1 //===- subzero/src/IceCfg.cpp - Control flow graph implementation ---------===//
2 //
3 //                        The Subzero Code Generator
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements the Cfg class.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "IceCfg.h"
16 
17 #include "IceAssembler.h"
18 #include "IceBitVector.h"
19 #include "IceCfgNode.h"
20 #include "IceClFlags.h"
21 #include "IceDefs.h"
22 #include "IceELFObjectWriter.h"
23 #include "IceGlobalInits.h"
24 #include "IceInst.h"
25 #include "IceInstVarIter.h"
26 #include "IceInstrumentation.h"
27 #include "IceLiveness.h"
28 #include "IceLoopAnalyzer.h"
29 #include "IceOperand.h"
30 #include "IceTargetLowering.h"
31 
32 #include <memory>
33 #include <utility>
34 
35 namespace Ice {
36 
Cfg(GlobalContext * Ctx,uint32_t SequenceNumber)37 Cfg::Cfg(GlobalContext *Ctx, uint32_t SequenceNumber)
38     : Allocator(createAllocator()), Ctx(Ctx), SequenceNumber(SequenceNumber),
39       VMask(getFlags().getVerbose()), FunctionName(),
40       NextInstNumber(Inst::NumberInitial), Live(nullptr) {
41   NodeStrings.reset(new StringPool);
42   VarStrings.reset(new StringPool);
43   CfgLocalAllocatorScope _(this);
44   Target = TargetLowering::createLowering(getFlags().getTargetArch(), this);
45   VMetadata.reset(new VariablesMetadata(this));
46   TargetAssembler = Target->createAssembler();
47 
48   if (getFlags().getRandomizeAndPoolImmediatesOption() == RPI_Randomize) {
49     // If -randomize-pool-immediates=randomize, create a random number
50     // generator to generate a cookie for constant blinding.
51     RandomNumberGenerator RNG(getFlags().getRandomSeed(), RPE_ConstantBlinding,
52                               this->SequenceNumber);
53     ConstantBlindingCookie =
54         (uint32_t)RNG.next((uint64_t)std::numeric_limits<uint32_t>::max() + 1);
55   }
56 }
57 
~Cfg()58 Cfg::~Cfg() {
59   assert(CfgAllocatorTraits::current() == nullptr);
60   if (getFlags().getDumpStrings()) {
61     OstreamLocker _(Ctx);
62     Ostream &Str = Ctx->getStrDump();
63     getNodeStrings()->dump(Str);
64     getVarStrings()->dump(Str);
65   }
66 }
67 
68 // Called in the initalizer list of Cfg's constructor to create the Allocator
69 // and set it as TLS before any other member fields are constructed, since they
70 // may depend on it.
createAllocator()71 ArenaAllocator *Cfg::createAllocator() {
72   ArenaAllocator *Allocator = new ArenaAllocator();
73   CfgAllocatorTraits::set_current(Allocator);
74   return Allocator;
75 }
76 
77 /// Create a string like "foo(i=123:b=9)" indicating the function name, number
78 /// of high-level instructions, and number of basic blocks.  This string is only
79 /// used for dumping and other diagnostics, and the idea is that given a set of
80 /// functions to debug a problem on, it's easy to find the smallest or simplest
81 /// function to attack.  Note that the counts may change somewhat depending on
82 /// what point it is called during the translation passes.
getFunctionNameAndSize() const83 std::string Cfg::getFunctionNameAndSize() const {
84   if (!BuildDefs::dump())
85     return getFunctionName().toString();
86   SizeT NodeCount = 0;
87   SizeT InstCount = 0;
88   for (CfgNode *Node : getNodes()) {
89     ++NodeCount;
90     // Note: deleted instructions are *not* ignored.
91     InstCount += Node->getPhis().size();
92     for (Inst &I : Node->getInsts()) {
93       if (!llvm::isa<InstTarget>(&I))
94         ++InstCount;
95     }
96   }
97   return getFunctionName() + "(i=" + std::to_string(InstCount) + ":b=" +
98          std::to_string(NodeCount) + ")";
99 }
100 
setError(const std::string & Message)101 void Cfg::setError(const std::string &Message) {
102   HasError = true;
103   ErrorMessage = Message;
104 }
105 
makeNode()106 CfgNode *Cfg::makeNode() {
107   SizeT LabelIndex = Nodes.size();
108   auto *Node = CfgNode::create(this, LabelIndex);
109   Nodes.push_back(Node);
110   return Node;
111 }
112 
swapNodes(NodeList & NewNodes)113 void Cfg::swapNodes(NodeList &NewNodes) {
114   assert(Nodes.size() == NewNodes.size());
115   Nodes.swap(NewNodes);
116   for (SizeT I = 0, NumNodes = getNumNodes(); I < NumNodes; ++I)
117     Nodes[I]->resetIndex(I);
118 }
119 
makeVariable(Type Ty)120 template <> Variable *Cfg::makeVariable<Variable>(Type Ty) {
121   SizeT Index = Variables.size();
122   Variable *Var;
123   if (Target->shouldSplitToVariableVecOn32(Ty)) {
124     Var = VariableVecOn32::create(this, Ty, Index);
125   } else if (Target->shouldSplitToVariable64On32(Ty)) {
126     Var = Variable64On32::create(this, Ty, Index);
127   } else {
128     Var = Variable::create(this, Ty, Index);
129   }
130   Variables.push_back(Var);
131   return Var;
132 }
133 
addArg(Variable * Arg)134 void Cfg::addArg(Variable *Arg) {
135   Arg->setIsArg();
136   Args.push_back(Arg);
137 }
138 
addImplicitArg(Variable * Arg)139 void Cfg::addImplicitArg(Variable *Arg) {
140   Arg->setIsImplicitArg();
141   ImplicitArgs.push_back(Arg);
142 }
143 
144 // Returns whether the stack frame layout has been computed yet. This is used
145 // for dumping the stack frame location of Variables.
hasComputedFrame() const146 bool Cfg::hasComputedFrame() const { return getTarget()->hasComputedFrame(); }
147 
148 namespace {
149 constexpr char BlockNameGlobalPrefix[] = ".L$profiler$block_name$";
150 constexpr char BlockStatsGlobalPrefix[] = ".L$profiler$block_info$";
151 } // end of anonymous namespace
152 
createNodeNameDeclaration(const std::string & NodeAsmName)153 void Cfg::createNodeNameDeclaration(const std::string &NodeAsmName) {
154   auto *Var = VariableDeclaration::create(GlobalInits.get());
155   Var->setName(Ctx, BlockNameGlobalPrefix + NodeAsmName);
156   Var->setIsConstant(true);
157   Var->addInitializer(VariableDeclaration::DataInitializer::create(
158       GlobalInits.get(), NodeAsmName.data(), NodeAsmName.size() + 1));
159   const SizeT Int64ByteSize = typeWidthInBytes(IceType_i64);
160   Var->setAlignment(Int64ByteSize); // Wasteful, 32-bit could use 4 bytes.
161   GlobalInits->push_back(Var);
162 }
163 
createBlockProfilingInfoDeclaration(const std::string & NodeAsmName,VariableDeclaration * NodeNameDeclaration)164 void Cfg::createBlockProfilingInfoDeclaration(
165     const std::string &NodeAsmName, VariableDeclaration *NodeNameDeclaration) {
166   auto *Var = VariableDeclaration::create(GlobalInits.get());
167   Var->setName(Ctx, BlockStatsGlobalPrefix + NodeAsmName);
168   const SizeT Int64ByteSize = typeWidthInBytes(IceType_i64);
169   Var->addInitializer(VariableDeclaration::ZeroInitializer::create(
170       GlobalInits.get(), Int64ByteSize));
171 
172   const RelocOffsetT NodeNameDeclarationOffset = 0;
173   Var->addInitializer(VariableDeclaration::RelocInitializer::create(
174       GlobalInits.get(), NodeNameDeclaration,
175       {RelocOffset::create(Ctx, NodeNameDeclarationOffset)}));
176   Var->setAlignment(Int64ByteSize);
177   GlobalInits->push_back(Var);
178 }
179 
profileBlocks()180 void Cfg::profileBlocks() {
181   if (GlobalInits == nullptr)
182     GlobalInits.reset(new VariableDeclarationList());
183 
184   for (CfgNode *Node : Nodes) {
185     const std::string NodeAsmName = Node->getAsmName();
186     createNodeNameDeclaration(NodeAsmName);
187     createBlockProfilingInfoDeclaration(NodeAsmName, GlobalInits->back());
188     Node->profileExecutionCount(GlobalInits->back());
189   }
190 }
191 
isProfileGlobal(const VariableDeclaration & Var)192 bool Cfg::isProfileGlobal(const VariableDeclaration &Var) {
193   if (!Var.getName().hasStdString())
194     return false;
195   return Var.getName().toString().find(BlockStatsGlobalPrefix) == 0;
196 }
197 
addCallToProfileSummary()198 void Cfg::addCallToProfileSummary() {
199   // The call(s) to __Sz_profile_summary are added by the profiler in functions
200   // that cause the program to exit. This function is defined in
201   // runtime/szrt_profiler.c.
202   Constant *ProfileSummarySym =
203       Ctx->getConstantExternSym(Ctx->getGlobalString("__Sz_profile_summary"));
204   constexpr SizeT NumArgs = 0;
205   constexpr Variable *Void = nullptr;
206   constexpr bool HasTailCall = false;
207   auto *Call =
208       InstCall::create(this, NumArgs, Void, ProfileSummarySym, HasTailCall);
209   getEntryNode()->getInsts().push_front(Call);
210 }
211 
translate()212 void Cfg::translate() {
213   if (hasError())
214     return;
215   // Cache the possibly-overridden optimization level once translation begins.
216   // It would be nicer to do this in the constructor, but we need to wait until
217   // after setFunctionName() has a chance to be called.
218   OptimizationLevel =
219       getFlags().matchForceO2(getFunctionName(), getSequenceNumber())
220           ? Opt_2
221           : getFlags().getOptLevel();
222   if (BuildDefs::timers()) {
223     if (getFlags().matchTimingFocus(getFunctionName(), getSequenceNumber())) {
224       setFocusedTiming();
225       getContext()->resetTimer(GlobalContext::TSK_Default);
226     }
227   }
228   if (BuildDefs::dump()) {
229     if (isVerbose(IceV_Status) &&
230         getFlags().matchTestStatus(getFunctionName(), getSequenceNumber())) {
231       getContext()->getStrDump() << ">>>Translating "
232                                  << getFunctionNameAndSize()
233                                  << " seq=" << getSequenceNumber() << "\n";
234     }
235   }
236   TimerMarker T_func(getContext(), getFunctionName().toStringOrEmpty());
237   TimerMarker T(TimerStack::TT_translate, this);
238 
239   dump("Initial CFG");
240 
241   if (getFlags().getEnableBlockProfile()) {
242     profileBlocks();
243     // TODO(jpp): this is fragile, at best. Figure out a better way of
244     // detecting exit functions.
245     if (getFunctionName().toStringOrEmpty() == "exit") {
246       addCallToProfileSummary();
247     }
248     dump("Profiled CFG");
249   }
250 
251   // Create the Hi and Lo variables where a split was needed
252   for (Variable *Var : Variables) {
253     if (auto *Var64On32 = llvm::dyn_cast<Variable64On32>(Var)) {
254       Var64On32->initHiLo(this);
255     } else if (auto *VarVecOn32 = llvm::dyn_cast<VariableVecOn32>(Var)) {
256       VarVecOn32->initVecElement(this);
257     }
258   }
259 
260   // Instrument the Cfg, e.g. with AddressSanitizer
261   if (!BuildDefs::minimal() && getFlags().getSanitizeAddresses()) {
262     getContext()->instrumentFunc(this);
263     dump("Instrumented CFG");
264   }
265 
266   // The set of translation passes and their order are determined by the
267   // target.
268   getTarget()->translate();
269 
270   dump("Final output");
271   if (getFocusedTiming()) {
272     getContext()->dumpLocalTimers(getFunctionName().toString());
273   }
274 }
275 
fixPhiNodes()276 void Cfg::fixPhiNodes() {
277   for (auto *Node : Nodes) {
278     // Fix all the phi edges since WASM can't tell how to make them correctly at
279     // the beginning.
280     assert(Node);
281     const auto &InEdges = Node->getInEdges();
282     for (auto &Instr : Node->getPhis()) {
283       auto *Phi = llvm::cast<InstPhi>(&Instr);
284       assert(Phi);
285       for (SizeT i = 0; i < InEdges.size(); ++i) {
286         Phi->setLabel(i, InEdges[i]);
287       }
288     }
289   }
290 }
291 
computeInOutEdges()292 void Cfg::computeInOutEdges() {
293   // Compute the out-edges.
294   for (CfgNode *Node : Nodes) {
295     Node->computeSuccessors();
296   }
297 
298   // Prune any unreachable nodes before computing in-edges.
299   SizeT NumNodes = getNumNodes();
300   BitVector Reachable(NumNodes);
301   BitVector Pending(NumNodes);
302   Pending.set(getEntryNode()->getIndex());
303   while (true) {
304     int Index = Pending.find_first();
305     if (Index == -1)
306       break;
307     Pending.reset(Index);
308     Reachable.set(Index);
309     CfgNode *Node = Nodes[Index];
310     assert(Node->getIndex() == (SizeT)Index);
311     for (CfgNode *Succ : Node->getOutEdges()) {
312       SizeT SuccIndex = Succ->getIndex();
313       if (!Reachable.test(SuccIndex))
314         Pending.set(SuccIndex);
315     }
316   }
317   SizeT Dest = 0;
318   for (SizeT Source = 0; Source < NumNodes; ++Source) {
319     if (Reachable.test(Source)) {
320       Nodes[Dest] = Nodes[Source];
321       Nodes[Dest]->resetIndex(Dest);
322       // Compute the in-edges.
323       Nodes[Dest]->computePredecessors();
324       ++Dest;
325     }
326   }
327   Nodes.resize(Dest);
328 
329   TimerMarker T(TimerStack::TT_phiValidation, this);
330   for (CfgNode *Node : Nodes)
331     Node->enforcePhiConsistency();
332 }
333 
renumberInstructions()334 void Cfg::renumberInstructions() {
335   TimerMarker T(TimerStack::TT_renumberInstructions, this);
336   NextInstNumber = Inst::NumberInitial;
337   for (CfgNode *Node : Nodes)
338     Node->renumberInstructions();
339   // Make sure the entry node is the first node and therefore got the lowest
340   // instruction numbers, to facilitate live range computation of function
341   // arguments.  We want to model function arguments as being live on entry to
342   // the function, otherwise an argument whose only use is in the first
343   // instruction will be assigned a trivial live range and the register
344   // allocator will not recognize its live range as overlapping another
345   // variable's live range.
346   assert(Nodes.empty() || (*Nodes.begin() == getEntryNode()));
347 }
348 
349 // placePhiLoads() must be called before placePhiStores().
placePhiLoads()350 void Cfg::placePhiLoads() {
351   TimerMarker T(TimerStack::TT_placePhiLoads, this);
352   for (CfgNode *Node : Nodes)
353     Node->placePhiLoads();
354 }
355 
356 // placePhiStores() must be called after placePhiLoads().
placePhiStores()357 void Cfg::placePhiStores() {
358   TimerMarker T(TimerStack::TT_placePhiStores, this);
359   for (CfgNode *Node : Nodes)
360     Node->placePhiStores();
361 }
362 
deletePhis()363 void Cfg::deletePhis() {
364   TimerMarker T(TimerStack::TT_deletePhis, this);
365   for (CfgNode *Node : Nodes)
366     Node->deletePhis();
367 }
368 
advancedPhiLowering()369 void Cfg::advancedPhiLowering() {
370   TimerMarker T(TimerStack::TT_advancedPhiLowering, this);
371   // Clear all previously computed live ranges (but not live-in/live-out bit
372   // vectors or last-use markers), because the follow-on register allocation is
373   // only concerned with live ranges across the newly created blocks.
374   for (Variable *Var : Variables) {
375     Var->getLiveRange().reset();
376   }
377   // This splits edges and appends new nodes to the end of the node list. This
378   // can invalidate iterators, so don't use an iterator.
379   SizeT NumNodes = getNumNodes();
380   SizeT NumVars = getNumVariables();
381   for (SizeT I = 0; I < NumNodes; ++I)
382     Nodes[I]->advancedPhiLowering();
383 
384   TimerMarker TT(TimerStack::TT_lowerPhiAssignments, this);
385   if (true) {
386     // The following code does an in-place update of liveness and live ranges
387     // as a result of adding the new phi edge split nodes.
388     getLiveness()->initPhiEdgeSplits(Nodes.begin() + NumNodes,
389                                      Variables.begin() + NumVars);
390     TimerMarker TTT(TimerStack::TT_liveness, this);
391     // Iterate over the newly added nodes to add their liveness info.
392     for (auto I = Nodes.begin() + NumNodes, E = Nodes.end(); I != E; ++I) {
393       InstNumberT FirstInstNum = getNextInstNumber();
394       (*I)->renumberInstructions();
395       InstNumberT LastInstNum = getNextInstNumber() - 1;
396       (*I)->liveness(getLiveness());
397       (*I)->livenessAddIntervals(getLiveness(), FirstInstNum, LastInstNum);
398     }
399   } else {
400     // The following code does a brute-force recalculation of live ranges as a
401     // result of adding the new phi edge split nodes. The liveness calculation
402     // is particularly expensive because the new nodes are not yet in a proper
403     // topological order and so convergence is slower.
404     //
405     // This code is kept here for reference and can be temporarily enabled in
406     // case the incremental code is under suspicion.
407     renumberInstructions();
408     liveness(Liveness_Intervals);
409     getVMetadata()->init(VMK_All);
410   }
411   Target->regAlloc(RAK_Phi);
412 }
413 
414 // Find a reasonable placement for nodes that have not yet been placed, while
415 // maintaining the same relative ordering among already placed nodes.
reorderNodes()416 void Cfg::reorderNodes() {
417   // TODO(ascull): it would be nice if the switch tests were always followed by
418   // the default case to allow for fall through.
419   using PlacedList = CfgList<CfgNode *>;
420   PlacedList Placed;      // Nodes with relative placement locked down
421   PlacedList Unreachable; // Unreachable nodes
422   PlacedList::iterator NoPlace = Placed.end();
423   // Keep track of where each node has been tentatively placed so that we can
424   // manage insertions into the middle.
425   CfgVector<PlacedList::iterator> PlaceIndex(Nodes.size(), NoPlace);
426   for (CfgNode *Node : Nodes) {
427     // The "do ... while(0);" construct is to factor out the --PlaceIndex and
428     // assert() statements before moving to the next node.
429     do {
430       if (Node != getEntryNode() && Node->getInEdges().empty()) {
431         // The node has essentially been deleted since it is not a successor of
432         // any other node.
433         Unreachable.push_back(Node);
434         PlaceIndex[Node->getIndex()] = Unreachable.end();
435         Node->setNeedsPlacement(false);
436         continue;
437       }
438       if (!Node->needsPlacement()) {
439         // Add to the end of the Placed list.
440         Placed.push_back(Node);
441         PlaceIndex[Node->getIndex()] = Placed.end();
442         continue;
443       }
444       Node->setNeedsPlacement(false);
445       // Assume for now that the unplaced node is from edge-splitting and
446       // therefore has 1 in-edge and 1 out-edge (actually, possibly more than 1
447       // in-edge if the predecessor node was contracted). If this changes in
448       // the future, rethink the strategy.
449       assert(Node->getInEdges().size() >= 1);
450       assert(Node->hasSingleOutEdge());
451 
452       // If it's a (non-critical) edge where the successor has a single
453       // in-edge, then place it before the successor.
454       CfgNode *Succ = Node->getOutEdges().front();
455       if (Succ->getInEdges().size() == 1 &&
456           PlaceIndex[Succ->getIndex()] != NoPlace) {
457         Placed.insert(PlaceIndex[Succ->getIndex()], Node);
458         PlaceIndex[Node->getIndex()] = PlaceIndex[Succ->getIndex()];
459         continue;
460       }
461 
462       // Otherwise, place it after the (first) predecessor.
463       CfgNode *Pred = Node->getInEdges().front();
464       auto PredPosition = PlaceIndex[Pred->getIndex()];
465       // It shouldn't be the case that PredPosition==NoPlace, but if that
466       // somehow turns out to be true, we just insert Node before
467       // PredPosition=NoPlace=Placed.end() .
468       if (PredPosition != NoPlace)
469         ++PredPosition;
470       Placed.insert(PredPosition, Node);
471       PlaceIndex[Node->getIndex()] = PredPosition;
472     } while (0);
473 
474     --PlaceIndex[Node->getIndex()];
475     assert(*PlaceIndex[Node->getIndex()] == Node);
476   }
477 
478   // Reorder Nodes according to the built-up lists.
479   NodeList Reordered;
480   Reordered.reserve(Placed.size() + Unreachable.size());
481   for (CfgNode *Node : Placed)
482     Reordered.push_back(Node);
483   for (CfgNode *Node : Unreachable)
484     Reordered.push_back(Node);
485   assert(getNumNodes() == Reordered.size());
486   swapNodes(Reordered);
487 }
488 
489 namespace {
getRandomPostOrder(CfgNode * Node,BitVector & ToVisit,Ice::NodeList & PostOrder,Ice::RandomNumberGenerator * RNG)490 void getRandomPostOrder(CfgNode *Node, BitVector &ToVisit,
491                         Ice::NodeList &PostOrder,
492                         Ice::RandomNumberGenerator *RNG) {
493   assert(ToVisit[Node->getIndex()]);
494   ToVisit[Node->getIndex()] = false;
495   NodeList Outs = Node->getOutEdges();
496   Ice::RandomShuffle(Outs.begin(), Outs.end(),
497                      [RNG](int N) { return RNG->next(N); });
498   for (CfgNode *Next : Outs) {
499     if (ToVisit[Next->getIndex()])
500       getRandomPostOrder(Next, ToVisit, PostOrder, RNG);
501   }
502   PostOrder.push_back(Node);
503 }
504 } // end of anonymous namespace
505 
shuffleNodes()506 void Cfg::shuffleNodes() {
507   if (!getFlags().getReorderBasicBlocks())
508     return;
509 
510   NodeList ReversedReachable;
511   NodeList Unreachable;
512   BitVector ToVisit(Nodes.size(), true);
513   // Create Random number generator for function reordering
514   RandomNumberGenerator RNG(getFlags().getRandomSeed(),
515                             RPE_BasicBlockReordering, SequenceNumber);
516   // Traverse from entry node.
517   getRandomPostOrder(getEntryNode(), ToVisit, ReversedReachable, &RNG);
518   // Collect the unreachable nodes.
519   for (CfgNode *Node : Nodes)
520     if (ToVisit[Node->getIndex()])
521       Unreachable.push_back(Node);
522   // Copy the layout list to the Nodes.
523   NodeList Shuffled;
524   Shuffled.reserve(ReversedReachable.size() + Unreachable.size());
525   for (CfgNode *Node : reverse_range(ReversedReachable))
526     Shuffled.push_back(Node);
527   for (CfgNode *Node : Unreachable)
528     Shuffled.push_back(Node);
529   assert(Nodes.size() == Shuffled.size());
530   swapNodes(Shuffled);
531 
532   dump("After basic block shuffling");
533 }
534 
localCSE(bool AssumeSSA)535 void Cfg::localCSE(bool AssumeSSA) {
536   // Performs basic-block local common-subexpression elimination
537   // If we have
538   // t1 = op b c
539   // t2 = op b c
540   // This pass will replace future references to t2 in a basic block by t1
541   // Points to note:
542   // 1. Assumes SSA by default. To change this, use -lcse=no-ssa
543   //      This is needed if this pass is moved to a point later in the pipeline.
544   //      If variables have a single definition (in the node), CSE can work just
545   //      on the basis of an equality compare on instructions (sans Dest). When
546   //      variables can be updated (hence, non-SSA) the result of a previous
547   //      instruction which used that variable as an operand can not be reused.
548   // 2. Leaves removal of instructions to DCE.
549   // 3. Only enabled on arithmetic instructions. pnacl-clang (-O2) is expected
550   //    to take care of cases not arising from GEP simplification.
551   // 4. By default, a single pass is made over each basic block. Control this
552   //    with -lcse-max-iters=N
553 
554   TimerMarker T(TimerStack::TT_localCse, this);
555   struct VariableHash {
556     size_t operator()(const Variable *Var) const { return Var->hashValue(); }
557   };
558 
559   struct InstHash {
560     size_t operator()(const Inst *Instr) const {
561       auto Kind = Instr->getKind();
562       auto Result =
563           std::hash<typename std::underlying_type<Inst::InstKind>::type>()(
564               Kind);
565       for (SizeT i = 0; i < Instr->getSrcSize(); ++i) {
566         Result ^= Instr->getSrc(i)->hashValue();
567       }
568       return Result;
569     }
570   };
571   struct InstEq {
572     bool srcEq(const Operand *A, const Operand *B) const {
573       if (llvm::isa<Variable>(A) || llvm::isa<Constant>(A))
574         return (A == B);
575       return false;
576     }
577     bool operator()(const Inst *InstrA, const Inst *InstrB) const {
578       if ((InstrA->getKind() != InstrB->getKind()) ||
579           (InstrA->getSrcSize() != InstrB->getSrcSize()))
580         return false;
581 
582       if (auto *A = llvm::dyn_cast<InstArithmetic>(InstrA)) {
583         auto *B = llvm::cast<InstArithmetic>(InstrB);
584         // A, B are guaranteed to be of the same 'kind' at this point
585         // So, dyn_cast is not needed
586         if (A->getOp() != B->getOp())
587           return false;
588       }
589       // Does not enter loop if different kind or number of operands
590       for (SizeT i = 0; i < InstrA->getSrcSize(); ++i) {
591         if (!srcEq(InstrA->getSrc(i), InstrB->getSrc(i)))
592           return false;
593       }
594       return true;
595     }
596   };
597 
598   for (CfgNode *Node : getNodes()) {
599     CfgUnorderedSet<Inst *, InstHash, InstEq> Seen;
600     // Stores currently available instructions.
601 
602     CfgUnorderedMap<Variable *, Variable *, VariableHash> Replacements;
603     // Combining the above two into a single data structure might consume less
604     // memory but will be slower i.e map of Instruction -> Set of Variables
605 
606     CfgUnorderedMap<Variable *, std::vector<Inst *>, VariableHash> Dependency;
607     // Maps a variable to the Instructions that depend on it.
608     // a = op1 b c
609     // x = op2 c d
610     // Will result in the map : b -> {a}, c -> {a, x}, d -> {x}
611     // Not necessary for SSA as dependencies will never be invalidated, and the
612     // container will use minimal memory when left unused.
613 
614     auto IterCount = getFlags().getLocalCseMaxIterations();
615 
616     for (uint32_t i = 0; i < IterCount; ++i) {
617       // TODO(manasijm): Stats on IterCount -> performance
618       for (Inst &Instr : Node->getInsts()) {
619         if (Instr.isDeleted() || !llvm::isa<InstArithmetic>(&Instr))
620           continue;
621         if (!AssumeSSA) {
622           // Invalidate replacements
623           auto Iter = Replacements.find(Instr.getDest());
624           if (Iter != Replacements.end()) {
625             Replacements.erase(Iter);
626           }
627 
628           // Invalidate 'seen' instructions whose operands were just updated.
629           auto DepIter = Dependency.find(Instr.getDest());
630           if (DepIter != Dependency.end()) {
631             for (auto *DepInst : DepIter->second) {
632               Seen.erase(DepInst);
633             }
634           }
635         }
636 
637         // Replace - doing this before checking for repetitions might enable
638         // more optimizations
639         for (SizeT i = 0; i < Instr.getSrcSize(); ++i) {
640           auto *Opnd = Instr.getSrc(i);
641           if (auto *Var = llvm::dyn_cast<Variable>(Opnd)) {
642             if (Replacements.find(Var) != Replacements.end()) {
643               Instr.replaceSource(i, Replacements[Var]);
644             }
645           }
646         }
647 
648         // Check for repetitions
649         auto SeenIter = Seen.find(&Instr);
650         if (SeenIter != Seen.end()) { // seen before
651           const Inst *Found = *SeenIter;
652           Replacements[Instr.getDest()] = Found->getDest();
653         } else { // new
654           Seen.insert(&Instr);
655 
656           if (!AssumeSSA) {
657             // Update dependencies
658             for (SizeT i = 0; i < Instr.getSrcSize(); ++i) {
659               auto *Opnd = Instr.getSrc(i);
660               if (auto *Var = llvm::dyn_cast<Variable>(Opnd)) {
661                 Dependency[Var].push_back(&Instr);
662               }
663             }
664           }
665         }
666       }
667     }
668   }
669 }
670 
loopInvariantCodeMotion()671 void Cfg::loopInvariantCodeMotion() {
672   TimerMarker T(TimerStack::TT_loopInvariantCodeMotion, this);
673   // Does not introduce new nodes as of now.
674   for (auto &Loop : LoopInfo) {
675     CfgNode *Header = Loop.Header;
676     assert(Header);
677     if (Header->getLoopNestDepth() < 1)
678       return;
679     CfgNode *PreHeader = Loop.PreHeader;
680     if (PreHeader == nullptr || PreHeader->getInsts().size() == 0) {
681       return; // try next loop
682     }
683 
684     auto &Insts = PreHeader->getInsts();
685     auto &LastInst = Insts.back();
686     Insts.pop_back();
687 
688     for (auto *Inst : findLoopInvariantInstructions(Loop.Body)) {
689       PreHeader->appendInst(Inst);
690     }
691     PreHeader->appendInst(&LastInst);
692   }
693 }
694 
695 CfgVector<Inst *>
findLoopInvariantInstructions(const CfgUnorderedSet<SizeT> & Body)696 Cfg::findLoopInvariantInstructions(const CfgUnorderedSet<SizeT> &Body) {
697   CfgUnorderedSet<Inst *> InvariantInsts;
698   CfgUnorderedSet<Variable *> InvariantVars;
699   for (auto *Var : getArgs()) {
700     InvariantVars.insert(Var);
701   }
702   bool Changed = false;
703   do {
704     Changed = false;
705     for (auto NodeIndex : Body) {
706       auto *Node = Nodes[NodeIndex];
707       CfgVector<std::reference_wrapper<Inst>> Insts(Node->getInsts().begin(),
708                                                     Node->getInsts().end());
709 
710       for (auto &InstRef : Insts) {
711         auto &Inst = InstRef.get();
712         if (Inst.isDeleted() ||
713             InvariantInsts.find(&Inst) != InvariantInsts.end())
714           continue;
715         switch (Inst.getKind()) {
716         case Inst::InstKind::Alloca:
717         case Inst::InstKind::Br:
718         case Inst::InstKind::Ret:
719         case Inst::InstKind::Phi:
720         case Inst::InstKind::Call:
721         case Inst::InstKind::IntrinsicCall:
722         case Inst::InstKind::Load:
723         case Inst::InstKind::Store:
724         case Inst::InstKind::Switch:
725           continue;
726         default:
727           break;
728         }
729 
730         bool IsInvariant = true;
731         for (SizeT i = 0; i < Inst.getSrcSize(); ++i) {
732           if (auto *Var = llvm::dyn_cast<Variable>(Inst.getSrc(i))) {
733             if (InvariantVars.find(Var) == InvariantVars.end()) {
734               IsInvariant = false;
735             }
736           }
737         }
738         if (IsInvariant) {
739           Changed = true;
740           InvariantInsts.insert(&Inst);
741           Node->getInsts().remove(Inst);
742           if (Inst.getDest() != nullptr) {
743             InvariantVars.insert(Inst.getDest());
744           }
745         }
746       }
747     }
748   } while (Changed);
749 
750   CfgVector<Inst *> InstVector(InvariantInsts.begin(), InvariantInsts.end());
751   std::sort(InstVector.begin(), InstVector.end(),
752             [](Inst *A, Inst *B) { return A->getNumber() < B->getNumber(); });
753   return InstVector;
754 }
755 
shortCircuitJumps()756 void Cfg::shortCircuitJumps() {
757   // Split Nodes whenever an early jump is possible.
758   // __N :
759   //   a = <something>
760   //   Instruction 1 without side effect
761   //   ... b = <something> ...
762   //   Instruction N without side effect
763   //   t1 = or a b
764   //   br t1 __X __Y
765   //
766   // is transformed into:
767   // __N :
768   //   a = <something>
769   //   br a __X __N_ext
770   //
771   // __N_ext :
772   //   Instruction 1 without side effect
773   //   ... b = <something> ...
774   //   Instruction N without side effect
775   //   br b __X __Y
776   // (Similar logic for AND, jump to false instead of true target.)
777 
778   TimerMarker T(TimerStack::TT_shortCircuit, this);
779   getVMetadata()->init(VMK_Uses);
780   auto NodeStack = this->getNodes();
781   CfgUnorderedMap<SizeT, CfgVector<CfgNode *>> Splits;
782   while (!NodeStack.empty()) {
783     auto *Node = NodeStack.back();
784     NodeStack.pop_back();
785     auto NewNode = Node->shortCircuit();
786     if (NewNode) {
787       NodeStack.push_back(NewNode);
788       NodeStack.push_back(Node);
789       Splits[Node->getIndex()].push_back(NewNode);
790     }
791   }
792 
793   // Insert nodes in the right place
794   NodeList NewList;
795   NewList.reserve(Nodes.size());
796   CfgUnorderedSet<SizeT> Inserted;
797   for (auto *Node : Nodes) {
798     if (Inserted.find(Node->getIndex()) != Inserted.end())
799       continue; // already inserted
800     NodeList Stack{Node};
801     while (!Stack.empty()) {
802       auto *Current = Stack.back();
803       Stack.pop_back();
804       Inserted.insert(Current->getIndex());
805       NewList.push_back(Current);
806       for (auto *Next : Splits[Current->getIndex()]) {
807         Stack.push_back(Next);
808       }
809     }
810   }
811 
812   SizeT NodeIndex = 0;
813   for (auto *Node : NewList) {
814     Node->resetIndex(NodeIndex++);
815   }
816   Nodes = NewList;
817 }
818 
floatConstantCSE()819 void Cfg::floatConstantCSE() {
820   // Load multiple uses of a floating point constant (between two call
821   // instructions or block start/end) into a variable before its first use.
822   //   t1 = b + 1.0
823   //   t2 = c + 1.0
824   // Gets transformed to:
825   //   t0 = 1.0
826   //   t0_1 = t0
827   //   t1 = b + t0_1
828   //   t2 = c + t0_1
829   // Call instructions reset the procedure, but use the same variable, just in
830   // case it got a register. We are assuming floating point registers are not
831   // callee saved in general. Example, continuing from before:
832   //   result = call <some function>
833   //   t3 = d + 1.0
834   // Gets transformed to:
835   //   result = call <some function>
836   //   t0_2 = t0
837   //   t3 = d + t0_2
838   // TODO(manasijm, stichnot): Figure out how to 'link' t0 to the stack slot of
839   // 1.0. When t0 does not get a register, introducing an extra assignment
840   // statement does not make sense. The relevant portion is marked below.
841 
842   TimerMarker _(TimerStack::TT_floatConstantCse, this);
843   for (CfgNode *Node : getNodes()) {
844 
845     CfgUnorderedMap<Constant *, Variable *> ConstCache;
846     auto Current = Node->getInsts().begin();
847     auto End = Node->getInsts().end();
848     while (Current != End) {
849       CfgUnorderedMap<Constant *, CfgVector<InstList::iterator>> FloatUses;
850       if (llvm::isa<InstCall>(iteratorToInst(Current))) {
851         ++Current;
852         assert(Current != End);
853         // Block should not end with a call
854       }
855       while (Current != End && !llvm::isa<InstCall>(iteratorToInst(Current))) {
856         if (!Current->isDeleted()) {
857           for (SizeT i = 0; i < Current->getSrcSize(); ++i) {
858             if (auto *Const = llvm::dyn_cast<Constant>(Current->getSrc(i))) {
859               if (Const->getType() == IceType_f32 ||
860                   Const->getType() == IceType_f64) {
861                 FloatUses[Const].push_back(Current);
862               }
863             }
864           }
865         }
866         ++Current;
867       }
868       for (auto &Pair : FloatUses) {
869         static constexpr SizeT MinUseThreshold = 3;
870         if (Pair.second.size() < MinUseThreshold)
871           continue;
872         // Only consider constants with at least `MinUseThreshold` uses
873         auto &Insts = Node->getInsts();
874 
875         if (ConstCache.find(Pair.first) == ConstCache.end()) {
876           // Saw a constant (which is used at least twice) for the first time
877           auto *NewVar = makeVariable(Pair.first->getType());
878           // NewVar->setLinkedTo(Pair.first);
879           // TODO(manasijm): Plumbing for linking to an Operand.
880           auto *Assign = InstAssign::create(Node->getCfg(), NewVar, Pair.first);
881           Insts.insert(Pair.second[0], Assign);
882           ConstCache[Pair.first] = NewVar;
883         }
884 
885         auto *NewVar = makeVariable(Pair.first->getType());
886         NewVar->setLinkedTo(ConstCache[Pair.first]);
887         auto *Assign =
888             InstAssign::create(Node->getCfg(), NewVar, ConstCache[Pair.first]);
889 
890         Insts.insert(Pair.second[0], Assign);
891         for (auto InstUse : Pair.second) {
892           for (SizeT i = 0; i < InstUse->getSrcSize(); ++i) {
893             if (auto *Const = llvm::dyn_cast<Constant>(InstUse->getSrc(i))) {
894               if (Const == Pair.first) {
895                 InstUse->replaceSource(i, NewVar);
896               }
897             }
898           }
899         }
900       }
901     }
902   }
903 }
904 
doArgLowering()905 void Cfg::doArgLowering() {
906   TimerMarker T(TimerStack::TT_doArgLowering, this);
907   getTarget()->lowerArguments();
908 }
909 
sortAndCombineAllocas(CfgVector<InstAlloca * > & Allocas,uint32_t CombinedAlignment,InstList & Insts,AllocaBaseVariableType BaseVariableType)910 void Cfg::sortAndCombineAllocas(CfgVector<InstAlloca *> &Allocas,
911                                 uint32_t CombinedAlignment, InstList &Insts,
912                                 AllocaBaseVariableType BaseVariableType) {
913   if (Allocas.empty())
914     return;
915   // Sort by decreasing alignment.
916   std::sort(Allocas.begin(), Allocas.end(), [](InstAlloca *A1, InstAlloca *A2) {
917     uint32_t Align1 = A1->getAlignInBytes();
918     uint32_t Align2 = A2->getAlignInBytes();
919     if (Align1 == Align2)
920       return A1->getNumber() < A2->getNumber();
921     else
922       return Align1 > Align2;
923   });
924   // Process the allocas in order of decreasing stack alignment.  This allows
925   // us to pack less-aligned pieces after more-aligned ones, resulting in less
926   // stack growth.  It also allows there to be at most one stack alignment "and"
927   // instruction for a whole list of allocas.
928   uint32_t CurrentOffset = 0;
929   CfgVector<int32_t> Offsets;
930   for (Inst *Instr : Allocas) {
931     auto *Alloca = llvm::cast<InstAlloca>(Instr);
932     // Adjust the size of the allocation up to the next multiple of the
933     // object's alignment.
934     uint32_t Alignment = std::max(Alloca->getAlignInBytes(), 1u);
935     auto *ConstSize =
936         llvm::dyn_cast<ConstantInteger32>(Alloca->getSizeInBytes());
937     uint32_t Size = Utils::applyAlignment(ConstSize->getValue(), Alignment);
938     if (BaseVariableType == BVT_FramePointer) {
939       // Addressing is relative to the frame pointer.  Subtract the offset after
940       // adding the size of the alloca, because it grows downwards from the
941       // frame pointer.
942       Offsets.push_back(Target->getFramePointerOffset(CurrentOffset, Size));
943     } else {
944       // Addressing is relative to the stack pointer or to a user pointer.  Add
945       // the offset before adding the size of the object, because it grows
946       // upwards from the stack pointer. In addition, if the addressing is
947       // relative to the stack pointer, we need to add the pre-computed max out
948       // args size bytes.
949       const uint32_t OutArgsOffsetOrZero =
950           (BaseVariableType == BVT_StackPointer)
951               ? getTarget()->maxOutArgsSizeBytes()
952               : 0;
953       Offsets.push_back(CurrentOffset + OutArgsOffsetOrZero);
954     }
955     // Update the running offset of the fused alloca region.
956     CurrentOffset += Size;
957   }
958   // Round the offset up to the alignment granularity to use as the size.
959   uint32_t TotalSize = Utils::applyAlignment(CurrentOffset, CombinedAlignment);
960   // Ensure every alloca was assigned an offset.
961   assert(Allocas.size() == Offsets.size());
962 
963   switch (BaseVariableType) {
964   case BVT_UserPointer: {
965     Variable *BaseVariable = makeVariable(IceType_i32);
966     for (SizeT i = 0; i < Allocas.size(); ++i) {
967       auto *Alloca = llvm::cast<InstAlloca>(Allocas[i]);
968       // Emit a new addition operation to replace the alloca.
969       Operand *AllocaOffset = Ctx->getConstantInt32(Offsets[i]);
970       InstArithmetic *Add =
971           InstArithmetic::create(this, InstArithmetic::Add, Alloca->getDest(),
972                                  BaseVariable, AllocaOffset);
973       Insts.push_front(Add);
974       Alloca->setDeleted();
975     }
976     Operand *AllocaSize = Ctx->getConstantInt32(TotalSize);
977     InstAlloca *CombinedAlloca =
978         InstAlloca::create(this, BaseVariable, AllocaSize, CombinedAlignment);
979     CombinedAlloca->setKnownFrameOffset();
980     Insts.push_front(CombinedAlloca);
981   } break;
982   case BVT_StackPointer:
983   case BVT_FramePointer: {
984     for (SizeT i = 0; i < Allocas.size(); ++i) {
985       auto *Alloca = llvm::cast<InstAlloca>(Allocas[i]);
986       // Emit a fake definition of the rematerializable variable.
987       Variable *Dest = Alloca->getDest();
988       auto *Def = InstFakeDef::create(this, Dest);
989       if (BaseVariableType == BVT_StackPointer)
990         Dest->setRematerializable(getTarget()->getStackReg(), Offsets[i]);
991       else
992         Dest->setRematerializable(getTarget()->getFrameReg(), Offsets[i]);
993       Insts.push_front(Def);
994       Alloca->setDeleted();
995     }
996     // Allocate the fixed area in the function prolog.
997     getTarget()->reserveFixedAllocaArea(TotalSize, CombinedAlignment);
998   } break;
999   }
1000 }
1001 
processAllocas(bool SortAndCombine)1002 void Cfg::processAllocas(bool SortAndCombine) {
1003   TimerMarker _(TimerStack::TT_alloca, this);
1004   const uint32_t StackAlignment = getTarget()->getStackAlignment();
1005   CfgNode *EntryNode = getEntryNode();
1006   assert(EntryNode);
1007   // LLVM enforces power of 2 alignment.
1008   assert(llvm::isPowerOf2_32(StackAlignment));
1009   // If the ABI's stack alignment is smaller than the vector size (16 bytes),
1010   // conservatively use a frame pointer to allow for explicit alignment of the
1011   // stack pointer. This needs to happen before register allocation so the frame
1012   // pointer can be reserved.
1013   if (getTarget()->needsStackPointerAlignment()) {
1014     getTarget()->setHasFramePointer();
1015   }
1016   // Determine if there are large alignment allocations in the entry block or
1017   // dynamic allocations (variable size in the entry block).
1018   bool HasLargeAlignment = false;
1019   bool HasDynamicAllocation = false;
1020   for (Inst &Instr : EntryNode->getInsts()) {
1021     if (Instr.isDeleted())
1022       continue;
1023     if (auto *Alloca = llvm::dyn_cast<InstAlloca>(&Instr)) {
1024       uint32_t AlignmentParam = Alloca->getAlignInBytes();
1025       if (AlignmentParam > StackAlignment)
1026         HasLargeAlignment = true;
1027       if (llvm::isa<Constant>(Alloca->getSizeInBytes()))
1028         Alloca->setKnownFrameOffset();
1029       else {
1030         HasDynamicAllocation = true;
1031         // If Allocas are not sorted, the first dynamic allocation causes
1032         // later Allocas to be at unknown offsets relative to the stack/frame.
1033         if (!SortAndCombine)
1034           break;
1035       }
1036     }
1037   }
1038   // Don't do the heavyweight sorting and layout for low optimization levels.
1039   if (!SortAndCombine)
1040     return;
1041   // Any alloca outside the entry block is a dynamic allocation.
1042   for (CfgNode *Node : Nodes) {
1043     if (Node == EntryNode)
1044       continue;
1045     for (Inst &Instr : Node->getInsts()) {
1046       if (Instr.isDeleted())
1047         continue;
1048       if (llvm::isa<InstAlloca>(&Instr)) {
1049         // Allocations outside the entry block require a frame pointer.
1050         HasDynamicAllocation = true;
1051         break;
1052       }
1053     }
1054     if (HasDynamicAllocation)
1055       break;
1056   }
1057   // Mark the target as requiring a frame pointer.
1058   if (HasLargeAlignment || HasDynamicAllocation)
1059     getTarget()->setHasFramePointer();
1060   // Collect the Allocas into the two vectors.
1061   // Allocas in the entry block that have constant size and alignment less
1062   // than or equal to the function's stack alignment.
1063   CfgVector<InstAlloca *> FixedAllocas;
1064   // Allocas in the entry block that have constant size and alignment greater
1065   // than the function's stack alignment.
1066   CfgVector<InstAlloca *> AlignedAllocas;
1067   // Maximum alignment used by any alloca.
1068   uint32_t MaxAlignment = StackAlignment;
1069   for (Inst &Instr : EntryNode->getInsts()) {
1070     if (Instr.isDeleted())
1071       continue;
1072     if (auto *Alloca = llvm::dyn_cast<InstAlloca>(&Instr)) {
1073       if (!llvm::isa<Constant>(Alloca->getSizeInBytes()))
1074         continue;
1075       uint32_t AlignmentParam = Alloca->getAlignInBytes();
1076       // For default align=0, set it to the real value 1, to avoid any
1077       // bit-manipulation problems below.
1078       AlignmentParam = std::max(AlignmentParam, 1u);
1079       assert(llvm::isPowerOf2_32(AlignmentParam));
1080       if (HasDynamicAllocation && AlignmentParam > StackAlignment) {
1081         // If we have both dynamic allocations and large stack alignments,
1082         // high-alignment allocations are pulled out with their own base.
1083         AlignedAllocas.push_back(Alloca);
1084       } else {
1085         FixedAllocas.push_back(Alloca);
1086       }
1087       MaxAlignment = std::max(AlignmentParam, MaxAlignment);
1088     }
1089   }
1090   // Add instructions to the head of the entry block in reverse order.
1091   InstList &Insts = getEntryNode()->getInsts();
1092   if (HasDynamicAllocation && HasLargeAlignment) {
1093     // We are using a frame pointer, but fixed large-alignment alloca addresses
1094     // do not have a known offset from either the stack or frame pointer.
1095     // They grow up from a user pointer from an alloca.
1096     sortAndCombineAllocas(AlignedAllocas, MaxAlignment, Insts, BVT_UserPointer);
1097     // Fixed size allocas are addressed relative to the frame pointer.
1098     sortAndCombineAllocas(FixedAllocas, StackAlignment, Insts,
1099                           BVT_FramePointer);
1100   } else {
1101     // Otherwise, fixed size allocas are addressed relative to the stack unless
1102     // there are dynamic allocas.
1103     const AllocaBaseVariableType BasePointerType =
1104         (HasDynamicAllocation ? BVT_FramePointer : BVT_StackPointer);
1105     sortAndCombineAllocas(FixedAllocas, MaxAlignment, Insts, BasePointerType);
1106   }
1107   if (!FixedAllocas.empty() || !AlignedAllocas.empty())
1108     // No use calling findRematerializable() unless there is some
1109     // rematerializable alloca instruction to seed it.
1110     findRematerializable();
1111 }
1112 
1113 namespace {
1114 
1115 // Helpers for findRematerializable().  For each of them, if a suitable
1116 // rematerialization is found, the instruction's Dest variable is set to be
1117 // rematerializable and it returns true, otherwise it returns false.
1118 
rematerializeArithmetic(const Inst * Instr)1119 bool rematerializeArithmetic(const Inst *Instr) {
1120   // Check that it's an Arithmetic instruction with an Add operation.
1121   auto *Arith = llvm::dyn_cast<InstArithmetic>(Instr);
1122   if (Arith == nullptr || Arith->getOp() != InstArithmetic::Add)
1123     return false;
1124   // Check that Src(0) is rematerializable.
1125   auto *Src0Var = llvm::dyn_cast<Variable>(Arith->getSrc(0));
1126   if (Src0Var == nullptr || !Src0Var->isRematerializable())
1127     return false;
1128   // Check that Src(1) is an immediate.
1129   auto *Src1Imm = llvm::dyn_cast<ConstantInteger32>(Arith->getSrc(1));
1130   if (Src1Imm == nullptr)
1131     return false;
1132   Arith->getDest()->setRematerializable(
1133       Src0Var->getRegNum(), Src0Var->getStackOffset() + Src1Imm->getValue());
1134   return true;
1135 }
1136 
rematerializeAssign(const Inst * Instr)1137 bool rematerializeAssign(const Inst *Instr) {
1138   // An InstAssign only originates from an inttoptr or ptrtoint instruction,
1139   // which never occurs in a MINIMAL build.
1140   if (BuildDefs::minimal())
1141     return false;
1142   // Check that it's an Assign instruction.
1143   if (!llvm::isa<InstAssign>(Instr))
1144     return false;
1145   // Check that Src(0) is rematerializable.
1146   auto *Src0Var = llvm::dyn_cast<Variable>(Instr->getSrc(0));
1147   if (Src0Var == nullptr || !Src0Var->isRematerializable())
1148     return false;
1149   Instr->getDest()->setRematerializable(Src0Var->getRegNum(),
1150                                         Src0Var->getStackOffset());
1151   return true;
1152 }
1153 
rematerializeCast(const Inst * Instr)1154 bool rematerializeCast(const Inst *Instr) {
1155   // An pointer-type bitcast never occurs in a MINIMAL build.
1156   if (BuildDefs::minimal())
1157     return false;
1158   // Check that it's a Cast instruction with a Bitcast operation.
1159   auto *Cast = llvm::dyn_cast<InstCast>(Instr);
1160   if (Cast == nullptr || Cast->getCastKind() != InstCast::Bitcast)
1161     return false;
1162   // Check that Src(0) is rematerializable.
1163   auto *Src0Var = llvm::dyn_cast<Variable>(Cast->getSrc(0));
1164   if (Src0Var == nullptr || !Src0Var->isRematerializable())
1165     return false;
1166   // Check that Dest and Src(0) have the same type.
1167   Variable *Dest = Cast->getDest();
1168   if (Dest->getType() != Src0Var->getType())
1169     return false;
1170   Dest->setRematerializable(Src0Var->getRegNum(), Src0Var->getStackOffset());
1171   return true;
1172 }
1173 
1174 } // end of anonymous namespace
1175 
1176 /// Scan the function to find additional rematerializable variables.  This is
1177 /// possible when the source operand of an InstAssignment is a rematerializable
1178 /// variable, or the same for a pointer-type InstCast::Bitcast, or when an
1179 /// InstArithmetic is an add of a rematerializable variable and an immediate.
1180 /// Note that InstAssignment instructions and pointer-type InstCast::Bitcast
1181 /// instructions generally only come about from the IceConverter's treatment of
1182 /// inttoptr, ptrtoint, and bitcast instructions.  TODO(stichnot): Consider
1183 /// other possibilities, however unlikely, such as InstArithmetic::Sub, or
1184 /// commutativity.
findRematerializable()1185 void Cfg::findRematerializable() {
1186   // Scan the instructions in order, and repeat until no new opportunities are
1187   // found.  It may take more than one iteration because a variable's defining
1188   // block may happen to come after a block where it is used, depending on the
1189   // CfgNode linearization order.
1190   bool FoundNewAssignment;
1191   do {
1192     FoundNewAssignment = false;
1193     for (CfgNode *Node : getNodes()) {
1194       // No need to process Phi instructions.
1195       for (Inst &Instr : Node->getInsts()) {
1196         if (Instr.isDeleted())
1197           continue;
1198         Variable *Dest = Instr.getDest();
1199         if (Dest == nullptr || Dest->isRematerializable())
1200           continue;
1201         if (rematerializeArithmetic(&Instr) || rematerializeAssign(&Instr) ||
1202             rematerializeCast(&Instr)) {
1203           FoundNewAssignment = true;
1204         }
1205       }
1206     }
1207   } while (FoundNewAssignment);
1208 }
1209 
doAddressOpt()1210 void Cfg::doAddressOpt() {
1211   TimerMarker T(TimerStack::TT_doAddressOpt, this);
1212   for (CfgNode *Node : Nodes)
1213     Node->doAddressOpt();
1214 }
1215 
1216 namespace {
1217 // ShuffleVectorUtils implements helper functions for rematerializing
1218 // shufflevector instructions from a sequence of extractelement/insertelement
1219 // instructions. It looks for the following pattern:
1220 //
1221 // %t0 = extractelement A, %n0
1222 // %t1 = extractelement B, %n1
1223 // %t2 = extractelement C, %n2
1224 // ...
1225 // %tN = extractelement N, %nN
1226 // %d0 = insertelement undef, %t0, 0
1227 // %d1 = insertelement %d0, %t1, 1
1228 // %d2 = insertelement %d1, %t2, 2
1229 // ...
1230 // %dest = insertelement %d_N-1, %tN, N
1231 //
1232 // where N is num_element(typeof(%dest)), and A, B, C, ... N are at most two
1233 // distinct variables.
1234 namespace ShuffleVectorUtils {
1235 // findAllInserts is used when searching for all the insertelements that are
1236 // used in a shufflevector operation. This function works recursively, when
1237 // invoked with I = i, the function assumes Insts[i] is the last found
1238 // insertelement in the chain. The next insertelement insertruction is saved in
1239 // Insts[i+1].
findAllInserts(Cfg * Func,GlobalContext * Ctx,VariablesMetadata * VM,CfgVector<const Inst * > * Insts,SizeT I=0)1240 bool findAllInserts(Cfg *Func, GlobalContext *Ctx, VariablesMetadata *VM,
1241                     CfgVector<const Inst *> *Insts, SizeT I = 0) {
1242   const bool Verbose = BuildDefs::dump() && Func->isVerbose(IceV_ShufMat);
1243 
1244   if (I > Insts->size()) {
1245     if (Verbose) {
1246       Ctx->getStrDump() << "\tToo many inserts.\n";
1247     }
1248     return false;
1249   }
1250 
1251   const auto *LastInsert = Insts->at(I);
1252   assert(llvm::isa<InstInsertElement>(LastInsert));
1253 
1254   if (I == Insts->size() - 1) {
1255     // Matching against undef is not really needed because the value in Src(0)
1256     // will be totally overwritten. We still enforce it anyways because the
1257     // PNaCl toolchain generates the bitcode with it.
1258     if (!llvm::isa<ConstantUndef>(LastInsert->getSrc(0))) {
1259       if (Verbose) {
1260         Ctx->getStrDump() << "\tSrc0 is not undef: " << I << " "
1261                           << Insts->size();
1262         LastInsert->dump(Func);
1263         Ctx->getStrDump() << "\n";
1264       }
1265       return false;
1266     }
1267 
1268     // The following loop ensures that the insertelements are sorted. In theory,
1269     // we could relax this restriction and allow any order. As long as each
1270     // index appears exactly once, this chain is still a candidate for becoming
1271     // a shufflevector. The Insts vector is traversed backwards because the
1272     // instructions are "enqueued" in reverse order.
1273     int32_t ExpectedElement = 0;
1274     for (const auto *I : reverse_range(*Insts)) {
1275       if (llvm::cast<ConstantInteger32>(I->getSrc(2))->getValue() !=
1276           ExpectedElement) {
1277         return false;
1278       }
1279       ++ExpectedElement;
1280     }
1281     return true;
1282   }
1283 
1284   const auto *Src0V = llvm::cast<Variable>(LastInsert->getSrc(0));
1285   const auto *Def = VM->getSingleDefinition(Src0V);
1286 
1287   // Only optimize if the first operand in
1288   //
1289   //   Dest = insertelement A, B, 10
1290   //
1291   // is singly-def'ed.
1292   if (Def == nullptr) {
1293     if (Verbose) {
1294       Ctx->getStrDump() << "\tmulti-def: ";
1295       (*Insts)[I]->dump(Func);
1296       Ctx->getStrDump() << "\n";
1297     }
1298     return false;
1299   }
1300 
1301   // We also require the (single) definition to come from an insertelement
1302   // instruction.
1303   if (!llvm::isa<InstInsertElement>(Def)) {
1304     if (Verbose) {
1305       Ctx->getStrDump() << "\tnot insert element: ";
1306       Def->dump(Func);
1307       Ctx->getStrDump() << "\n";
1308     }
1309     return false;
1310   }
1311 
1312   // Everything seems fine, so we save Def in Insts, and delegate the decision
1313   // to findAllInserts.
1314   (*Insts)[I + 1] = Def;
1315 
1316   return findAllInserts(Func, Ctx, VM, Insts, I + 1);
1317 }
1318 
1319 // insertsLastElement returns true if Insert is inserting an element in the last
1320 // position of a vector.
insertsLastElement(const Inst & Insert)1321 bool insertsLastElement(const Inst &Insert) {
1322   const Type DestTy = Insert.getDest()->getType();
1323   assert(isVectorType(DestTy));
1324   const SizeT Elem =
1325       llvm::cast<ConstantInteger32>(Insert.getSrc(2))->getValue();
1326   return Elem == typeNumElements(DestTy) - 1;
1327 }
1328 
1329 // findAllExtracts goes over all the insertelement instructions that are
1330 // candidates to be replaced by a shufflevector, and searches for all the
1331 // definitions of the elements being inserted. If all of the elements are the
1332 // result of an extractelement instruction, and all of the extractelements
1333 // operate on at most two different sources, than the instructions can be
1334 // replaced by a shufflevector.
findAllExtracts(Cfg * Func,GlobalContext * Ctx,VariablesMetadata * VM,const CfgVector<const Inst * > & Insts,Variable ** Src0,Variable ** Src1,CfgVector<const Inst * > * Extracts)1335 bool findAllExtracts(Cfg *Func, GlobalContext *Ctx, VariablesMetadata *VM,
1336                      const CfgVector<const Inst *> &Insts, Variable **Src0,
1337                      Variable **Src1, CfgVector<const Inst *> *Extracts) {
1338   const bool Verbose = BuildDefs::dump() && Func->isVerbose(IceV_ShufMat);
1339 
1340   *Src0 = nullptr;
1341   *Src1 = nullptr;
1342   assert(Insts.size() > 0);
1343   for (SizeT I = 0; I < Insts.size(); ++I) {
1344     const auto *Insert = Insts.at(I);
1345     const auto *Src1V = llvm::dyn_cast<Variable>(Insert->getSrc(1));
1346     if (Src1V == nullptr) {
1347       if (Verbose) {
1348         Ctx->getStrDump() << "src(1) is not a variable: ";
1349         Insert->dump(Func);
1350         Ctx->getStrDump() << "\n";
1351       }
1352       return false;
1353     }
1354 
1355     const auto *Def = VM->getSingleDefinition(Src1V);
1356     if (Def == nullptr) {
1357       if (Verbose) {
1358         Ctx->getStrDump() << "multi-def src(1): ";
1359         Insert->dump(Func);
1360         Ctx->getStrDump() << "\n";
1361       }
1362       return false;
1363     }
1364 
1365     if (!llvm::isa<InstExtractElement>(Def)) {
1366       if (Verbose) {
1367         Ctx->getStrDump() << "not extractelement: ";
1368         Def->dump(Func);
1369         Ctx->getStrDump() << "\n";
1370       }
1371       return false;
1372     }
1373 
1374     auto *Src = llvm::cast<Variable>(Def->getSrc(0));
1375     if (*Src0 == nullptr) {
1376       // No sources yet. Save Src to Src0.
1377       *Src0 = Src;
1378     } else if (*Src1 == nullptr) {
1379       // We already have a source, so we might save Src in Src1 -- but only if
1380       // Src0 is not Src.
1381       if (*Src0 != Src) {
1382         *Src1 = Src;
1383       }
1384     } else if (Src != *Src0 && Src != *Src1) {
1385       // More than two sources, so we can't rematerialize the shufflevector
1386       // instruction.
1387       if (Verbose) {
1388         Ctx->getStrDump() << "Can't shuffle more than two sources.\n";
1389       }
1390       return false;
1391     }
1392 
1393     (*Extracts)[I] = Def;
1394   }
1395 
1396   // We should have seen at least one source operand.
1397   assert(*Src0 != nullptr);
1398 
1399   // If a second source was not seen, then we just make Src1 = Src0 to simplify
1400   // things down stream. This should not matter, as all of the indexes in the
1401   // shufflevector instruction will point to Src0.
1402   if (*Src1 == nullptr) {
1403     *Src1 = *Src0;
1404   }
1405 
1406   return true;
1407 }
1408 
1409 } // end of namespace ShuffleVectorUtils
1410 } // end of anonymous namespace
1411 
materializeVectorShuffles()1412 void Cfg::materializeVectorShuffles() {
1413   const bool Verbose = BuildDefs::dump() && isVerbose(IceV_ShufMat);
1414 
1415   std::unique_ptr<OstreamLocker> L;
1416   if (Verbose) {
1417     L.reset(new OstreamLocker(getContext()));
1418     getContext()->getStrDump() << "\nShuffle materialization:\n";
1419   }
1420 
1421   // MaxVectorElements is the maximum number of elements in the vector types
1422   // handled by Subzero. We use it to create the Inserts and Extracts vectors
1423   // with the appropriate size, thus avoiding resize() calls.
1424   const SizeT MaxVectorElements = typeNumElements(IceType_v16i8);
1425   CfgVector<const Inst *> Inserts(MaxVectorElements);
1426   CfgVector<const Inst *> Extracts(MaxVectorElements);
1427 
1428   TimerMarker T(TimerStack::TT_materializeVectorShuffles, this);
1429   for (CfgNode *Node : Nodes) {
1430     for (auto &Instr : Node->getInsts()) {
1431       if (!llvm::isa<InstInsertElement>(Instr)) {
1432         continue;
1433       }
1434       if (!ShuffleVectorUtils::insertsLastElement(Instr)) {
1435         // To avoid wasting time, we only start the pattern match at the last
1436         // insertelement instruction -- and go backwards from there.
1437         continue;
1438       }
1439       if (Verbose) {
1440         getContext()->getStrDump() << "\tCandidate: ";
1441         Instr.dump(this);
1442         getContext()->getStrDump() << "\n";
1443       }
1444       Inserts.resize(typeNumElements(Instr.getDest()->getType()));
1445       Inserts[0] = &Instr;
1446       if (!ShuffleVectorUtils::findAllInserts(this, getContext(),
1447                                               VMetadata.get(), &Inserts)) {
1448         // If we fail to find a sequence of insertelements, we stop the
1449         // optimization.
1450         if (Verbose) {
1451           getContext()->getStrDump() << "\tFalse alarm.\n";
1452         }
1453         continue;
1454       }
1455       if (Verbose) {
1456         getContext()->getStrDump() << "\tFound the following insertelement: \n";
1457         for (auto *I : reverse_range(Inserts)) {
1458           getContext()->getStrDump() << "\t\t";
1459           I->dump(this);
1460           getContext()->getStrDump() << "\n";
1461         }
1462       }
1463       Extracts.resize(Inserts.size());
1464       Variable *Src0;
1465       Variable *Src1;
1466       if (!ShuffleVectorUtils::findAllExtracts(this, getContext(),
1467                                                VMetadata.get(), Inserts, &Src0,
1468                                                &Src1, &Extracts)) {
1469         // If we fail to match the definitions of the insertelements' sources
1470         // with extractelement instructions -- or if those instructions operate
1471         // on more than two different variables -- we stop the optimization.
1472         if (Verbose) {
1473           getContext()->getStrDump() << "\tFailed to match extractelements.\n";
1474         }
1475         continue;
1476       }
1477       if (Verbose) {
1478         getContext()->getStrDump()
1479             << "\tFound the following insert/extract element pairs: \n";
1480         for (SizeT I = 0; I < Inserts.size(); ++I) {
1481           const SizeT Pos = Inserts.size() - I - 1;
1482           getContext()->getStrDump() << "\t\tInsert : ";
1483           Inserts[Pos]->dump(this);
1484           getContext()->getStrDump() << "\n\t\tExtract: ";
1485           Extracts[Pos]->dump(this);
1486           getContext()->getStrDump() << "\n";
1487         }
1488       }
1489 
1490       assert(Src0 != nullptr);
1491       assert(Src1 != nullptr);
1492 
1493       auto *ShuffleVector =
1494           InstShuffleVector::create(this, Instr.getDest(), Src0, Src1);
1495       assert(ShuffleVector->getSrc(0) == Src0);
1496       assert(ShuffleVector->getSrc(1) == Src1);
1497       for (SizeT I = 0; I < Extracts.size(); ++I) {
1498         const SizeT Pos = Extracts.size() - I - 1;
1499         auto *Index = llvm::cast<ConstantInteger32>(Extracts[Pos]->getSrc(1));
1500         if (Src0 == Extracts[Pos]->getSrc(0)) {
1501           ShuffleVector->addIndex(Index);
1502         } else {
1503           ShuffleVector->addIndex(llvm::cast<ConstantInteger32>(
1504               Ctx->getConstantInt32(Index->getValue() + Extracts.size())));
1505         }
1506       }
1507 
1508       if (Verbose) {
1509         getContext()->getStrDump() << "Created: ";
1510         ShuffleVector->dump(this);
1511         getContext()->getStrDump() << "\n";
1512       }
1513 
1514       Instr.setDeleted();
1515       auto &LoweringContext = getTarget()->getContext();
1516       LoweringContext.setInsertPoint(instToIterator(&Instr));
1517       LoweringContext.insert(ShuffleVector);
1518     }
1519   }
1520 }
1521 
doNopInsertion()1522 void Cfg::doNopInsertion() {
1523   if (!getFlags().getShouldDoNopInsertion())
1524     return;
1525   TimerMarker T(TimerStack::TT_doNopInsertion, this);
1526   RandomNumberGenerator RNG(getFlags().getRandomSeed(), RPE_NopInsertion,
1527                             SequenceNumber);
1528   for (CfgNode *Node : Nodes)
1529     Node->doNopInsertion(RNG);
1530 }
1531 
genCode()1532 void Cfg::genCode() {
1533   TimerMarker T(TimerStack::TT_genCode, this);
1534   for (CfgNode *Node : Nodes)
1535     Node->genCode();
1536 }
1537 
1538 // Compute the stack frame layout.
genFrame()1539 void Cfg::genFrame() {
1540   TimerMarker T(TimerStack::TT_genFrame, this);
1541   getTarget()->addProlog(Entry);
1542   for (CfgNode *Node : Nodes)
1543     if (Node->getHasReturn())
1544       getTarget()->addEpilog(Node);
1545 }
1546 
generateLoopInfo()1547 void Cfg::generateLoopInfo() {
1548   TimerMarker T(TimerStack::TT_computeLoopNestDepth, this);
1549   LoopInfo = ComputeLoopInfo(this);
1550 }
1551 
1552 // This is a lightweight version of live-range-end calculation. Marks the last
1553 // use of only those variables whose definition and uses are completely with a
1554 // single block. It is a quick single pass and doesn't need to iterate until
1555 // convergence.
livenessLightweight()1556 void Cfg::livenessLightweight() {
1557   TimerMarker T(TimerStack::TT_livenessLightweight, this);
1558   getVMetadata()->init(VMK_Uses);
1559   for (CfgNode *Node : Nodes)
1560     Node->livenessLightweight();
1561 }
1562 
liveness(LivenessMode Mode)1563 void Cfg::liveness(LivenessMode Mode) {
1564   TimerMarker T(TimerStack::TT_liveness, this);
1565   // Destroying the previous (if any) Liveness information clears the Liveness
1566   // allocator TLS pointer.
1567   Live = nullptr;
1568   Live = Liveness::create(this, Mode);
1569 
1570   getVMetadata()->init(VMK_Uses);
1571   Live->init();
1572 
1573   // Initialize with all nodes needing to be processed.
1574   BitVector NeedToProcess(Nodes.size(), true);
1575   while (NeedToProcess.any()) {
1576     // Iterate in reverse topological order to speed up convergence.
1577     for (CfgNode *Node : reverse_range(Nodes)) {
1578       if (NeedToProcess[Node->getIndex()]) {
1579         NeedToProcess[Node->getIndex()] = false;
1580         bool Changed = Node->liveness(getLiveness());
1581         if (Changed) {
1582           // If the beginning-of-block liveness changed since the last
1583           // iteration, mark all in-edges as needing to be processed.
1584           for (CfgNode *Pred : Node->getInEdges())
1585             NeedToProcess[Pred->getIndex()] = true;
1586         }
1587       }
1588     }
1589   }
1590   if (Mode == Liveness_Intervals) {
1591     // Reset each variable's live range.
1592     for (Variable *Var : Variables)
1593       Var->resetLiveRange();
1594   }
1595   // Make a final pass over each node to delete dead instructions, collect the
1596   // first and last instruction numbers, and add live range segments for that
1597   // node.
1598   for (CfgNode *Node : Nodes) {
1599     InstNumberT FirstInstNum = Inst::NumberSentinel;
1600     InstNumberT LastInstNum = Inst::NumberSentinel;
1601     for (Inst &I : Node->getPhis()) {
1602       I.deleteIfDead();
1603       if (Mode == Liveness_Intervals && !I.isDeleted()) {
1604         if (FirstInstNum == Inst::NumberSentinel)
1605           FirstInstNum = I.getNumber();
1606         assert(I.getNumber() > LastInstNum);
1607         LastInstNum = I.getNumber();
1608       }
1609     }
1610     for (Inst &I : Node->getInsts()) {
1611       I.deleteIfDead();
1612       if (Mode == Liveness_Intervals && !I.isDeleted()) {
1613         if (FirstInstNum == Inst::NumberSentinel)
1614           FirstInstNum = I.getNumber();
1615         assert(I.getNumber() > LastInstNum);
1616         LastInstNum = I.getNumber();
1617       }
1618     }
1619     if (Mode == Liveness_Intervals) {
1620       // Special treatment for live in-args. Their liveness needs to extend
1621       // beyond the beginning of the function, otherwise an arg whose only use
1622       // is in the first instruction will end up having the trivial live range
1623       // [2,2) and will *not* interfere with other arguments. So if the first
1624       // instruction of the method is "r=arg1+arg2", both args may be assigned
1625       // the same register. This is accomplished by extending the entry block's
1626       // instruction range from [2,n) to [1,n) which will transform the
1627       // problematic [2,2) live ranges into [1,2).  This extension works because
1628       // the entry node is guaranteed to have the lowest instruction numbers.
1629       if (Node == getEntryNode()) {
1630         FirstInstNum = Inst::NumberExtended;
1631         // Just in case the entry node somehow contains no instructions...
1632         if (LastInstNum == Inst::NumberSentinel)
1633           LastInstNum = FirstInstNum;
1634       }
1635       // If this node somehow contains no instructions, don't bother trying to
1636       // add liveness intervals for it, because variables that are live-in and
1637       // live-out will have a bogus interval added.
1638       if (FirstInstNum != Inst::NumberSentinel)
1639         Node->livenessAddIntervals(getLiveness(), FirstInstNum, LastInstNum);
1640     }
1641   }
1642 }
1643 
1644 // Traverse every Variable of every Inst and verify that it appears within the
1645 // Variable's computed live range.
validateLiveness() const1646 bool Cfg::validateLiveness() const {
1647   TimerMarker T(TimerStack::TT_validateLiveness, this);
1648   bool Valid = true;
1649   OstreamLocker L(Ctx);
1650   Ostream &Str = Ctx->getStrDump();
1651   for (CfgNode *Node : Nodes) {
1652     Inst *FirstInst = nullptr;
1653     for (Inst &Instr : Node->getInsts()) {
1654       if (Instr.isDeleted())
1655         continue;
1656       if (FirstInst == nullptr)
1657         FirstInst = &Instr;
1658       InstNumberT InstNumber = Instr.getNumber();
1659       if (Variable *Dest = Instr.getDest()) {
1660         if (!Dest->getIgnoreLiveness()) {
1661           bool Invalid = false;
1662           constexpr bool IsDest = true;
1663           if (!Dest->getLiveRange().containsValue(InstNumber, IsDest))
1664             Invalid = true;
1665           // Check that this instruction actually *begins* Dest's live range,
1666           // by checking that Dest is not live in the previous instruction. As
1667           // a special exception, we don't check this for the first instruction
1668           // of the block, because a Phi temporary may be live at the end of
1669           // the previous block, and if it is also assigned in the first
1670           // instruction of this block, the adjacent live ranges get merged.
1671           if (&Instr != FirstInst && !Instr.isDestRedefined() &&
1672               Dest->getLiveRange().containsValue(InstNumber - 1, IsDest))
1673             Invalid = true;
1674           if (Invalid) {
1675             Valid = false;
1676             Str << "Liveness error: inst " << Instr.getNumber() << " dest ";
1677             Dest->dump(this);
1678             Str << " live range " << Dest->getLiveRange() << "\n";
1679           }
1680         }
1681       }
1682       FOREACH_VAR_IN_INST(Var, Instr) {
1683         static constexpr bool IsDest = false;
1684         if (!Var->getIgnoreLiveness() &&
1685             !Var->getLiveRange().containsValue(InstNumber, IsDest)) {
1686           Valid = false;
1687           Str << "Liveness error: inst " << Instr.getNumber() << " var ";
1688           Var->dump(this);
1689           Str << " live range " << Var->getLiveRange() << "\n";
1690         }
1691       }
1692     }
1693   }
1694   return Valid;
1695 }
1696 
contractEmptyNodes()1697 void Cfg::contractEmptyNodes() {
1698   // If we're decorating the asm output with register liveness info, this
1699   // information may become corrupted or incorrect after contracting nodes that
1700   // contain only redundant assignments. As such, we disable this pass when
1701   // DecorateAsm is specified. This may make the resulting code look more
1702   // branchy, but it should have no effect on the register assignments.
1703   if (getFlags().getDecorateAsm())
1704     return;
1705   for (CfgNode *Node : Nodes) {
1706     Node->contractIfEmpty();
1707   }
1708 }
1709 
doBranchOpt()1710 void Cfg::doBranchOpt() {
1711   TimerMarker T(TimerStack::TT_doBranchOpt, this);
1712   for (auto I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
1713     auto NextNode = I + 1;
1714     (*I)->doBranchOpt(NextNode == E ? nullptr : *NextNode);
1715   }
1716 }
1717 
markNodesForSandboxing()1718 void Cfg::markNodesForSandboxing() {
1719   for (const InstJumpTable *JT : JumpTables)
1720     for (SizeT I = 0; I < JT->getNumTargets(); ++I)
1721       JT->getTarget(I)->setNeedsAlignment();
1722 }
1723 
1724 // ======================== Dump routines ======================== //
1725 
1726 // emitTextHeader() is not target-specific (apart from what is abstracted by
1727 // the Assembler), so it is defined here rather than in the target lowering
1728 // class.
emitTextHeader(GlobalString Name,GlobalContext * Ctx,const Assembler * Asm)1729 void Cfg::emitTextHeader(GlobalString Name, GlobalContext *Ctx,
1730                          const Assembler *Asm) {
1731   if (!BuildDefs::dump())
1732     return;
1733   Ostream &Str = Ctx->getStrEmit();
1734   Str << "\t.text\n";
1735   if (getFlags().getFunctionSections())
1736     Str << "\t.section\t.text." << Name << ",\"ax\",%progbits\n";
1737   if (!Asm->getInternal() || getFlags().getDisableInternal()) {
1738     Str << "\t.globl\t" << Name << "\n";
1739     Str << "\t.type\t" << Name << ",%function\n";
1740   }
1741   Str << "\t" << Asm->getAlignDirective() << " "
1742       << Asm->getBundleAlignLog2Bytes() << ",0x";
1743   for (uint8_t I : Asm->getNonExecBundlePadding())
1744     Str.write_hex(I);
1745   Str << "\n";
1746   Str << Name << ":\n";
1747 }
1748 
emitJumpTables()1749 void Cfg::emitJumpTables() {
1750   switch (getFlags().getOutFileType()) {
1751   case FT_Elf:
1752   case FT_Iasm: {
1753     // The emission needs to be delayed until the after the text section so
1754     // save the offsets in the global context.
1755     for (const InstJumpTable *JumpTable : JumpTables) {
1756       Ctx->addJumpTableData(JumpTable->toJumpTableData(getAssembler()));
1757     }
1758   } break;
1759   case FT_Asm: {
1760     // Emit the assembly directly so we don't need to hang on to all the names
1761     for (const InstJumpTable *JumpTable : JumpTables)
1762       getTarget()->emitJumpTable(this, JumpTable);
1763   } break;
1764   }
1765 }
1766 
emit()1767 void Cfg::emit() {
1768   if (!BuildDefs::dump())
1769     return;
1770   TimerMarker T(TimerStack::TT_emitAsm, this);
1771   if (getFlags().getDecorateAsm()) {
1772     renumberInstructions();
1773     getVMetadata()->init(VMK_Uses);
1774     liveness(Liveness_Basic);
1775     dump("After recomputing liveness for -decorate-asm");
1776   }
1777   OstreamLocker L(Ctx);
1778   Ostream &Str = Ctx->getStrEmit();
1779   const Assembler *Asm = getAssembler<>();
1780   const bool NeedSandboxing = getFlags().getUseSandboxing();
1781 
1782   emitTextHeader(FunctionName, Ctx, Asm);
1783   if (getFlags().getDecorateAsm()) {
1784     for (Variable *Var : getVariables()) {
1785       if (Var->hasKnownStackOffset() && !Var->isRematerializable()) {
1786         Str << "\t" << Var->getSymbolicStackOffset() << " = "
1787             << Var->getStackOffset() << "\n";
1788       }
1789     }
1790   }
1791   for (CfgNode *Node : Nodes) {
1792     if (NeedSandboxing && Node->needsAlignment()) {
1793       Str << "\t" << Asm->getAlignDirective() << " "
1794           << Asm->getBundleAlignLog2Bytes() << "\n";
1795     }
1796     Node->emit(this);
1797   }
1798   emitJumpTables();
1799   Str << "\n";
1800 }
1801 
emitIAS()1802 void Cfg::emitIAS() {
1803   TimerMarker T(TimerStack::TT_emitAsm, this);
1804   // The emitIAS() routines emit into the internal assembler buffer, so there's
1805   // no need to lock the streams.
1806   const bool NeedSandboxing = getFlags().getUseSandboxing();
1807   for (CfgNode *Node : Nodes) {
1808     if (NeedSandboxing && Node->needsAlignment())
1809       getAssembler()->alignCfgNode();
1810     Node->emitIAS(this);
1811   }
1812   emitJumpTables();
1813 }
1814 
getTotalMemoryMB() const1815 size_t Cfg::getTotalMemoryMB() const {
1816   constexpr size_t _1MB = 1024 * 1024;
1817   assert(Allocator != nullptr);
1818   assert(CfgAllocatorTraits::current() == Allocator.get());
1819   return Allocator->getTotalMemory() / _1MB;
1820 }
1821 
getLivenessMemoryMB() const1822 size_t Cfg::getLivenessMemoryMB() const {
1823   constexpr size_t _1MB = 1024 * 1024;
1824   if (Live == nullptr) {
1825     return 0;
1826   }
1827   return Live->getAllocator()->getTotalMemory() / _1MB;
1828 }
1829 
1830 // Dumps the IR with an optional introductory message.
dump(const char * Message)1831 void Cfg::dump(const char *Message) {
1832   if (!BuildDefs::dump())
1833     return;
1834   if (!isVerbose())
1835     return;
1836   OstreamLocker L(Ctx);
1837   Ostream &Str = Ctx->getStrDump();
1838   if (Message[0])
1839     Str << "================ " << Message << " ================\n";
1840   if (isVerbose(IceV_Mem)) {
1841     Str << "Memory size = " << getTotalMemoryMB() << " MB\n";
1842   }
1843   setCurrentNode(getEntryNode());
1844   // Print function name+args
1845   if (isVerbose(IceV_Instructions)) {
1846     Str << "define ";
1847     if (getInternal() && !getFlags().getDisableInternal())
1848       Str << "internal ";
1849     Str << ReturnType << " @" << getFunctionName() << "(";
1850     for (SizeT i = 0; i < Args.size(); ++i) {
1851       if (i > 0)
1852         Str << ", ";
1853       Str << Args[i]->getType() << " ";
1854       Args[i]->dump(this);
1855     }
1856     // Append an extra copy of the function name here, in order to print its
1857     // size stats but not mess up lit tests.
1858     Str << ") { # " << getFunctionNameAndSize() << "\n";
1859   }
1860   resetCurrentNode();
1861   if (isVerbose(IceV_Liveness)) {
1862     // Print summary info about variables
1863     for (Variable *Var : Variables) {
1864       Str << "// multiblock=";
1865       if (getVMetadata()->isTracked(Var))
1866         Str << getVMetadata()->isMultiBlock(Var);
1867       else
1868         Str << "?";
1869       Str << " defs=";
1870       bool FirstPrint = true;
1871       if (VMetadata->getKind() != VMK_Uses) {
1872         if (const Inst *FirstDef = VMetadata->getFirstDefinition(Var)) {
1873           Str << FirstDef->getNumber();
1874           FirstPrint = false;
1875         }
1876       }
1877       if (VMetadata->getKind() == VMK_All) {
1878         for (const Inst *Instr : VMetadata->getLatterDefinitions(Var)) {
1879           if (!FirstPrint)
1880             Str << ",";
1881           Str << Instr->getNumber();
1882           FirstPrint = false;
1883         }
1884       }
1885       Str << " weight=" << Var->getWeight(this) << " ";
1886       Var->dump(this);
1887       Str << " LIVE=" << Var->getLiveRange() << "\n";
1888     }
1889   }
1890   // Print each basic block
1891   for (CfgNode *Node : Nodes)
1892     Node->dump(this);
1893   if (isVerbose(IceV_Instructions))
1894     Str << "}\n";
1895 }
1896 
1897 } // end of namespace Ice
1898