1 //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BitVector class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_BITVECTOR_H
15 #define LLVM_ADT_BITVECTOR_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <algorithm>
21 #include <cassert>
22 #include <climits>
23 #include <cstdint>
24 #include <cstdlib>
25 #include <cstring>
26 #include <utility>
27 
28 namespace llvm {
29 
30 /// ForwardIterator for the bits that are set.
31 /// Iterators get invalidated when resize / reserve is called.
32 template <typename BitVectorT> class const_set_bits_iterator_impl {
33   const BitVectorT &Parent;
34   int Current = 0;
35 
advance()36   void advance() {
37     assert(Current != -1 && "Trying to advance past end.");
38     Current = Parent.find_next(Current);
39   }
40 
41 public:
const_set_bits_iterator_impl(const BitVectorT & Parent,int Current)42   const_set_bits_iterator_impl(const BitVectorT &Parent, int Current)
43       : Parent(Parent), Current(Current) {}
const_set_bits_iterator_impl(const BitVectorT & Parent)44   explicit const_set_bits_iterator_impl(const BitVectorT &Parent)
45       : const_set_bits_iterator_impl(Parent, Parent.find_first()) {}
46   const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default;
47 
48   const_set_bits_iterator_impl operator++(int) {
49     auto Prev = *this;
50     advance();
51     return Prev;
52   }
53 
54   const_set_bits_iterator_impl &operator++() {
55     advance();
56     return *this;
57   }
58 
59   unsigned operator*() const { return Current; }
60 
61   bool operator==(const const_set_bits_iterator_impl &Other) const {
62     assert(&Parent == &Other.Parent &&
63            "Comparing iterators from different BitVectors");
64     return Current == Other.Current;
65   }
66 
67   bool operator!=(const const_set_bits_iterator_impl &Other) const {
68     assert(&Parent == &Other.Parent &&
69            "Comparing iterators from different BitVectors");
70     return Current != Other.Current;
71   }
72 };
73 
74 class BitVector {
75   typedef unsigned long BitWord;
76 
77   enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
78 
79   static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
80                 "Unsupported word size");
81 
82   MutableArrayRef<BitWord> Bits; // Actual bits.
83   unsigned Size;                 // Size of bitvector in bits.
84 
85 public:
86   typedef unsigned size_type;
87   // Encapsulation of a single bit.
88   class reference {
89     friend class BitVector;
90 
91     BitWord *WordRef;
92     unsigned BitPos;
93 
94   public:
reference(BitVector & b,unsigned Idx)95     reference(BitVector &b, unsigned Idx) {
96       WordRef = &b.Bits[Idx / BITWORD_SIZE];
97       BitPos = Idx % BITWORD_SIZE;
98     }
99 
100     reference() = delete;
101     reference(const reference&) = default;
102 
103     reference &operator=(reference t) {
104       *this = bool(t);
105       return *this;
106     }
107 
108     reference& operator=(bool t) {
109       if (t)
110         *WordRef |= BitWord(1) << BitPos;
111       else
112         *WordRef &= ~(BitWord(1) << BitPos);
113       return *this;
114     }
115 
116     operator bool() const {
117       return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
118     }
119   };
120 
121   typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator;
122   typedef const_set_bits_iterator set_iterator;
123 
set_bits_begin()124   const_set_bits_iterator set_bits_begin() const {
125     return const_set_bits_iterator(*this);
126   }
set_bits_end()127   const_set_bits_iterator set_bits_end() const {
128     return const_set_bits_iterator(*this, -1);
129   }
set_bits()130   iterator_range<const_set_bits_iterator> set_bits() const {
131     return make_range(set_bits_begin(), set_bits_end());
132   }
133 
134   /// BitVector default ctor - Creates an empty bitvector.
BitVector()135   BitVector() : Size(0) {}
136 
137   /// BitVector ctor - Creates a bitvector of specified number of bits. All
138   /// bits are initialized to the specified value.
Size(s)139   explicit BitVector(unsigned s, bool t = false) : Size(s) {
140     size_t Capacity = NumBitWords(s);
141     Bits = allocate(Capacity);
142     init_words(Bits, t);
143     if (t)
144       clear_unused_bits();
145   }
146 
147   /// BitVector copy ctor.
BitVector(const BitVector & RHS)148   BitVector(const BitVector &RHS) : Size(RHS.size()) {
149     if (Size == 0) {
150       Bits = MutableArrayRef<BitWord>();
151       return;
152     }
153 
154     size_t Capacity = NumBitWords(RHS.size());
155     Bits = allocate(Capacity);
156     std::memcpy(Bits.data(), RHS.Bits.data(), Capacity * sizeof(BitWord));
157   }
158 
BitVector(BitVector && RHS)159   BitVector(BitVector &&RHS) : Bits(RHS.Bits), Size(RHS.Size) {
160     RHS.Bits = MutableArrayRef<BitWord>();
161     RHS.Size = 0;
162   }
163 
~BitVector()164   ~BitVector() { std::free(Bits.data()); }
165 
166   /// empty - Tests whether there are no bits in this bitvector.
empty()167   bool empty() const { return Size == 0; }
168 
169   /// size - Returns the number of bits in this bitvector.
size()170   size_type size() const { return Size; }
171 
172   /// count - Returns the number of bits which are set.
count()173   size_type count() const {
174     unsigned NumBits = 0;
175     for (unsigned i = 0; i < NumBitWords(size()); ++i)
176       NumBits += countPopulation(Bits[i]);
177     return NumBits;
178   }
179 
180   /// any - Returns true if any bit is set.
any()181   bool any() const {
182     for (unsigned i = 0; i < NumBitWords(size()); ++i)
183       if (Bits[i] != 0)
184         return true;
185     return false;
186   }
187 
188   /// all - Returns true if all bits are set.
all()189   bool all() const {
190     for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
191       if (Bits[i] != ~0UL)
192         return false;
193 
194     // If bits remain check that they are ones. The unused bits are always zero.
195     if (unsigned Remainder = Size % BITWORD_SIZE)
196       return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
197 
198     return true;
199   }
200 
201   /// none - Returns true if none of the bits are set.
none()202   bool none() const {
203     return !any();
204   }
205 
206   /// find_first_in - Returns the index of the first set bit in the range
207   /// [Begin, End).  Returns -1 if all bits in the range are unset.
find_first_in(unsigned Begin,unsigned End)208   int find_first_in(unsigned Begin, unsigned End) const {
209     assert(Begin <= End && End <= Size);
210     if (Begin == End)
211       return -1;
212 
213     unsigned FirstWord = Begin / BITWORD_SIZE;
214     unsigned LastWord = (End - 1) / BITWORD_SIZE;
215 
216     // Check subsequent words.
217     for (unsigned i = FirstWord; i <= LastWord; ++i) {
218       BitWord Copy = Bits[i];
219 
220       if (i == FirstWord) {
221         unsigned FirstBit = Begin % BITWORD_SIZE;
222         Copy &= maskTrailingZeros<BitWord>(FirstBit);
223       }
224 
225       if (i == LastWord) {
226         unsigned LastBit = (End - 1) % BITWORD_SIZE;
227         Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
228       }
229       if (Copy != 0)
230         return i * BITWORD_SIZE + countTrailingZeros(Copy);
231     }
232     return -1;
233   }
234 
235   /// find_last_in - Returns the index of the last set bit in the range
236   /// [Begin, End).  Returns -1 if all bits in the range are unset.
find_last_in(unsigned Begin,unsigned End)237   int find_last_in(unsigned Begin, unsigned End) const {
238     assert(Begin <= End && End <= Size);
239     if (Begin == End)
240       return -1;
241 
242     unsigned LastWord = (End - 1) / BITWORD_SIZE;
243     unsigned FirstWord = Begin / BITWORD_SIZE;
244 
245     for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
246       unsigned CurrentWord = i - 1;
247 
248       BitWord Copy = Bits[CurrentWord];
249       if (CurrentWord == LastWord) {
250         unsigned LastBit = (End - 1) % BITWORD_SIZE;
251         Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
252       }
253 
254       if (CurrentWord == FirstWord) {
255         unsigned FirstBit = Begin % BITWORD_SIZE;
256         Copy &= maskTrailingZeros<BitWord>(FirstBit);
257       }
258 
259       if (Copy != 0)
260         return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1;
261     }
262 
263     return -1;
264   }
265 
266   /// find_first_unset_in - Returns the index of the first unset bit in the
267   /// range [Begin, End).  Returns -1 if all bits in the range are set.
find_first_unset_in(unsigned Begin,unsigned End)268   int find_first_unset_in(unsigned Begin, unsigned End) const {
269     assert(Begin <= End && End <= Size);
270     if (Begin == End)
271       return -1;
272 
273     unsigned FirstWord = Begin / BITWORD_SIZE;
274     unsigned LastWord = (End - 1) / BITWORD_SIZE;
275 
276     // Check subsequent words.
277     for (unsigned i = FirstWord; i <= LastWord; ++i) {
278       BitWord Copy = Bits[i];
279 
280       if (i == FirstWord) {
281         unsigned FirstBit = Begin % BITWORD_SIZE;
282         Copy |= maskTrailingOnes<BitWord>(FirstBit);
283       }
284 
285       if (i == LastWord) {
286         unsigned LastBit = (End - 1) % BITWORD_SIZE;
287         Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
288       }
289       if (Copy != ~0UL) {
290         unsigned Result = i * BITWORD_SIZE + countTrailingOnes(Copy);
291         return Result < size() ? Result : -1;
292       }
293     }
294     return -1;
295   }
296 
297   /// find_last_unset_in - Returns the index of the last unset bit in the
298   /// range [Begin, End).  Returns -1 if all bits in the range are set.
find_last_unset_in(unsigned Begin,unsigned End)299   int find_last_unset_in(unsigned Begin, unsigned End) const {
300     assert(Begin <= End && End <= Size);
301     if (Begin == End)
302       return -1;
303 
304     unsigned LastWord = (End - 1) / BITWORD_SIZE;
305     unsigned FirstWord = Begin / BITWORD_SIZE;
306 
307     for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
308       unsigned CurrentWord = i - 1;
309 
310       BitWord Copy = Bits[CurrentWord];
311       if (CurrentWord == LastWord) {
312         unsigned LastBit = (End - 1) % BITWORD_SIZE;
313         Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
314       }
315 
316       if (CurrentWord == FirstWord) {
317         unsigned FirstBit = Begin % BITWORD_SIZE;
318         Copy |= maskTrailingOnes<BitWord>(FirstBit);
319       }
320 
321       if (Copy != ~0UL) {
322         unsigned Result =
323             (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1;
324         return Result < Size ? Result : -1;
325       }
326     }
327     return -1;
328   }
329 
330   /// find_first - Returns the index of the first set bit, -1 if none
331   /// of the bits are set.
find_first()332   int find_first() const { return find_first_in(0, Size); }
333 
334   /// find_last - Returns the index of the last set bit, -1 if none of the bits
335   /// are set.
find_last()336   int find_last() const { return find_last_in(0, Size); }
337 
338   /// find_next - Returns the index of the next set bit following the
339   /// "Prev" bit. Returns -1 if the next set bit is not found.
find_next(unsigned Prev)340   int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); }
341 
342   /// find_prev - Returns the index of the first set bit that precedes the
343   /// the bit at \p PriorTo.  Returns -1 if all previous bits are unset.
find_prev(unsigned PriorTo)344   int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); }
345 
346   /// find_first_unset - Returns the index of the first unset bit, -1 if all
347   /// of the bits are set.
find_first_unset()348   int find_first_unset() const { return find_first_unset_in(0, Size); }
349 
350   /// find_next_unset - Returns the index of the next unset bit following the
351   /// "Prev" bit.  Returns -1 if all remaining bits are set.
find_next_unset(unsigned Prev)352   int find_next_unset(unsigned Prev) const {
353     return find_first_unset_in(Prev + 1, Size);
354   }
355 
356   /// find_last_unset - Returns the index of the last unset bit, -1 if all of
357   /// the bits are set.
find_last_unset()358   int find_last_unset() const { return find_last_unset_in(0, Size); }
359 
360   /// find_prev_unset - Returns the index of the first unset bit that precedes
361   /// the bit at \p PriorTo.  Returns -1 if all previous bits are set.
find_prev_unset(unsigned PriorTo)362   int find_prev_unset(unsigned PriorTo) {
363     return find_last_unset_in(0, PriorTo);
364   }
365 
366   /// clear - Removes all bits from the bitvector. Does not change capacity.
clear()367   void clear() {
368     Size = 0;
369   }
370 
371   /// resize - Grow or shrink the bitvector.
372   void resize(unsigned N, bool t = false) {
373     if (N > getBitCapacity()) {
374       unsigned OldCapacity = Bits.size();
375       grow(N);
376       init_words(Bits.drop_front(OldCapacity), t);
377     }
378 
379     // Set any old unused bits that are now included in the BitVector. This
380     // may set bits that are not included in the new vector, but we will clear
381     // them back out below.
382     if (N > Size)
383       set_unused_bits(t);
384 
385     // Update the size, and clear out any bits that are now unused
386     unsigned OldSize = Size;
387     Size = N;
388     if (t || N < OldSize)
389       clear_unused_bits();
390   }
391 
reserve(unsigned N)392   void reserve(unsigned N) {
393     if (N > getBitCapacity())
394       grow(N);
395   }
396 
397   // Set, reset, flip
set()398   BitVector &set() {
399     init_words(Bits, true);
400     clear_unused_bits();
401     return *this;
402   }
403 
set(unsigned Idx)404   BitVector &set(unsigned Idx) {
405     assert(Bits.data() && "Bits never allocated");
406     Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
407     return *this;
408   }
409 
410   /// set - Efficiently set a range of bits in [I, E)
set(unsigned I,unsigned E)411   BitVector &set(unsigned I, unsigned E) {
412     assert(I <= E && "Attempted to set backwards range!");
413     assert(E <= size() && "Attempted to set out-of-bounds range!");
414 
415     if (I == E) return *this;
416 
417     if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
418       BitWord EMask = 1UL << (E % BITWORD_SIZE);
419       BitWord IMask = 1UL << (I % BITWORD_SIZE);
420       BitWord Mask = EMask - IMask;
421       Bits[I / BITWORD_SIZE] |= Mask;
422       return *this;
423     }
424 
425     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
426     Bits[I / BITWORD_SIZE] |= PrefixMask;
427     I = alignTo(I, BITWORD_SIZE);
428 
429     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
430       Bits[I / BITWORD_SIZE] = ~0UL;
431 
432     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
433     if (I < E)
434       Bits[I / BITWORD_SIZE] |= PostfixMask;
435 
436     return *this;
437   }
438 
reset()439   BitVector &reset() {
440     init_words(Bits, false);
441     return *this;
442   }
443 
reset(unsigned Idx)444   BitVector &reset(unsigned Idx) {
445     Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
446     return *this;
447   }
448 
449   /// reset - Efficiently reset a range of bits in [I, E)
reset(unsigned I,unsigned E)450   BitVector &reset(unsigned I, unsigned E) {
451     assert(I <= E && "Attempted to reset backwards range!");
452     assert(E <= size() && "Attempted to reset out-of-bounds range!");
453 
454     if (I == E) return *this;
455 
456     if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
457       BitWord EMask = 1UL << (E % BITWORD_SIZE);
458       BitWord IMask = 1UL << (I % BITWORD_SIZE);
459       BitWord Mask = EMask - IMask;
460       Bits[I / BITWORD_SIZE] &= ~Mask;
461       return *this;
462     }
463 
464     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
465     Bits[I / BITWORD_SIZE] &= ~PrefixMask;
466     I = alignTo(I, BITWORD_SIZE);
467 
468     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
469       Bits[I / BITWORD_SIZE] = 0UL;
470 
471     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
472     if (I < E)
473       Bits[I / BITWORD_SIZE] &= ~PostfixMask;
474 
475     return *this;
476   }
477 
flip()478   BitVector &flip() {
479     for (unsigned i = 0; i < NumBitWords(size()); ++i)
480       Bits[i] = ~Bits[i];
481     clear_unused_bits();
482     return *this;
483   }
484 
flip(unsigned Idx)485   BitVector &flip(unsigned Idx) {
486     Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
487     return *this;
488   }
489 
490   // Indexing.
491   reference operator[](unsigned Idx) {
492     assert (Idx < Size && "Out-of-bounds Bit access.");
493     return reference(*this, Idx);
494   }
495 
496   bool operator[](unsigned Idx) const {
497     assert (Idx < Size && "Out-of-bounds Bit access.");
498     BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
499     return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
500   }
501 
test(unsigned Idx)502   bool test(unsigned Idx) const {
503     return (*this)[Idx];
504   }
505 
506   /// Test if any common bits are set.
anyCommon(const BitVector & RHS)507   bool anyCommon(const BitVector &RHS) const {
508     unsigned ThisWords = NumBitWords(size());
509     unsigned RHSWords  = NumBitWords(RHS.size());
510     for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
511       if (Bits[i] & RHS.Bits[i])
512         return true;
513     return false;
514   }
515 
516   // Comparison operators.
517   bool operator==(const BitVector &RHS) const {
518     unsigned ThisWords = NumBitWords(size());
519     unsigned RHSWords  = NumBitWords(RHS.size());
520     unsigned i;
521     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
522       if (Bits[i] != RHS.Bits[i])
523         return false;
524 
525     // Verify that any extra words are all zeros.
526     if (i != ThisWords) {
527       for (; i != ThisWords; ++i)
528         if (Bits[i])
529           return false;
530     } else if (i != RHSWords) {
531       for (; i != RHSWords; ++i)
532         if (RHS.Bits[i])
533           return false;
534     }
535     return true;
536   }
537 
538   bool operator!=(const BitVector &RHS) const {
539     return !(*this == RHS);
540   }
541 
542   /// Intersection, union, disjoint union.
543   BitVector &operator&=(const BitVector &RHS) {
544     unsigned ThisWords = NumBitWords(size());
545     unsigned RHSWords  = NumBitWords(RHS.size());
546     unsigned i;
547     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
548       Bits[i] &= RHS.Bits[i];
549 
550     // Any bits that are just in this bitvector become zero, because they aren't
551     // in the RHS bit vector.  Any words only in RHS are ignored because they
552     // are already zero in the LHS.
553     for (; i != ThisWords; ++i)
554       Bits[i] = 0;
555 
556     return *this;
557   }
558 
559   /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
reset(const BitVector & RHS)560   BitVector &reset(const BitVector &RHS) {
561     unsigned ThisWords = NumBitWords(size());
562     unsigned RHSWords  = NumBitWords(RHS.size());
563     unsigned i;
564     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
565       Bits[i] &= ~RHS.Bits[i];
566     return *this;
567   }
568 
569   /// test - Check if (This - RHS) is zero.
570   /// This is the same as reset(RHS) and any().
test(const BitVector & RHS)571   bool test(const BitVector &RHS) const {
572     unsigned ThisWords = NumBitWords(size());
573     unsigned RHSWords  = NumBitWords(RHS.size());
574     unsigned i;
575     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
576       if ((Bits[i] & ~RHS.Bits[i]) != 0)
577         return true;
578 
579     for (; i != ThisWords ; ++i)
580       if (Bits[i] != 0)
581         return true;
582 
583     return false;
584   }
585 
586   BitVector &operator|=(const BitVector &RHS) {
587     if (size() < RHS.size())
588       resize(RHS.size());
589     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
590       Bits[i] |= RHS.Bits[i];
591     return *this;
592   }
593 
594   BitVector &operator^=(const BitVector &RHS) {
595     if (size() < RHS.size())
596       resize(RHS.size());
597     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
598       Bits[i] ^= RHS.Bits[i];
599     return *this;
600   }
601 
602   BitVector &operator>>=(unsigned N) {
603     assert(N <= Size);
604     if (LLVM_UNLIKELY(empty() || N == 0))
605       return *this;
606 
607     unsigned NumWords = NumBitWords(Size);
608     assert(NumWords >= 1);
609 
610     wordShr(N / BITWORD_SIZE);
611 
612     unsigned BitDistance = N % BITWORD_SIZE;
613     if (BitDistance == 0)
614       return *this;
615 
616     // When the shift size is not a multiple of the word size, then we have
617     // a tricky situation where each word in succession needs to extract some
618     // of the bits from the next word and or them into this word while
619     // shifting this word to make room for the new bits.  This has to be done
620     // for every word in the array.
621 
622     // Since we're shifting each word right, some bits will fall off the end
623     // of each word to the right, and empty space will be created on the left.
624     // The final word in the array will lose bits permanently, so starting at
625     // the beginning, work forwards shifting each word to the right, and
626     // OR'ing in the bits from the end of the next word to the beginning of
627     // the current word.
628 
629     // Example:
630     //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right
631     //   by 4 bits.
632     // Step 1: Word[0] >>= 4           ; 0x0ABBCCDD
633     // Step 2: Word[0] |= 0x10000000   ; 0x1ABBCCDD
634     // Step 3: Word[1] >>= 4           ; 0x0EEFF001
635     // Step 4: Word[1] |= 0x50000000   ; 0x5EEFF001
636     // Step 5: Word[2] >>= 4           ; 0x02334455
637     // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 }
638     const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance);
639     const unsigned LSH = BITWORD_SIZE - BitDistance;
640 
641     for (unsigned I = 0; I < NumWords - 1; ++I) {
642       Bits[I] >>= BitDistance;
643       Bits[I] |= (Bits[I + 1] & Mask) << LSH;
644     }
645 
646     Bits[NumWords - 1] >>= BitDistance;
647 
648     return *this;
649   }
650 
651   BitVector &operator<<=(unsigned N) {
652     assert(N <= Size);
653     if (LLVM_UNLIKELY(empty() || N == 0))
654       return *this;
655 
656     unsigned NumWords = NumBitWords(Size);
657     assert(NumWords >= 1);
658 
659     wordShl(N / BITWORD_SIZE);
660 
661     unsigned BitDistance = N % BITWORD_SIZE;
662     if (BitDistance == 0)
663       return *this;
664 
665     // When the shift size is not a multiple of the word size, then we have
666     // a tricky situation where each word in succession needs to extract some
667     // of the bits from the previous word and or them into this word while
668     // shifting this word to make room for the new bits.  This has to be done
669     // for every word in the array.  This is similar to the algorithm outlined
670     // in operator>>=, but backwards.
671 
672     // Since we're shifting each word left, some bits will fall off the end
673     // of each word to the left, and empty space will be created on the right.
674     // The first word in the array will lose bits permanently, so starting at
675     // the end, work backwards shifting each word to the left, and OR'ing
676     // in the bits from the end of the next word to the beginning of the
677     // current word.
678 
679     // Example:
680     //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left
681     //   by 4 bits.
682     // Step 1: Word[2] <<= 4           ; 0x23344550
683     // Step 2: Word[2] |= 0x0000000E   ; 0x2334455E
684     // Step 3: Word[1] <<= 4           ; 0xEFF00110
685     // Step 4: Word[1] |= 0x0000000A   ; 0xEFF0011A
686     // Step 5: Word[0] <<= 4           ; 0xABBCCDD0
687     // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E }
688     const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance);
689     const unsigned RSH = BITWORD_SIZE - BitDistance;
690 
691     for (int I = NumWords - 1; I > 0; --I) {
692       Bits[I] <<= BitDistance;
693       Bits[I] |= (Bits[I - 1] & Mask) >> RSH;
694     }
695     Bits[0] <<= BitDistance;
696     clear_unused_bits();
697 
698     return *this;
699   }
700 
701   // Assignment operator.
702   const BitVector &operator=(const BitVector &RHS) {
703     if (this == &RHS) return *this;
704 
705     Size = RHS.size();
706     unsigned RHSWords = NumBitWords(Size);
707     if (Size <= getBitCapacity()) {
708       if (Size)
709         std::memcpy(Bits.data(), RHS.Bits.data(), RHSWords * sizeof(BitWord));
710       clear_unused_bits();
711       return *this;
712     }
713 
714     // Grow the bitvector to have enough elements.
715     unsigned NewCapacity = RHSWords;
716     assert(NewCapacity > 0 && "negative capacity?");
717     auto NewBits = allocate(NewCapacity);
718     std::memcpy(NewBits.data(), RHS.Bits.data(), NewCapacity * sizeof(BitWord));
719 
720     // Destroy the old bits.
721     std::free(Bits.data());
722     Bits = NewBits;
723 
724     return *this;
725   }
726 
727   const BitVector &operator=(BitVector &&RHS) {
728     if (this == &RHS) return *this;
729 
730     std::free(Bits.data());
731     Bits = RHS.Bits;
732     Size = RHS.Size;
733 
734     RHS.Bits = MutableArrayRef<BitWord>();
735     RHS.Size = 0;
736 
737     return *this;
738   }
739 
swap(BitVector & RHS)740   void swap(BitVector &RHS) {
741     std::swap(Bits, RHS.Bits);
742     std::swap(Size, RHS.Size);
743   }
744 
745   //===--------------------------------------------------------------------===//
746   // Portable bit mask operations.
747   //===--------------------------------------------------------------------===//
748   //
749   // These methods all operate on arrays of uint32_t, each holding 32 bits. The
750   // fixed word size makes it easier to work with literal bit vector constants
751   // in portable code.
752   //
753   // The LSB in each word is the lowest numbered bit.  The size of a portable
754   // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
755   // given, the bit mask is assumed to cover the entire BitVector.
756 
757   /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
758   /// This computes "*this |= Mask".
759   void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
760     applyMask<true, false>(Mask, MaskWords);
761   }
762 
763   /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
764   /// Don't resize. This computes "*this &= ~Mask".
765   void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
766     applyMask<false, false>(Mask, MaskWords);
767   }
768 
769   /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
770   /// Don't resize.  This computes "*this |= ~Mask".
771   void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
772     applyMask<true, true>(Mask, MaskWords);
773   }
774 
775   /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
776   /// Don't resize.  This computes "*this &= Mask".
777   void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
778     applyMask<false, true>(Mask, MaskWords);
779   }
780 
781 private:
782   /// Perform a logical left shift of \p Count words by moving everything
783   /// \p Count words to the right in memory.
784   ///
785   /// While confusing, words are stored from least significant at Bits[0] to
786   /// most significant at Bits[NumWords-1].  A logical shift left, however,
787   /// moves the current least significant bit to a higher logical index, and
788   /// fills the previous least significant bits with 0.  Thus, we actually
789   /// need to move the bytes of the memory to the right, not to the left.
790   /// Example:
791   ///   Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000]
792   /// represents a BitVector where 0xBBBBAAAA contain the least significant
793   /// bits.  So if we want to shift the BitVector left by 2 words, we need to
794   /// turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a
795   /// memmove which moves right, not left.
wordShl(uint32_t Count)796   void wordShl(uint32_t Count) {
797     if (Count == 0)
798       return;
799 
800     uint32_t NumWords = NumBitWords(Size);
801 
802     auto Src = Bits.take_front(NumWords).drop_back(Count);
803     auto Dest = Bits.take_front(NumWords).drop_front(Count);
804 
805     // Since we always move Word-sized chunks of data with src and dest both
806     // aligned to a word-boundary, we don't need to worry about endianness
807     // here.
808     std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
809     std::memset(Bits.data(), 0, Count * sizeof(BitWord));
810     clear_unused_bits();
811   }
812 
813   /// Perform a logical right shift of \p Count words by moving those
814   /// words to the left in memory.  See wordShl for more information.
815   ///
wordShr(uint32_t Count)816   void wordShr(uint32_t Count) {
817     if (Count == 0)
818       return;
819 
820     uint32_t NumWords = NumBitWords(Size);
821 
822     auto Src = Bits.take_front(NumWords).drop_front(Count);
823     auto Dest = Bits.take_front(NumWords).drop_back(Count);
824     assert(Dest.size() == Src.size());
825 
826     std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
827     std::memset(Dest.end(), 0, Count * sizeof(BitWord));
828   }
829 
allocate(size_t NumWords)830   MutableArrayRef<BitWord> allocate(size_t NumWords) {
831     BitWord *RawBits = static_cast<BitWord *>(
832         safe_malloc(NumWords * sizeof(BitWord)));
833     return MutableArrayRef<BitWord>(RawBits, NumWords);
834   }
835 
next_unset_in_word(int WordIndex,BitWord Word)836   int next_unset_in_word(int WordIndex, BitWord Word) const {
837     unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word);
838     return Result < size() ? Result : -1;
839   }
840 
NumBitWords(unsigned S)841   unsigned NumBitWords(unsigned S) const {
842     return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
843   }
844 
845   // Set the unused bits in the high words.
846   void set_unused_bits(bool t = true) {
847     //  Set high words first.
848     unsigned UsedWords = NumBitWords(Size);
849     if (Bits.size() > UsedWords)
850       init_words(Bits.drop_front(UsedWords), t);
851 
852     //  Then set any stray high bits of the last used word.
853     unsigned ExtraBits = Size % BITWORD_SIZE;
854     if (ExtraBits) {
855       BitWord ExtraBitMask = ~0UL << ExtraBits;
856       if (t)
857         Bits[UsedWords-1] |= ExtraBitMask;
858       else
859         Bits[UsedWords-1] &= ~ExtraBitMask;
860     }
861   }
862 
863   // Clear the unused bits in the high words.
clear_unused_bits()864   void clear_unused_bits() {
865     set_unused_bits(false);
866   }
867 
grow(unsigned NewSize)868   void grow(unsigned NewSize) {
869     size_t NewCapacity = std::max<size_t>(NumBitWords(NewSize), Bits.size() * 2);
870     assert(NewCapacity > 0 && "realloc-ing zero space");
871     BitWord *NewBits = static_cast<BitWord *>(
872         safe_realloc(Bits.data(), NewCapacity * sizeof(BitWord)));
873     Bits = MutableArrayRef<BitWord>(NewBits, NewCapacity);
874     clear_unused_bits();
875   }
876 
init_words(MutableArrayRef<BitWord> B,bool t)877   void init_words(MutableArrayRef<BitWord> B, bool t) {
878     if (B.size() > 0)
879       memset(B.data(), 0 - (int)t, B.size() * sizeof(BitWord));
880   }
881 
882   template<bool AddBits, bool InvertMask>
applyMask(const uint32_t * Mask,unsigned MaskWords)883   void applyMask(const uint32_t *Mask, unsigned MaskWords) {
884     static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
885     MaskWords = std::min(MaskWords, (size() + 31) / 32);
886     const unsigned Scale = BITWORD_SIZE / 32;
887     unsigned i;
888     for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
889       BitWord BW = Bits[i];
890       // This inner loop should unroll completely when BITWORD_SIZE > 32.
891       for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
892         uint32_t M = *Mask++;
893         if (InvertMask) M = ~M;
894         if (AddBits) BW |=   BitWord(M) << b;
895         else         BW &= ~(BitWord(M) << b);
896       }
897       Bits[i] = BW;
898     }
899     for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
900       uint32_t M = *Mask++;
901       if (InvertMask) M = ~M;
902       if (AddBits) Bits[i] |=   BitWord(M) << b;
903       else         Bits[i] &= ~(BitWord(M) << b);
904     }
905     if (AddBits)
906       clear_unused_bits();
907   }
908 
909 public:
910   /// Return the size (in bytes) of the bit vector.
getMemorySize()911   size_t getMemorySize() const { return Bits.size() * sizeof(BitWord); }
getBitCapacity()912   size_t getBitCapacity() const { return Bits.size() * BITWORD_SIZE; }
913 };
914 
capacity_in_bytes(const BitVector & X)915 inline size_t capacity_in_bytes(const BitVector &X) {
916   return X.getMemorySize();
917 }
918 
919 } // end namespace llvm
920 
921 namespace std {
922   /// Implement std::swap in terms of BitVector swap.
923   inline void
swap(llvm::BitVector & LHS,llvm::BitVector & RHS)924   swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
925     LHS.swap(RHS);
926   }
927 } // end namespace std
928 
929 #endif // LLVM_ADT_BITVECTOR_H
930