1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3 
4 © Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6 
7  1.    INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18 
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28 
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33 
34 2.    COPYRIGHT LICENSE
35 
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39 
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42 
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48 
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51 
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54 
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60 
61 3.    NO PATENT LICENSE
62 
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67 
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70 
71 4.    DISCLAIMER
72 
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83 
84 5.    CONTACT INFORMATION
85 
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90 
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94 
95 /*********************** MPEG surround encoder library *************************
96 
97    Author(s):   Max Neuendorf
98 
99    Description: Encoder Library Interface
100                 Detect Onset in current frame
101 
102 *******************************************************************************/
103 
104 /**************************************************************************/ /**
105    \file
106    Description of file contents
107  ******************************************************************************/
108 
109 /* Includes ******************************************************************/
110 #include "sacenc_onsetdetect.h"
111 #include "genericStds.h"
112 #include "sacenc_vectorfunctions.h"
113 
114 /* Defines *******************************************************************/
115 #define SPACE_ONSET_THRESHOLD (3.0)
116 #define SPACE_ONSET_THRESHOLD_SF (3)
117 #define SPACE_ONSET_THRESHOLD_SQUARE                                        \
118   (FL2FXCONST_DBL((1.0 / (SPACE_ONSET_THRESHOLD * SPACE_ONSET_THRESHOLD)) * \
119                   (float)(1 << SPACE_ONSET_THRESHOLD_SF)))
120 
121 /* Data Types ****************************************************************/
122 struct ONSET_DETECT {
123   INT maxTimeSlots;
124   INT minTransientDistance;
125   INT avgEnergyDistance;
126   INT lowerBoundOnsetDetection;
127   INT upperBoundOnsetDetection;
128   FIXP_DBL *pEnergyHist__FDK;
129   SCHAR *pEnergyHistScale;
130   SCHAR avgEnergyDistanceScale;
131 };
132 
133 /* Constants *****************************************************************/
134 
135 /* Function / Class Declarations *********************************************/
136 
137 /* Function / Class Definition ***********************************************/
fdk_sacenc_onsetDetect_Open(HANDLE_ONSET_DETECT * phOnset,const UINT maxTimeSlots)138 FDK_SACENC_ERROR fdk_sacenc_onsetDetect_Open(HANDLE_ONSET_DETECT *phOnset,
139                                              const UINT maxTimeSlots) {
140   FDK_SACENC_ERROR error = SACENC_OK;
141   HANDLE_ONSET_DETECT hOnset = NULL;
142 
143   if (NULL == phOnset) {
144     error = SACENC_INVALID_HANDLE;
145   } else {
146     /* Memory Allocation */
147     FDK_ALLOCATE_MEMORY_1D(hOnset, 1, struct ONSET_DETECT);
148     FDK_ALLOCATE_MEMORY_1D(hOnset->pEnergyHist__FDK, 16 + maxTimeSlots,
149                            FIXP_DBL);
150     FDK_ALLOCATE_MEMORY_1D(hOnset->pEnergyHistScale, 16 + maxTimeSlots, SCHAR);
151 
152     hOnset->maxTimeSlots = maxTimeSlots;
153     hOnset->minTransientDistance =
154         8; /* minimum distance between detected transients */
155     hOnset->avgEnergyDistance = 16; /* average energy distance */
156 
157     hOnset->avgEnergyDistanceScale = 4;
158     *phOnset = hOnset;
159   }
160   return error;
161 
162 bail:
163   fdk_sacenc_onsetDetect_Close(&hOnset);
164   return ((SACENC_OK == error) ? SACENC_MEMORY_ERROR : error);
165 }
166 
fdk_sacenc_onsetDetect_Init(HANDLE_ONSET_DETECT hOnset,const ONSET_DETECT_CONFIG * const pOnsetDetectConfig,const UINT initFlags)167 FDK_SACENC_ERROR fdk_sacenc_onsetDetect_Init(
168     HANDLE_ONSET_DETECT hOnset,
169     const ONSET_DETECT_CONFIG *const pOnsetDetectConfig, const UINT initFlags) {
170   FDK_SACENC_ERROR error = SACENC_OK;
171 
172   if ((NULL == hOnset) || (pOnsetDetectConfig == NULL)) {
173     error = SACENC_INVALID_HANDLE;
174   } else {
175     if ((pOnsetDetectConfig->maxTimeSlots > hOnset->maxTimeSlots) ||
176         (pOnsetDetectConfig->upperBoundOnsetDetection <
177          hOnset->lowerBoundOnsetDetection)) {
178       error = SACENC_INVALID_CONFIG;
179       goto bail;
180     }
181 
182     hOnset->maxTimeSlots = pOnsetDetectConfig->maxTimeSlots;
183     hOnset->lowerBoundOnsetDetection =
184         pOnsetDetectConfig->lowerBoundOnsetDetection;
185     hOnset->upperBoundOnsetDetection =
186         pOnsetDetectConfig->upperBoundOnsetDetection;
187 
188     hOnset->minTransientDistance =
189         8; /* minimum distance between detected transients */
190     hOnset->avgEnergyDistance = 16; /* average energy distance */
191 
192     hOnset->avgEnergyDistanceScale = 4;
193 
194     /* Init / Reset */
195     if (initFlags) {
196       int i;
197       for (i = 0; i < hOnset->avgEnergyDistance + hOnset->maxTimeSlots; i++)
198         hOnset->pEnergyHistScale[i] = -(DFRACT_BITS - 3);
199 
200       FDKmemset_flex(
201           hOnset->pEnergyHist__FDK,
202           FL2FXCONST_DBL(SACENC_FLOAT_EPSILON * (1 << (DFRACT_BITS - 3))),
203           hOnset->avgEnergyDistance + hOnset->maxTimeSlots);
204     }
205   }
206 
207 bail:
208   return error;
209 }
210 
211 /**************************************************************************/
212 
fdk_sacenc_onsetDetect_Close(HANDLE_ONSET_DETECT * phOnset)213 FDK_SACENC_ERROR fdk_sacenc_onsetDetect_Close(HANDLE_ONSET_DETECT *phOnset) {
214   FDK_SACENC_ERROR error = SACENC_OK;
215 
216   if ((NULL != phOnset) && (NULL != *phOnset)) {
217     if (NULL != (*phOnset)->pEnergyHist__FDK) {
218       FDKfree((*phOnset)->pEnergyHist__FDK);
219     }
220     (*phOnset)->pEnergyHist__FDK = NULL;
221 
222     if (NULL != (*phOnset)->pEnergyHistScale) {
223       FDKfree((*phOnset)->pEnergyHistScale);
224     }
225     (*phOnset)->pEnergyHistScale = NULL;
226     FDKfree(*phOnset);
227     *phOnset = NULL;
228   }
229   return error;
230 }
231 
232 /**************************************************************************/
233 
fdk_sacenc_onsetDetect_Update(HANDLE_ONSET_DETECT hOnset,const INT timeSlots)234 FDK_SACENC_ERROR fdk_sacenc_onsetDetect_Update(HANDLE_ONSET_DETECT hOnset,
235                                                const INT timeSlots) {
236   FDK_SACENC_ERROR error = SACENC_OK;
237 
238   if (NULL == hOnset) {
239     error = SACENC_INVALID_HANDLE;
240   } else {
241     if (timeSlots > hOnset->maxTimeSlots) {
242       error = SACENC_INVALID_CONFIG;
243     } else {
244       int i;
245       /* Shift old data */
246       for (i = 0; i < hOnset->avgEnergyDistance; i++) {
247         hOnset->pEnergyHist__FDK[i] = hOnset->pEnergyHist__FDK[i + timeSlots];
248         hOnset->pEnergyHistScale[i] = hOnset->pEnergyHistScale[i + timeSlots];
249       }
250 
251       /* Clear for new data */
252       FDKmemset_flex(&hOnset->pEnergyHist__FDK[hOnset->avgEnergyDistance],
253                      FL2FXCONST_DBL(SACENC_FLOAT_EPSILON), timeSlots);
254     }
255   }
256   return error;
257 }
258 
259 /**************************************************************************/
260 
fdk_sacenc_onsetDetect_Apply(HANDLE_ONSET_DETECT hOnset,const INT nTimeSlots,const INT nHybridBands,FIXP_DPK * const * const ppHybridData__FDK,const INT hybridDataScale,const INT prevPos,INT pTransientPos[MAX_NUM_TRANS])261 FDK_SACENC_ERROR fdk_sacenc_onsetDetect_Apply(
262     HANDLE_ONSET_DETECT hOnset, const INT nTimeSlots, const INT nHybridBands,
263     FIXP_DPK *const *const ppHybridData__FDK, const INT hybridDataScale,
264     const INT prevPos, INT pTransientPos[MAX_NUM_TRANS]) {
265   FDK_SACENC_ERROR error = SACENC_OK;
266 
267   C_ALLOC_SCRATCH_START(envs, FIXP_DBL, (16 + MAX_TIME_SLOTS))
268   FDKmemclear(envs, (16 + MAX_TIME_SLOTS) * sizeof(FIXP_DBL));
269 
270   if ((hOnset == NULL) || (pTransientPos == NULL) ||
271       (ppHybridData__FDK == NULL)) {
272     error = SACENC_INVALID_HANDLE;
273   } else {
274     int i, ts, trCnt, currPos;
275 
276     if ((nTimeSlots < 0) || (nTimeSlots > hOnset->maxTimeSlots) ||
277         (hOnset->lowerBoundOnsetDetection < -1) ||
278         (hOnset->upperBoundOnsetDetection > nHybridBands)) {
279       error = SACENC_INVALID_CONFIG;
280       goto bail;
281     }
282 
283     const int lowerBoundOnsetDetection = hOnset->lowerBoundOnsetDetection;
284     const int upperBoundOnsetDetection = hOnset->upperBoundOnsetDetection;
285     const int M = hOnset->avgEnergyDistance;
286 
287     {
288       SCHAR *envScale = hOnset->pEnergyHistScale;
289       FIXP_DBL *env = hOnset->pEnergyHist__FDK;
290       const FIXP_DBL threshold_square = SPACE_ONSET_THRESHOLD_SQUARE;
291 
292       trCnt = 0;
293 
294       /* reset transient array */
295       FDKmemset_flex(pTransientPos, -1, MAX_NUM_TRANS);
296 
297       /* minimum transient distance of minTransDist QMF samples */
298       if (prevPos > 0) {
299         currPos = FDKmax(nTimeSlots,
300                          prevPos - nTimeSlots + hOnset->minTransientDistance);
301       } else {
302         currPos = nTimeSlots;
303       }
304 
305       /* get energy and scalefactor for each time slot */
306       int outScale;
307       int inScale = 3; /* scale factor determined empirically */
308       for (ts = 0; ts < nTimeSlots; ts++) {
309         env[M + ts] = sumUpCplxPow2(
310             &ppHybridData__FDK[ts][lowerBoundOnsetDetection + 1],
311             SUM_UP_DYNAMIC_SCALE, inScale, &outScale,
312             upperBoundOnsetDetection - lowerBoundOnsetDetection - 1);
313         envScale[M + ts] = outScale + (hybridDataScale << 1);
314       }
315 
316       /* calculate common scale for all time slots */
317       SCHAR maxScale = -(DFRACT_BITS - 1);
318       for (i = 0; i < (nTimeSlots + M); i++) {
319         maxScale = fixMax(maxScale, envScale[i]);
320       }
321 
322       /* apply common scale and store energy in temporary buffer */
323       for (i = 0; i < (nTimeSlots + M); i++) {
324         envs[i] = env[i] >> fixMin((maxScale - envScale[i]), (DFRACT_BITS - 1));
325       }
326 
327       FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
328       for (i = 0; i < (nTimeSlots + M); i++) {
329         maxVal |= fAbs(envs[i]);
330       }
331 
332       int s = fixMax(0, CntLeadingZeros(maxVal) - 1);
333 
334       for (i = 0; i < (nTimeSlots + M); i++) {
335         envs[i] = envs[i] << s;
336       }
337 
338       int currPosPrev = currPos;
339       FIXP_DBL p1, p2;
340       p2 = FL2FXCONST_DBL(0.0f);
341       for (; (currPos < (nTimeSlots << 1)) && (trCnt < MAX_NUM_TRANS);
342            currPos++) {
343         p1 = fMultDiv2(envs[currPos - nTimeSlots + M], threshold_square) >>
344              (SPACE_ONSET_THRESHOLD_SF - 1);
345 
346         /* Calculate average of past M energy values */
347         if (currPosPrev == (currPos - 1)) {
348           /* remove last and add new element */
349           p2 -= (envs[currPosPrev - nTimeSlots] >>
350                  (int)hOnset->avgEnergyDistanceScale);
351           p2 += (envs[currPos - nTimeSlots + M - 1] >>
352                  (int)hOnset->avgEnergyDistanceScale);
353         } else {
354           /* calculate complete vector */
355           p2 = FL2FXCONST_DBL(0.0f);
356           for (ts = 0; ts < M; ts++) {
357             p2 += (envs[currPos - nTimeSlots + ts] >>
358                    (int)hOnset->avgEnergyDistanceScale);
359           }
360         }
361         currPosPrev = currPos;
362 
363         {
364           /* save position if transient found */
365           if (p1 > p2) {
366             pTransientPos[trCnt++] = currPos;
367             currPos += hOnset->minTransientDistance;
368           }
369         }
370       } /* for currPos */
371     }
372 
373   } /* valid handle*/
374 bail:
375 
376   C_ALLOC_SCRATCH_END(envs, FIXP_DBL, (16 + MAX_TIME_SLOTS))
377 
378   return error;
379 }
380 
381 /**************************************************************************/
382