf[128];
400 
401 	mmc = find_mmc_device(0);
402 	if (!mmc)
403 		goto failure;
404 	mmc_init(mmc);
405 
406 	if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0)
407 		goto failure;
408 
409 	code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
410 	code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
411 	target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS);
412 	exec_entry =  *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS);
413 
414 	load_addr = get_2nd_stage_bl_location(target_addr);
415 	if (load_addr == (u8 *)target_addr)
416 		bl2_entry = (void(*)(void))exec_entry;
417 
418 	if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0)
419 		goto failure;
420 
421 	sha1_csum(load_addr, code_len, dst->digest);
422 	dst->valid = true;
423 
424 	goto end;
425 failure:
426 	result = 1;
427 	bl2_entry = NULL;
428 end:
429 	return result;
430 }
431 
432 /**
433  * @brief get pointer to  hash register by specification
434  * @param spec	specification of a hash register
435  * @return pointer to hash register or NULL if @a spec does not qualify a
436  * valid hash register; NULL else.
437  */
get_hreg(uint8_t spec)438 static struct h_reg *get_hreg(uint8_t spec)
439 {
440 	uint8_t idx;
441 
442 	idx = HREG_IDX(spec);
443 	if (IS_FIX_HREG(spec)) {
444 		if (idx < ARRAY_SIZE(fix_hregs))
445 			return fix_hregs + idx;
446 		hre_err = HRE_E_INVALID_HREG;
447 	} else if (IS_PCR_HREG(spec)) {
448 		if (idx < ARRAY_SIZE(pcr_hregs))
449 			return pcr_hregs + idx;
450 		hre_err = HRE_E_INVALID_HREG;
451 	} else if (IS_VAR_HREG(spec)) {
452 		if (idx < ARRAY_SIZE(var_hregs))
453 			return var_hregs + idx;
454 		hre_err = HRE_E_INVALID_HREG;
455 	}
456 	return NULL;
457 }
458 
459 /**
460  * @brief get pointer of a hash register by specification and usage.
461  * @param spec	specification of a hash register
462  * @param mode	access mode (read or write or read/write)
463  * @return pointer to hash register if found and valid; NULL else.
464  *
465  * This func uses @a get_reg() to determine the hash register for a given spec.
466  * If a register is found it is validated according to the desired access mode.
467  * The value of automatic registers (PCR register and fixed registers) is
468  * loaded or computed on read access.
469  */
access_hreg(uint8_t spec,enum access_mode mode)470 static struct h_reg *access_hreg(uint8_t spec, enum access_mode mode)
471 {
472 	struct h_reg *result;
473 
474 	result = get_hreg(spec);
475 	if (!result)
476 		return NULL;
477 
478 	if (mode & HREG_WR) {
479 		if (IS_FIX_HREG(spec)) {
480 			hre_err = HRE_E_INVALID_HREG;
481 			return NULL;
482 		}
483 	}
484 	if (mode & HREG_RD) {
485 		if (!result->valid) {
486 			if (IS_PCR_HREG(spec)) {
487 				hre_tpm_err = tpm_pcr_read(HREG_IDX(spec),
488 					result->digest, 20);
489 				result->valid = (hre_tpm_err == TPM_SUCCESS);
490 			} else if (IS_FIX_HREG(spec)) {
491 				switch (HREG_IDX(spec)) {
492 				case FIX_HREG_DEVICE_ID_HASH:
493 					read_common_data();
494 					break;
495 				case FIX_HREG_SELF_HASH:
496 					ccdm_compute_self_hash();
497 					break;
498 				case FIX_HREG_STAGE2_HASH:
499 					compute_second_stage_hash(result);
500 					break;
501 				case FIX_HREG_VENDOR:
502 					memcpy(result->digest, vendor, 20);
503 					result->valid = true;
504 					break;
505 				}
506 			} else {
507 				result->valid = true;
508 			}
509 		}
510 		if (!result->valid) {
511 			hre_err = HRE_E_INVALID_HREG;
512 			return NULL;
513 		}
514 	}
515 
516 	return result;
517 }
518 
compute_and(void * _dst,const void * _src,size_t n)519 static void *compute_and(void *_dst, const void *_src, size_t n)
520 {
521 	uint8_t *dst = _dst;
522 	const uint8_t *src = _src;
523 	size_t i;
524 
525 	for (i = n; i-- > 0; )
526 		*dst++ &= *src++;
527 
528 	return _dst;
529 }
530 
compute_or(void * _dst,const void * _src,size_t n)531 static void *compute_or(void *_dst, const void *_src, size_t n)
532 {
533 	uint8_t *dst = _dst;
534 	const uint8_t *src = _src;
535 	size_t i;
536 
537 	for (i = n; i-- > 0; )
538 		*dst++ |= *src++;
539 
540 	return _dst;
541 }
542 
compute_xor(void * _dst,const void * _src,size_t n)543 static void *compute_xor(void *_dst, const void *_src, size_t n)
544 {
545 	uint8_t *dst = _dst;
546 	const uint8_t *src = _src;
547 	size_t i;
548 
549 	for (i = n; i-- > 0; )
550 		*dst++ ^= *src++;
551 
552 	return _dst;
553 }
554 
compute_extend(void * _dst,const void * _src,size_t n)555 static void *compute_extend(void *_dst, const void *_src, size_t n)
556 {
557 	uint8_t digest[20];
558 	sha1_context ctx;
559 
560 	sha1_starts(&ctx);
561 	sha1_update(&ctx, _dst, n);
562 	sha1_update(&ctx, _src, n);
563 	sha1_finish(&ctx, digest);
564 	memcpy(_dst, digest, min(n, sizeof(digest)));
565 
566 	return _dst;
567 }
568 
hre_op_loadkey(struct h_reg * src_reg,struct h_reg * dst_reg,const void * key,size_t key_size)569 static int hre_op_loadkey(struct h_reg *src_reg, struct h_reg *dst_reg,
570 		const void *key, size_t key_size)
571 {
572 	uint32_t parent_handle;
573 	uint32_t key_handle;
574 
575 	if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid)
576 		return -1;
577 	if (find_key(src_reg->digest, dst_reg->digest, &parent_handle))
578 		return -1;
579 	hre_tpm_err = tpm_load_key2_oiap(parent_handle, key, key_size,
580 		src_reg->digest, &key_handle);
581 	if (hre_tpm_err) {
582 		hre_err = HRE_E_TPM_FAILURE;
583 		return -1;
584 	}
585 	/* TODO remember key handle somehow? */
586 
587 	return 0;
588 }
589 
590 /**
591  * @brief executes the next opcode on the hash register engine.
592  * @param[in,out] ip	pointer to the opcode (instruction pointer)
593  * @param[in,out] code_size	(remaining) size of the code
594  * @return new instruction pointer on success, NULL on error.
595  */
hre_execute_op(const uint8_t ** ip,size_t * code_size)596 static const uint8_t *hre_execute_op(const uint8_t **ip, size_t *code_size)
597 {
598 	bool dst_modified = false;
599 	uint32_t ins;
600 	uint8_t opcode;
601 	uint8_t src_spec;
602 	uint8_t dst_spec;
603 	uint16_t data_size;
604 	struct h_reg *src_reg, *dst_reg;
605 	uint8_t buf[20];
606 	const uint8_t *src_buf, *data;
607 	uint8_t *ptr;
608 	int i;
609 	void * (*bin_func)(void *, const void *, size_t);
610 
611 	if (*code_size < 4)
612 		return NULL;
613 
614 	ins = get_unaligned_be32(*ip);
615 	opcode = **ip;
616 	data = *ip + 4;
617 	src_spec = (ins >> 18) & 0x3f;
618 	dst_spec = (ins >> 12) & 0x3f;
619 	data_size = (ins & 0x7ff);
620 
621 	debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins,
622 	      opcode, src_spec, dst_spec, data_size);
623 
624 	if ((opcode & 0x80) && (data_size + 4) > *code_size)
625 		return NULL;
626 
627 	src_reg = access_hreg(src_spec, HREG_RD);
628 	if (hre_err || hre_tpm_err)
629 		return NULL;
630 	dst_reg = access_hreg(dst_spec, (opcode & 0x40) ? HREG_RDWR : HREG_WR);
631 	if (hre_err || hre_tpm_err)
632 		return NULL;
633 
634 	switch (opcode) {
635 	case HRE_NOP:
636 		goto end;
637 	case HRE_CHECK0:
638 		if (src_reg) {
639 			for (i = 0; i < 20; ++i) {
640 				if (src_reg->digest[i])
641 					return NULL;
642 			}
643 		}
644 		break;
645 	case HRE_LOAD:
646 		bin_func = memcpy;
647 		goto do_bin_func;
648 	case HRE_XOR:
649 		bin_func = compute_xor;
650 		goto do_bin_func;
651 	case HRE_AND:
652 		bin_func = compute_and;
653 		goto do_bin_func;
654 	case HRE_OR:
655 		bin_func = compute_or;
656 		goto do_bin_func;
657 	case HRE_EXTEND:
658 		bin_func = compute_extend;
659 do_bin_func:
660 		if (!dst_reg)
661 			return NULL;
662 		if (src_reg) {
663 			src_buf = src_reg->digest;
664 		} else {
665 			if (!data_size) {
666 				memset(buf, 0, 20);
667 				src_buf = buf;
668 			} else if (data_size == 1) {
669 				memset(buf, *data, 20);
670 				src_buf = buf;
671 			} else if (data_size >= 20) {
672 				src_buf = data;
673 			} else {
674 				src_buf = buf;
675 				for (ptr = (uint8_t *)src_buf, i = 20; i > 0;
676 					i -= data_size, ptr += data_size)
677 					memcpy(ptr, data,
678 					       min_t(size_t, i, data_size));
679 			}
680 		}
681 		bin_func(dst_reg->digest, src_buf, 20);
682 		dst_reg->valid = true;
683 		dst_modified = true;
684 		break;
685 	case HRE_LOADKEY:
686 		if (hre_op_loadkey(src_reg, dst_reg, data, data_size))
687 			return NULL;
688 		break;
689 	default:
690 		return NULL;
691 	}
692 
693 	if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) {
694 		hre_tpm_err = tpm_extend(HREG_IDX(dst_spec), dst_reg->digest,
695 			dst_reg->digest);
696 		if (hre_tpm_err) {
697 			hre_err = HRE_E_TPM_FAILURE;
698 			return NULL;
699 		}
700 	}
701 end:
702 	*ip += 4;
703 	*code_size -= 4;
704 	if (opcode & 0x80) {
705 		*ip += data_size;
706 		*code_size -= data_size;
707 	}
708 
709 	return *ip;
710 }
711 
712 /**
713  * @brief runs a program on the hash register engine.
714  * @param code		pointer to the (HRE) code.
715  * @param code_size	size of the code (in bytes).
716  * @return 0 on success, != 0 on failure.
717  */
hre_run_program(const uint8_t * code,size_t code_size)718 static int hre_run_program(const uint8_t *code, size_t code_size)
719 {
720 	size_t code_left;
721 	const uint8_t *ip = code;
722 
723 	code_left = code_size;
724 	hre_tpm_err = 0;
725 	hre_err = HRE_E_OK;
726 	while (code_left > 0)
727 		if (!hre_execute_op(&ip, &code_left))
728 			return -1;
729 
730 	return hre_err;
731 }
732 
check_hmac(struct key_program * hmac,const uint8_t * data,size_t data_size)733 static int check_hmac(struct key_program *hmac,
734 	const uint8_t *data, size_t data_size)
735 {
736 	uint8_t key[20], computed_hmac[20];
737 	uint32_t type;
738 
739 	type = get_unaligned_be32(hmac->code);
740 	if (type != 0)
741 		return 1;
742 	memset(key, 0, sizeof(key));
743 	compute_extend(key, pcr_hregs[1].digest, 20);
744 	compute_extend(key, pcr_hregs[2].digest, 20);
745 	compute_extend(key, pcr_hregs[3].digest, 20);
746 	compute_extend(key, pcr_hregs[4].digest, 20);
747 
748 	sha1_hmac(key, sizeof(key), data, data_size, computed_hmac);
749 
750 	return memcmp(computed_hmac, hmac->code + 4, 20);
751 }
752 
verify_program(struct key_program * prg)753 static int verify_program(struct key_program *prg)
754 {
755 	uint32_t crc;
756 	crc = crc32(0, prg->code, prg->code_size);
757 
758 	if (crc != prg->code_crc) {
759 		printf("HRC crc mismatch: %08x != %08x\n",
760 		       crc, prg->code_crc);
761 		return 1;
762 	}
763 	return 0;
764 }
765 
766 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
load_sd_key_program(void)767 static struct key_program *load_sd_key_program(void)
768 {
769 	u32 code_len, code_offset;
770 	struct mmc *mmc;
771 	u8 buf[128];
772 	struct key_program *result = NULL, *hmac = NULL;
773 	struct key_program header;
774 
775 	mmc = find_mmc_device(0);
776 	if (!mmc)
777 		return NULL;
778 	mmc_init(mmc);
779 
780 	if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0)
781 		goto failure;
782 
783 	code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
784 	code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
785 
786 	code_offset += code_len;
787 	/* TODO: the following needs to be the size of the 2nd stage env */
788 	code_offset += CONFIG_ENV_SIZE;
789 
790 	if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
791 		goto failure;
792 
793 	header.magic = get_unaligned_be32(buf);
794 	header.code_crc = get_unaligned_be32(buf + 4);
795 	header.code_size = get_unaligned_be32(buf + 8);
796 
797 	if (header.magic != MAGIC_KEY_PROGRAM)
798 		goto failure;
799 
800 	result = malloc(sizeof(struct key_program) + header.code_size);
801 	if (!result)
802 		goto failure;
803 	*result = header;
804 
805 	printf("load key program chunk from SD card (%u bytes) ",
806 	       header.code_size);
807 	code_offset += 12;
808 	if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size)
809 		< 0)
810 		goto failure;
811 	code_offset += header.code_size;
812 	puts("\n");
813 
814 	if (verify_program(result))
815 		goto failure;
816 
817 	if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
818 		goto failure;
819 
820 	header.magic = get_unaligned_be32(buf);
821 	header.code_crc = get_unaligned_be32(buf + 4);
822 	header.code_size = get_unaligned_be32(buf + 8);
823 
824 	if (header.magic == MAGIC_HMAC) {
825 		puts("check integrity\n");
826 		hmac = malloc(sizeof(struct key_program) + header.code_size);
827 		if (!hmac)
828 			goto failure;
829 		*hmac = header;
830 		code_offset += 12;
831 		if (ccdm_mmc_read(mmc, code_offset, hmac->code,
832 				  hmac->code_size) < 0)
833 			goto failure;
834 		if (verify_program(hmac))
835 			goto failure;
836 		if (check_hmac(hmac, result->code, result->code_size)) {
837 			puts("key program integrity could not be verified\n");
838 			goto failure;
839 		}
840 		puts("key program verified\n");
841 	}
842 
843 	goto end;
844 failure:
845 	if (result)
846 		free(result);
847 	result = NULL;
848 end:
849 	if (hmac)
850 		free(hmac);
851 
852 	return result;
853 }
854 #endif
855 
856 #ifdef CCDM_SECOND_STAGE
857 /**
858  * @brief load a key program from file system.
859  * @param ifname	interface of the file system
860  * @param dev_part_str	device part of the file system
861  * @param fs_type	tyep of the file system
862  * @param path		path of the file to load.
863  * @return the loaded structure or NULL on failure.
864  */
load_key_chunk(const char * ifname,const char * dev_part_str,int fs_type,const char * path)865 static struct key_program *load_key_chunk(const char *ifname,
866 	const char *dev_part_str, int fs_type,
867 	const char *path)
868 {
869 	struct key_program *result = NULL;
870 	struct key_program header;
871 	uint32_t crc;
872 	uint8_t buf[12];
873 	loff_t i;
874 
875 	if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
876 		goto failure;
877 	if (fs_read(path, (ulong)buf, 0, 12, &i) < 0)
878 		goto failure;
879 	if (i < 12)
880 		goto failure;
881 	header.magic = get_unaligned_be32(buf);
882 	header.code_crc = get_unaligned_be32(buf + 4);
883 	header.code_size = get_unaligned_be32(buf + 8);
884 
885 	if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM)
886 		goto failure;
887 
888 	result = malloc(sizeof(struct key_program) + header.code_size);
889 	if (!result)
890 		goto failure;
891 	if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
892 		goto failure;
893 	if (fs_read(path, (ulong)result, 0,
894 		    sizeof(struct key_program) + header.code_size, &i) < 0)
895 		goto failure;
896 	if (i <= 0)
897 		goto failure;
898 	*result = header;
899 
900 	crc = crc32(0, result->code, result->code_size);
901 
902 	if (crc != result->code_crc) {
903 		printf("%s: HRC crc mismatch: %08x != %08x\n",
904 		       path, crc, result->code_crc);
905 		goto failure;
906 	}
907 	goto end;
908 failure:
909 	if (result) {
910 		free(result);
911 		result = NULL;
912 	}
913 end:
914 	return result;
915 }
916 #endif
917 
918 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
919 static const uint8_t prg_stage1_prepare[] = {
920 	0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */
921 	0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */
922 	0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */
923 	0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */
924 	0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */
925 	0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */
926 	0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */
927 	0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */
928 	0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */
929 	0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */
930 };
931 
first_stage_actions(void)932 static int first_stage_actions(void)
933 {
934 	int result = 0;
935 	struct key_program *sd_prg = NULL;
936 
937 	puts("CCDM S1: start actions\n");
938 #ifndef CCDM_SECOND_STAGE
939 	if (tpm_continue_self_test())
940 		goto failure;
941 #else
942 	tpm_continue_self_test();
943 #endif
944 	mdelay(37);
945 
946 	if (hre_run_program(prg_stage1_prepare, sizeof(prg_stage1_prepare)))
947 		goto failure;
948 
949 	sd_prg = load_sd_key_program();
950 	if (sd_prg) {
951 		if (hre_run_program(sd_prg->code, sd_prg->code_size))
952 			goto failure;
953 		puts("SD code run successfully\n");
954 	} else {
955 		puts("no key program found on SD\n");
956 		goto failure;
957 	}
958 	goto end;
959 failure:
960 	result = 1;
961 end:
962 	if (sd_prg)
963 		free(sd_prg);
964 	printf("CCDM S1: actions done (%d)\n", result);
965 	return result;
966 }
967 #endif
968 
969 #ifdef CCDM_FIRST_STAGE
first_stage_init(void)970 static int first_stage_init(void)
971 {
972 	int res = 0;
973 	puts("CCDM S1\n");
974 	if (tpm_init() || tpm_startup(TPM_ST_CLEAR))
975 		return 1;
976 	res = first_stage_actions();
977 #ifndef CCDM_SECOND_STAGE
978 	if (!res) {
979 		if (bl2_entry)
980 			(*bl2_entry)();
981 		res = 1;
982 	}
983 #endif
984 	return res;
985 }
986 #endif
987 
988 #ifdef CCDM_SECOND_STAGE
989 static const uint8_t prg_stage2_prepare[] = {
990 	0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */
991 	0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */
992 	0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */
993 	0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */
994 	0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */
995 };
996 
997 static const uint8_t prg_stage2_success[] = {
998 	0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */
999 	0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */
1000 	0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */
1001 	0xe4, 0xd2, 0x81, 0xe0, /* data */
1002 };
1003 
1004 static const uint8_t prg_stage_fail[] = {
1005 	0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */
1006 	0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */
1007 	0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */
1008 	0xea, 0xdf, 0x14, 0x4b, /* data */
1009 	0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */
1010 	0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */
1011 };
1012 
second_stage_init(void)1013 static int second_stage_init(void)
1014 {
1015 	static const char mac_suffix[] = ".mac";
1016 	bool did_first_stage_run = true;
1017 	int result = 0;
1018 	char *cptr, *mmcdev = NULL;
1019 	struct key_program *hmac_blob = NULL;
1020 	const char *image_path = "/ccdm.itb";
1021 	char *mac_path = NULL;
1022 	ulong image_addr;
1023 	loff_t image_size;
1024 	uint32_t err;
1025 
1026 	printf("CCDM S2\n");
1027 	if (tpm_init())
1028 		return 1;
1029 	err = tpm_startup(TPM_ST_CLEAR);
1030 	if (err != TPM_INVALID_POSTINIT)
1031 		did_first_stage_run = false;
1032 
1033 #ifdef CCDM_AUTO_FIRST_STAGE
1034 	if (!did_first_stage_run && first_stage_actions())
1035 		goto failure;
1036 #else
1037 	if (!did_first_stage_run)
1038 		goto failure;
1039 #endif
1040 
1041 	if (hre_run_program(prg_stage2_prepare, sizeof(prg_stage2_prepare)))
1042 		goto failure;
1043 
1044 	/* run "prepboot" from env to get "mmcdev" set */
1045 	cptr = env_get("prepboot");
1046 	if (cptr && !run_command(cptr, 0))
1047 		mmcdev = env_get("mmcdev");
1048 	if (!mmcdev)
1049 		goto failure;
1050 
1051 	cptr = env_get("ramdiskimage");
1052 	if (cptr)
1053 		image_path = cptr;
1054 
1055 	mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1);
1056 	if (mac_path == NULL)
1057 		goto failure;
1058 	strcpy(mac_path, image_path);
1059 	strcat(mac_path, mac_suffix);
1060 
1061 	/* read image from mmcdev (ccdm.itb) */
1062 	image_addr = (ulong)get_image_location();
1063 	if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT))
1064 		goto failure;
1065 	if (fs_read(image_path, image_addr, 0, 0, &image_size) < 0)
1066 		goto failure;
1067 	if (image_size <= 0)
1068 		goto failure;
1069 	printf("CCDM image found on %s, %lld bytes\n", mmcdev, image_size);
1070 
1071 	hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path);
1072 	if (!hmac_blob) {
1073 		puts("failed to load mac file\n");
1074 		goto failure;
1075 	}
1076 	if (verify_program(hmac_blob)) {
1077 		puts("corrupted mac file\n");
1078 		goto failure;
1079 	}
1080 	if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) {
1081 		puts("image integrity could not be verified\n");
1082 		goto failure;
1083 	}
1084 	puts("CCDM image OK\n");
1085 
1086 	hre_run_program(prg_stage2_success, sizeof(prg_stage2_success));
1087 
1088 	goto end;
1089 failure:
1090 	result = 1;
1091 	hre_run_program(prg_stage_fail, sizeof(prg_stage_fail));
1092 end:
1093 	if (hmac_blob)
1094 		free(hmac_blob);
1095 	if (mac_path)
1096 		free(mac_path);
1097 
1098 	return result;
1099 }
1100 #endif
1101 
show_self_hash(void)1102 int show_self_hash(void)
1103 {
1104 	struct h_reg *hash_ptr;
1105 #ifdef CCDM_SECOND_STAGE
1106 	struct h_reg hash;
1107 
1108 	hash_ptr = &hash;
1109 	if (compute_self_hash(hash_ptr))
1110 		return 1;
1111 #else
1112 	hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH];
1113 #endif
1114 	puts("self hash: ");
1115 	if (hash_ptr && hash_ptr->valid)
1116 		print_buffer(0, hash_ptr->digest, 1, 20, 20);
1117 	else
1118 		puts("INVALID\n");
1119 
1120 	return 0;
1121 }
1122 
1123 /**
1124  * @brief let the system hang.
1125  *
1126  * Called on error.
1127  * Will stop the boot process; display a message and signal the error condition
1128  * by blinking the "status" and the "finder" LED of the controller board.
1129  *
1130  * @note the develop version runs the blink cycle 2 times and then returns.
1131  * The release version never returns.
1132  */
ccdm_hang(void)1133 static void ccdm_hang(void)
1134 {
1135 	static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */
1136 	static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */
1137 	u64 f, s;
1138 	int i;
1139 #ifdef CCDM_DEVELOP
1140 	int j;
1141 #endif
1142 
1143 	I2C_SET_BUS(I2C_SOC_0);
1144 	pca9698_direction_output(0x22, 0, 0); /* Finder */
1145 	pca9698_direction_output(0x22, 4, 0); /* Status */
1146 
1147 	puts("### ERROR ### Please RESET the board ###\n");
1148 	bootstage_error(BOOTSTAGE_ID_NEED_RESET);
1149 #ifdef CCDM_DEVELOP
1150 	puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1151 	puts("** but we continue since this is a DEVELOP version **\n");
1152 	puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1153 	for (j = 2; j-- > 0;) {
1154 		putc('#');
1155 #else
1156 	for (;;) {
1157 #endif
1158 		f = f0;
1159 		s = s0;
1160 		for (i = 54; i-- > 0;) {
1161 			pca9698_set_value(0x22, 0, !(f & 1));
1162 			pca9698_set_value(0x22, 4, (s & 1));
1163 			f >>= 1;
1164 			s >>= 1;
1165 			mdelay(120);
1166 		}
1167 	}
1168 	puts("\ncontinue...\n");
1169 }
1170 
1171 int startup_ccdm_id_module(void)
1172 {
1173 	int result = 0;
1174 	unsigned int orig_i2c_bus;
1175 
1176 	orig_i2c_bus = i2c_get_bus_num();
1177 	i2c_set_bus_num(I2C_SOC_1);
1178 
1179 	/* goto end; */
1180 
1181 #ifdef CCDM_DEVELOP
1182 	show_self_hash();
1183 #endif
1184 #ifdef CCDM_FIRST_STAGE
1185 	result = first_stage_init();
1186 	if (result) {
1187 		puts("1st stage init failed\n");
1188 		goto failure;
1189 	}
1190 #endif
1191 #ifdef CCDM_SECOND_STAGE
1192 	result = second_stage_init();
1193 	if (result) {
1194 		puts("2nd stage init failed\n");
1195 		goto failure;
1196 	}
1197 #endif
1198 
1199 	goto end;
1200 failure:
1201 	result = 1;
1202 end:
1203 	i2c_set_bus_num(orig_i2c_bus);
1204 	if (result)
1205 		ccdm_hang();
1206 
1207 	return result;
1208 }
1209