1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2013
4 * Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc
5 */
6
7 /* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */
8
9 #ifdef CCDM_ID_DEBUG
10 #define DEBUG
11 #endif
12
13 #include <common.h>
14 #include <malloc.h>
15 #include <fs.h>
16 #include <i2c.h>
17 #include <mmc.h>
18 #include <tpm-v1.h>
19 #include <u-boot/sha1.h>
20 #include <asm/byteorder.h>
21 #include <asm/unaligned.h>
22 #include <pca9698.h>
23
24 #undef CCDM_FIRST_STAGE
25 #undef CCDM_SECOND_STAGE
26 #undef CCDM_AUTO_FIRST_STAGE
27
28 #ifdef CONFIG_DEVELOP
29 #define CCDM_DEVELOP
30 #endif
31
32 #ifdef CONFIG_TRAILBLAZER
33 #define CCDM_FIRST_STAGE
34 #undef CCDM_SECOND_STAGE
35 #else
36 #undef CCDM_FIRST_STAGE
37 #define CCDM_SECOND_STAGE
38 #endif
39
40 #if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \
41 !defined(CCCM_FIRST_STAGE)
42 #define CCDM_AUTO_FIRST_STAGE
43 #endif
44
45 /* CCDM specific contants */
46 enum {
47 /* NV indices */
48 NV_COMMON_DATA_INDEX = 0x40000001,
49 /* magics for key blob chains */
50 MAGIC_KEY_PROGRAM = 0x68726500,
51 MAGIC_HMAC = 0x68616300,
52 MAGIC_END_OF_CHAIN = 0x00000000,
53 /* sizes */
54 NV_COMMON_DATA_MIN_SIZE = 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t),
55 };
56
57 /* other constants */
58 enum {
59 ESDHC_BOOT_IMAGE_SIG_OFS = 0x40,
60 ESDHC_BOOT_IMAGE_SIZE_OFS = 0x48,
61 ESDHC_BOOT_IMAGE_ADDR_OFS = 0x50,
62 ESDHC_BOOT_IMAGE_TARGET_OFS = 0x58,
63 ESDHC_BOOT_IMAGE_ENTRY_OFS = 0x60,
64 };
65
66 enum {
67 I2C_SOC_0 = 0,
68 I2C_SOC_1 = 1,
69 };
70
71 struct key_program {
72 uint32_t magic;
73 uint32_t code_crc;
74 uint32_t code_size;
75 uint8_t code[];
76 };
77
78 struct h_reg {
79 bool valid;
80 uint8_t digest[20];
81 };
82
83
84 enum access_mode {
85 HREG_NONE = 0,
86 HREG_RD = 1,
87 HREG_WR = 2,
88 HREG_RDWR = 3,
89 };
90
91 /* register constants */
92 enum {
93 FIX_HREG_DEVICE_ID_HASH = 0,
94 FIX_HREG_SELF_HASH = 1,
95 FIX_HREG_STAGE2_HASH = 2,
96 FIX_HREG_VENDOR = 3,
97 COUNT_FIX_HREGS
98 };
99
100
101 /* hre opcodes */
102 enum {
103 /* opcodes w/o data */
104 HRE_NOP = 0x00,
105 HRE_SYNC = HRE_NOP,
106 HRE_CHECK0 = 0x01,
107 /* opcodes w/o data, w/ sync dst */
108 /* opcodes w/ data */
109 HRE_LOAD = 0x81,
110 /* opcodes w/data, w/sync dst */
111 HRE_XOR = 0xC1,
112 HRE_AND = 0xC2,
113 HRE_OR = 0xC3,
114 HRE_EXTEND = 0xC4,
115 HRE_LOADKEY = 0xC5,
116 };
117
118 /* hre errors */
119 enum {
120 HRE_E_OK = 0,
121 HRE_E_TPM_FAILURE,
122 HRE_E_INVALID_HREG,
123 };
124
125 static uint64_t device_id;
126 static uint64_t device_cl;
127 static uint64_t device_type;
128
129 static uint32_t platform_key_handle;
130
131 static void(*bl2_entry)(void);
132
133 static struct h_reg pcr_hregs[24];
134 static struct h_reg fix_hregs[COUNT_FIX_HREGS];
135 static struct h_reg var_hregs[8];
136 static uint32_t hre_tpm_err;
137 static int hre_err = HRE_E_OK;
138
139 #define IS_PCR_HREG(spec) ((spec) & 0x20)
140 #define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08)
141 #define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10)
142 #define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7))
143
144 static const uint8_t vendor[] = "Guntermann & Drunck";
145
146 /**
147 * @brief read a bunch of data from MMC into memory.
148 *
149 * @param mmc pointer to the mmc structure to use.
150 * @param src offset where the data starts on MMC/SD device (in bytes).
151 * @param dst pointer to the location where the read data should be stored.
152 * @param size number of bytes to read from the MMC/SD device.
153 * @return number of bytes read or -1 on error.
154 */
ccdm_mmc_read(struct mmc * mmc,u64 src,u8 * dst,int size)155 static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size)
156 {
157 int result = 0;
158 u32 blk_len, ofs;
159 ulong block_no, n, cnt;
160 u8 *tmp_buf = NULL;
161
162 if (size <= 0)
163 goto end;
164
165 blk_len = mmc->read_bl_len;
166 tmp_buf = malloc(blk_len);
167 if (!tmp_buf)
168 goto failure;
169 block_no = src / blk_len;
170 ofs = src % blk_len;
171
172 if (ofs) {
173 n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
174 tmp_buf);
175 if (!n)
176 goto failure;
177 result = min(size, (int)(blk_len - ofs));
178 memcpy(dst, tmp_buf + ofs, result);
179 dst += result;
180 size -= result;
181 }
182 cnt = size / blk_len;
183 if (cnt) {
184 n = mmc->block_dev.block_read(&mmc->block_dev, block_no, cnt,
185 dst);
186 if (n != cnt)
187 goto failure;
188 size -= cnt * blk_len;
189 result += cnt * blk_len;
190 dst += cnt * blk_len;
191 block_no += cnt;
192 }
193 if (size) {
194 n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
195 tmp_buf);
196 if (!n)
197 goto failure;
198 memcpy(dst, tmp_buf, size);
199 result += size;
200 }
201 goto end;
202 failure:
203 result = -1;
204 end:
205 if (tmp_buf)
206 free(tmp_buf);
207 return result;
208 }
209
210 /**
211 * @brief returns a location where the 2nd stage bootloader can be(/ is) placed.
212 *
213 * @return pointer to the location for/of the 2nd stage bootloader
214 */
get_2nd_stage_bl_location(ulong target_addr)215 static u8 *get_2nd_stage_bl_location(ulong target_addr)
216 {
217 ulong addr;
218 #ifdef CCDM_SECOND_STAGE
219 addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
220 #else
221 addr = target_addr;
222 #endif
223 return (u8 *)(addr);
224 }
225
226
227 #ifdef CCDM_SECOND_STAGE
228 /**
229 * @brief returns a location where the image can be(/ is) placed.
230 *
231 * @return pointer to the location for/of the image
232 */
get_image_location(void)233 static u8 *get_image_location(void)
234 {
235 ulong addr;
236 /* TODO use other area? */
237 addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
238 return (u8 *)(addr);
239 }
240 #endif
241
242 /**
243 * @brief get the size of a given (TPM) NV area
244 * @param index NV index of the area to get size for
245 * @param size pointer to the size
246 * @return 0 on success, != 0 on error
247 */
get_tpm_nv_size(uint32_t index,uint32_t * size)248 static int get_tpm_nv_size(uint32_t index, uint32_t *size)
249 {
250 uint32_t err;
251 uint8_t info[72];
252 uint8_t *ptr;
253 uint16_t v16;
254
255 err = tpm_get_capability(TPM_CAP_NV_INDEX, index,
256 info, sizeof(info));
257 if (err) {
258 printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n",
259 index, err);
260 return 1;
261 }
262
263 /* skip tag and nvIndex */
264 ptr = info + 6;
265 /* skip 2 pcr info fields */
266 v16 = get_unaligned_be16(ptr);
267 ptr += 2 + v16 + 1 + 20;
268 v16 = get_unaligned_be16(ptr);
269 ptr += 2 + v16 + 1 + 20;
270 /* skip permission and flags */
271 ptr += 6 + 3;
272
273 *size = get_unaligned_be32(ptr);
274 return 0;
275 }
276
277 /**
278 * @brief search for a key by usage auth and pub key hash.
279 * @param auth usage auth of the key to search for
280 * @param pubkey_digest (SHA1) hash of the pub key structure of the key
281 * @param[out] handle the handle of the key iff found
282 * @return 0 if key was found in TPM; != 0 if not.
283 */
find_key(const uint8_t auth[20],const uint8_t pubkey_digest[20],uint32_t * handle)284 static int find_key(const uint8_t auth[20], const uint8_t pubkey_digest[20],
285 uint32_t *handle)
286 {
287 uint16_t key_count;
288 uint32_t key_handles[10];
289 uint8_t buf[288];
290 uint8_t *ptr;
291 uint32_t err;
292 uint8_t digest[20];
293 size_t buf_len;
294 unsigned int i;
295
296 /* fetch list of already loaded keys in the TPM */
297 err = tpm_get_capability(TPM_CAP_HANDLE, TPM_RT_KEY, buf, sizeof(buf));
298 if (err)
299 return -1;
300 key_count = get_unaligned_be16(buf);
301 ptr = buf + 2;
302 for (i = 0; i < key_count; ++i, ptr += 4)
303 key_handles[i] = get_unaligned_be32(ptr);
304
305 /* now search a(/ the) key which we can access with the given auth */
306 for (i = 0; i < key_count; ++i) {
307 buf_len = sizeof(buf);
308 err = tpm_get_pub_key_oiap(key_handles[i], auth, buf, &buf_len);
309 if (err && err != TPM_AUTHFAIL)
310 return -1;
311 if (err)
312 continue;
313 sha1_csum(buf, buf_len, digest);
314 if (!memcmp(digest, pubkey_digest, 20)) {
315 *handle = key_handles[i];
316 return 0;
317 }
318 }
319 return 1;
320 }
321
322 /**
323 * @brief read CCDM common data from TPM NV
324 * @return 0 if CCDM common data was found and read, !=0 if something failed.
325 */
read_common_data(void)326 static int read_common_data(void)
327 {
328 uint32_t size;
329 uint32_t err;
330 uint8_t buf[256];
331 sha1_context ctx;
332
333 if (get_tpm_nv_size(NV_COMMON_DATA_INDEX, &size) ||
334 size < NV_COMMON_DATA_MIN_SIZE)
335 return 1;
336 err = tpm_nv_read_value(NV_COMMON_DATA_INDEX,
337 buf, min(sizeof(buf), size));
338 if (err) {
339 printf("tpm_nv_read_value() failed: %u\n", err);
340 return 1;
341 }
342
343 device_id = get_unaligned_be64(buf);
344 device_cl = get_unaligned_be64(buf + 8);
345 device_type = get_unaligned_be64(buf + 16);
346
347 sha1_starts(&ctx);
348 sha1_update(&ctx, buf, 24);
349 sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest);
350 fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true;
351
352 platform_key_handle = get_unaligned_be32(buf + 24);
353
354 return 0;
355 }
356
357 /**
358 * @brief compute hash of bootloader itself.
359 * @param[out] dst hash register where the hash should be stored
360 * @return 0 on success, != 0 on failure.
361 *
362 * @note MUST be called at a time where the boot loader is accessible at the
363 * configured location (; so take care when code is reallocated).
364 */
compute_self_hash(struct h_reg * dst)365 static int compute_self_hash(struct h_reg *dst)
366 {
367 sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE,
368 CONFIG_SYS_MONITOR_LEN, dst->digest);
369 dst->valid = true;
370 return 0;
371 }
372
ccdm_compute_self_hash(void)373 int ccdm_compute_self_hash(void)
374 {
375 if (!fix_hregs[FIX_HREG_SELF_HASH].valid)
376 compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]);
377 return 0;
378 }
379
380 /**
381 * @brief compute the hash of the 2nd stage boot loader (on SD card)
382 * @param[out] dst hash register to store the computed hash
383 * @return 0 on success, != 0 on failure
384 *
385 * Determines the size and location of the 2nd stage boot loader on SD card,
386 * loads the 2nd stage boot loader and computes the (SHA1) hash value.
387 * Within the 1st stage boot loader, the 2nd stage boot loader is loaded at
388 * the desired memory location and the variable @a bl2_entry is set.
389 *
390 * @note This sets the variable @a bl2_entry to the entry point when the
391 * 2nd stage boot loader is loaded at its configured memory location.
392 */
compute_second_stage_hash(struct h_reg * dst)393 static int compute_second_stage_hash(struct h_reg *dst)
394 {
395 int result = 0;
396 u32 code_len, code_offset, target_addr, exec_entry;
397 struct mmc *mmc;
398 u8 *load_addr = NULL;
399 u8 buf[128];
400
401 mmc = find_mmc_device(0);
402 if (!mmc)
403 goto failure;
404 mmc_init(mmc);
405
406 if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0)
407 goto failure;
408
409 code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
410 code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
411 target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS);
412 exec_entry = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS);
413
414 load_addr = get_2nd_stage_bl_location(target_addr);
415 if (load_addr == (u8 *)target_addr)
416 bl2_entry = (void(*)(void))exec_entry;
417
418 if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0)
419 goto failure;
420
421 sha1_csum(load_addr, code_len, dst->digest);
422 dst->valid = true;
423
424 goto end;
425 failure:
426 result = 1;
427 bl2_entry = NULL;
428 end:
429 return result;
430 }
431
432 /**
433 * @brief get pointer to hash register by specification
434 * @param spec specification of a hash register
435 * @return pointer to hash register or NULL if @a spec does not qualify a
436 * valid hash register; NULL else.
437 */
get_hreg(uint8_t spec)438 static struct h_reg *get_hreg(uint8_t spec)
439 {
440 uint8_t idx;
441
442 idx = HREG_IDX(spec);
443 if (IS_FIX_HREG(spec)) {
444 if (idx < ARRAY_SIZE(fix_hregs))
445 return fix_hregs + idx;
446 hre_err = HRE_E_INVALID_HREG;
447 } else if (IS_PCR_HREG(spec)) {
448 if (idx < ARRAY_SIZE(pcr_hregs))
449 return pcr_hregs + idx;
450 hre_err = HRE_E_INVALID_HREG;
451 } else if (IS_VAR_HREG(spec)) {
452 if (idx < ARRAY_SIZE(var_hregs))
453 return var_hregs + idx;
454 hre_err = HRE_E_INVALID_HREG;
455 }
456 return NULL;
457 }
458
459 /**
460 * @brief get pointer of a hash register by specification and usage.
461 * @param spec specification of a hash register
462 * @param mode access mode (read or write or read/write)
463 * @return pointer to hash register if found and valid; NULL else.
464 *
465 * This func uses @a get_reg() to determine the hash register for a given spec.
466 * If a register is found it is validated according to the desired access mode.
467 * The value of automatic registers (PCR register and fixed registers) is
468 * loaded or computed on read access.
469 */
access_hreg(uint8_t spec,enum access_mode mode)470 static struct h_reg *access_hreg(uint8_t spec, enum access_mode mode)
471 {
472 struct h_reg *result;
473
474 result = get_hreg(spec);
475 if (!result)
476 return NULL;
477
478 if (mode & HREG_WR) {
479 if (IS_FIX_HREG(spec)) {
480 hre_err = HRE_E_INVALID_HREG;
481 return NULL;
482 }
483 }
484 if (mode & HREG_RD) {
485 if (!result->valid) {
486 if (IS_PCR_HREG(spec)) {
487 hre_tpm_err = tpm_pcr_read(HREG_IDX(spec),
488 result->digest, 20);
489 result->valid = (hre_tpm_err == TPM_SUCCESS);
490 } else if (IS_FIX_HREG(spec)) {
491 switch (HREG_IDX(spec)) {
492 case FIX_HREG_DEVICE_ID_HASH:
493 read_common_data();
494 break;
495 case FIX_HREG_SELF_HASH:
496 ccdm_compute_self_hash();
497 break;
498 case FIX_HREG_STAGE2_HASH:
499 compute_second_stage_hash(result);
500 break;
501 case FIX_HREG_VENDOR:
502 memcpy(result->digest, vendor, 20);
503 result->valid = true;
504 break;
505 }
506 } else {
507 result->valid = true;
508 }
509 }
510 if (!result->valid) {
511 hre_err = HRE_E_INVALID_HREG;
512 return NULL;
513 }
514 }
515
516 return result;
517 }
518
compute_and(void * _dst,const void * _src,size_t n)519 static void *compute_and(void *_dst, const void *_src, size_t n)
520 {
521 uint8_t *dst = _dst;
522 const uint8_t *src = _src;
523 size_t i;
524
525 for (i = n; i-- > 0; )
526 *dst++ &= *src++;
527
528 return _dst;
529 }
530
compute_or(void * _dst,const void * _src,size_t n)531 static void *compute_or(void *_dst, const void *_src, size_t n)
532 {
533 uint8_t *dst = _dst;
534 const uint8_t *src = _src;
535 size_t i;
536
537 for (i = n; i-- > 0; )
538 *dst++ |= *src++;
539
540 return _dst;
541 }
542
compute_xor(void * _dst,const void * _src,size_t n)543 static void *compute_xor(void *_dst, const void *_src, size_t n)
544 {
545 uint8_t *dst = _dst;
546 const uint8_t *src = _src;
547 size_t i;
548
549 for (i = n; i-- > 0; )
550 *dst++ ^= *src++;
551
552 return _dst;
553 }
554
compute_extend(void * _dst,const void * _src,size_t n)555 static void *compute_extend(void *_dst, const void *_src, size_t n)
556 {
557 uint8_t digest[20];
558 sha1_context ctx;
559
560 sha1_starts(&ctx);
561 sha1_update(&ctx, _dst, n);
562 sha1_update(&ctx, _src, n);
563 sha1_finish(&ctx, digest);
564 memcpy(_dst, digest, min(n, sizeof(digest)));
565
566 return _dst;
567 }
568
hre_op_loadkey(struct h_reg * src_reg,struct h_reg * dst_reg,const void * key,size_t key_size)569 static int hre_op_loadkey(struct h_reg *src_reg, struct h_reg *dst_reg,
570 const void *key, size_t key_size)
571 {
572 uint32_t parent_handle;
573 uint32_t key_handle;
574
575 if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid)
576 return -1;
577 if (find_key(src_reg->digest, dst_reg->digest, &parent_handle))
578 return -1;
579 hre_tpm_err = tpm_load_key2_oiap(parent_handle, key, key_size,
580 src_reg->digest, &key_handle);
581 if (hre_tpm_err) {
582 hre_err = HRE_E_TPM_FAILURE;
583 return -1;
584 }
585 /* TODO remember key handle somehow? */
586
587 return 0;
588 }
589
590 /**
591 * @brief executes the next opcode on the hash register engine.
592 * @param[in,out] ip pointer to the opcode (instruction pointer)
593 * @param[in,out] code_size (remaining) size of the code
594 * @return new instruction pointer on success, NULL on error.
595 */
hre_execute_op(const uint8_t ** ip,size_t * code_size)596 static const uint8_t *hre_execute_op(const uint8_t **ip, size_t *code_size)
597 {
598 bool dst_modified = false;
599 uint32_t ins;
600 uint8_t opcode;
601 uint8_t src_spec;
602 uint8_t dst_spec;
603 uint16_t data_size;
604 struct h_reg *src_reg, *dst_reg;
605 uint8_t buf[20];
606 const uint8_t *src_buf, *data;
607 uint8_t *ptr;
608 int i;
609 void * (*bin_func)(void *, const void *, size_t);
610
611 if (*code_size < 4)
612 return NULL;
613
614 ins = get_unaligned_be32(*ip);
615 opcode = **ip;
616 data = *ip + 4;
617 src_spec = (ins >> 18) & 0x3f;
618 dst_spec = (ins >> 12) & 0x3f;
619 data_size = (ins & 0x7ff);
620
621 debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins,
622 opcode, src_spec, dst_spec, data_size);
623
624 if ((opcode & 0x80) && (data_size + 4) > *code_size)
625 return NULL;
626
627 src_reg = access_hreg(src_spec, HREG_RD);
628 if (hre_err || hre_tpm_err)
629 return NULL;
630 dst_reg = access_hreg(dst_spec, (opcode & 0x40) ? HREG_RDWR : HREG_WR);
631 if (hre_err || hre_tpm_err)
632 return NULL;
633
634 switch (opcode) {
635 case HRE_NOP:
636 goto end;
637 case HRE_CHECK0:
638 if (src_reg) {
639 for (i = 0; i < 20; ++i) {
640 if (src_reg->digest[i])
641 return NULL;
642 }
643 }
644 break;
645 case HRE_LOAD:
646 bin_func = memcpy;
647 goto do_bin_func;
648 case HRE_XOR:
649 bin_func = compute_xor;
650 goto do_bin_func;
651 case HRE_AND:
652 bin_func = compute_and;
653 goto do_bin_func;
654 case HRE_OR:
655 bin_func = compute_or;
656 goto do_bin_func;
657 case HRE_EXTEND:
658 bin_func = compute_extend;
659 do_bin_func:
660 if (!dst_reg)
661 return NULL;
662 if (src_reg) {
663 src_buf = src_reg->digest;
664 } else {
665 if (!data_size) {
666 memset(buf, 0, 20);
667 src_buf = buf;
668 } else if (data_size == 1) {
669 memset(buf, *data, 20);
670 src_buf = buf;
671 } else if (data_size >= 20) {
672 src_buf = data;
673 } else {
674 src_buf = buf;
675 for (ptr = (uint8_t *)src_buf, i = 20; i > 0;
676 i -= data_size, ptr += data_size)
677 memcpy(ptr, data,
678 min_t(size_t, i, data_size));
679 }
680 }
681 bin_func(dst_reg->digest, src_buf, 20);
682 dst_reg->valid = true;
683 dst_modified = true;
684 break;
685 case HRE_LOADKEY:
686 if (hre_op_loadkey(src_reg, dst_reg, data, data_size))
687 return NULL;
688 break;
689 default:
690 return NULL;
691 }
692
693 if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) {
694 hre_tpm_err = tpm_extend(HREG_IDX(dst_spec), dst_reg->digest,
695 dst_reg->digest);
696 if (hre_tpm_err) {
697 hre_err = HRE_E_TPM_FAILURE;
698 return NULL;
699 }
700 }
701 end:
702 *ip += 4;
703 *code_size -= 4;
704 if (opcode & 0x80) {
705 *ip += data_size;
706 *code_size -= data_size;
707 }
708
709 return *ip;
710 }
711
712 /**
713 * @brief runs a program on the hash register engine.
714 * @param code pointer to the (HRE) code.
715 * @param code_size size of the code (in bytes).
716 * @return 0 on success, != 0 on failure.
717 */
hre_run_program(const uint8_t * code,size_t code_size)718 static int hre_run_program(const uint8_t *code, size_t code_size)
719 {
720 size_t code_left;
721 const uint8_t *ip = code;
722
723 code_left = code_size;
724 hre_tpm_err = 0;
725 hre_err = HRE_E_OK;
726 while (code_left > 0)
727 if (!hre_execute_op(&ip, &code_left))
728 return -1;
729
730 return hre_err;
731 }
732
check_hmac(struct key_program * hmac,const uint8_t * data,size_t data_size)733 static int check_hmac(struct key_program *hmac,
734 const uint8_t *data, size_t data_size)
735 {
736 uint8_t key[20], computed_hmac[20];
737 uint32_t type;
738
739 type = get_unaligned_be32(hmac->code);
740 if (type != 0)
741 return 1;
742 memset(key, 0, sizeof(key));
743 compute_extend(key, pcr_hregs[1].digest, 20);
744 compute_extend(key, pcr_hregs[2].digest, 20);
745 compute_extend(key, pcr_hregs[3].digest, 20);
746 compute_extend(key, pcr_hregs[4].digest, 20);
747
748 sha1_hmac(key, sizeof(key), data, data_size, computed_hmac);
749
750 return memcmp(computed_hmac, hmac->code + 4, 20);
751 }
752
verify_program(struct key_program * prg)753 static int verify_program(struct key_program *prg)
754 {
755 uint32_t crc;
756 crc = crc32(0, prg->code, prg->code_size);
757
758 if (crc != prg->code_crc) {
759 printf("HRC crc mismatch: %08x != %08x\n",
760 crc, prg->code_crc);
761 return 1;
762 }
763 return 0;
764 }
765
766 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
load_sd_key_program(void)767 static struct key_program *load_sd_key_program(void)
768 {
769 u32 code_len, code_offset;
770 struct mmc *mmc;
771 u8 buf[128];
772 struct key_program *result = NULL, *hmac = NULL;
773 struct key_program header;
774
775 mmc = find_mmc_device(0);
776 if (!mmc)
777 return NULL;
778 mmc_init(mmc);
779
780 if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0)
781 goto failure;
782
783 code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
784 code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
785
786 code_offset += code_len;
787 /* TODO: the following needs to be the size of the 2nd stage env */
788 code_offset += CONFIG_ENV_SIZE;
789
790 if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
791 goto failure;
792
793 header.magic = get_unaligned_be32(buf);
794 header.code_crc = get_unaligned_be32(buf + 4);
795 header.code_size = get_unaligned_be32(buf + 8);
796
797 if (header.magic != MAGIC_KEY_PROGRAM)
798 goto failure;
799
800 result = malloc(sizeof(struct key_program) + header.code_size);
801 if (!result)
802 goto failure;
803 *result = header;
804
805 printf("load key program chunk from SD card (%u bytes) ",
806 header.code_size);
807 code_offset += 12;
808 if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size)
809 < 0)
810 goto failure;
811 code_offset += header.code_size;
812 puts("\n");
813
814 if (verify_program(result))
815 goto failure;
816
817 if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
818 goto failure;
819
820 header.magic = get_unaligned_be32(buf);
821 header.code_crc = get_unaligned_be32(buf + 4);
822 header.code_size = get_unaligned_be32(buf + 8);
823
824 if (header.magic == MAGIC_HMAC) {
825 puts("check integrity\n");
826 hmac = malloc(sizeof(struct key_program) + header.code_size);
827 if (!hmac)
828 goto failure;
829 *hmac = header;
830 code_offset += 12;
831 if (ccdm_mmc_read(mmc, code_offset, hmac->code,
832 hmac->code_size) < 0)
833 goto failure;
834 if (verify_program(hmac))
835 goto failure;
836 if (check_hmac(hmac, result->code, result->code_size)) {
837 puts("key program integrity could not be verified\n");
838 goto failure;
839 }
840 puts("key program verified\n");
841 }
842
843 goto end;
844 failure:
845 if (result)
846 free(result);
847 result = NULL;
848 end:
849 if (hmac)
850 free(hmac);
851
852 return result;
853 }
854 #endif
855
856 #ifdef CCDM_SECOND_STAGE
857 /**
858 * @brief load a key program from file system.
859 * @param ifname interface of the file system
860 * @param dev_part_str device part of the file system
861 * @param fs_type tyep of the file system
862 * @param path path of the file to load.
863 * @return the loaded structure or NULL on failure.
864 */
load_key_chunk(const char * ifname,const char * dev_part_str,int fs_type,const char * path)865 static struct key_program *load_key_chunk(const char *ifname,
866 const char *dev_part_str, int fs_type,
867 const char *path)
868 {
869 struct key_program *result = NULL;
870 struct key_program header;
871 uint32_t crc;
872 uint8_t buf[12];
873 loff_t i;
874
875 if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
876 goto failure;
877 if (fs_read(path, (ulong)buf, 0, 12, &i) < 0)
878 goto failure;
879 if (i < 12)
880 goto failure;
881 header.magic = get_unaligned_be32(buf);
882 header.code_crc = get_unaligned_be32(buf + 4);
883 header.code_size = get_unaligned_be32(buf + 8);
884
885 if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM)
886 goto failure;
887
888 result = malloc(sizeof(struct key_program) + header.code_size);
889 if (!result)
890 goto failure;
891 if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
892 goto failure;
893 if (fs_read(path, (ulong)result, 0,
894 sizeof(struct key_program) + header.code_size, &i) < 0)
895 goto failure;
896 if (i <= 0)
897 goto failure;
898 *result = header;
899
900 crc = crc32(0, result->code, result->code_size);
901
902 if (crc != result->code_crc) {
903 printf("%s: HRC crc mismatch: %08x != %08x\n",
904 path, crc, result->code_crc);
905 goto failure;
906 }
907 goto end;
908 failure:
909 if (result) {
910 free(result);
911 result = NULL;
912 }
913 end:
914 return result;
915 }
916 #endif
917
918 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
919 static const uint8_t prg_stage1_prepare[] = {
920 0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */
921 0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */
922 0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */
923 0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */
924 0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */
925 0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */
926 0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */
927 0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */
928 0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */
929 0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */
930 };
931
first_stage_actions(void)932 static int first_stage_actions(void)
933 {
934 int result = 0;
935 struct key_program *sd_prg = NULL;
936
937 puts("CCDM S1: start actions\n");
938 #ifndef CCDM_SECOND_STAGE
939 if (tpm_continue_self_test())
940 goto failure;
941 #else
942 tpm_continue_self_test();
943 #endif
944 mdelay(37);
945
946 if (hre_run_program(prg_stage1_prepare, sizeof(prg_stage1_prepare)))
947 goto failure;
948
949 sd_prg = load_sd_key_program();
950 if (sd_prg) {
951 if (hre_run_program(sd_prg->code, sd_prg->code_size))
952 goto failure;
953 puts("SD code run successfully\n");
954 } else {
955 puts("no key program found on SD\n");
956 goto failure;
957 }
958 goto end;
959 failure:
960 result = 1;
961 end:
962 if (sd_prg)
963 free(sd_prg);
964 printf("CCDM S1: actions done (%d)\n", result);
965 return result;
966 }
967 #endif
968
969 #ifdef CCDM_FIRST_STAGE
first_stage_init(void)970 static int first_stage_init(void)
971 {
972 int res = 0;
973 puts("CCDM S1\n");
974 if (tpm_init() || tpm_startup(TPM_ST_CLEAR))
975 return 1;
976 res = first_stage_actions();
977 #ifndef CCDM_SECOND_STAGE
978 if (!res) {
979 if (bl2_entry)
980 (*bl2_entry)();
981 res = 1;
982 }
983 #endif
984 return res;
985 }
986 #endif
987
988 #ifdef CCDM_SECOND_STAGE
989 static const uint8_t prg_stage2_prepare[] = {
990 0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */
991 0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */
992 0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */
993 0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */
994 0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */
995 };
996
997 static const uint8_t prg_stage2_success[] = {
998 0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */
999 0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */
1000 0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */
1001 0xe4, 0xd2, 0x81, 0xe0, /* data */
1002 };
1003
1004 static const uint8_t prg_stage_fail[] = {
1005 0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */
1006 0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */
1007 0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */
1008 0xea, 0xdf, 0x14, 0x4b, /* data */
1009 0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */
1010 0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */
1011 };
1012
second_stage_init(void)1013 static int second_stage_init(void)
1014 {
1015 static const char mac_suffix[] = ".mac";
1016 bool did_first_stage_run = true;
1017 int result = 0;
1018 char *cptr, *mmcdev = NULL;
1019 struct key_program *hmac_blob = NULL;
1020 const char *image_path = "/ccdm.itb";
1021 char *mac_path = NULL;
1022 ulong image_addr;
1023 loff_t image_size;
1024 uint32_t err;
1025
1026 printf("CCDM S2\n");
1027 if (tpm_init())
1028 return 1;
1029 err = tpm_startup(TPM_ST_CLEAR);
1030 if (err != TPM_INVALID_POSTINIT)
1031 did_first_stage_run = false;
1032
1033 #ifdef CCDM_AUTO_FIRST_STAGE
1034 if (!did_first_stage_run && first_stage_actions())
1035 goto failure;
1036 #else
1037 if (!did_first_stage_run)
1038 goto failure;
1039 #endif
1040
1041 if (hre_run_program(prg_stage2_prepare, sizeof(prg_stage2_prepare)))
1042 goto failure;
1043
1044 /* run "prepboot" from env to get "mmcdev" set */
1045 cptr = env_get("prepboot");
1046 if (cptr && !run_command(cptr, 0))
1047 mmcdev = env_get("mmcdev");
1048 if (!mmcdev)
1049 goto failure;
1050
1051 cptr = env_get("ramdiskimage");
1052 if (cptr)
1053 image_path = cptr;
1054
1055 mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1);
1056 if (mac_path == NULL)
1057 goto failure;
1058 strcpy(mac_path, image_path);
1059 strcat(mac_path, mac_suffix);
1060
1061 /* read image from mmcdev (ccdm.itb) */
1062 image_addr = (ulong)get_image_location();
1063 if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT))
1064 goto failure;
1065 if (fs_read(image_path, image_addr, 0, 0, &image_size) < 0)
1066 goto failure;
1067 if (image_size <= 0)
1068 goto failure;
1069 printf("CCDM image found on %s, %lld bytes\n", mmcdev, image_size);
1070
1071 hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path);
1072 if (!hmac_blob) {
1073 puts("failed to load mac file\n");
1074 goto failure;
1075 }
1076 if (verify_program(hmac_blob)) {
1077 puts("corrupted mac file\n");
1078 goto failure;
1079 }
1080 if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) {
1081 puts("image integrity could not be verified\n");
1082 goto failure;
1083 }
1084 puts("CCDM image OK\n");
1085
1086 hre_run_program(prg_stage2_success, sizeof(prg_stage2_success));
1087
1088 goto end;
1089 failure:
1090 result = 1;
1091 hre_run_program(prg_stage_fail, sizeof(prg_stage_fail));
1092 end:
1093 if (hmac_blob)
1094 free(hmac_blob);
1095 if (mac_path)
1096 free(mac_path);
1097
1098 return result;
1099 }
1100 #endif
1101
show_self_hash(void)1102 int show_self_hash(void)
1103 {
1104 struct h_reg *hash_ptr;
1105 #ifdef CCDM_SECOND_STAGE
1106 struct h_reg hash;
1107
1108 hash_ptr = &hash;
1109 if (compute_self_hash(hash_ptr))
1110 return 1;
1111 #else
1112 hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH];
1113 #endif
1114 puts("self hash: ");
1115 if (hash_ptr && hash_ptr->valid)
1116 print_buffer(0, hash_ptr->digest, 1, 20, 20);
1117 else
1118 puts("INVALID\n");
1119
1120 return 0;
1121 }
1122
1123 /**
1124 * @brief let the system hang.
1125 *
1126 * Called on error.
1127 * Will stop the boot process; display a message and signal the error condition
1128 * by blinking the "status" and the "finder" LED of the controller board.
1129 *
1130 * @note the develop version runs the blink cycle 2 times and then returns.
1131 * The release version never returns.
1132 */
ccdm_hang(void)1133 static void ccdm_hang(void)
1134 {
1135 static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */
1136 static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */
1137 u64 f, s;
1138 int i;
1139 #ifdef CCDM_DEVELOP
1140 int j;
1141 #endif
1142
1143 I2C_SET_BUS(I2C_SOC_0);
1144 pca9698_direction_output(0x22, 0, 0); /* Finder */
1145 pca9698_direction_output(0x22, 4, 0); /* Status */
1146
1147 puts("### ERROR ### Please RESET the board ###\n");
1148 bootstage_error(BOOTSTAGE_ID_NEED_RESET);
1149 #ifdef CCDM_DEVELOP
1150 puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1151 puts("** but we continue since this is a DEVELOP version **\n");
1152 puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1153 for (j = 2; j-- > 0;) {
1154 putc('#');
1155 #else
1156 for (;;) {
1157 #endif
1158 f = f0;
1159 s = s0;
1160 for (i = 54; i-- > 0;) {
1161 pca9698_set_value(0x22, 0, !(f & 1));
1162 pca9698_set_value(0x22, 4, (s & 1));
1163 f >>= 1;
1164 s >>= 1;
1165 mdelay(120);
1166 }
1167 }
1168 puts("\ncontinue...\n");
1169 }
1170
1171 int startup_ccdm_id_module(void)
1172 {
1173 int result = 0;
1174 unsigned int orig_i2c_bus;
1175
1176 orig_i2c_bus = i2c_get_bus_num();
1177 i2c_set_bus_num(I2C_SOC_1);
1178
1179 /* goto end; */
1180
1181 #ifdef CCDM_DEVELOP
1182 show_self_hash();
1183 #endif
1184 #ifdef CCDM_FIRST_STAGE
1185 result = first_stage_init();
1186 if (result) {
1187 puts("1st stage init failed\n");
1188 goto failure;
1189 }
1190 #endif
1191 #ifdef CCDM_SECOND_STAGE
1192 result = second_stage_init();
1193 if (result) {
1194 puts("2nd stage init failed\n");
1195 goto failure;
1196 }
1197 #endif
1198
1199 goto end;
1200 failure:
1201 result = 1;
1202 end:
1203 i2c_set_bus_num(orig_i2c_bus);
1204 if (result)
1205 ccdm_hang();
1206
1207 return result;
1208 }
1209