1 /* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
2 
3 /*
4  * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Rob Clark <robclark@freedesktop.org>
27  */
28 
29 #include "freedreno_query_hw.h"
30 #include "freedreno_context.h"
31 #include "freedreno_util.h"
32 
33 #include "fd4_query.h"
34 #include "fd4_context.h"
35 #include "fd4_draw.h"
36 #include "fd4_format.h"
37 
38 
39 struct fd_rb_samp_ctrs {
40 	uint64_t ctr[16];
41 };
42 
43 /*
44  * Occlusion Query:
45  *
46  * OCCLUSION_COUNTER and OCCLUSION_PREDICATE differ only in how they
47  * interpret results
48  */
49 
50 static struct fd_hw_sample *
occlusion_get_sample(struct fd_batch * batch,struct fd_ringbuffer * ring)51 occlusion_get_sample(struct fd_batch *batch, struct fd_ringbuffer *ring)
52 {
53 	struct fd_hw_sample *samp =
54 			fd_hw_sample_init(batch, sizeof(struct fd_rb_samp_ctrs));
55 
56 	/* low bits of sample addr should be zero (since they are control
57 	 * flags in RB_SAMPLE_COUNT_CONTROL):
58 	 */
59 	debug_assert((samp->offset & 0x3) == 0);
60 
61 	/* Set RB_SAMPLE_COUNT_ADDR to samp->offset plus value of
62 	 * HW_QUERY_BASE_REG register:
63 	 */
64 	OUT_PKT3(ring, CP_SET_CONSTANT, 3);
65 	OUT_RING(ring, CP_REG(REG_A4XX_RB_SAMPLE_COUNT_CONTROL) | 0x80000000);
66 	OUT_RING(ring, HW_QUERY_BASE_REG);
67 	OUT_RING(ring, A4XX_RB_SAMPLE_COUNT_CONTROL_COPY |
68 			samp->offset);
69 
70 	OUT_PKT3(ring, CP_DRAW_INDX_OFFSET, 3);
71 	OUT_RING(ring, DRAW4(DI_PT_POINTLIST_PSIZE, DI_SRC_SEL_AUTO_INDEX,
72 						INDEX4_SIZE_32_BIT, USE_VISIBILITY));
73 	OUT_RING(ring, 1);             /* NumInstances */
74 	OUT_RING(ring, 0);             /* NumIndices */
75 
76 	fd_event_write(batch, ring, ZPASS_DONE);
77 
78 	return samp;
79 }
80 
81 static uint64_t
count_samples(const struct fd_rb_samp_ctrs * start,const struct fd_rb_samp_ctrs * end)82 count_samples(const struct fd_rb_samp_ctrs *start,
83 		const struct fd_rb_samp_ctrs *end)
84 {
85 	return end->ctr[0] - start->ctr[0];
86 }
87 
88 static void
occlusion_counter_accumulate_result(struct fd_context * ctx,const void * start,const void * end,union pipe_query_result * result)89 occlusion_counter_accumulate_result(struct fd_context *ctx,
90 		const void *start, const void *end,
91 		union pipe_query_result *result)
92 {
93 	uint64_t n = count_samples(start, end);
94 	result->u64 += n;
95 }
96 
97 static void
occlusion_predicate_accumulate_result(struct fd_context * ctx,const void * start,const void * end,union pipe_query_result * result)98 occlusion_predicate_accumulate_result(struct fd_context *ctx,
99 		const void *start, const void *end,
100 		union pipe_query_result *result)
101 {
102 	uint64_t n = count_samples(start, end);
103 	result->b |= (n > 0);
104 }
105 
106 /*
107  * Time Elapsed Query:
108  *
109  * Note: we could in theory support timestamp queries, but they
110  * won't give sensible results for tilers.
111  */
112 
113 static void
time_elapsed_enable(struct fd_context * ctx,struct fd_ringbuffer * ring)114 time_elapsed_enable(struct fd_context *ctx, struct fd_ringbuffer *ring)
115 {
116 	/* Right now, the assignment of countable to counter register is
117 	 * just hard coded.  If we start exposing more countables than we
118 	 * have counters, we will need to be more clever.
119 	 */
120 	fd_wfi(ctx->batch, ring);
121 	OUT_PKT0(ring, REG_A4XX_CP_PERFCTR_CP_SEL_0, 1);
122 	OUT_RING(ring, CP_ALWAYS_COUNT);
123 }
124 
125 static struct fd_hw_sample *
time_elapsed_get_sample(struct fd_batch * batch,struct fd_ringbuffer * ring)126 time_elapsed_get_sample(struct fd_batch *batch, struct fd_ringbuffer *ring)
127 {
128 	struct fd_hw_sample *samp = fd_hw_sample_init(batch, sizeof(uint64_t));
129 
130 	/* use unused part of vsc_size_mem as scratch space, to avoid
131 	 * extra allocation:
132 	 */
133 	struct fd_bo *scratch_bo = fd4_context(batch->ctx)->vsc_size_mem;
134 	const int sample_off = 128;
135 	const int addr_off = sample_off + 8;
136 
137 	debug_assert(batch->ctx->screen->max_freq > 0);
138 
139 	/* Basic issue is that we need to read counter value to a relative
140 	 * destination (with per-tile offset) rather than absolute dest
141 	 * addr.  But there is no pm4 packet that can do that.  This is
142 	 * where it would be *really* nice if we could write our own fw
143 	 * since afaict implementing the sort of packet we need would be
144 	 * trivial.
145 	 *
146 	 * Instead, we:
147 	 * (1) CP_REG_TO_MEM to do a 64b copy of counter to scratch buffer
148 	 * (2) CP_MEM_WRITE to write per-sample offset to scratch buffer
149 	 * (3) CP_REG_TO_MEM w/ accumulate flag to add the per-tile base
150 	 *     address to the per-sample offset in the scratch buffer
151 	 * (4) CP_MEM_TO_REG to copy resulting address from steps #2 and #3
152 	 *     to CP_ME_NRT_ADDR
153 	 * (5) CP_MEM_TO_REG's to copy saved counter value from scratch
154 	 *     buffer to CP_ME_NRT_DATA to trigger the write out to query
155 	 *     result buffer
156 	 *
157 	 * Straightforward, right?
158 	 *
159 	 * Maybe could swap the order of things in the scratch buffer to
160 	 * put address first, and copy back to CP_ME_NRT_ADDR+DATA in one
161 	 * shot, but that's really just polishing a turd..
162 	 */
163 
164 	fd_wfi(batch, ring);
165 
166 	/* copy sample counter _LO and _HI to scratch: */
167 	OUT_PKT3(ring, CP_REG_TO_MEM, 2);
168 	OUT_RING(ring, CP_REG_TO_MEM_0_REG(REG_A4XX_RBBM_PERFCTR_CP_0_LO) |
169 			CP_REG_TO_MEM_0_64B |
170 			CP_REG_TO_MEM_0_CNT(2-1)); /* write 2 regs to mem */
171 	OUT_RELOCW(ring, scratch_bo, sample_off, 0, 0);
172 
173 	/* ok... here we really *would* like to use the CP_SET_CONSTANT
174 	 * mode which can add a constant to value in reg2 and write to
175 	 * reg1... *but* that only works for banked/context registers,
176 	 * and CP_ME_NRT_DATA isn't one of those.. so we need to do some
177 	 * CP math to the scratch buffer instead:
178 	 *
179 	 * (note first 8 bytes are counter value, use offset 0x8 for
180 	 * address calculation)
181 	 */
182 
183 	/* per-sample offset to scratch bo: */
184 	OUT_PKT3(ring, CP_MEM_WRITE, 2);
185 	OUT_RELOCW(ring, scratch_bo, addr_off, 0, 0);
186 	OUT_RING(ring, samp->offset);
187 
188 	/* now add to that the per-tile base: */
189 	OUT_PKT3(ring, CP_REG_TO_MEM, 2);
190 	OUT_RING(ring, CP_REG_TO_MEM_0_REG(HW_QUERY_BASE_REG) |
191 			CP_REG_TO_MEM_0_ACCUMULATE |
192 			CP_REG_TO_MEM_0_CNT(1-1));       /* readback 1 regs */
193 	OUT_RELOCW(ring, scratch_bo, addr_off, 0, 0);
194 
195 	/* now copy that back to CP_ME_NRT_ADDR: */
196 	OUT_PKT3(ring, CP_MEM_TO_REG, 2);
197 	OUT_RING(ring, REG_A4XX_CP_ME_NRT_ADDR);
198 	OUT_RELOC(ring, scratch_bo, addr_off, 0, 0);
199 
200 	/* and finally, copy sample from scratch buffer to CP_ME_NRT_DATA
201 	 * to trigger the write to result buffer
202 	 */
203 	OUT_PKT3(ring, CP_MEM_TO_REG, 2);
204 	OUT_RING(ring, REG_A4XX_CP_ME_NRT_DATA);
205 	OUT_RELOC(ring, scratch_bo, sample_off, 0, 0);
206 
207 	/* and again to get the value of the _HI reg from scratch: */
208 	OUT_PKT3(ring, CP_MEM_TO_REG, 2);
209 	OUT_RING(ring, REG_A4XX_CP_ME_NRT_DATA);
210 	OUT_RELOC(ring, scratch_bo, sample_off + 0x4, 0, 0);
211 
212 	/* Sigh.. */
213 
214 	return samp;
215 }
216 
217 static void
time_elapsed_accumulate_result(struct fd_context * ctx,const void * start,const void * end,union pipe_query_result * result)218 time_elapsed_accumulate_result(struct fd_context *ctx,
219 		const void *start, const void *end,
220 		union pipe_query_result *result)
221 {
222 	uint64_t n = *(uint64_t *)end - *(uint64_t *)start;
223 	/* max_freq is in Hz, convert cycle count to ns: */
224 	result->u64 += n * 1000000000 / ctx->screen->max_freq;
225 }
226 
227 static void
timestamp_accumulate_result(struct fd_context * ctx,const void * start,const void * end,union pipe_query_result * result)228 timestamp_accumulate_result(struct fd_context *ctx,
229 		const void *start, const void *end,
230 		union pipe_query_result *result)
231 {
232 	/* just return the value from fist tile: */
233 	if (result->u64 != 0)
234 		return;
235 	uint64_t n = *(uint64_t *)start;
236 	/* max_freq is in Hz, convert cycle count to ns: */
237 	result->u64 = n * 1000000000 / ctx->screen->max_freq;
238 }
239 
240 static const struct fd_hw_sample_provider occlusion_counter = {
241 		.query_type = PIPE_QUERY_OCCLUSION_COUNTER,
242 		.active = FD_STAGE_DRAW,
243 		.get_sample = occlusion_get_sample,
244 		.accumulate_result = occlusion_counter_accumulate_result,
245 };
246 
247 static const struct fd_hw_sample_provider occlusion_predicate = {
248 		.query_type = PIPE_QUERY_OCCLUSION_PREDICATE,
249 		.active = FD_STAGE_DRAW,
250 		.get_sample = occlusion_get_sample,
251 		.accumulate_result = occlusion_predicate_accumulate_result,
252 };
253 
254 static const struct fd_hw_sample_provider occlusion_predicate_conservative = {
255 		.query_type = PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE,
256 		.active = FD_STAGE_DRAW,
257 		.get_sample = occlusion_get_sample,
258 		.accumulate_result = occlusion_predicate_accumulate_result,
259 };
260 
261 static const struct fd_hw_sample_provider time_elapsed = {
262 		.query_type = PIPE_QUERY_TIME_ELAPSED,
263 		.active = FD_STAGE_DRAW | FD_STAGE_CLEAR,
264 		.enable = time_elapsed_enable,
265 		.get_sample = time_elapsed_get_sample,
266 		.accumulate_result = time_elapsed_accumulate_result,
267 };
268 
269 /* NOTE: timestamp query isn't going to give terribly sensible results
270  * on a tiler.  But it is needed by qapitrace profile heatmap.  If you
271  * add in a binning pass, the results get even more non-sensical.  So
272  * we just return the timestamp on the first tile and hope that is
273  * kind of good enough.
274  */
275 static const struct fd_hw_sample_provider timestamp = {
276 		.query_type = PIPE_QUERY_TIMESTAMP,
277 		.active = FD_STAGE_ALL,
278 		.enable = time_elapsed_enable,
279 		.get_sample = time_elapsed_get_sample,
280 		.accumulate_result = timestamp_accumulate_result,
281 };
282 
fd4_query_context_init(struct pipe_context * pctx)283 void fd4_query_context_init(struct pipe_context *pctx)
284 {
285 	struct fd_context *ctx = fd_context(pctx);
286 
287 	ctx->create_query = fd_hw_create_query;
288 	ctx->query_prepare = fd_hw_query_prepare;
289 	ctx->query_prepare_tile = fd_hw_query_prepare_tile;
290 	ctx->query_set_stage = fd_hw_query_set_stage;
291 
292 	fd_hw_query_register_provider(pctx, &occlusion_counter);
293 	fd_hw_query_register_provider(pctx, &occlusion_predicate);
294 	fd_hw_query_register_provider(pctx, &occlusion_predicate_conservative);
295 	fd_hw_query_register_provider(pctx, &time_elapsed);
296 	fd_hw_query_register_provider(pctx, &timestamp);
297 }
298