1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
12 // expression.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 using namespace llvm;
32 using namespace PatternMatch;
33 
34 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
35 /// reusing an existing cast if a suitable one exists, moving an existing
36 /// cast if a suitable one exists but isn't in the right place, or
37 /// creating a new one.
ReuseOrCreateCast(Value * V,Type * Ty,Instruction::CastOps Op,BasicBlock::iterator IP)38 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
39                                        Instruction::CastOps Op,
40                                        BasicBlock::iterator IP) {
41   // This function must be called with the builder having a valid insertion
42   // point. It doesn't need to be the actual IP where the uses of the returned
43   // cast will be added, but it must dominate such IP.
44   // We use this precondition to produce a cast that will dominate all its
45   // uses. In particular, this is crucial for the case where the builder's
46   // insertion point *is* the point where we were asked to put the cast.
47   // Since we don't know the builder's insertion point is actually
48   // where the uses will be added (only that it dominates it), we are
49   // not allowed to move it.
50   BasicBlock::iterator BIP = Builder.GetInsertPoint();
51 
52   Instruction *Ret = nullptr;
53 
54   // Check to see if there is already a cast!
55   for (User *U : V->users())
56     if (U->getType() == Ty)
57       if (CastInst *CI = dyn_cast<CastInst>(U))
58         if (CI->getOpcode() == Op) {
59           // If the cast isn't where we want it, create a new cast at IP.
60           // Likewise, do not reuse a cast at BIP because it must dominate
61           // instructions that might be inserted before BIP.
62           if (BasicBlock::iterator(CI) != IP || BIP == IP) {
63             // Create a new cast, and leave the old cast in place in case
64             // it is being used as an insert point. Clear its operand
65             // so that it doesn't hold anything live.
66             Ret = CastInst::Create(Op, V, Ty, "", &*IP);
67             Ret->takeName(CI);
68             CI->replaceAllUsesWith(Ret);
69             CI->setOperand(0, UndefValue::get(V->getType()));
70             break;
71           }
72           Ret = CI;
73           break;
74         }
75 
76   // Create a new cast.
77   if (!Ret)
78     Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
79 
80   // We assert at the end of the function since IP might point to an
81   // instruction with different dominance properties than a cast
82   // (an invoke for example) and not dominate BIP (but the cast does).
83   assert(SE.DT.dominates(Ret, &*BIP));
84 
85   rememberInstruction(Ret);
86   return Ret;
87 }
88 
findInsertPointAfter(Instruction * I,BasicBlock * MustDominate)89 static BasicBlock::iterator findInsertPointAfter(Instruction *I,
90                                                  BasicBlock *MustDominate) {
91   BasicBlock::iterator IP = ++I->getIterator();
92   if (auto *II = dyn_cast<InvokeInst>(I))
93     IP = II->getNormalDest()->begin();
94 
95   while (isa<PHINode>(IP))
96     ++IP;
97 
98   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
99     ++IP;
100   } else if (isa<CatchSwitchInst>(IP)) {
101     IP = MustDominate->getFirstInsertionPt();
102   } else {
103     assert(!IP->isEHPad() && "unexpected eh pad!");
104   }
105 
106   return IP;
107 }
108 
109 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
110 /// which must be possible with a noop cast, doing what we can to share
111 /// the casts.
InsertNoopCastOfTo(Value * V,Type * Ty)112 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
113   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
114   assert((Op == Instruction::BitCast ||
115           Op == Instruction::PtrToInt ||
116           Op == Instruction::IntToPtr) &&
117          "InsertNoopCastOfTo cannot perform non-noop casts!");
118   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
119          "InsertNoopCastOfTo cannot change sizes!");
120 
121   // Short-circuit unnecessary bitcasts.
122   if (Op == Instruction::BitCast) {
123     if (V->getType() == Ty)
124       return V;
125     if (CastInst *CI = dyn_cast<CastInst>(V)) {
126       if (CI->getOperand(0)->getType() == Ty)
127         return CI->getOperand(0);
128     }
129   }
130   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
131   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
132       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
133     if (CastInst *CI = dyn_cast<CastInst>(V))
134       if ((CI->getOpcode() == Instruction::PtrToInt ||
135            CI->getOpcode() == Instruction::IntToPtr) &&
136           SE.getTypeSizeInBits(CI->getType()) ==
137           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
138         return CI->getOperand(0);
139     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
140       if ((CE->getOpcode() == Instruction::PtrToInt ||
141            CE->getOpcode() == Instruction::IntToPtr) &&
142           SE.getTypeSizeInBits(CE->getType()) ==
143           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
144         return CE->getOperand(0);
145   }
146 
147   // Fold a cast of a constant.
148   if (Constant *C = dyn_cast<Constant>(V))
149     return ConstantExpr::getCast(Op, C, Ty);
150 
151   // Cast the argument at the beginning of the entry block, after
152   // any bitcasts of other arguments.
153   if (Argument *A = dyn_cast<Argument>(V)) {
154     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
155     while ((isa<BitCastInst>(IP) &&
156             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
157             cast<BitCastInst>(IP)->getOperand(0) != A) ||
158            isa<DbgInfoIntrinsic>(IP))
159       ++IP;
160     return ReuseOrCreateCast(A, Ty, Op, IP);
161   }
162 
163   // Cast the instruction immediately after the instruction.
164   Instruction *I = cast<Instruction>(V);
165   BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
166   return ReuseOrCreateCast(I, Ty, Op, IP);
167 }
168 
169 /// InsertBinop - Insert the specified binary operator, doing a small amount
170 /// of work to avoid inserting an obviously redundant operation.
InsertBinop(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS)171 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
172                                  Value *LHS, Value *RHS) {
173   // Fold a binop with constant operands.
174   if (Constant *CLHS = dyn_cast<Constant>(LHS))
175     if (Constant *CRHS = dyn_cast<Constant>(RHS))
176       return ConstantExpr::get(Opcode, CLHS, CRHS);
177 
178   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
179   unsigned ScanLimit = 6;
180   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
181   // Scanning starts from the last instruction before the insertion point.
182   BasicBlock::iterator IP = Builder.GetInsertPoint();
183   if (IP != BlockBegin) {
184     --IP;
185     for (; ScanLimit; --IP, --ScanLimit) {
186       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
187       // generated code.
188       if (isa<DbgInfoIntrinsic>(IP))
189         ScanLimit++;
190       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
191           IP->getOperand(1) == RHS)
192         return &*IP;
193       if (IP == BlockBegin) break;
194     }
195   }
196 
197   // Save the original insertion point so we can restore it when we're done.
198   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
199   SCEVInsertPointGuard Guard(Builder, this);
200 
201   // Move the insertion point out of as many loops as we can.
202   while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
203     if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
204     BasicBlock *Preheader = L->getLoopPreheader();
205     if (!Preheader) break;
206 
207     // Ok, move up a level.
208     Builder.SetInsertPoint(Preheader->getTerminator());
209   }
210 
211   // If we haven't found this binop, insert it.
212   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
213   BO->setDebugLoc(Loc);
214   rememberInstruction(BO);
215 
216   return BO;
217 }
218 
219 /// FactorOutConstant - Test if S is divisible by Factor, using signed
220 /// division. If so, update S with Factor divided out and return true.
221 /// S need not be evenly divisible if a reasonable remainder can be
222 /// computed.
223 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
224 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
225 /// check to see if the divide was folded.
FactorOutConstant(const SCEV * & S,const SCEV * & Remainder,const SCEV * Factor,ScalarEvolution & SE,const DataLayout & DL)226 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
227                               const SCEV *Factor, ScalarEvolution &SE,
228                               const DataLayout &DL) {
229   // Everything is divisible by one.
230   if (Factor->isOne())
231     return true;
232 
233   // x/x == 1.
234   if (S == Factor) {
235     S = SE.getConstant(S->getType(), 1);
236     return true;
237   }
238 
239   // For a Constant, check for a multiple of the given factor.
240   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
241     // 0/x == 0.
242     if (C->isZero())
243       return true;
244     // Check for divisibility.
245     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
246       ConstantInt *CI =
247           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
248       // If the quotient is zero and the remainder is non-zero, reject
249       // the value at this scale. It will be considered for subsequent
250       // smaller scales.
251       if (!CI->isZero()) {
252         const SCEV *Div = SE.getConstant(CI);
253         S = Div;
254         Remainder = SE.getAddExpr(
255             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
256         return true;
257       }
258     }
259   }
260 
261   // In a Mul, check if there is a constant operand which is a multiple
262   // of the given factor.
263   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
264     // Size is known, check if there is a constant operand which is a multiple
265     // of the given factor. If so, we can factor it.
266     const SCEVConstant *FC = cast<SCEVConstant>(Factor);
267     if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
268       if (!C->getAPInt().srem(FC->getAPInt())) {
269         SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
270         NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
271         S = SE.getMulExpr(NewMulOps);
272         return true;
273       }
274   }
275 
276   // In an AddRec, check if both start and step are divisible.
277   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
278     const SCEV *Step = A->getStepRecurrence(SE);
279     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
280     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
281       return false;
282     if (!StepRem->isZero())
283       return false;
284     const SCEV *Start = A->getStart();
285     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
286       return false;
287     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
288                          A->getNoWrapFlags(SCEV::FlagNW));
289     return true;
290   }
291 
292   return false;
293 }
294 
295 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
296 /// is the number of SCEVAddRecExprs present, which are kept at the end of
297 /// the list.
298 ///
SimplifyAddOperands(SmallVectorImpl<const SCEV * > & Ops,Type * Ty,ScalarEvolution & SE)299 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
300                                 Type *Ty,
301                                 ScalarEvolution &SE) {
302   unsigned NumAddRecs = 0;
303   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
304     ++NumAddRecs;
305   // Group Ops into non-addrecs and addrecs.
306   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
307   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
308   // Let ScalarEvolution sort and simplify the non-addrecs list.
309   const SCEV *Sum = NoAddRecs.empty() ?
310                     SE.getConstant(Ty, 0) :
311                     SE.getAddExpr(NoAddRecs);
312   // If it returned an add, use the operands. Otherwise it simplified
313   // the sum into a single value, so just use that.
314   Ops.clear();
315   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
316     Ops.append(Add->op_begin(), Add->op_end());
317   else if (!Sum->isZero())
318     Ops.push_back(Sum);
319   // Then append the addrecs.
320   Ops.append(AddRecs.begin(), AddRecs.end());
321 }
322 
323 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
324 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
325 /// This helps expose more opportunities for folding parts of the expressions
326 /// into GEP indices.
327 ///
SplitAddRecs(SmallVectorImpl<const SCEV * > & Ops,Type * Ty,ScalarEvolution & SE)328 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
329                          Type *Ty,
330                          ScalarEvolution &SE) {
331   // Find the addrecs.
332   SmallVector<const SCEV *, 8> AddRecs;
333   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
334     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
335       const SCEV *Start = A->getStart();
336       if (Start->isZero()) break;
337       const SCEV *Zero = SE.getConstant(Ty, 0);
338       AddRecs.push_back(SE.getAddRecExpr(Zero,
339                                          A->getStepRecurrence(SE),
340                                          A->getLoop(),
341                                          A->getNoWrapFlags(SCEV::FlagNW)));
342       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
343         Ops[i] = Zero;
344         Ops.append(Add->op_begin(), Add->op_end());
345         e += Add->getNumOperands();
346       } else {
347         Ops[i] = Start;
348       }
349     }
350   if (!AddRecs.empty()) {
351     // Add the addrecs onto the end of the list.
352     Ops.append(AddRecs.begin(), AddRecs.end());
353     // Resort the operand list, moving any constants to the front.
354     SimplifyAddOperands(Ops, Ty, SE);
355   }
356 }
357 
358 /// expandAddToGEP - Expand an addition expression with a pointer type into
359 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
360 /// BasicAliasAnalysis and other passes analyze the result. See the rules
361 /// for getelementptr vs. inttoptr in
362 /// http://llvm.org/docs/LangRef.html#pointeraliasing
363 /// for details.
364 ///
365 /// Design note: The correctness of using getelementptr here depends on
366 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
367 /// they may introduce pointer arithmetic which may not be safely converted
368 /// into getelementptr.
369 ///
370 /// Design note: It might seem desirable for this function to be more
371 /// loop-aware. If some of the indices are loop-invariant while others
372 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
373 /// loop-invariant portions of the overall computation outside the loop.
374 /// However, there are a few reasons this is not done here. Hoisting simple
375 /// arithmetic is a low-level optimization that often isn't very
376 /// important until late in the optimization process. In fact, passes
377 /// like InstructionCombining will combine GEPs, even if it means
378 /// pushing loop-invariant computation down into loops, so even if the
379 /// GEPs were split here, the work would quickly be undone. The
380 /// LoopStrengthReduction pass, which is usually run quite late (and
381 /// after the last InstructionCombining pass), takes care of hoisting
382 /// loop-invariant portions of expressions, after considering what
383 /// can be folded using target addressing modes.
384 ///
expandAddToGEP(const SCEV * const * op_begin,const SCEV * const * op_end,PointerType * PTy,Type * Ty,Value * V)385 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
386                                     const SCEV *const *op_end,
387                                     PointerType *PTy,
388                                     Type *Ty,
389                                     Value *V) {
390   Type *OriginalElTy = PTy->getElementType();
391   Type *ElTy = OriginalElTy;
392   SmallVector<Value *, 4> GepIndices;
393   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
394   bool AnyNonZeroIndices = false;
395 
396   // Split AddRecs up into parts as either of the parts may be usable
397   // without the other.
398   SplitAddRecs(Ops, Ty, SE);
399 
400   Type *IntPtrTy = DL.getIntPtrType(PTy);
401 
402   // Descend down the pointer's type and attempt to convert the other
403   // operands into GEP indices, at each level. The first index in a GEP
404   // indexes into the array implied by the pointer operand; the rest of
405   // the indices index into the element or field type selected by the
406   // preceding index.
407   for (;;) {
408     // If the scale size is not 0, attempt to factor out a scale for
409     // array indexing.
410     SmallVector<const SCEV *, 8> ScaledOps;
411     if (ElTy->isSized()) {
412       const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
413       if (!ElSize->isZero()) {
414         SmallVector<const SCEV *, 8> NewOps;
415         for (const SCEV *Op : Ops) {
416           const SCEV *Remainder = SE.getConstant(Ty, 0);
417           if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
418             // Op now has ElSize factored out.
419             ScaledOps.push_back(Op);
420             if (!Remainder->isZero())
421               NewOps.push_back(Remainder);
422             AnyNonZeroIndices = true;
423           } else {
424             // The operand was not divisible, so add it to the list of operands
425             // we'll scan next iteration.
426             NewOps.push_back(Op);
427           }
428         }
429         // If we made any changes, update Ops.
430         if (!ScaledOps.empty()) {
431           Ops = NewOps;
432           SimplifyAddOperands(Ops, Ty, SE);
433         }
434       }
435     }
436 
437     // Record the scaled array index for this level of the type. If
438     // we didn't find any operands that could be factored, tentatively
439     // assume that element zero was selected (since the zero offset
440     // would obviously be folded away).
441     Value *Scaled = ScaledOps.empty() ?
442                     Constant::getNullValue(Ty) :
443                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
444     GepIndices.push_back(Scaled);
445 
446     // Collect struct field index operands.
447     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
448       bool FoundFieldNo = false;
449       // An empty struct has no fields.
450       if (STy->getNumElements() == 0) break;
451       // Field offsets are known. See if a constant offset falls within any of
452       // the struct fields.
453       if (Ops.empty())
454         break;
455       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
456         if (SE.getTypeSizeInBits(C->getType()) <= 64) {
457           const StructLayout &SL = *DL.getStructLayout(STy);
458           uint64_t FullOffset = C->getValue()->getZExtValue();
459           if (FullOffset < SL.getSizeInBytes()) {
460             unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
461             GepIndices.push_back(
462                 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
463             ElTy = STy->getTypeAtIndex(ElIdx);
464             Ops[0] =
465                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
466             AnyNonZeroIndices = true;
467             FoundFieldNo = true;
468           }
469         }
470       // If no struct field offsets were found, tentatively assume that
471       // field zero was selected (since the zero offset would obviously
472       // be folded away).
473       if (!FoundFieldNo) {
474         ElTy = STy->getTypeAtIndex(0u);
475         GepIndices.push_back(
476           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
477       }
478     }
479 
480     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
481       ElTy = ATy->getElementType();
482     else
483       break;
484   }
485 
486   // If none of the operands were convertible to proper GEP indices, cast
487   // the base to i8* and do an ugly getelementptr with that. It's still
488   // better than ptrtoint+arithmetic+inttoptr at least.
489   if (!AnyNonZeroIndices) {
490     // Cast the base to i8*.
491     V = InsertNoopCastOfTo(V,
492        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
493 
494     assert(!isa<Instruction>(V) ||
495            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
496 
497     // Expand the operands for a plain byte offset.
498     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
499 
500     // Fold a GEP with constant operands.
501     if (Constant *CLHS = dyn_cast<Constant>(V))
502       if (Constant *CRHS = dyn_cast<Constant>(Idx))
503         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
504                                               CLHS, CRHS);
505 
506     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
507     unsigned ScanLimit = 6;
508     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
509     // Scanning starts from the last instruction before the insertion point.
510     BasicBlock::iterator IP = Builder.GetInsertPoint();
511     if (IP != BlockBegin) {
512       --IP;
513       for (; ScanLimit; --IP, --ScanLimit) {
514         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
515         // generated code.
516         if (isa<DbgInfoIntrinsic>(IP))
517           ScanLimit++;
518         if (IP->getOpcode() == Instruction::GetElementPtr &&
519             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
520           return &*IP;
521         if (IP == BlockBegin) break;
522       }
523     }
524 
525     // Save the original insertion point so we can restore it when we're done.
526     SCEVInsertPointGuard Guard(Builder, this);
527 
528     // Move the insertion point out of as many loops as we can.
529     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
530       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
531       BasicBlock *Preheader = L->getLoopPreheader();
532       if (!Preheader) break;
533 
534       // Ok, move up a level.
535       Builder.SetInsertPoint(Preheader->getTerminator());
536     }
537 
538     // Emit a GEP.
539     Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
540     rememberInstruction(GEP);
541 
542     return GEP;
543   }
544 
545   {
546     SCEVInsertPointGuard Guard(Builder, this);
547 
548     // Move the insertion point out of as many loops as we can.
549     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
550       if (!L->isLoopInvariant(V)) break;
551 
552       bool AnyIndexNotLoopInvariant =
553           std::any_of(GepIndices.begin(), GepIndices.end(),
554                       [L](Value *Op) { return !L->isLoopInvariant(Op); });
555 
556       if (AnyIndexNotLoopInvariant)
557         break;
558 
559       BasicBlock *Preheader = L->getLoopPreheader();
560       if (!Preheader) break;
561 
562       // Ok, move up a level.
563       Builder.SetInsertPoint(Preheader->getTerminator());
564     }
565 
566     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
567     // because ScalarEvolution may have changed the address arithmetic to
568     // compute a value which is beyond the end of the allocated object.
569     Value *Casted = V;
570     if (V->getType() != PTy)
571       Casted = InsertNoopCastOfTo(Casted, PTy);
572     Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
573     Ops.push_back(SE.getUnknown(GEP));
574     rememberInstruction(GEP);
575   }
576 
577   return expand(SE.getAddExpr(Ops));
578 }
579 
580 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
581 /// SCEV expansion. If they are nested, this is the most nested. If they are
582 /// neighboring, pick the later.
PickMostRelevantLoop(const Loop * A,const Loop * B,DominatorTree & DT)583 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
584                                         DominatorTree &DT) {
585   if (!A) return B;
586   if (!B) return A;
587   if (A->contains(B)) return B;
588   if (B->contains(A)) return A;
589   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
590   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
591   return A; // Arbitrarily break the tie.
592 }
593 
594 /// getRelevantLoop - Get the most relevant loop associated with the given
595 /// expression, according to PickMostRelevantLoop.
getRelevantLoop(const SCEV * S)596 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
597   // Test whether we've already computed the most relevant loop for this SCEV.
598   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
599   if (!Pair.second)
600     return Pair.first->second;
601 
602   if (isa<SCEVConstant>(S))
603     // A constant has no relevant loops.
604     return nullptr;
605   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
606     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
607       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
608     // A non-instruction has no relevant loops.
609     return nullptr;
610   }
611   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
612     const Loop *L = nullptr;
613     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
614       L = AR->getLoop();
615     for (const SCEV *Op : N->operands())
616       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
617     return RelevantLoops[N] = L;
618   }
619   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
620     const Loop *Result = getRelevantLoop(C->getOperand());
621     return RelevantLoops[C] = Result;
622   }
623   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
624     const Loop *Result = PickMostRelevantLoop(
625         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
626     return RelevantLoops[D] = Result;
627   }
628   llvm_unreachable("Unexpected SCEV type!");
629 }
630 
631 namespace {
632 
633 /// LoopCompare - Compare loops by PickMostRelevantLoop.
634 class LoopCompare {
635   DominatorTree &DT;
636 public:
LoopCompare(DominatorTree & dt)637   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
638 
operator ()(std::pair<const Loop *,const SCEV * > LHS,std::pair<const Loop *,const SCEV * > RHS) const639   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
640                   std::pair<const Loop *, const SCEV *> RHS) const {
641     // Keep pointer operands sorted at the end.
642     if (LHS.second->getType()->isPointerTy() !=
643         RHS.second->getType()->isPointerTy())
644       return LHS.second->getType()->isPointerTy();
645 
646     // Compare loops with PickMostRelevantLoop.
647     if (LHS.first != RHS.first)
648       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
649 
650     // If one operand is a non-constant negative and the other is not,
651     // put the non-constant negative on the right so that a sub can
652     // be used instead of a negate and add.
653     if (LHS.second->isNonConstantNegative()) {
654       if (!RHS.second->isNonConstantNegative())
655         return false;
656     } else if (RHS.second->isNonConstantNegative())
657       return true;
658 
659     // Otherwise they are equivalent according to this comparison.
660     return false;
661   }
662 };
663 
664 }
665 
visitAddExpr(const SCEVAddExpr * S)666 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
667   Type *Ty = SE.getEffectiveSCEVType(S->getType());
668 
669   // Collect all the add operands in a loop, along with their associated loops.
670   // Iterate in reverse so that constants are emitted last, all else equal, and
671   // so that pointer operands are inserted first, which the code below relies on
672   // to form more involved GEPs.
673   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
674   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
675        E(S->op_begin()); I != E; ++I)
676     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
677 
678   // Sort by loop. Use a stable sort so that constants follow non-constants and
679   // pointer operands precede non-pointer operands.
680   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
681 
682   // Emit instructions to add all the operands. Hoist as much as possible
683   // out of loops, and form meaningful getelementptrs where possible.
684   Value *Sum = nullptr;
685   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
686     const Loop *CurLoop = I->first;
687     const SCEV *Op = I->second;
688     if (!Sum) {
689       // This is the first operand. Just expand it.
690       Sum = expand(Op);
691       ++I;
692     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
693       // The running sum expression is a pointer. Try to form a getelementptr
694       // at this level with that as the base.
695       SmallVector<const SCEV *, 4> NewOps;
696       for (; I != E && I->first == CurLoop; ++I) {
697         // If the operand is SCEVUnknown and not instructions, peek through
698         // it, to enable more of it to be folded into the GEP.
699         const SCEV *X = I->second;
700         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
701           if (!isa<Instruction>(U->getValue()))
702             X = SE.getSCEV(U->getValue());
703         NewOps.push_back(X);
704       }
705       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
706     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
707       // The running sum is an integer, and there's a pointer at this level.
708       // Try to form a getelementptr. If the running sum is instructions,
709       // use a SCEVUnknown to avoid re-analyzing them.
710       SmallVector<const SCEV *, 4> NewOps;
711       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
712                                                SE.getSCEV(Sum));
713       for (++I; I != E && I->first == CurLoop; ++I)
714         NewOps.push_back(I->second);
715       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
716     } else if (Op->isNonConstantNegative()) {
717       // Instead of doing a negate and add, just do a subtract.
718       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
719       Sum = InsertNoopCastOfTo(Sum, Ty);
720       Sum = InsertBinop(Instruction::Sub, Sum, W);
721       ++I;
722     } else {
723       // A simple add.
724       Value *W = expandCodeFor(Op, Ty);
725       Sum = InsertNoopCastOfTo(Sum, Ty);
726       // Canonicalize a constant to the RHS.
727       if (isa<Constant>(Sum)) std::swap(Sum, W);
728       Sum = InsertBinop(Instruction::Add, Sum, W);
729       ++I;
730     }
731   }
732 
733   return Sum;
734 }
735 
visitMulExpr(const SCEVMulExpr * S)736 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
737   Type *Ty = SE.getEffectiveSCEVType(S->getType());
738 
739   // Collect all the mul operands in a loop, along with their associated loops.
740   // Iterate in reverse so that constants are emitted last, all else equal.
741   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
742   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
743        E(S->op_begin()); I != E; ++I)
744     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
745 
746   // Sort by loop. Use a stable sort so that constants follow non-constants.
747   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
748 
749   // Emit instructions to mul all the operands. Hoist as much as possible
750   // out of loops.
751   Value *Prod = nullptr;
752   for (const auto &I : OpsAndLoops) {
753     const SCEV *Op = I.second;
754     if (!Prod) {
755       // This is the first operand. Just expand it.
756       Prod = expand(Op);
757     } else if (Op->isAllOnesValue()) {
758       // Instead of doing a multiply by negative one, just do a negate.
759       Prod = InsertNoopCastOfTo(Prod, Ty);
760       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
761     } else {
762       // A simple mul.
763       Value *W = expandCodeFor(Op, Ty);
764       Prod = InsertNoopCastOfTo(Prod, Ty);
765       // Canonicalize a constant to the RHS.
766       if (isa<Constant>(Prod)) std::swap(Prod, W);
767       const APInt *RHS;
768       if (match(W, m_Power2(RHS))) {
769         // Canonicalize Prod*(1<<C) to Prod<<C.
770         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
771         Prod = InsertBinop(Instruction::Shl, Prod,
772                            ConstantInt::get(Ty, RHS->logBase2()));
773       } else {
774         Prod = InsertBinop(Instruction::Mul, Prod, W);
775       }
776     }
777   }
778 
779   return Prod;
780 }
781 
visitUDivExpr(const SCEVUDivExpr * S)782 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
783   Type *Ty = SE.getEffectiveSCEVType(S->getType());
784 
785   Value *LHS = expandCodeFor(S->getLHS(), Ty);
786   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
787     const APInt &RHS = SC->getAPInt();
788     if (RHS.isPowerOf2())
789       return InsertBinop(Instruction::LShr, LHS,
790                          ConstantInt::get(Ty, RHS.logBase2()));
791   }
792 
793   Value *RHS = expandCodeFor(S->getRHS(), Ty);
794   return InsertBinop(Instruction::UDiv, LHS, RHS);
795 }
796 
797 /// Move parts of Base into Rest to leave Base with the minimal
798 /// expression that provides a pointer operand suitable for a
799 /// GEP expansion.
ExposePointerBase(const SCEV * & Base,const SCEV * & Rest,ScalarEvolution & SE)800 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
801                               ScalarEvolution &SE) {
802   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
803     Base = A->getStart();
804     Rest = SE.getAddExpr(Rest,
805                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
806                                           A->getStepRecurrence(SE),
807                                           A->getLoop(),
808                                           A->getNoWrapFlags(SCEV::FlagNW)));
809   }
810   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
811     Base = A->getOperand(A->getNumOperands()-1);
812     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
813     NewAddOps.back() = Rest;
814     Rest = SE.getAddExpr(NewAddOps);
815     ExposePointerBase(Base, Rest, SE);
816   }
817 }
818 
819 /// Determine if this is a well-behaved chain of instructions leading back to
820 /// the PHI. If so, it may be reused by expanded expressions.
isNormalAddRecExprPHI(PHINode * PN,Instruction * IncV,const Loop * L)821 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
822                                          const Loop *L) {
823   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
824       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
825     return false;
826   // If any of the operands don't dominate the insert position, bail.
827   // Addrec operands are always loop-invariant, so this can only happen
828   // if there are instructions which haven't been hoisted.
829   if (L == IVIncInsertLoop) {
830     for (User::op_iterator OI = IncV->op_begin()+1,
831            OE = IncV->op_end(); OI != OE; ++OI)
832       if (Instruction *OInst = dyn_cast<Instruction>(OI))
833         if (!SE.DT.dominates(OInst, IVIncInsertPos))
834           return false;
835   }
836   // Advance to the next instruction.
837   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
838   if (!IncV)
839     return false;
840 
841   if (IncV->mayHaveSideEffects())
842     return false;
843 
844   if (IncV != PN)
845     return true;
846 
847   return isNormalAddRecExprPHI(PN, IncV, L);
848 }
849 
850 /// getIVIncOperand returns an induction variable increment's induction
851 /// variable operand.
852 ///
853 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
854 /// operands dominate InsertPos.
855 ///
856 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
857 /// simple patterns generated by getAddRecExprPHILiterally and
858 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
getIVIncOperand(Instruction * IncV,Instruction * InsertPos,bool allowScale)859 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
860                                            Instruction *InsertPos,
861                                            bool allowScale) {
862   if (IncV == InsertPos)
863     return nullptr;
864 
865   switch (IncV->getOpcode()) {
866   default:
867     return nullptr;
868   // Check for a simple Add/Sub or GEP of a loop invariant step.
869   case Instruction::Add:
870   case Instruction::Sub: {
871     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
872     if (!OInst || SE.DT.dominates(OInst, InsertPos))
873       return dyn_cast<Instruction>(IncV->getOperand(0));
874     return nullptr;
875   }
876   case Instruction::BitCast:
877     return dyn_cast<Instruction>(IncV->getOperand(0));
878   case Instruction::GetElementPtr:
879     for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
880       if (isa<Constant>(*I))
881         continue;
882       if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
883         if (!SE.DT.dominates(OInst, InsertPos))
884           return nullptr;
885       }
886       if (allowScale) {
887         // allow any kind of GEP as long as it can be hoisted.
888         continue;
889       }
890       // This must be a pointer addition of constants (pretty), which is already
891       // handled, or some number of address-size elements (ugly). Ugly geps
892       // have 2 operands. i1* is used by the expander to represent an
893       // address-size element.
894       if (IncV->getNumOperands() != 2)
895         return nullptr;
896       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
897       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
898           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
899         return nullptr;
900       break;
901     }
902     return dyn_cast<Instruction>(IncV->getOperand(0));
903   }
904 }
905 
906 /// If the insert point of the current builder or any of the builders on the
907 /// stack of saved builders has 'I' as its insert point, update it to point to
908 /// the instruction after 'I'.  This is intended to be used when the instruction
909 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
910 /// different block, the inconsistent insert point (with a mismatched
911 /// Instruction and Block) can lead to an instruction being inserted in a block
912 /// other than its parent.
fixupInsertPoints(Instruction * I)913 void SCEVExpander::fixupInsertPoints(Instruction *I) {
914   BasicBlock::iterator It(*I);
915   BasicBlock::iterator NewInsertPt = std::next(It);
916   if (Builder.GetInsertPoint() == It)
917     Builder.SetInsertPoint(&*NewInsertPt);
918   for (auto *InsertPtGuard : InsertPointGuards)
919     if (InsertPtGuard->GetInsertPoint() == It)
920       InsertPtGuard->SetInsertPoint(NewInsertPt);
921 }
922 
923 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
924 /// it available to other uses in this loop. Recursively hoist any operands,
925 /// until we reach a value that dominates InsertPos.
hoistIVInc(Instruction * IncV,Instruction * InsertPos)926 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
927   if (SE.DT.dominates(IncV, InsertPos))
928       return true;
929 
930   // InsertPos must itself dominate IncV so that IncV's new position satisfies
931   // its existing users.
932   if (isa<PHINode>(InsertPos) ||
933       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
934     return false;
935 
936   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
937     return false;
938 
939   // Check that the chain of IV operands leading back to Phi can be hoisted.
940   SmallVector<Instruction*, 4> IVIncs;
941   for(;;) {
942     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
943     if (!Oper)
944       return false;
945     // IncV is safe to hoist.
946     IVIncs.push_back(IncV);
947     IncV = Oper;
948     if (SE.DT.dominates(IncV, InsertPos))
949       break;
950   }
951   for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
952     fixupInsertPoints(*I);
953     (*I)->moveBefore(InsertPos);
954   }
955   return true;
956 }
957 
958 /// Determine if this cyclic phi is in a form that would have been generated by
959 /// LSR. We don't care if the phi was actually expanded in this pass, as long
960 /// as it is in a low-cost form, for example, no implied multiplication. This
961 /// should match any patterns generated by getAddRecExprPHILiterally and
962 /// expandAddtoGEP.
isExpandedAddRecExprPHI(PHINode * PN,Instruction * IncV,const Loop * L)963 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
964                                            const Loop *L) {
965   for(Instruction *IVOper = IncV;
966       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
967                                 /*allowScale=*/false));) {
968     if (IVOper == PN)
969       return true;
970   }
971   return false;
972 }
973 
974 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
975 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
976 /// need to materialize IV increments elsewhere to handle difficult situations.
expandIVInc(PHINode * PN,Value * StepV,const Loop * L,Type * ExpandTy,Type * IntTy,bool useSubtract)977 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
978                                  Type *ExpandTy, Type *IntTy,
979                                  bool useSubtract) {
980   Value *IncV;
981   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
982   if (ExpandTy->isPointerTy()) {
983     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
984     // If the step isn't constant, don't use an implicitly scaled GEP, because
985     // that would require a multiply inside the loop.
986     if (!isa<ConstantInt>(StepV))
987       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
988                                   GEPPtrTy->getAddressSpace());
989     const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
990     IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
991     if (IncV->getType() != PN->getType()) {
992       IncV = Builder.CreateBitCast(IncV, PN->getType());
993       rememberInstruction(IncV);
994     }
995   } else {
996     IncV = useSubtract ?
997       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
998       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
999     rememberInstruction(IncV);
1000   }
1001   return IncV;
1002 }
1003 
1004 /// \brief Hoist the addrec instruction chain rooted in the loop phi above the
1005 /// position. This routine assumes that this is possible (has been checked).
hoistBeforePos(DominatorTree * DT,Instruction * InstToHoist,Instruction * Pos,PHINode * LoopPhi)1006 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1007                                   Instruction *Pos, PHINode *LoopPhi) {
1008   do {
1009     if (DT->dominates(InstToHoist, Pos))
1010       break;
1011     // Make sure the increment is where we want it. But don't move it
1012     // down past a potential existing post-inc user.
1013     fixupInsertPoints(InstToHoist);
1014     InstToHoist->moveBefore(Pos);
1015     Pos = InstToHoist;
1016     InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1017   } while (InstToHoist != LoopPhi);
1018 }
1019 
1020 /// \brief Check whether we can cheaply express the requested SCEV in terms of
1021 /// the available PHI SCEV by truncation and/or inversion of the step.
canBeCheaplyTransformed(ScalarEvolution & SE,const SCEVAddRecExpr * Phi,const SCEVAddRecExpr * Requested,bool & InvertStep)1022 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1023                                     const SCEVAddRecExpr *Phi,
1024                                     const SCEVAddRecExpr *Requested,
1025                                     bool &InvertStep) {
1026   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1027   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1028 
1029   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1030     return false;
1031 
1032   // Try truncate it if necessary.
1033   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1034   if (!Phi)
1035     return false;
1036 
1037   // Check whether truncation will help.
1038   if (Phi == Requested) {
1039     InvertStep = false;
1040     return true;
1041   }
1042 
1043   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1044   if (SE.getAddExpr(Requested->getStart(),
1045                     SE.getNegativeSCEV(Requested)) == Phi) {
1046     InvertStep = true;
1047     return true;
1048   }
1049 
1050   return false;
1051 }
1052 
IsIncrementNSW(ScalarEvolution & SE,const SCEVAddRecExpr * AR)1053 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1054   if (!isa<IntegerType>(AR->getType()))
1055     return false;
1056 
1057   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1058   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1059   const SCEV *Step = AR->getStepRecurrence(SE);
1060   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1061                                             SE.getSignExtendExpr(AR, WideTy));
1062   const SCEV *ExtendAfterOp =
1063     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1064   return ExtendAfterOp == OpAfterExtend;
1065 }
1066 
IsIncrementNUW(ScalarEvolution & SE,const SCEVAddRecExpr * AR)1067 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1068   if (!isa<IntegerType>(AR->getType()))
1069     return false;
1070 
1071   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1072   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1073   const SCEV *Step = AR->getStepRecurrence(SE);
1074   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1075                                             SE.getZeroExtendExpr(AR, WideTy));
1076   const SCEV *ExtendAfterOp =
1077     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1078   return ExtendAfterOp == OpAfterExtend;
1079 }
1080 
1081 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1082 /// the base addrec, which is the addrec without any non-loop-dominating
1083 /// values, and return the PHI.
1084 PHINode *
getAddRecExprPHILiterally(const SCEVAddRecExpr * Normalized,const Loop * L,Type * ExpandTy,Type * IntTy,Type * & TruncTy,bool & InvertStep)1085 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1086                                         const Loop *L,
1087                                         Type *ExpandTy,
1088                                         Type *IntTy,
1089                                         Type *&TruncTy,
1090                                         bool &InvertStep) {
1091   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1092 
1093   // Reuse a previously-inserted PHI, if present.
1094   BasicBlock *LatchBlock = L->getLoopLatch();
1095   if (LatchBlock) {
1096     PHINode *AddRecPhiMatch = nullptr;
1097     Instruction *IncV = nullptr;
1098     TruncTy = nullptr;
1099     InvertStep = false;
1100 
1101     // Only try partially matching scevs that need truncation and/or
1102     // step-inversion if we know this loop is outside the current loop.
1103     bool TryNonMatchingSCEV =
1104         IVIncInsertLoop &&
1105         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1106 
1107     for (auto &I : *L->getHeader()) {
1108       auto *PN = dyn_cast<PHINode>(&I);
1109       if (!PN || !SE.isSCEVable(PN->getType()))
1110         continue;
1111 
1112       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN));
1113       if (!PhiSCEV)
1114         continue;
1115 
1116       bool IsMatchingSCEV = PhiSCEV == Normalized;
1117       // We only handle truncation and inversion of phi recurrences for the
1118       // expanded expression if the expanded expression's loop dominates the
1119       // loop we insert to. Check now, so we can bail out early.
1120       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1121           continue;
1122 
1123       Instruction *TempIncV =
1124           cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
1125 
1126       // Check whether we can reuse this PHI node.
1127       if (LSRMode) {
1128         if (!isExpandedAddRecExprPHI(PN, TempIncV, L))
1129           continue;
1130         if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1131           continue;
1132       } else {
1133         if (!isNormalAddRecExprPHI(PN, TempIncV, L))
1134           continue;
1135       }
1136 
1137       // Stop if we have found an exact match SCEV.
1138       if (IsMatchingSCEV) {
1139         IncV = TempIncV;
1140         TruncTy = nullptr;
1141         InvertStep = false;
1142         AddRecPhiMatch = PN;
1143         break;
1144       }
1145 
1146       // Try whether the phi can be translated into the requested form
1147       // (truncated and/or offset by a constant).
1148       if ((!TruncTy || InvertStep) &&
1149           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1150         // Record the phi node. But don't stop we might find an exact match
1151         // later.
1152         AddRecPhiMatch = PN;
1153         IncV = TempIncV;
1154         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1155       }
1156     }
1157 
1158     if (AddRecPhiMatch) {
1159       // Potentially, move the increment. We have made sure in
1160       // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1161       if (L == IVIncInsertLoop)
1162         hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1163 
1164       // Ok, the add recurrence looks usable.
1165       // Remember this PHI, even in post-inc mode.
1166       InsertedValues.insert(AddRecPhiMatch);
1167       // Remember the increment.
1168       rememberInstruction(IncV);
1169       return AddRecPhiMatch;
1170     }
1171   }
1172 
1173   // Save the original insertion point so we can restore it when we're done.
1174   SCEVInsertPointGuard Guard(Builder, this);
1175 
1176   // Another AddRec may need to be recursively expanded below. For example, if
1177   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1178   // loop. Remove this loop from the PostIncLoops set before expanding such
1179   // AddRecs. Otherwise, we cannot find a valid position for the step
1180   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1181   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1182   // so it's not worth implementing SmallPtrSet::swap.
1183   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1184   PostIncLoops.clear();
1185 
1186   // Expand code for the start value.
1187   Value *StartV =
1188       expandCodeFor(Normalized->getStart(), ExpandTy, &L->getHeader()->front());
1189 
1190   // StartV must be hoisted into L's preheader to dominate the new phi.
1191   assert(!isa<Instruction>(StartV) ||
1192          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1193                                  L->getHeader()));
1194 
1195   // Expand code for the step value. Do this before creating the PHI so that PHI
1196   // reuse code doesn't see an incomplete PHI.
1197   const SCEV *Step = Normalized->getStepRecurrence(SE);
1198   // If the stride is negative, insert a sub instead of an add for the increment
1199   // (unless it's a constant, because subtracts of constants are canonicalized
1200   // to adds).
1201   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1202   if (useSubtract)
1203     Step = SE.getNegativeSCEV(Step);
1204   // Expand the step somewhere that dominates the loop header.
1205   Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1206 
1207   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1208   // we actually do emit an addition.  It does not apply if we emit a
1209   // subtraction.
1210   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1211   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1212 
1213   // Create the PHI.
1214   BasicBlock *Header = L->getHeader();
1215   Builder.SetInsertPoint(Header, Header->begin());
1216   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1217   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1218                                   Twine(IVName) + ".iv");
1219   rememberInstruction(PN);
1220 
1221   // Create the step instructions and populate the PHI.
1222   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1223     BasicBlock *Pred = *HPI;
1224 
1225     // Add a start value.
1226     if (!L->contains(Pred)) {
1227       PN->addIncoming(StartV, Pred);
1228       continue;
1229     }
1230 
1231     // Create a step value and add it to the PHI.
1232     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1233     // instructions at IVIncInsertPos.
1234     Instruction *InsertPos = L == IVIncInsertLoop ?
1235       IVIncInsertPos : Pred->getTerminator();
1236     Builder.SetInsertPoint(InsertPos);
1237     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1238 
1239     if (isa<OverflowingBinaryOperator>(IncV)) {
1240       if (IncrementIsNUW)
1241         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1242       if (IncrementIsNSW)
1243         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1244     }
1245     PN->addIncoming(IncV, Pred);
1246   }
1247 
1248   // After expanding subexpressions, restore the PostIncLoops set so the caller
1249   // can ensure that IVIncrement dominates the current uses.
1250   PostIncLoops = SavedPostIncLoops;
1251 
1252   // Remember this PHI, even in post-inc mode.
1253   InsertedValues.insert(PN);
1254 
1255   return PN;
1256 }
1257 
expandAddRecExprLiterally(const SCEVAddRecExpr * S)1258 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1259   Type *STy = S->getType();
1260   Type *IntTy = SE.getEffectiveSCEVType(STy);
1261   const Loop *L = S->getLoop();
1262 
1263   // Determine a normalized form of this expression, which is the expression
1264   // before any post-inc adjustment is made.
1265   const SCEVAddRecExpr *Normalized = S;
1266   if (PostIncLoops.count(L)) {
1267     PostIncLoopSet Loops;
1268     Loops.insert(L);
1269     Normalized = cast<SCEVAddRecExpr>(TransformForPostIncUse(
1270         Normalize, S, nullptr, nullptr, Loops, SE, SE.DT));
1271   }
1272 
1273   // Strip off any non-loop-dominating component from the addrec start.
1274   const SCEV *Start = Normalized->getStart();
1275   const SCEV *PostLoopOffset = nullptr;
1276   if (!SE.properlyDominates(Start, L->getHeader())) {
1277     PostLoopOffset = Start;
1278     Start = SE.getConstant(Normalized->getType(), 0);
1279     Normalized = cast<SCEVAddRecExpr>(
1280       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1281                        Normalized->getLoop(),
1282                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1283   }
1284 
1285   // Strip off any non-loop-dominating component from the addrec step.
1286   const SCEV *Step = Normalized->getStepRecurrence(SE);
1287   const SCEV *PostLoopScale = nullptr;
1288   if (!SE.dominates(Step, L->getHeader())) {
1289     PostLoopScale = Step;
1290     Step = SE.getConstant(Normalized->getType(), 1);
1291     if (!Start->isZero()) {
1292         // The normalization below assumes that Start is constant zero, so if
1293         // it isn't re-associate Start to PostLoopOffset.
1294         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1295         PostLoopOffset = Start;
1296         Start = SE.getConstant(Normalized->getType(), 0);
1297     }
1298     Normalized =
1299       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1300                              Start, Step, Normalized->getLoop(),
1301                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1302   }
1303 
1304   // Expand the core addrec. If we need post-loop scaling, force it to
1305   // expand to an integer type to avoid the need for additional casting.
1306   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1307   // In some cases, we decide to reuse an existing phi node but need to truncate
1308   // it and/or invert the step.
1309   Type *TruncTy = nullptr;
1310   bool InvertStep = false;
1311   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy,
1312                                           TruncTy, InvertStep);
1313 
1314   // Accommodate post-inc mode, if necessary.
1315   Value *Result;
1316   if (!PostIncLoops.count(L))
1317     Result = PN;
1318   else {
1319     // In PostInc mode, use the post-incremented value.
1320     BasicBlock *LatchBlock = L->getLoopLatch();
1321     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1322     Result = PN->getIncomingValueForBlock(LatchBlock);
1323 
1324     // For an expansion to use the postinc form, the client must call
1325     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1326     // or dominated by IVIncInsertPos.
1327     if (isa<Instruction>(Result) &&
1328         !SE.DT.dominates(cast<Instruction>(Result),
1329                          &*Builder.GetInsertPoint())) {
1330       // The induction variable's postinc expansion does not dominate this use.
1331       // IVUsers tries to prevent this case, so it is rare. However, it can
1332       // happen when an IVUser outside the loop is not dominated by the latch
1333       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1334       // all cases. Consider a phi outide whose operand is replaced during
1335       // expansion with the value of the postinc user. Without fundamentally
1336       // changing the way postinc users are tracked, the only remedy is
1337       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1338       // but hopefully expandCodeFor handles that.
1339       bool useSubtract =
1340         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1341       if (useSubtract)
1342         Step = SE.getNegativeSCEV(Step);
1343       Value *StepV;
1344       {
1345         // Expand the step somewhere that dominates the loop header.
1346         SCEVInsertPointGuard Guard(Builder, this);
1347         StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1348       }
1349       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1350     }
1351   }
1352 
1353   // We have decided to reuse an induction variable of a dominating loop. Apply
1354   // truncation and/or invertion of the step.
1355   if (TruncTy) {
1356     Type *ResTy = Result->getType();
1357     // Normalize the result type.
1358     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1359       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1360     // Truncate the result.
1361     if (TruncTy != Result->getType()) {
1362       Result = Builder.CreateTrunc(Result, TruncTy);
1363       rememberInstruction(Result);
1364     }
1365     // Invert the result.
1366     if (InvertStep) {
1367       Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1368                                  Result);
1369       rememberInstruction(Result);
1370     }
1371   }
1372 
1373   // Re-apply any non-loop-dominating scale.
1374   if (PostLoopScale) {
1375     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1376     Result = InsertNoopCastOfTo(Result, IntTy);
1377     Result = Builder.CreateMul(Result,
1378                                expandCodeFor(PostLoopScale, IntTy));
1379     rememberInstruction(Result);
1380   }
1381 
1382   // Re-apply any non-loop-dominating offset.
1383   if (PostLoopOffset) {
1384     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1385       const SCEV *const OffsetArray[1] = { PostLoopOffset };
1386       Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1387     } else {
1388       Result = InsertNoopCastOfTo(Result, IntTy);
1389       Result = Builder.CreateAdd(Result,
1390                                  expandCodeFor(PostLoopOffset, IntTy));
1391       rememberInstruction(Result);
1392     }
1393   }
1394 
1395   return Result;
1396 }
1397 
visitAddRecExpr(const SCEVAddRecExpr * S)1398 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1399   if (!CanonicalMode) return expandAddRecExprLiterally(S);
1400 
1401   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1402   const Loop *L = S->getLoop();
1403 
1404   // First check for an existing canonical IV in a suitable type.
1405   PHINode *CanonicalIV = nullptr;
1406   if (PHINode *PN = L->getCanonicalInductionVariable())
1407     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1408       CanonicalIV = PN;
1409 
1410   // Rewrite an AddRec in terms of the canonical induction variable, if
1411   // its type is more narrow.
1412   if (CanonicalIV &&
1413       SE.getTypeSizeInBits(CanonicalIV->getType()) >
1414       SE.getTypeSizeInBits(Ty)) {
1415     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1416     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1417       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1418     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1419                                        S->getNoWrapFlags(SCEV::FlagNW)));
1420     BasicBlock::iterator NewInsertPt =
1421         findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
1422     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1423                       &*NewInsertPt);
1424     return V;
1425   }
1426 
1427   // {X,+,F} --> X + {0,+,F}
1428   if (!S->getStart()->isZero()) {
1429     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1430     NewOps[0] = SE.getConstant(Ty, 0);
1431     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1432                                         S->getNoWrapFlags(SCEV::FlagNW));
1433 
1434     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1435     // comments on expandAddToGEP for details.
1436     const SCEV *Base = S->getStart();
1437     const SCEV *RestArray[1] = { Rest };
1438     // Dig into the expression to find the pointer base for a GEP.
1439     ExposePointerBase(Base, RestArray[0], SE);
1440     // If we found a pointer, expand the AddRec with a GEP.
1441     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1442       // Make sure the Base isn't something exotic, such as a multiplied
1443       // or divided pointer value. In those cases, the result type isn't
1444       // actually a pointer type.
1445       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1446         Value *StartV = expand(Base);
1447         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1448         return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1449       }
1450     }
1451 
1452     // Just do a normal add. Pre-expand the operands to suppress folding.
1453     //
1454     // The LHS and RHS values are factored out of the expand call to make the
1455     // output independent of the argument evaluation order.
1456     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1457     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1458     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1459   }
1460 
1461   // If we don't yet have a canonical IV, create one.
1462   if (!CanonicalIV) {
1463     // Create and insert the PHI node for the induction variable in the
1464     // specified loop.
1465     BasicBlock *Header = L->getHeader();
1466     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1467     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1468                                   &Header->front());
1469     rememberInstruction(CanonicalIV);
1470 
1471     SmallSet<BasicBlock *, 4> PredSeen;
1472     Constant *One = ConstantInt::get(Ty, 1);
1473     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1474       BasicBlock *HP = *HPI;
1475       if (!PredSeen.insert(HP).second) {
1476         // There must be an incoming value for each predecessor, even the
1477         // duplicates!
1478         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1479         continue;
1480       }
1481 
1482       if (L->contains(HP)) {
1483         // Insert a unit add instruction right before the terminator
1484         // corresponding to the back-edge.
1485         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1486                                                      "indvar.next",
1487                                                      HP->getTerminator());
1488         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1489         rememberInstruction(Add);
1490         CanonicalIV->addIncoming(Add, HP);
1491       } else {
1492         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1493       }
1494     }
1495   }
1496 
1497   // {0,+,1} --> Insert a canonical induction variable into the loop!
1498   if (S->isAffine() && S->getOperand(1)->isOne()) {
1499     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1500            "IVs with types different from the canonical IV should "
1501            "already have been handled!");
1502     return CanonicalIV;
1503   }
1504 
1505   // {0,+,F} --> {0,+,1} * F
1506 
1507   // If this is a simple linear addrec, emit it now as a special case.
1508   if (S->isAffine())    // {0,+,F} --> i*F
1509     return
1510       expand(SE.getTruncateOrNoop(
1511         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1512                       SE.getNoopOrAnyExtend(S->getOperand(1),
1513                                             CanonicalIV->getType())),
1514         Ty));
1515 
1516   // If this is a chain of recurrences, turn it into a closed form, using the
1517   // folders, then expandCodeFor the closed form.  This allows the folders to
1518   // simplify the expression without having to build a bunch of special code
1519   // into this folder.
1520   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1521 
1522   // Promote S up to the canonical IV type, if the cast is foldable.
1523   const SCEV *NewS = S;
1524   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1525   if (isa<SCEVAddRecExpr>(Ext))
1526     NewS = Ext;
1527 
1528   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1529   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1530 
1531   // Truncate the result down to the original type, if needed.
1532   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1533   return expand(T);
1534 }
1535 
visitTruncateExpr(const SCEVTruncateExpr * S)1536 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1537   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1538   Value *V = expandCodeFor(S->getOperand(),
1539                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1540   Value *I = Builder.CreateTrunc(V, Ty);
1541   rememberInstruction(I);
1542   return I;
1543 }
1544 
visitZeroExtendExpr(const SCEVZeroExtendExpr * S)1545 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1546   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1547   Value *V = expandCodeFor(S->getOperand(),
1548                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1549   Value *I = Builder.CreateZExt(V, Ty);
1550   rememberInstruction(I);
1551   return I;
1552 }
1553 
visitSignExtendExpr(const SCEVSignExtendExpr * S)1554 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1555   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1556   Value *V = expandCodeFor(S->getOperand(),
1557                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1558   Value *I = Builder.CreateSExt(V, Ty);
1559   rememberInstruction(I);
1560   return I;
1561 }
1562 
visitSMaxExpr(const SCEVSMaxExpr * S)1563 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1564   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1565   Type *Ty = LHS->getType();
1566   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1567     // In the case of mixed integer and pointer types, do the
1568     // rest of the comparisons as integer.
1569     if (S->getOperand(i)->getType() != Ty) {
1570       Ty = SE.getEffectiveSCEVType(Ty);
1571       LHS = InsertNoopCastOfTo(LHS, Ty);
1572     }
1573     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1574     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1575     rememberInstruction(ICmp);
1576     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1577     rememberInstruction(Sel);
1578     LHS = Sel;
1579   }
1580   // In the case of mixed integer and pointer types, cast the
1581   // final result back to the pointer type.
1582   if (LHS->getType() != S->getType())
1583     LHS = InsertNoopCastOfTo(LHS, S->getType());
1584   return LHS;
1585 }
1586 
visitUMaxExpr(const SCEVUMaxExpr * S)1587 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1588   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1589   Type *Ty = LHS->getType();
1590   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1591     // In the case of mixed integer and pointer types, do the
1592     // rest of the comparisons as integer.
1593     if (S->getOperand(i)->getType() != Ty) {
1594       Ty = SE.getEffectiveSCEVType(Ty);
1595       LHS = InsertNoopCastOfTo(LHS, Ty);
1596     }
1597     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1598     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1599     rememberInstruction(ICmp);
1600     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1601     rememberInstruction(Sel);
1602     LHS = Sel;
1603   }
1604   // In the case of mixed integer and pointer types, cast the
1605   // final result back to the pointer type.
1606   if (LHS->getType() != S->getType())
1607     LHS = InsertNoopCastOfTo(LHS, S->getType());
1608   return LHS;
1609 }
1610 
expandCodeFor(const SCEV * SH,Type * Ty,Instruction * IP)1611 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1612                                    Instruction *IP) {
1613   assert(IP);
1614   Builder.SetInsertPoint(IP);
1615   return expandCodeFor(SH, Ty);
1616 }
1617 
expandCodeFor(const SCEV * SH,Type * Ty)1618 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1619   // Expand the code for this SCEV.
1620   Value *V = expand(SH);
1621   if (Ty) {
1622     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1623            "non-trivial casts should be done with the SCEVs directly!");
1624     V = InsertNoopCastOfTo(V, Ty);
1625   }
1626   return V;
1627 }
1628 
FindValueInExprValueMap(const SCEV * S,const Instruction * InsertPt)1629 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1630                                              const Instruction *InsertPt) {
1631   SetVector<Value *> *Set = SE.getSCEVValues(S);
1632   // If the expansion is not in CanonicalMode, and the SCEV contains any
1633   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1634   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1635     // If S is scConstant, it may be worse to reuse an existing Value.
1636     if (S->getSCEVType() != scConstant && Set) {
1637       // Choose a Value from the set which dominates the insertPt.
1638       // insertPt should be inside the Value's parent loop so as not to break
1639       // the LCSSA form.
1640       for (auto const &Ent : *Set) {
1641         Instruction *EntInst = nullptr;
1642         if (Ent && isa<Instruction>(Ent) &&
1643             (EntInst = cast<Instruction>(Ent)) &&
1644             S->getType() == Ent->getType() &&
1645             EntInst->getFunction() == InsertPt->getFunction() &&
1646             SE.DT.dominates(EntInst, InsertPt) &&
1647             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1648              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) {
1649           return Ent;
1650         }
1651       }
1652     }
1653   }
1654   return nullptr;
1655 }
1656 
1657 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1658 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1659 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1660 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1661 // the expansion will try to reuse Value from ExprValueMap, and only when it
1662 // fails, expand the SCEV literally.
expand(const SCEV * S)1663 Value *SCEVExpander::expand(const SCEV *S) {
1664   // Compute an insertion point for this SCEV object. Hoist the instructions
1665   // as far out in the loop nest as possible.
1666   Instruction *InsertPt = &*Builder.GetInsertPoint();
1667   for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1668        L = L->getParentLoop())
1669     if (SE.isLoopInvariant(S, L)) {
1670       if (!L) break;
1671       if (BasicBlock *Preheader = L->getLoopPreheader())
1672         InsertPt = Preheader->getTerminator();
1673       else {
1674         // LSR sets the insertion point for AddRec start/step values to the
1675         // block start to simplify value reuse, even though it's an invalid
1676         // position. SCEVExpander must correct for this in all cases.
1677         InsertPt = &*L->getHeader()->getFirstInsertionPt();
1678       }
1679     } else {
1680       // If the SCEV is computable at this level, insert it into the header
1681       // after the PHIs (and after any other instructions that we've inserted
1682       // there) so that it is guaranteed to dominate any user inside the loop.
1683       if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1684         InsertPt = &*L->getHeader()->getFirstInsertionPt();
1685       while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1686              (isInsertedInstruction(InsertPt) ||
1687               isa<DbgInfoIntrinsic>(InsertPt))) {
1688         InsertPt = &*std::next(InsertPt->getIterator());
1689       }
1690       break;
1691     }
1692 
1693   // Check to see if we already expanded this here.
1694   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1695   if (I != InsertedExpressions.end())
1696     return I->second;
1697 
1698   SCEVInsertPointGuard Guard(Builder, this);
1699   Builder.SetInsertPoint(InsertPt);
1700 
1701   // Expand the expression into instructions.
1702   Value *V = FindValueInExprValueMap(S, InsertPt);
1703 
1704   if (!V)
1705     V = visit(S);
1706 
1707   // Remember the expanded value for this SCEV at this location.
1708   //
1709   // This is independent of PostIncLoops. The mapped value simply materializes
1710   // the expression at this insertion point. If the mapped value happened to be
1711   // a postinc expansion, it could be reused by a non-postinc user, but only if
1712   // its insertion point was already at the head of the loop.
1713   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1714   return V;
1715 }
1716 
rememberInstruction(Value * I)1717 void SCEVExpander::rememberInstruction(Value *I) {
1718   if (!PostIncLoops.empty())
1719     InsertedPostIncValues.insert(I);
1720   else
1721     InsertedValues.insert(I);
1722 }
1723 
1724 /// getOrInsertCanonicalInductionVariable - This method returns the
1725 /// canonical induction variable of the specified type for the specified
1726 /// loop (inserting one if there is none).  A canonical induction variable
1727 /// starts at zero and steps by one on each iteration.
1728 PHINode *
getOrInsertCanonicalInductionVariable(const Loop * L,Type * Ty)1729 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1730                                                     Type *Ty) {
1731   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1732 
1733   // Build a SCEV for {0,+,1}<L>.
1734   // Conservatively use FlagAnyWrap for now.
1735   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1736                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1737 
1738   // Emit code for it.
1739   SCEVInsertPointGuard Guard(Builder, this);
1740   PHINode *V =
1741       cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));
1742 
1743   return V;
1744 }
1745 
1746 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1747 /// replace them with their most canonical representative. Return the number of
1748 /// phis eliminated.
1749 ///
1750 /// This does not depend on any SCEVExpander state but should be used in
1751 /// the same context that SCEVExpander is used.
replaceCongruentIVs(Loop * L,const DominatorTree * DT,SmallVectorImpl<WeakVH> & DeadInsts,const TargetTransformInfo * TTI)1752 unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1753                                            SmallVectorImpl<WeakVH> &DeadInsts,
1754                                            const TargetTransformInfo *TTI) {
1755   // Find integer phis in order of increasing width.
1756   SmallVector<PHINode*, 8> Phis;
1757   for (auto &I : *L->getHeader()) {
1758     if (auto *PN = dyn_cast<PHINode>(&I))
1759       Phis.push_back(PN);
1760     else
1761       break;
1762   }
1763 
1764   if (TTI)
1765     std::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) {
1766       // Put pointers at the back and make sure pointer < pointer = false.
1767       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1768         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1769       return RHS->getType()->getPrimitiveSizeInBits() <
1770              LHS->getType()->getPrimitiveSizeInBits();
1771     });
1772 
1773   unsigned NumElim = 0;
1774   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1775   // Process phis from wide to narrow. Map wide phis to their truncation
1776   // so narrow phis can reuse them.
1777   for (PHINode *Phi : Phis) {
1778     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1779       if (Value *V = SimplifyInstruction(PN, DL, &SE.TLI, &SE.DT, &SE.AC))
1780         return V;
1781       if (!SE.isSCEVable(PN->getType()))
1782         return nullptr;
1783       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1784       if (!Const)
1785         return nullptr;
1786       return Const->getValue();
1787     };
1788 
1789     // Fold constant phis. They may be congruent to other constant phis and
1790     // would confuse the logic below that expects proper IVs.
1791     if (Value *V = SimplifyPHINode(Phi)) {
1792       if (V->getType() != Phi->getType())
1793         continue;
1794       Phi->replaceAllUsesWith(V);
1795       DeadInsts.emplace_back(Phi);
1796       ++NumElim;
1797       DEBUG_WITH_TYPE(DebugType, dbgs()
1798                       << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1799       continue;
1800     }
1801 
1802     if (!SE.isSCEVable(Phi->getType()))
1803       continue;
1804 
1805     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1806     if (!OrigPhiRef) {
1807       OrigPhiRef = Phi;
1808       if (Phi->getType()->isIntegerTy() && TTI &&
1809           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1810         // This phi can be freely truncated to the narrowest phi type. Map the
1811         // truncated expression to it so it will be reused for narrow types.
1812         const SCEV *TruncExpr =
1813           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1814         ExprToIVMap[TruncExpr] = Phi;
1815       }
1816       continue;
1817     }
1818 
1819     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1820     // sense.
1821     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1822       continue;
1823 
1824     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1825       Instruction *OrigInc = dyn_cast<Instruction>(
1826           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1827       Instruction *IsomorphicInc =
1828           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1829 
1830       if (OrigInc && IsomorphicInc) {
1831         // If this phi has the same width but is more canonical, replace the
1832         // original with it. As part of the "more canonical" determination,
1833         // respect a prior decision to use an IV chain.
1834         if (OrigPhiRef->getType() == Phi->getType() &&
1835             !(ChainedPhis.count(Phi) ||
1836               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
1837             (ChainedPhis.count(Phi) ||
1838              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1839           std::swap(OrigPhiRef, Phi);
1840           std::swap(OrigInc, IsomorphicInc);
1841         }
1842         // Replacing the congruent phi is sufficient because acyclic
1843         // redundancy elimination, CSE/GVN, should handle the
1844         // rest. However, once SCEV proves that a phi is congruent,
1845         // it's often the head of an IV user cycle that is isomorphic
1846         // with the original phi. It's worth eagerly cleaning up the
1847         // common case of a single IV increment so that DeleteDeadPHIs
1848         // can remove cycles that had postinc uses.
1849         const SCEV *TruncExpr =
1850             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1851         if (OrigInc != IsomorphicInc &&
1852             TruncExpr == SE.getSCEV(IsomorphicInc) &&
1853             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
1854             hoistIVInc(OrigInc, IsomorphicInc)) {
1855           DEBUG_WITH_TYPE(DebugType,
1856                           dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1857                                  << *IsomorphicInc << '\n');
1858           Value *NewInc = OrigInc;
1859           if (OrigInc->getType() != IsomorphicInc->getType()) {
1860             Instruction *IP = nullptr;
1861             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1862               IP = &*PN->getParent()->getFirstInsertionPt();
1863             else
1864               IP = OrigInc->getNextNode();
1865 
1866             IRBuilder<> Builder(IP);
1867             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1868             NewInc = Builder.CreateTruncOrBitCast(
1869                 OrigInc, IsomorphicInc->getType(), IVName);
1870           }
1871           IsomorphicInc->replaceAllUsesWith(NewInc);
1872           DeadInsts.emplace_back(IsomorphicInc);
1873         }
1874       }
1875     }
1876     DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
1877                                       << *Phi << '\n');
1878     ++NumElim;
1879     Value *NewIV = OrigPhiRef;
1880     if (OrigPhiRef->getType() != Phi->getType()) {
1881       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
1882       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1883       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1884     }
1885     Phi->replaceAllUsesWith(NewIV);
1886     DeadInsts.emplace_back(Phi);
1887   }
1888   return NumElim;
1889 }
1890 
findExistingExpansion(const SCEV * S,const Instruction * At,Loop * L)1891 Value *SCEVExpander::findExistingExpansion(const SCEV *S,
1892                                            const Instruction *At, Loop *L) {
1893   using namespace llvm::PatternMatch;
1894 
1895   SmallVector<BasicBlock *, 4> ExitingBlocks;
1896   L->getExitingBlocks(ExitingBlocks);
1897 
1898   // Look for suitable value in simple conditions at the loop exits.
1899   for (BasicBlock *BB : ExitingBlocks) {
1900     ICmpInst::Predicate Pred;
1901     Instruction *LHS, *RHS;
1902     BasicBlock *TrueBB, *FalseBB;
1903 
1904     if (!match(BB->getTerminator(),
1905                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
1906                     TrueBB, FalseBB)))
1907       continue;
1908 
1909     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
1910       return LHS;
1911 
1912     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
1913       return RHS;
1914   }
1915 
1916   // Use expand's logic which is used for reusing a previous Value in
1917   // ExprValueMap.
1918   if (Value *Val = FindValueInExprValueMap(S, At))
1919     return Val;
1920 
1921   // There is potential to make this significantly smarter, but this simple
1922   // heuristic already gets some interesting cases.
1923 
1924   // Can not find suitable value.
1925   return nullptr;
1926 }
1927 
isHighCostExpansionHelper(const SCEV * S,Loop * L,const Instruction * At,SmallPtrSetImpl<const SCEV * > & Processed)1928 bool SCEVExpander::isHighCostExpansionHelper(
1929     const SCEV *S, Loop *L, const Instruction *At,
1930     SmallPtrSetImpl<const SCEV *> &Processed) {
1931 
1932   // If we can find an existing value for this scev avaliable at the point "At"
1933   // then consider the expression cheap.
1934   if (At && findExistingExpansion(S, At, L) != nullptr)
1935     return false;
1936 
1937   // Zero/One operand expressions
1938   switch (S->getSCEVType()) {
1939   case scUnknown:
1940   case scConstant:
1941     return false;
1942   case scTruncate:
1943     return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
1944                                      L, At, Processed);
1945   case scZeroExtend:
1946     return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
1947                                      L, At, Processed);
1948   case scSignExtend:
1949     return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
1950                                      L, At, Processed);
1951   }
1952 
1953   if (!Processed.insert(S).second)
1954     return false;
1955 
1956   if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
1957     // If the divisor is a power of two and the SCEV type fits in a native
1958     // integer, consider the division cheap irrespective of whether it occurs in
1959     // the user code since it can be lowered into a right shift.
1960     if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
1961       if (SC->getAPInt().isPowerOf2()) {
1962         const DataLayout &DL =
1963             L->getHeader()->getParent()->getParent()->getDataLayout();
1964         unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
1965         return DL.isIllegalInteger(Width);
1966       }
1967 
1968     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
1969     // HowManyLessThans produced to compute a precise expression, rather than a
1970     // UDiv from the user's code. If we can't find a UDiv in the code with some
1971     // simple searching, assume the former consider UDivExpr expensive to
1972     // compute.
1973     BasicBlock *ExitingBB = L->getExitingBlock();
1974     if (!ExitingBB)
1975       return true;
1976 
1977     // At the beginning of this function we already tried to find existing value
1978     // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
1979     // involving division. This is just a simple search heuristic.
1980     if (!At)
1981       At = &ExitingBB->back();
1982     if (!findExistingExpansion(
1983             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
1984       return true;
1985   }
1986 
1987   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1988   // the exit condition.
1989   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1990     return true;
1991 
1992   // Recurse past nary expressions, which commonly occur in the
1993   // BackedgeTakenCount. They may already exist in program code, and if not,
1994   // they are not too expensive rematerialize.
1995   if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
1996     for (auto *Op : NAry->operands())
1997       if (isHighCostExpansionHelper(Op, L, At, Processed))
1998         return true;
1999   }
2000 
2001   // If we haven't recognized an expensive SCEV pattern, assume it's an
2002   // expression produced by program code.
2003   return false;
2004 }
2005 
expandCodeForPredicate(const SCEVPredicate * Pred,Instruction * IP)2006 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2007                                             Instruction *IP) {
2008   assert(IP);
2009   switch (Pred->getKind()) {
2010   case SCEVPredicate::P_Union:
2011     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2012   case SCEVPredicate::P_Equal:
2013     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2014   case SCEVPredicate::P_Wrap: {
2015     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2016     return expandWrapPredicate(AddRecPred, IP);
2017   }
2018   }
2019   llvm_unreachable("Unknown SCEV predicate type");
2020 }
2021 
expandEqualPredicate(const SCEVEqualPredicate * Pred,Instruction * IP)2022 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2023                                           Instruction *IP) {
2024   Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2025   Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2026 
2027   Builder.SetInsertPoint(IP);
2028   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2029   return I;
2030 }
2031 
generateOverflowCheck(const SCEVAddRecExpr * AR,Instruction * Loc,bool Signed)2032 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2033                                            Instruction *Loc, bool Signed) {
2034   assert(AR->isAffine() && "Cannot generate RT check for "
2035                            "non-affine expression");
2036 
2037   SCEVUnionPredicate Pred;
2038   const SCEV *ExitCount =
2039       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2040 
2041   assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
2042 
2043   const SCEV *Step = AR->getStepRecurrence(SE);
2044   const SCEV *Start = AR->getStart();
2045 
2046   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2047   unsigned DstBits = SE.getTypeSizeInBits(AR->getType());
2048 
2049   // The expression {Start,+,Step} has nusw/nssw if
2050   //   Step < 0, Start - |Step| * Backedge <= Start
2051   //   Step >= 0, Start + |Step| * Backedge > Start
2052   // and |Step| * Backedge doesn't unsigned overflow.
2053 
2054   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2055   Builder.SetInsertPoint(Loc);
2056   Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
2057 
2058   IntegerType *Ty =
2059       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(AR->getType()));
2060 
2061   Value *StepValue = expandCodeFor(Step, Ty, Loc);
2062   Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
2063   Value *StartValue = expandCodeFor(Start, Ty, Loc);
2064 
2065   ConstantInt *Zero =
2066       ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2067 
2068   Builder.SetInsertPoint(Loc);
2069   // Compute |Step|
2070   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2071   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2072 
2073   // Get the backedge taken count and truncate or extended to the AR type.
2074   Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2075   auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2076                                          Intrinsic::umul_with_overflow, Ty);
2077 
2078   // Compute |Step| * Backedge
2079   CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2080   Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2081   Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2082 
2083   // Compute:
2084   //   Start + |Step| * Backedge < Start
2085   //   Start - |Step| * Backedge > Start
2086   Value *Add = Builder.CreateAdd(StartValue, MulV);
2087   Value *Sub = Builder.CreateSub(StartValue, MulV);
2088 
2089   Value *EndCompareGT = Builder.CreateICmp(
2090       Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2091 
2092   Value *EndCompareLT = Builder.CreateICmp(
2093       Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2094 
2095   // Select the answer based on the sign of Step.
2096   Value *EndCheck =
2097       Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2098 
2099   // If the backedge taken count type is larger than the AR type,
2100   // check that we don't drop any bits by truncating it. If we are
2101   // droping bits, then we have overflow (unless the step is zero).
2102   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2103     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2104     auto *BackedgeCheck =
2105         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2106                            ConstantInt::get(Loc->getContext(), MaxVal));
2107     BackedgeCheck = Builder.CreateAnd(
2108         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2109 
2110     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2111   }
2112 
2113   EndCheck = Builder.CreateOr(EndCheck, OfMul);
2114   return EndCheck;
2115 }
2116 
expandWrapPredicate(const SCEVWrapPredicate * Pred,Instruction * IP)2117 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2118                                          Instruction *IP) {
2119   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2120   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2121 
2122   // Add a check for NUSW
2123   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2124     NUSWCheck = generateOverflowCheck(A, IP, false);
2125 
2126   // Add a check for NSSW
2127   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2128     NSSWCheck = generateOverflowCheck(A, IP, true);
2129 
2130   if (NUSWCheck && NSSWCheck)
2131     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2132 
2133   if (NUSWCheck)
2134     return NUSWCheck;
2135 
2136   if (NSSWCheck)
2137     return NSSWCheck;
2138 
2139   return ConstantInt::getFalse(IP->getContext());
2140 }
2141 
expandUnionPredicate(const SCEVUnionPredicate * Union,Instruction * IP)2142 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2143                                           Instruction *IP) {
2144   auto *BoolType = IntegerType::get(IP->getContext(), 1);
2145   Value *Check = ConstantInt::getNullValue(BoolType);
2146 
2147   // Loop over all checks in this set.
2148   for (auto Pred : Union->getPredicates()) {
2149     auto *NextCheck = expandCodeForPredicate(Pred, IP);
2150     Builder.SetInsertPoint(IP);
2151     Check = Builder.CreateOr(Check, NextCheck);
2152   }
2153 
2154   return Check;
2155 }
2156 
2157 namespace {
2158 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2159 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2160 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2161 // instruction, but the important thing is that we prove the denominator is
2162 // nonzero before expansion.
2163 //
2164 // IVUsers already checks that IV-derived expressions are safe. So this check is
2165 // only needed when the expression includes some subexpression that is not IV
2166 // derived.
2167 //
2168 // Currently, we only allow division by a nonzero constant here. If this is
2169 // inadequate, we could easily allow division by SCEVUnknown by using
2170 // ValueTracking to check isKnownNonZero().
2171 //
2172 // We cannot generally expand recurrences unless the step dominates the loop
2173 // header. The expander handles the special case of affine recurrences by
2174 // scaling the recurrence outside the loop, but this technique isn't generally
2175 // applicable. Expanding a nested recurrence outside a loop requires computing
2176 // binomial coefficients. This could be done, but the recurrence has to be in a
2177 // perfectly reduced form, which can't be guaranteed.
2178 struct SCEVFindUnsafe {
2179   ScalarEvolution &SE;
2180   bool IsUnsafe;
2181 
SCEVFindUnsafe__anon93665ff70511::SCEVFindUnsafe2182   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2183 
follow__anon93665ff70511::SCEVFindUnsafe2184   bool follow(const SCEV *S) {
2185     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2186       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2187       if (!SC || SC->getValue()->isZero()) {
2188         IsUnsafe = true;
2189         return false;
2190       }
2191     }
2192     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2193       const SCEV *Step = AR->getStepRecurrence(SE);
2194       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2195         IsUnsafe = true;
2196         return false;
2197       }
2198     }
2199     return true;
2200   }
isDone__anon93665ff70511::SCEVFindUnsafe2201   bool isDone() const { return IsUnsafe; }
2202 };
2203 }
2204 
2205 namespace llvm {
isSafeToExpand(const SCEV * S,ScalarEvolution & SE)2206 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2207   SCEVFindUnsafe Search(SE);
2208   visitAll(S, Search);
2209   return !Search.IsUnsafe;
2210 }
2211 }
2212