1 /* Copyright 2016 Google Inc. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include <vector>
17 
18 #include "tensorflow/cc/ops/array_ops.h"
19 #include "tensorflow/cc/ops/standard_ops.h"
20 #include "tensorflow/core/kernels/fuzzing/fuzz_session.h"
21 
22 namespace tensorflow {
23 namespace fuzzing {
24 
25 class FuzzScatterNd : public FuzzSession {
BuildGraph(const Scope & scope)26   void BuildGraph(const Scope& scope) override {
27     auto indices =
28         tensorflow::ops::Placeholder(scope.WithOpName("indices"), DT_INT32);
29     auto updates =
30         tensorflow::ops::Placeholder(scope.WithOpName("updates"), DT_INT32);
31     auto shape =
32         tensorflow::ops::Placeholder(scope.WithOpName("shape"), DT_INT32);
33     (void)tensorflow::ops::ScatterNd(scope.WithOpName("output"), indices,
34                                      updates, shape);
35   }
36 
FuzzImpl(const uint8_t * data,size_t size)37   void FuzzImpl(const uint8_t* data, size_t size) override {
38     // This op's runtime is heavily determined by the shape of the tensor
39     // arguments and almost not at all by the values of those tensors. Hence,
40     // the fuzzing data here is only used to determine the shape of the
41     // arguments and the output and the data of these tensors is just a constant
42     // value. Furthermore, the shape of the updates_tensor tensor is fully
43     // determined by the contents of the shape_tensor and the shape of the
44     // indices_tensor. Rather than using random values for the
45     // updates_tensor.shape and getting most of the fuzz runs stopped in the
46     // check, it's better to just create a proper update_tensor.
47     if (size < 1) {
48       return;
49     }
50 
51     // First element of the data buffer gives the number of dimensions of the
52     // shape tensor.
53     size_t i;
54     size_t data_ix = 0;
55     size_t shape_dims = 1 + (data[data_ix++] % kMaxShapeDims);
56     Tensor shape_tensor(tensorflow::DT_INT32,
57                         TensorShape({static_cast<int64>(shape_dims)}));
58 
59     // Check that we have enough elements left for the shape tensor
60     if (data_ix + shape_dims >= size) {
61       return;  // not enough elements, no fuzz
62     }
63 
64     // Subsequent elements give the contents of the shape tensor.
65     // To not get out of memory, reduce all dimensions to at most kMaxDim
66     auto flat_shape = shape_tensor.flat<int32>();
67     for (i = 0; i < shape_dims; i++) {
68       flat_shape(i) = data[data_ix++] % kMaxDim;
69     }
70 
71     // Next, we have to fill in the indices tensor. Take the next element from
72     // the buffer to represent the rank of this tensor.
73     if (data_ix >= size) {
74       return;
75     }
76     size_t indices_rank = 1 + (data[data_ix++] % kMaxIndicesRank);
77 
78     // Now, read the dimensions of the indices_tensor
79     if (data_ix + indices_rank >= size) {
80       return;
81     }
82     std::vector<int64> indices_dims;
83     size_t num_indices = 1;
84     for (i = 0; i < indices_rank; i++) {
85       // Modulo kMaxDim to not request too much memory
86       int64 dim = data[data_ix++] % kMaxDim;
87       num_indices *= dim;
88       indices_dims.push_back(dim);
89     }
90     Tensor indices_tensor(tensorflow::DT_INT32, TensorShape(indices_dims));
91 
92     // Rest of the buffer is used to fill in the indices_tensor
93     auto flat_indices = indices_tensor.flat<int32>();
94     for (i = 0; i < num_indices && data_ix < size; i++) {
95       flat_indices(i) = data[data_ix++];
96     }
97     for (; i < num_indices; i++) {
98       flat_indices(i) = 0;  // ensure that indices_tensor has all values
99     }
100 
101     // Given the values in the shape_tensor and the dimensions of the
102     // indices_tensor, the shape of updates_tensor is fixed.
103     num_indices = 1;
104     std::vector<int64> updates_dims;
105     for (i = 0; i < indices_rank - 1; i++) {
106       updates_dims.push_back(indices_dims[i]);
107       num_indices *= indices_dims[i];
108     }
109     int64 last = indices_dims[indices_rank - 1];
110     for (i = last; i < shape_dims; i++) {
111       updates_dims.push_back(flat_shape(i));
112       num_indices *= flat_shape(i);
113     }
114     Tensor updates_tensor(tensorflow::DT_INT32, TensorShape(updates_dims));
115 
116     // We don't care about the values in the updates_tensor, make them all be 1
117     auto flat_updates = updates_tensor.flat<int32>();
118     for (i = 0; i < num_indices; i++) {
119       flat_updates(i) = 1;
120     }
121 
122     RunInputs({{"indices", indices_tensor},
123                {"updates", updates_tensor},
124                {"shape", shape_tensor}});
125   }
126 
127  private:
128   const size_t kMaxShapeDims = 5;
129   const size_t kMaxIndicesRank = 3;
130   const size_t kMaxDim = 10;
131 };
132 
133 STANDARD_TF_FUZZ_FUNCTION(FuzzScatterNd);
134 
135 }  // end namespace fuzzing
136 }  // end namespace tensorflow
137