1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/RuntimeLibcalls.h"
36 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/KnownBits.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/ManagedStatic.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/Mutex.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <cstdlib>
71 #include <limits>
72 #include <set>
73 #include <string>
74 #include <utility>
75 #include <vector>
76
77 using namespace llvm;
78
79 /// makeVTList - Return an instance of the SDVTList struct initialized with the
80 /// specified members.
makeVTList(const EVT * VTs,unsigned NumVTs)81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
82 SDVTList Res = {VTs, NumVTs};
83 return Res;
84 }
85
86 // Default null implementations of the callbacks.
NodeDeleted(SDNode *,SDNode *)87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
NodeUpdated(SDNode *)88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
89
90 #define DEBUG_TYPE "selectiondag"
91
92 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
93 cl::Hidden, cl::init(true),
94 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
95
96 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
97 cl::desc("Number limit for gluing ld/st of memcpy."),
98 cl::Hidden, cl::init(0));
99
NewSDValueDbgMsg(SDValue V,StringRef Msg,SelectionDAG * G)100 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
101 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
102 }
103
104 //===----------------------------------------------------------------------===//
105 // ConstantFPSDNode Class
106 //===----------------------------------------------------------------------===//
107
108 /// isExactlyValue - We don't rely on operator== working on double values, as
109 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
110 /// As such, this method can be used to do an exact bit-for-bit comparison of
111 /// two floating point values.
isExactlyValue(const APFloat & V) const112 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
113 return getValueAPF().bitwiseIsEqual(V);
114 }
115
isValueValidForType(EVT VT,const APFloat & Val)116 bool ConstantFPSDNode::isValueValidForType(EVT VT,
117 const APFloat& Val) {
118 assert(VT.isFloatingPoint() && "Can only convert between FP types");
119
120 // convert modifies in place, so make a copy.
121 APFloat Val2 = APFloat(Val);
122 bool losesInfo;
123 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
124 APFloat::rmNearestTiesToEven,
125 &losesInfo);
126 return !losesInfo;
127 }
128
129 //===----------------------------------------------------------------------===//
130 // ISD Namespace
131 //===----------------------------------------------------------------------===//
132
isConstantSplatVector(const SDNode * N,APInt & SplatVal)133 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
134 auto *BV = dyn_cast<BuildVectorSDNode>(N);
135 if (!BV)
136 return false;
137
138 APInt SplatUndef;
139 unsigned SplatBitSize;
140 bool HasUndefs;
141 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
142 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
143 EltSize) &&
144 EltSize == SplatBitSize;
145 }
146
147 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
148 // specializations of the more general isConstantSplatVector()?
149
isBuildVectorAllOnes(const SDNode * N)150 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
151 // Look through a bit convert.
152 while (N->getOpcode() == ISD::BITCAST)
153 N = N->getOperand(0).getNode();
154
155 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156
157 unsigned i = 0, e = N->getNumOperands();
158
159 // Skip over all of the undef values.
160 while (i != e && N->getOperand(i).isUndef())
161 ++i;
162
163 // Do not accept an all-undef vector.
164 if (i == e) return false;
165
166 // Do not accept build_vectors that aren't all constants or which have non-~0
167 // elements. We have to be a bit careful here, as the type of the constant
168 // may not be the same as the type of the vector elements due to type
169 // legalization (the elements are promoted to a legal type for the target and
170 // a vector of a type may be legal when the base element type is not).
171 // We only want to check enough bits to cover the vector elements, because
172 // we care if the resultant vector is all ones, not whether the individual
173 // constants are.
174 SDValue NotZero = N->getOperand(i);
175 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
176 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
177 if (CN->getAPIntValue().countTrailingOnes() < EltSize)
178 return false;
179 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
180 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
181 return false;
182 } else
183 return false;
184
185 // Okay, we have at least one ~0 value, check to see if the rest match or are
186 // undefs. Even with the above element type twiddling, this should be OK, as
187 // the same type legalization should have applied to all the elements.
188 for (++i; i != e; ++i)
189 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
190 return false;
191 return true;
192 }
193
isBuildVectorAllZeros(const SDNode * N)194 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
195 // Look through a bit convert.
196 while (N->getOpcode() == ISD::BITCAST)
197 N = N->getOperand(0).getNode();
198
199 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
200
201 bool IsAllUndef = true;
202 for (const SDValue &Op : N->op_values()) {
203 if (Op.isUndef())
204 continue;
205 IsAllUndef = false;
206 // Do not accept build_vectors that aren't all constants or which have non-0
207 // elements. We have to be a bit careful here, as the type of the constant
208 // may not be the same as the type of the vector elements due to type
209 // legalization (the elements are promoted to a legal type for the target
210 // and a vector of a type may be legal when the base element type is not).
211 // We only want to check enough bits to cover the vector elements, because
212 // we care if the resultant vector is all zeros, not whether the individual
213 // constants are.
214 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
215 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
216 if (CN->getAPIntValue().countTrailingZeros() < EltSize)
217 return false;
218 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
219 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
220 return false;
221 } else
222 return false;
223 }
224
225 // Do not accept an all-undef vector.
226 if (IsAllUndef)
227 return false;
228 return true;
229 }
230
isBuildVectorOfConstantSDNodes(const SDNode * N)231 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
232 if (N->getOpcode() != ISD::BUILD_VECTOR)
233 return false;
234
235 for (const SDValue &Op : N->op_values()) {
236 if (Op.isUndef())
237 continue;
238 if (!isa<ConstantSDNode>(Op))
239 return false;
240 }
241 return true;
242 }
243
isBuildVectorOfConstantFPSDNodes(const SDNode * N)244 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
245 if (N->getOpcode() != ISD::BUILD_VECTOR)
246 return false;
247
248 for (const SDValue &Op : N->op_values()) {
249 if (Op.isUndef())
250 continue;
251 if (!isa<ConstantFPSDNode>(Op))
252 return false;
253 }
254 return true;
255 }
256
allOperandsUndef(const SDNode * N)257 bool ISD::allOperandsUndef(const SDNode *N) {
258 // Return false if the node has no operands.
259 // This is "logically inconsistent" with the definition of "all" but
260 // is probably the desired behavior.
261 if (N->getNumOperands() == 0)
262 return false;
263
264 for (const SDValue &Op : N->op_values())
265 if (!Op.isUndef())
266 return false;
267
268 return true;
269 }
270
matchUnaryPredicate(SDValue Op,std::function<bool (ConstantSDNode *)> Match)271 bool ISD::matchUnaryPredicate(SDValue Op,
272 std::function<bool(ConstantSDNode *)> Match) {
273 if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
274 return Match(Cst);
275
276 if (ISD::BUILD_VECTOR != Op.getOpcode())
277 return false;
278
279 EVT SVT = Op.getValueType().getScalarType();
280 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
282 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
283 return false;
284 }
285 return true;
286 }
287
matchBinaryPredicate(SDValue LHS,SDValue RHS,std::function<bool (ConstantSDNode *,ConstantSDNode *)> Match)288 bool ISD::matchBinaryPredicate(
289 SDValue LHS, SDValue RHS,
290 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match) {
291 if (LHS.getValueType() != RHS.getValueType())
292 return false;
293
294 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
295 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
296 return Match(LHSCst, RHSCst);
297
298 if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
299 ISD::BUILD_VECTOR != RHS.getOpcode())
300 return false;
301
302 EVT SVT = LHS.getValueType().getScalarType();
303 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
304 auto *LHSCst = dyn_cast<ConstantSDNode>(LHS.getOperand(i));
305 auto *RHSCst = dyn_cast<ConstantSDNode>(RHS.getOperand(i));
306 if (!LHSCst || !RHSCst)
307 return false;
308 if (LHSCst->getValueType(0) != SVT ||
309 LHSCst->getValueType(0) != RHSCst->getValueType(0))
310 return false;
311 if (!Match(LHSCst, RHSCst))
312 return false;
313 }
314 return true;
315 }
316
getExtForLoadExtType(bool IsFP,ISD::LoadExtType ExtType)317 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
318 switch (ExtType) {
319 case ISD::EXTLOAD:
320 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
321 case ISD::SEXTLOAD:
322 return ISD::SIGN_EXTEND;
323 case ISD::ZEXTLOAD:
324 return ISD::ZERO_EXTEND;
325 default:
326 break;
327 }
328
329 llvm_unreachable("Invalid LoadExtType");
330 }
331
getSetCCSwappedOperands(ISD::CondCode Operation)332 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
333 // To perform this operation, we just need to swap the L and G bits of the
334 // operation.
335 unsigned OldL = (Operation >> 2) & 1;
336 unsigned OldG = (Operation >> 1) & 1;
337 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
338 (OldL << 1) | // New G bit
339 (OldG << 2)); // New L bit.
340 }
341
getSetCCInverse(ISD::CondCode Op,bool isInteger)342 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
343 unsigned Operation = Op;
344 if (isInteger)
345 Operation ^= 7; // Flip L, G, E bits, but not U.
346 else
347 Operation ^= 15; // Flip all of the condition bits.
348
349 if (Operation > ISD::SETTRUE2)
350 Operation &= ~8; // Don't let N and U bits get set.
351
352 return ISD::CondCode(Operation);
353 }
354
355 /// For an integer comparison, return 1 if the comparison is a signed operation
356 /// and 2 if the result is an unsigned comparison. Return zero if the operation
357 /// does not depend on the sign of the input (setne and seteq).
isSignedOp(ISD::CondCode Opcode)358 static int isSignedOp(ISD::CondCode Opcode) {
359 switch (Opcode) {
360 default: llvm_unreachable("Illegal integer setcc operation!");
361 case ISD::SETEQ:
362 case ISD::SETNE: return 0;
363 case ISD::SETLT:
364 case ISD::SETLE:
365 case ISD::SETGT:
366 case ISD::SETGE: return 1;
367 case ISD::SETULT:
368 case ISD::SETULE:
369 case ISD::SETUGT:
370 case ISD::SETUGE: return 2;
371 }
372 }
373
getSetCCOrOperation(ISD::CondCode Op1,ISD::CondCode Op2,bool IsInteger)374 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
375 bool IsInteger) {
376 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
377 // Cannot fold a signed integer setcc with an unsigned integer setcc.
378 return ISD::SETCC_INVALID;
379
380 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
381
382 // If the N and U bits get set, then the resultant comparison DOES suddenly
383 // care about orderedness, and it is true when ordered.
384 if (Op > ISD::SETTRUE2)
385 Op &= ~16; // Clear the U bit if the N bit is set.
386
387 // Canonicalize illegal integer setcc's.
388 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
389 Op = ISD::SETNE;
390
391 return ISD::CondCode(Op);
392 }
393
getSetCCAndOperation(ISD::CondCode Op1,ISD::CondCode Op2,bool IsInteger)394 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
395 bool IsInteger) {
396 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
397 // Cannot fold a signed setcc with an unsigned setcc.
398 return ISD::SETCC_INVALID;
399
400 // Combine all of the condition bits.
401 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
402
403 // Canonicalize illegal integer setcc's.
404 if (IsInteger) {
405 switch (Result) {
406 default: break;
407 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
408 case ISD::SETOEQ: // SETEQ & SETU[LG]E
409 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
410 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
411 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
412 }
413 }
414
415 return Result;
416 }
417
418 //===----------------------------------------------------------------------===//
419 // SDNode Profile Support
420 //===----------------------------------------------------------------------===//
421
422 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
AddNodeIDOpcode(FoldingSetNodeID & ID,unsigned OpC)423 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
424 ID.AddInteger(OpC);
425 }
426
427 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
428 /// solely with their pointer.
AddNodeIDValueTypes(FoldingSetNodeID & ID,SDVTList VTList)429 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
430 ID.AddPointer(VTList.VTs);
431 }
432
433 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDValue> Ops)434 static void AddNodeIDOperands(FoldingSetNodeID &ID,
435 ArrayRef<SDValue> Ops) {
436 for (auto& Op : Ops) {
437 ID.AddPointer(Op.getNode());
438 ID.AddInteger(Op.getResNo());
439 }
440 }
441
442 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDUse> Ops)443 static void AddNodeIDOperands(FoldingSetNodeID &ID,
444 ArrayRef<SDUse> Ops) {
445 for (auto& Op : Ops) {
446 ID.AddPointer(Op.getNode());
447 ID.AddInteger(Op.getResNo());
448 }
449 }
450
AddNodeIDNode(FoldingSetNodeID & ID,unsigned short OpC,SDVTList VTList,ArrayRef<SDValue> OpList)451 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
452 SDVTList VTList, ArrayRef<SDValue> OpList) {
453 AddNodeIDOpcode(ID, OpC);
454 AddNodeIDValueTypes(ID, VTList);
455 AddNodeIDOperands(ID, OpList);
456 }
457
458 /// If this is an SDNode with special info, add this info to the NodeID data.
AddNodeIDCustom(FoldingSetNodeID & ID,const SDNode * N)459 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
460 switch (N->getOpcode()) {
461 case ISD::TargetExternalSymbol:
462 case ISD::ExternalSymbol:
463 case ISD::MCSymbol:
464 llvm_unreachable("Should only be used on nodes with operands");
465 default: break; // Normal nodes don't need extra info.
466 case ISD::TargetConstant:
467 case ISD::Constant: {
468 const ConstantSDNode *C = cast<ConstantSDNode>(N);
469 ID.AddPointer(C->getConstantIntValue());
470 ID.AddBoolean(C->isOpaque());
471 break;
472 }
473 case ISD::TargetConstantFP:
474 case ISD::ConstantFP:
475 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
476 break;
477 case ISD::TargetGlobalAddress:
478 case ISD::GlobalAddress:
479 case ISD::TargetGlobalTLSAddress:
480 case ISD::GlobalTLSAddress: {
481 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
482 ID.AddPointer(GA->getGlobal());
483 ID.AddInteger(GA->getOffset());
484 ID.AddInteger(GA->getTargetFlags());
485 break;
486 }
487 case ISD::BasicBlock:
488 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
489 break;
490 case ISD::Register:
491 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
492 break;
493 case ISD::RegisterMask:
494 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
495 break;
496 case ISD::SRCVALUE:
497 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
498 break;
499 case ISD::FrameIndex:
500 case ISD::TargetFrameIndex:
501 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
502 break;
503 case ISD::JumpTable:
504 case ISD::TargetJumpTable:
505 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
506 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
507 break;
508 case ISD::ConstantPool:
509 case ISD::TargetConstantPool: {
510 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
511 ID.AddInteger(CP->getAlignment());
512 ID.AddInteger(CP->getOffset());
513 if (CP->isMachineConstantPoolEntry())
514 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
515 else
516 ID.AddPointer(CP->getConstVal());
517 ID.AddInteger(CP->getTargetFlags());
518 break;
519 }
520 case ISD::TargetIndex: {
521 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
522 ID.AddInteger(TI->getIndex());
523 ID.AddInteger(TI->getOffset());
524 ID.AddInteger(TI->getTargetFlags());
525 break;
526 }
527 case ISD::LOAD: {
528 const LoadSDNode *LD = cast<LoadSDNode>(N);
529 ID.AddInteger(LD->getMemoryVT().getRawBits());
530 ID.AddInteger(LD->getRawSubclassData());
531 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
532 break;
533 }
534 case ISD::STORE: {
535 const StoreSDNode *ST = cast<StoreSDNode>(N);
536 ID.AddInteger(ST->getMemoryVT().getRawBits());
537 ID.AddInteger(ST->getRawSubclassData());
538 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
539 break;
540 }
541 case ISD::MLOAD: {
542 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
543 ID.AddInteger(MLD->getMemoryVT().getRawBits());
544 ID.AddInteger(MLD->getRawSubclassData());
545 ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
546 break;
547 }
548 case ISD::MSTORE: {
549 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
550 ID.AddInteger(MST->getMemoryVT().getRawBits());
551 ID.AddInteger(MST->getRawSubclassData());
552 ID.AddInteger(MST->getPointerInfo().getAddrSpace());
553 break;
554 }
555 case ISD::MGATHER: {
556 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
557 ID.AddInteger(MG->getMemoryVT().getRawBits());
558 ID.AddInteger(MG->getRawSubclassData());
559 ID.AddInteger(MG->getPointerInfo().getAddrSpace());
560 break;
561 }
562 case ISD::MSCATTER: {
563 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
564 ID.AddInteger(MS->getMemoryVT().getRawBits());
565 ID.AddInteger(MS->getRawSubclassData());
566 ID.AddInteger(MS->getPointerInfo().getAddrSpace());
567 break;
568 }
569 case ISD::ATOMIC_CMP_SWAP:
570 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
571 case ISD::ATOMIC_SWAP:
572 case ISD::ATOMIC_LOAD_ADD:
573 case ISD::ATOMIC_LOAD_SUB:
574 case ISD::ATOMIC_LOAD_AND:
575 case ISD::ATOMIC_LOAD_CLR:
576 case ISD::ATOMIC_LOAD_OR:
577 case ISD::ATOMIC_LOAD_XOR:
578 case ISD::ATOMIC_LOAD_NAND:
579 case ISD::ATOMIC_LOAD_MIN:
580 case ISD::ATOMIC_LOAD_MAX:
581 case ISD::ATOMIC_LOAD_UMIN:
582 case ISD::ATOMIC_LOAD_UMAX:
583 case ISD::ATOMIC_LOAD:
584 case ISD::ATOMIC_STORE: {
585 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
586 ID.AddInteger(AT->getMemoryVT().getRawBits());
587 ID.AddInteger(AT->getRawSubclassData());
588 ID.AddInteger(AT->getPointerInfo().getAddrSpace());
589 break;
590 }
591 case ISD::PREFETCH: {
592 const MemSDNode *PF = cast<MemSDNode>(N);
593 ID.AddInteger(PF->getPointerInfo().getAddrSpace());
594 break;
595 }
596 case ISD::VECTOR_SHUFFLE: {
597 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
598 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
599 i != e; ++i)
600 ID.AddInteger(SVN->getMaskElt(i));
601 break;
602 }
603 case ISD::TargetBlockAddress:
604 case ISD::BlockAddress: {
605 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
606 ID.AddPointer(BA->getBlockAddress());
607 ID.AddInteger(BA->getOffset());
608 ID.AddInteger(BA->getTargetFlags());
609 break;
610 }
611 } // end switch (N->getOpcode())
612
613 // Target specific memory nodes could also have address spaces to check.
614 if (N->isTargetMemoryOpcode())
615 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
616 }
617
618 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
619 /// data.
AddNodeIDNode(FoldingSetNodeID & ID,const SDNode * N)620 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
621 AddNodeIDOpcode(ID, N->getOpcode());
622 // Add the return value info.
623 AddNodeIDValueTypes(ID, N->getVTList());
624 // Add the operand info.
625 AddNodeIDOperands(ID, N->ops());
626
627 // Handle SDNode leafs with special info.
628 AddNodeIDCustom(ID, N);
629 }
630
631 //===----------------------------------------------------------------------===//
632 // SelectionDAG Class
633 //===----------------------------------------------------------------------===//
634
635 /// doNotCSE - Return true if CSE should not be performed for this node.
doNotCSE(SDNode * N)636 static bool doNotCSE(SDNode *N) {
637 if (N->getValueType(0) == MVT::Glue)
638 return true; // Never CSE anything that produces a flag.
639
640 switch (N->getOpcode()) {
641 default: break;
642 case ISD::HANDLENODE:
643 case ISD::EH_LABEL:
644 return true; // Never CSE these nodes.
645 }
646
647 // Check that remaining values produced are not flags.
648 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
649 if (N->getValueType(i) == MVT::Glue)
650 return true; // Never CSE anything that produces a flag.
651
652 return false;
653 }
654
655 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
656 /// SelectionDAG.
RemoveDeadNodes()657 void SelectionDAG::RemoveDeadNodes() {
658 // Create a dummy node (which is not added to allnodes), that adds a reference
659 // to the root node, preventing it from being deleted.
660 HandleSDNode Dummy(getRoot());
661
662 SmallVector<SDNode*, 128> DeadNodes;
663
664 // Add all obviously-dead nodes to the DeadNodes worklist.
665 for (SDNode &Node : allnodes())
666 if (Node.use_empty())
667 DeadNodes.push_back(&Node);
668
669 RemoveDeadNodes(DeadNodes);
670
671 // If the root changed (e.g. it was a dead load, update the root).
672 setRoot(Dummy.getValue());
673 }
674
675 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
676 /// given list, and any nodes that become unreachable as a result.
RemoveDeadNodes(SmallVectorImpl<SDNode * > & DeadNodes)677 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
678
679 // Process the worklist, deleting the nodes and adding their uses to the
680 // worklist.
681 while (!DeadNodes.empty()) {
682 SDNode *N = DeadNodes.pop_back_val();
683 // Skip to next node if we've already managed to delete the node. This could
684 // happen if replacing a node causes a node previously added to the node to
685 // be deleted.
686 if (N->getOpcode() == ISD::DELETED_NODE)
687 continue;
688
689 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
690 DUL->NodeDeleted(N, nullptr);
691
692 // Take the node out of the appropriate CSE map.
693 RemoveNodeFromCSEMaps(N);
694
695 // Next, brutally remove the operand list. This is safe to do, as there are
696 // no cycles in the graph.
697 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
698 SDUse &Use = *I++;
699 SDNode *Operand = Use.getNode();
700 Use.set(SDValue());
701
702 // Now that we removed this operand, see if there are no uses of it left.
703 if (Operand->use_empty())
704 DeadNodes.push_back(Operand);
705 }
706
707 DeallocateNode(N);
708 }
709 }
710
RemoveDeadNode(SDNode * N)711 void SelectionDAG::RemoveDeadNode(SDNode *N){
712 SmallVector<SDNode*, 16> DeadNodes(1, N);
713
714 // Create a dummy node that adds a reference to the root node, preventing
715 // it from being deleted. (This matters if the root is an operand of the
716 // dead node.)
717 HandleSDNode Dummy(getRoot());
718
719 RemoveDeadNodes(DeadNodes);
720 }
721
DeleteNode(SDNode * N)722 void SelectionDAG::DeleteNode(SDNode *N) {
723 // First take this out of the appropriate CSE map.
724 RemoveNodeFromCSEMaps(N);
725
726 // Finally, remove uses due to operands of this node, remove from the
727 // AllNodes list, and delete the node.
728 DeleteNodeNotInCSEMaps(N);
729 }
730
DeleteNodeNotInCSEMaps(SDNode * N)731 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
732 assert(N->getIterator() != AllNodes.begin() &&
733 "Cannot delete the entry node!");
734 assert(N->use_empty() && "Cannot delete a node that is not dead!");
735
736 // Drop all of the operands and decrement used node's use counts.
737 N->DropOperands();
738
739 DeallocateNode(N);
740 }
741
erase(const SDNode * Node)742 void SDDbgInfo::erase(const SDNode *Node) {
743 DbgValMapType::iterator I = DbgValMap.find(Node);
744 if (I == DbgValMap.end())
745 return;
746 for (auto &Val: I->second)
747 Val->setIsInvalidated();
748 DbgValMap.erase(I);
749 }
750
DeallocateNode(SDNode * N)751 void SelectionDAG::DeallocateNode(SDNode *N) {
752 // If we have operands, deallocate them.
753 removeOperands(N);
754
755 NodeAllocator.Deallocate(AllNodes.remove(N));
756
757 // Set the opcode to DELETED_NODE to help catch bugs when node
758 // memory is reallocated.
759 // FIXME: There are places in SDag that have grown a dependency on the opcode
760 // value in the released node.
761 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
762 N->NodeType = ISD::DELETED_NODE;
763
764 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
765 // them and forget about that node.
766 DbgInfo->erase(N);
767 }
768
769 #ifndef NDEBUG
770 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
VerifySDNode(SDNode * N)771 static void VerifySDNode(SDNode *N) {
772 switch (N->getOpcode()) {
773 default:
774 break;
775 case ISD::BUILD_PAIR: {
776 EVT VT = N->getValueType(0);
777 assert(N->getNumValues() == 1 && "Too many results!");
778 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
779 "Wrong return type!");
780 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
781 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
782 "Mismatched operand types!");
783 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
784 "Wrong operand type!");
785 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
786 "Wrong return type size");
787 break;
788 }
789 case ISD::BUILD_VECTOR: {
790 assert(N->getNumValues() == 1 && "Too many results!");
791 assert(N->getValueType(0).isVector() && "Wrong return type!");
792 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
793 "Wrong number of operands!");
794 EVT EltVT = N->getValueType(0).getVectorElementType();
795 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
796 assert((I->getValueType() == EltVT ||
797 (EltVT.isInteger() && I->getValueType().isInteger() &&
798 EltVT.bitsLE(I->getValueType()))) &&
799 "Wrong operand type!");
800 assert(I->getValueType() == N->getOperand(0).getValueType() &&
801 "Operands must all have the same type");
802 }
803 break;
804 }
805 }
806 }
807 #endif // NDEBUG
808
809 /// Insert a newly allocated node into the DAG.
810 ///
811 /// Handles insertion into the all nodes list and CSE map, as well as
812 /// verification and other common operations when a new node is allocated.
InsertNode(SDNode * N)813 void SelectionDAG::InsertNode(SDNode *N) {
814 AllNodes.push_back(N);
815 #ifndef NDEBUG
816 N->PersistentId = NextPersistentId++;
817 VerifySDNode(N);
818 #endif
819 }
820
821 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
822 /// correspond to it. This is useful when we're about to delete or repurpose
823 /// the node. We don't want future request for structurally identical nodes
824 /// to return N anymore.
RemoveNodeFromCSEMaps(SDNode * N)825 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
826 bool Erased = false;
827 switch (N->getOpcode()) {
828 case ISD::HANDLENODE: return false; // noop.
829 case ISD::CONDCODE:
830 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
831 "Cond code doesn't exist!");
832 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
833 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
834 break;
835 case ISD::ExternalSymbol:
836 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
837 break;
838 case ISD::TargetExternalSymbol: {
839 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
840 Erased = TargetExternalSymbols.erase(
841 std::pair<std::string,unsigned char>(ESN->getSymbol(),
842 ESN->getTargetFlags()));
843 break;
844 }
845 case ISD::MCSymbol: {
846 auto *MCSN = cast<MCSymbolSDNode>(N);
847 Erased = MCSymbols.erase(MCSN->getMCSymbol());
848 break;
849 }
850 case ISD::VALUETYPE: {
851 EVT VT = cast<VTSDNode>(N)->getVT();
852 if (VT.isExtended()) {
853 Erased = ExtendedValueTypeNodes.erase(VT);
854 } else {
855 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
856 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
857 }
858 break;
859 }
860 default:
861 // Remove it from the CSE Map.
862 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
863 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
864 Erased = CSEMap.RemoveNode(N);
865 break;
866 }
867 #ifndef NDEBUG
868 // Verify that the node was actually in one of the CSE maps, unless it has a
869 // flag result (which cannot be CSE'd) or is one of the special cases that are
870 // not subject to CSE.
871 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
872 !N->isMachineOpcode() && !doNotCSE(N)) {
873 N->dump(this);
874 dbgs() << "\n";
875 llvm_unreachable("Node is not in map!");
876 }
877 #endif
878 return Erased;
879 }
880
881 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
882 /// maps and modified in place. Add it back to the CSE maps, unless an identical
883 /// node already exists, in which case transfer all its users to the existing
884 /// node. This transfer can potentially trigger recursive merging.
885 void
AddModifiedNodeToCSEMaps(SDNode * N)886 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
887 // For node types that aren't CSE'd, just act as if no identical node
888 // already exists.
889 if (!doNotCSE(N)) {
890 SDNode *Existing = CSEMap.GetOrInsertNode(N);
891 if (Existing != N) {
892 // If there was already an existing matching node, use ReplaceAllUsesWith
893 // to replace the dead one with the existing one. This can cause
894 // recursive merging of other unrelated nodes down the line.
895 ReplaceAllUsesWith(N, Existing);
896
897 // N is now dead. Inform the listeners and delete it.
898 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
899 DUL->NodeDeleted(N, Existing);
900 DeleteNodeNotInCSEMaps(N);
901 return;
902 }
903 }
904
905 // If the node doesn't already exist, we updated it. Inform listeners.
906 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
907 DUL->NodeUpdated(N);
908 }
909
910 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
911 /// were replaced with those specified. If this node is never memoized,
912 /// return null, otherwise return a pointer to the slot it would take. If a
913 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op,void * & InsertPos)914 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
915 void *&InsertPos) {
916 if (doNotCSE(N))
917 return nullptr;
918
919 SDValue Ops[] = { Op };
920 FoldingSetNodeID ID;
921 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
922 AddNodeIDCustom(ID, N);
923 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
924 if (Node)
925 Node->intersectFlagsWith(N->getFlags());
926 return Node;
927 }
928
929 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
930 /// were replaced with those specified. If this node is never memoized,
931 /// return null, otherwise return a pointer to the slot it would take. If a
932 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op1,SDValue Op2,void * & InsertPos)933 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
934 SDValue Op1, SDValue Op2,
935 void *&InsertPos) {
936 if (doNotCSE(N))
937 return nullptr;
938
939 SDValue Ops[] = { Op1, Op2 };
940 FoldingSetNodeID ID;
941 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
942 AddNodeIDCustom(ID, N);
943 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
944 if (Node)
945 Node->intersectFlagsWith(N->getFlags());
946 return Node;
947 }
948
949 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
950 /// were replaced with those specified. If this node is never memoized,
951 /// return null, otherwise return a pointer to the slot it would take. If a
952 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,ArrayRef<SDValue> Ops,void * & InsertPos)953 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
954 void *&InsertPos) {
955 if (doNotCSE(N))
956 return nullptr;
957
958 FoldingSetNodeID ID;
959 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
960 AddNodeIDCustom(ID, N);
961 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
962 if (Node)
963 Node->intersectFlagsWith(N->getFlags());
964 return Node;
965 }
966
getEVTAlignment(EVT VT) const967 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
968 Type *Ty = VT == MVT::iPTR ?
969 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
970 VT.getTypeForEVT(*getContext());
971
972 return getDataLayout().getABITypeAlignment(Ty);
973 }
974
975 // EntryNode could meaningfully have debug info if we can find it...
SelectionDAG(const TargetMachine & tm,CodeGenOpt::Level OL)976 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
977 : TM(tm), OptLevel(OL),
978 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
979 Root(getEntryNode()) {
980 InsertNode(&EntryNode);
981 DbgInfo = new SDDbgInfo();
982 }
983
init(MachineFunction & NewMF,OptimizationRemarkEmitter & NewORE,Pass * PassPtr,const TargetLibraryInfo * LibraryInfo,DivergenceAnalysis * Divergence)984 void SelectionDAG::init(MachineFunction &NewMF,
985 OptimizationRemarkEmitter &NewORE,
986 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
987 DivergenceAnalysis * Divergence) {
988 MF = &NewMF;
989 SDAGISelPass = PassPtr;
990 ORE = &NewORE;
991 TLI = getSubtarget().getTargetLowering();
992 TSI = getSubtarget().getSelectionDAGInfo();
993 LibInfo = LibraryInfo;
994 Context = &MF->getFunction().getContext();
995 DA = Divergence;
996 }
997
~SelectionDAG()998 SelectionDAG::~SelectionDAG() {
999 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1000 allnodes_clear();
1001 OperandRecycler.clear(OperandAllocator);
1002 delete DbgInfo;
1003 }
1004
allnodes_clear()1005 void SelectionDAG::allnodes_clear() {
1006 assert(&*AllNodes.begin() == &EntryNode);
1007 AllNodes.remove(AllNodes.begin());
1008 while (!AllNodes.empty())
1009 DeallocateNode(&AllNodes.front());
1010 #ifndef NDEBUG
1011 NextPersistentId = 0;
1012 #endif
1013 }
1014
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)1015 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1016 void *&InsertPos) {
1017 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1018 if (N) {
1019 switch (N->getOpcode()) {
1020 default: break;
1021 case ISD::Constant:
1022 case ISD::ConstantFP:
1023 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1024 "debug location. Use another overload.");
1025 }
1026 }
1027 return N;
1028 }
1029
FindNodeOrInsertPos(const FoldingSetNodeID & ID,const SDLoc & DL,void * & InsertPos)1030 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1031 const SDLoc &DL, void *&InsertPos) {
1032 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1033 if (N) {
1034 switch (N->getOpcode()) {
1035 case ISD::Constant:
1036 case ISD::ConstantFP:
1037 // Erase debug location from the node if the node is used at several
1038 // different places. Do not propagate one location to all uses as it
1039 // will cause a worse single stepping debugging experience.
1040 if (N->getDebugLoc() != DL.getDebugLoc())
1041 N->setDebugLoc(DebugLoc());
1042 break;
1043 default:
1044 // When the node's point of use is located earlier in the instruction
1045 // sequence than its prior point of use, update its debug info to the
1046 // earlier location.
1047 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1048 N->setDebugLoc(DL.getDebugLoc());
1049 break;
1050 }
1051 }
1052 return N;
1053 }
1054
clear()1055 void SelectionDAG::clear() {
1056 allnodes_clear();
1057 OperandRecycler.clear(OperandAllocator);
1058 OperandAllocator.Reset();
1059 CSEMap.clear();
1060
1061 ExtendedValueTypeNodes.clear();
1062 ExternalSymbols.clear();
1063 TargetExternalSymbols.clear();
1064 MCSymbols.clear();
1065 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1066 static_cast<CondCodeSDNode*>(nullptr));
1067 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1068 static_cast<SDNode*>(nullptr));
1069
1070 EntryNode.UseList = nullptr;
1071 InsertNode(&EntryNode);
1072 Root = getEntryNode();
1073 DbgInfo->clear();
1074 }
1075
getFPExtendOrRound(SDValue Op,const SDLoc & DL,EVT VT)1076 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1077 return VT.bitsGT(Op.getValueType())
1078 ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1079 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1080 }
1081
getAnyExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1082 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1083 return VT.bitsGT(Op.getValueType()) ?
1084 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1085 getNode(ISD::TRUNCATE, DL, VT, Op);
1086 }
1087
getSExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1088 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1089 return VT.bitsGT(Op.getValueType()) ?
1090 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1091 getNode(ISD::TRUNCATE, DL, VT, Op);
1092 }
1093
getZExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1094 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1095 return VT.bitsGT(Op.getValueType()) ?
1096 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1097 getNode(ISD::TRUNCATE, DL, VT, Op);
1098 }
1099
getBoolExtOrTrunc(SDValue Op,const SDLoc & SL,EVT VT,EVT OpVT)1100 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1101 EVT OpVT) {
1102 if (VT.bitsLE(Op.getValueType()))
1103 return getNode(ISD::TRUNCATE, SL, VT, Op);
1104
1105 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1106 return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1107 }
1108
getZeroExtendInReg(SDValue Op,const SDLoc & DL,EVT VT)1109 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1110 assert(!VT.isVector() &&
1111 "getZeroExtendInReg should use the vector element type instead of "
1112 "the vector type!");
1113 if (Op.getValueType().getScalarType() == VT) return Op;
1114 unsigned BitWidth = Op.getScalarValueSizeInBits();
1115 APInt Imm = APInt::getLowBitsSet(BitWidth,
1116 VT.getSizeInBits());
1117 return getNode(ISD::AND, DL, Op.getValueType(), Op,
1118 getConstant(Imm, DL, Op.getValueType()));
1119 }
1120
getAnyExtendVectorInReg(SDValue Op,const SDLoc & DL,EVT VT)1121 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1122 EVT VT) {
1123 assert(VT.isVector() && "This DAG node is restricted to vector types.");
1124 assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1125 "The sizes of the input and result must match in order to perform the "
1126 "extend in-register.");
1127 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1128 "The destination vector type must have fewer lanes than the input.");
1129 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1130 }
1131
getSignExtendVectorInReg(SDValue Op,const SDLoc & DL,EVT VT)1132 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1133 EVT VT) {
1134 assert(VT.isVector() && "This DAG node is restricted to vector types.");
1135 assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1136 "The sizes of the input and result must match in order to perform the "
1137 "extend in-register.");
1138 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1139 "The destination vector type must have fewer lanes than the input.");
1140 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1141 }
1142
getZeroExtendVectorInReg(SDValue Op,const SDLoc & DL,EVT VT)1143 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1144 EVT VT) {
1145 assert(VT.isVector() && "This DAG node is restricted to vector types.");
1146 assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1147 "The sizes of the input and result must match in order to perform the "
1148 "extend in-register.");
1149 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1150 "The destination vector type must have fewer lanes than the input.");
1151 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1152 }
1153
1154 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
getNOT(const SDLoc & DL,SDValue Val,EVT VT)1155 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1156 EVT EltVT = VT.getScalarType();
1157 SDValue NegOne =
1158 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1159 return getNode(ISD::XOR, DL, VT, Val, NegOne);
1160 }
1161
getLogicalNOT(const SDLoc & DL,SDValue Val,EVT VT)1162 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1163 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1164 return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1165 }
1166
getBoolConstant(bool V,const SDLoc & DL,EVT VT,EVT OpVT)1167 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1168 EVT OpVT) {
1169 if (!V)
1170 return getConstant(0, DL, VT);
1171
1172 switch (TLI->getBooleanContents(OpVT)) {
1173 case TargetLowering::ZeroOrOneBooleanContent:
1174 case TargetLowering::UndefinedBooleanContent:
1175 return getConstant(1, DL, VT);
1176 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1177 return getAllOnesConstant(DL, VT);
1178 }
1179 llvm_unreachable("Unexpected boolean content enum!");
1180 }
1181
getConstant(uint64_t Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1182 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1183 bool isT, bool isO) {
1184 EVT EltVT = VT.getScalarType();
1185 assert((EltVT.getSizeInBits() >= 64 ||
1186 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1187 "getConstant with a uint64_t value that doesn't fit in the type!");
1188 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1189 }
1190
getConstant(const APInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1191 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1192 bool isT, bool isO) {
1193 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1194 }
1195
getConstant(const ConstantInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1196 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1197 EVT VT, bool isT, bool isO) {
1198 assert(VT.isInteger() && "Cannot create FP integer constant!");
1199
1200 EVT EltVT = VT.getScalarType();
1201 const ConstantInt *Elt = &Val;
1202
1203 // In some cases the vector type is legal but the element type is illegal and
1204 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1205 // inserted value (the type does not need to match the vector element type).
1206 // Any extra bits introduced will be truncated away.
1207 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1208 TargetLowering::TypePromoteInteger) {
1209 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1210 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1211 Elt = ConstantInt::get(*getContext(), NewVal);
1212 }
1213 // In other cases the element type is illegal and needs to be expanded, for
1214 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1215 // the value into n parts and use a vector type with n-times the elements.
1216 // Then bitcast to the type requested.
1217 // Legalizing constants too early makes the DAGCombiner's job harder so we
1218 // only legalize if the DAG tells us we must produce legal types.
1219 else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1220 TLI->getTypeAction(*getContext(), EltVT) ==
1221 TargetLowering::TypeExpandInteger) {
1222 const APInt &NewVal = Elt->getValue();
1223 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1224 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1225 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1226 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1227
1228 // Check the temporary vector is the correct size. If this fails then
1229 // getTypeToTransformTo() probably returned a type whose size (in bits)
1230 // isn't a power-of-2 factor of the requested type size.
1231 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1232
1233 SmallVector<SDValue, 2> EltParts;
1234 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1235 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1236 .zextOrTrunc(ViaEltSizeInBits), DL,
1237 ViaEltVT, isT, isO));
1238 }
1239
1240 // EltParts is currently in little endian order. If we actually want
1241 // big-endian order then reverse it now.
1242 if (getDataLayout().isBigEndian())
1243 std::reverse(EltParts.begin(), EltParts.end());
1244
1245 // The elements must be reversed when the element order is different
1246 // to the endianness of the elements (because the BITCAST is itself a
1247 // vector shuffle in this situation). However, we do not need any code to
1248 // perform this reversal because getConstant() is producing a vector
1249 // splat.
1250 // This situation occurs in MIPS MSA.
1251
1252 SmallVector<SDValue, 8> Ops;
1253 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1254 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1255
1256 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1257 return V;
1258 }
1259
1260 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1261 "APInt size does not match type size!");
1262 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1263 FoldingSetNodeID ID;
1264 AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1265 ID.AddPointer(Elt);
1266 ID.AddBoolean(isO);
1267 void *IP = nullptr;
1268 SDNode *N = nullptr;
1269 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1270 if (!VT.isVector())
1271 return SDValue(N, 0);
1272
1273 if (!N) {
1274 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1275 CSEMap.InsertNode(N, IP);
1276 InsertNode(N);
1277 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1278 }
1279
1280 SDValue Result(N, 0);
1281 if (VT.isVector())
1282 Result = getSplatBuildVector(VT, DL, Result);
1283
1284 return Result;
1285 }
1286
getIntPtrConstant(uint64_t Val,const SDLoc & DL,bool isTarget)1287 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1288 bool isTarget) {
1289 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1290 }
1291
getConstantFP(const APFloat & V,const SDLoc & DL,EVT VT,bool isTarget)1292 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1293 bool isTarget) {
1294 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1295 }
1296
getConstantFP(const ConstantFP & V,const SDLoc & DL,EVT VT,bool isTarget)1297 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1298 EVT VT, bool isTarget) {
1299 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1300
1301 EVT EltVT = VT.getScalarType();
1302
1303 // Do the map lookup using the actual bit pattern for the floating point
1304 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1305 // we don't have issues with SNANs.
1306 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1307 FoldingSetNodeID ID;
1308 AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1309 ID.AddPointer(&V);
1310 void *IP = nullptr;
1311 SDNode *N = nullptr;
1312 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1313 if (!VT.isVector())
1314 return SDValue(N, 0);
1315
1316 if (!N) {
1317 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1318 CSEMap.InsertNode(N, IP);
1319 InsertNode(N);
1320 }
1321
1322 SDValue Result(N, 0);
1323 if (VT.isVector())
1324 Result = getSplatBuildVector(VT, DL, Result);
1325 NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1326 return Result;
1327 }
1328
getConstantFP(double Val,const SDLoc & DL,EVT VT,bool isTarget)1329 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1330 bool isTarget) {
1331 EVT EltVT = VT.getScalarType();
1332 if (EltVT == MVT::f32)
1333 return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1334 else if (EltVT == MVT::f64)
1335 return getConstantFP(APFloat(Val), DL, VT, isTarget);
1336 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1337 EltVT == MVT::f16) {
1338 bool Ignored;
1339 APFloat APF = APFloat(Val);
1340 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1341 &Ignored);
1342 return getConstantFP(APF, DL, VT, isTarget);
1343 } else
1344 llvm_unreachable("Unsupported type in getConstantFP");
1345 }
1346
getGlobalAddress(const GlobalValue * GV,const SDLoc & DL,EVT VT,int64_t Offset,bool isTargetGA,unsigned char TargetFlags)1347 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1348 EVT VT, int64_t Offset, bool isTargetGA,
1349 unsigned char TargetFlags) {
1350 assert((TargetFlags == 0 || isTargetGA) &&
1351 "Cannot set target flags on target-independent globals");
1352
1353 // Truncate (with sign-extension) the offset value to the pointer size.
1354 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1355 if (BitWidth < 64)
1356 Offset = SignExtend64(Offset, BitWidth);
1357
1358 unsigned Opc;
1359 if (GV->isThreadLocal())
1360 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1361 else
1362 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1363
1364 FoldingSetNodeID ID;
1365 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1366 ID.AddPointer(GV);
1367 ID.AddInteger(Offset);
1368 ID.AddInteger(TargetFlags);
1369 void *IP = nullptr;
1370 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1371 return SDValue(E, 0);
1372
1373 auto *N = newSDNode<GlobalAddressSDNode>(
1374 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1375 CSEMap.InsertNode(N, IP);
1376 InsertNode(N);
1377 return SDValue(N, 0);
1378 }
1379
getFrameIndex(int FI,EVT VT,bool isTarget)1380 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1381 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1382 FoldingSetNodeID ID;
1383 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1384 ID.AddInteger(FI);
1385 void *IP = nullptr;
1386 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1387 return SDValue(E, 0);
1388
1389 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1390 CSEMap.InsertNode(N, IP);
1391 InsertNode(N);
1392 return SDValue(N, 0);
1393 }
1394
getJumpTable(int JTI,EVT VT,bool isTarget,unsigned char TargetFlags)1395 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1396 unsigned char TargetFlags) {
1397 assert((TargetFlags == 0 || isTarget) &&
1398 "Cannot set target flags on target-independent jump tables");
1399 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1400 FoldingSetNodeID ID;
1401 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1402 ID.AddInteger(JTI);
1403 ID.AddInteger(TargetFlags);
1404 void *IP = nullptr;
1405 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1406 return SDValue(E, 0);
1407
1408 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1409 CSEMap.InsertNode(N, IP);
1410 InsertNode(N);
1411 return SDValue(N, 0);
1412 }
1413
getConstantPool(const Constant * C,EVT VT,unsigned Alignment,int Offset,bool isTarget,unsigned char TargetFlags)1414 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1415 unsigned Alignment, int Offset,
1416 bool isTarget,
1417 unsigned char TargetFlags) {
1418 assert((TargetFlags == 0 || isTarget) &&
1419 "Cannot set target flags on target-independent globals");
1420 if (Alignment == 0)
1421 Alignment = MF->getFunction().optForSize()
1422 ? getDataLayout().getABITypeAlignment(C->getType())
1423 : getDataLayout().getPrefTypeAlignment(C->getType());
1424 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1425 FoldingSetNodeID ID;
1426 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1427 ID.AddInteger(Alignment);
1428 ID.AddInteger(Offset);
1429 ID.AddPointer(C);
1430 ID.AddInteger(TargetFlags);
1431 void *IP = nullptr;
1432 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1433 return SDValue(E, 0);
1434
1435 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1436 TargetFlags);
1437 CSEMap.InsertNode(N, IP);
1438 InsertNode(N);
1439 return SDValue(N, 0);
1440 }
1441
getConstantPool(MachineConstantPoolValue * C,EVT VT,unsigned Alignment,int Offset,bool isTarget,unsigned char TargetFlags)1442 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1443 unsigned Alignment, int Offset,
1444 bool isTarget,
1445 unsigned char TargetFlags) {
1446 assert((TargetFlags == 0 || isTarget) &&
1447 "Cannot set target flags on target-independent globals");
1448 if (Alignment == 0)
1449 Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1450 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1451 FoldingSetNodeID ID;
1452 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1453 ID.AddInteger(Alignment);
1454 ID.AddInteger(Offset);
1455 C->addSelectionDAGCSEId(ID);
1456 ID.AddInteger(TargetFlags);
1457 void *IP = nullptr;
1458 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1459 return SDValue(E, 0);
1460
1461 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1462 TargetFlags);
1463 CSEMap.InsertNode(N, IP);
1464 InsertNode(N);
1465 return SDValue(N, 0);
1466 }
1467
getTargetIndex(int Index,EVT VT,int64_t Offset,unsigned char TargetFlags)1468 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1469 unsigned char TargetFlags) {
1470 FoldingSetNodeID ID;
1471 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1472 ID.AddInteger(Index);
1473 ID.AddInteger(Offset);
1474 ID.AddInteger(TargetFlags);
1475 void *IP = nullptr;
1476 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1477 return SDValue(E, 0);
1478
1479 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1480 CSEMap.InsertNode(N, IP);
1481 InsertNode(N);
1482 return SDValue(N, 0);
1483 }
1484
getBasicBlock(MachineBasicBlock * MBB)1485 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1486 FoldingSetNodeID ID;
1487 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1488 ID.AddPointer(MBB);
1489 void *IP = nullptr;
1490 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1491 return SDValue(E, 0);
1492
1493 auto *N = newSDNode<BasicBlockSDNode>(MBB);
1494 CSEMap.InsertNode(N, IP);
1495 InsertNode(N);
1496 return SDValue(N, 0);
1497 }
1498
getValueType(EVT VT)1499 SDValue SelectionDAG::getValueType(EVT VT) {
1500 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1501 ValueTypeNodes.size())
1502 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1503
1504 SDNode *&N = VT.isExtended() ?
1505 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1506
1507 if (N) return SDValue(N, 0);
1508 N = newSDNode<VTSDNode>(VT);
1509 InsertNode(N);
1510 return SDValue(N, 0);
1511 }
1512
getExternalSymbol(const char * Sym,EVT VT)1513 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1514 SDNode *&N = ExternalSymbols[Sym];
1515 if (N) return SDValue(N, 0);
1516 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1517 InsertNode(N);
1518 return SDValue(N, 0);
1519 }
1520
getMCSymbol(MCSymbol * Sym,EVT VT)1521 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1522 SDNode *&N = MCSymbols[Sym];
1523 if (N)
1524 return SDValue(N, 0);
1525 N = newSDNode<MCSymbolSDNode>(Sym, VT);
1526 InsertNode(N);
1527 return SDValue(N, 0);
1528 }
1529
getTargetExternalSymbol(const char * Sym,EVT VT,unsigned char TargetFlags)1530 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1531 unsigned char TargetFlags) {
1532 SDNode *&N =
1533 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1534 TargetFlags)];
1535 if (N) return SDValue(N, 0);
1536 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1537 InsertNode(N);
1538 return SDValue(N, 0);
1539 }
1540
getCondCode(ISD::CondCode Cond)1541 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1542 if ((unsigned)Cond >= CondCodeNodes.size())
1543 CondCodeNodes.resize(Cond+1);
1544
1545 if (!CondCodeNodes[Cond]) {
1546 auto *N = newSDNode<CondCodeSDNode>(Cond);
1547 CondCodeNodes[Cond] = N;
1548 InsertNode(N);
1549 }
1550
1551 return SDValue(CondCodeNodes[Cond], 0);
1552 }
1553
1554 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1555 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
commuteShuffle(SDValue & N1,SDValue & N2,MutableArrayRef<int> M)1556 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1557 std::swap(N1, N2);
1558 ShuffleVectorSDNode::commuteMask(M);
1559 }
1560
getVectorShuffle(EVT VT,const SDLoc & dl,SDValue N1,SDValue N2,ArrayRef<int> Mask)1561 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1562 SDValue N2, ArrayRef<int> Mask) {
1563 assert(VT.getVectorNumElements() == Mask.size() &&
1564 "Must have the same number of vector elements as mask elements!");
1565 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1566 "Invalid VECTOR_SHUFFLE");
1567
1568 // Canonicalize shuffle undef, undef -> undef
1569 if (N1.isUndef() && N2.isUndef())
1570 return getUNDEF(VT);
1571
1572 // Validate that all indices in Mask are within the range of the elements
1573 // input to the shuffle.
1574 int NElts = Mask.size();
1575 assert(llvm::all_of(Mask,
1576 [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1577 "Index out of range");
1578
1579 // Copy the mask so we can do any needed cleanup.
1580 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1581
1582 // Canonicalize shuffle v, v -> v, undef
1583 if (N1 == N2) {
1584 N2 = getUNDEF(VT);
1585 for (int i = 0; i != NElts; ++i)
1586 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1587 }
1588
1589 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1590 if (N1.isUndef())
1591 commuteShuffle(N1, N2, MaskVec);
1592
1593 if (TLI->hasVectorBlend()) {
1594 // If shuffling a splat, try to blend the splat instead. We do this here so
1595 // that even when this arises during lowering we don't have to re-handle it.
1596 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1597 BitVector UndefElements;
1598 SDValue Splat = BV->getSplatValue(&UndefElements);
1599 if (!Splat)
1600 return;
1601
1602 for (int i = 0; i < NElts; ++i) {
1603 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1604 continue;
1605
1606 // If this input comes from undef, mark it as such.
1607 if (UndefElements[MaskVec[i] - Offset]) {
1608 MaskVec[i] = -1;
1609 continue;
1610 }
1611
1612 // If we can blend a non-undef lane, use that instead.
1613 if (!UndefElements[i])
1614 MaskVec[i] = i + Offset;
1615 }
1616 };
1617 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1618 BlendSplat(N1BV, 0);
1619 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1620 BlendSplat(N2BV, NElts);
1621 }
1622
1623 // Canonicalize all index into lhs, -> shuffle lhs, undef
1624 // Canonicalize all index into rhs, -> shuffle rhs, undef
1625 bool AllLHS = true, AllRHS = true;
1626 bool N2Undef = N2.isUndef();
1627 for (int i = 0; i != NElts; ++i) {
1628 if (MaskVec[i] >= NElts) {
1629 if (N2Undef)
1630 MaskVec[i] = -1;
1631 else
1632 AllLHS = false;
1633 } else if (MaskVec[i] >= 0) {
1634 AllRHS = false;
1635 }
1636 }
1637 if (AllLHS && AllRHS)
1638 return getUNDEF(VT);
1639 if (AllLHS && !N2Undef)
1640 N2 = getUNDEF(VT);
1641 if (AllRHS) {
1642 N1 = getUNDEF(VT);
1643 commuteShuffle(N1, N2, MaskVec);
1644 }
1645 // Reset our undef status after accounting for the mask.
1646 N2Undef = N2.isUndef();
1647 // Re-check whether both sides ended up undef.
1648 if (N1.isUndef() && N2Undef)
1649 return getUNDEF(VT);
1650
1651 // If Identity shuffle return that node.
1652 bool Identity = true, AllSame = true;
1653 for (int i = 0; i != NElts; ++i) {
1654 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1655 if (MaskVec[i] != MaskVec[0]) AllSame = false;
1656 }
1657 if (Identity && NElts)
1658 return N1;
1659
1660 // Shuffling a constant splat doesn't change the result.
1661 if (N2Undef) {
1662 SDValue V = N1;
1663
1664 // Look through any bitcasts. We check that these don't change the number
1665 // (and size) of elements and just changes their types.
1666 while (V.getOpcode() == ISD::BITCAST)
1667 V = V->getOperand(0);
1668
1669 // A splat should always show up as a build vector node.
1670 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1671 BitVector UndefElements;
1672 SDValue Splat = BV->getSplatValue(&UndefElements);
1673 // If this is a splat of an undef, shuffling it is also undef.
1674 if (Splat && Splat.isUndef())
1675 return getUNDEF(VT);
1676
1677 bool SameNumElts =
1678 V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1679
1680 // We only have a splat which can skip shuffles if there is a splatted
1681 // value and no undef lanes rearranged by the shuffle.
1682 if (Splat && UndefElements.none()) {
1683 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1684 // number of elements match or the value splatted is a zero constant.
1685 if (SameNumElts)
1686 return N1;
1687 if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1688 if (C->isNullValue())
1689 return N1;
1690 }
1691
1692 // If the shuffle itself creates a splat, build the vector directly.
1693 if (AllSame && SameNumElts) {
1694 EVT BuildVT = BV->getValueType(0);
1695 const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1696 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1697
1698 // We may have jumped through bitcasts, so the type of the
1699 // BUILD_VECTOR may not match the type of the shuffle.
1700 if (BuildVT != VT)
1701 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1702 return NewBV;
1703 }
1704 }
1705 }
1706
1707 FoldingSetNodeID ID;
1708 SDValue Ops[2] = { N1, N2 };
1709 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1710 for (int i = 0; i != NElts; ++i)
1711 ID.AddInteger(MaskVec[i]);
1712
1713 void* IP = nullptr;
1714 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1715 return SDValue(E, 0);
1716
1717 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1718 // SDNode doesn't have access to it. This memory will be "leaked" when
1719 // the node is deallocated, but recovered when the NodeAllocator is released.
1720 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1721 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1722
1723 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1724 dl.getDebugLoc(), MaskAlloc);
1725 createOperands(N, Ops);
1726
1727 CSEMap.InsertNode(N, IP);
1728 InsertNode(N);
1729 SDValue V = SDValue(N, 0);
1730 NewSDValueDbgMsg(V, "Creating new node: ", this);
1731 return V;
1732 }
1733
getCommutedVectorShuffle(const ShuffleVectorSDNode & SV)1734 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1735 EVT VT = SV.getValueType(0);
1736 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1737 ShuffleVectorSDNode::commuteMask(MaskVec);
1738
1739 SDValue Op0 = SV.getOperand(0);
1740 SDValue Op1 = SV.getOperand(1);
1741 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1742 }
1743
getRegister(unsigned RegNo,EVT VT)1744 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1745 FoldingSetNodeID ID;
1746 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1747 ID.AddInteger(RegNo);
1748 void *IP = nullptr;
1749 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1750 return SDValue(E, 0);
1751
1752 auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1753 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1754 CSEMap.InsertNode(N, IP);
1755 InsertNode(N);
1756 return SDValue(N, 0);
1757 }
1758
getRegisterMask(const uint32_t * RegMask)1759 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1760 FoldingSetNodeID ID;
1761 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1762 ID.AddPointer(RegMask);
1763 void *IP = nullptr;
1764 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1765 return SDValue(E, 0);
1766
1767 auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1768 CSEMap.InsertNode(N, IP);
1769 InsertNode(N);
1770 return SDValue(N, 0);
1771 }
1772
getEHLabel(const SDLoc & dl,SDValue Root,MCSymbol * Label)1773 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1774 MCSymbol *Label) {
1775 return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1776 }
1777
getLabelNode(unsigned Opcode,const SDLoc & dl,SDValue Root,MCSymbol * Label)1778 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1779 SDValue Root, MCSymbol *Label) {
1780 FoldingSetNodeID ID;
1781 SDValue Ops[] = { Root };
1782 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1783 ID.AddPointer(Label);
1784 void *IP = nullptr;
1785 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1786 return SDValue(E, 0);
1787
1788 auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1789 createOperands(N, Ops);
1790
1791 CSEMap.InsertNode(N, IP);
1792 InsertNode(N);
1793 return SDValue(N, 0);
1794 }
1795
getBlockAddress(const BlockAddress * BA,EVT VT,int64_t Offset,bool isTarget,unsigned char TargetFlags)1796 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1797 int64_t Offset,
1798 bool isTarget,
1799 unsigned char TargetFlags) {
1800 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1801
1802 FoldingSetNodeID ID;
1803 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1804 ID.AddPointer(BA);
1805 ID.AddInteger(Offset);
1806 ID.AddInteger(TargetFlags);
1807 void *IP = nullptr;
1808 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1809 return SDValue(E, 0);
1810
1811 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1812 CSEMap.InsertNode(N, IP);
1813 InsertNode(N);
1814 return SDValue(N, 0);
1815 }
1816
getSrcValue(const Value * V)1817 SDValue SelectionDAG::getSrcValue(const Value *V) {
1818 assert((!V || V->getType()->isPointerTy()) &&
1819 "SrcValue is not a pointer?");
1820
1821 FoldingSetNodeID ID;
1822 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1823 ID.AddPointer(V);
1824
1825 void *IP = nullptr;
1826 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1827 return SDValue(E, 0);
1828
1829 auto *N = newSDNode<SrcValueSDNode>(V);
1830 CSEMap.InsertNode(N, IP);
1831 InsertNode(N);
1832 return SDValue(N, 0);
1833 }
1834
getMDNode(const MDNode * MD)1835 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1836 FoldingSetNodeID ID;
1837 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1838 ID.AddPointer(MD);
1839
1840 void *IP = nullptr;
1841 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1842 return SDValue(E, 0);
1843
1844 auto *N = newSDNode<MDNodeSDNode>(MD);
1845 CSEMap.InsertNode(N, IP);
1846 InsertNode(N);
1847 return SDValue(N, 0);
1848 }
1849
getBitcast(EVT VT,SDValue V)1850 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1851 if (VT == V.getValueType())
1852 return V;
1853
1854 return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1855 }
1856
getAddrSpaceCast(const SDLoc & dl,EVT VT,SDValue Ptr,unsigned SrcAS,unsigned DestAS)1857 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1858 unsigned SrcAS, unsigned DestAS) {
1859 SDValue Ops[] = {Ptr};
1860 FoldingSetNodeID ID;
1861 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1862 ID.AddInteger(SrcAS);
1863 ID.AddInteger(DestAS);
1864
1865 void *IP = nullptr;
1866 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1867 return SDValue(E, 0);
1868
1869 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1870 VT, SrcAS, DestAS);
1871 createOperands(N, Ops);
1872
1873 CSEMap.InsertNode(N, IP);
1874 InsertNode(N);
1875 return SDValue(N, 0);
1876 }
1877
1878 /// getShiftAmountOperand - Return the specified value casted to
1879 /// the target's desired shift amount type.
getShiftAmountOperand(EVT LHSTy,SDValue Op)1880 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1881 EVT OpTy = Op.getValueType();
1882 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1883 if (OpTy == ShTy || OpTy.isVector()) return Op;
1884
1885 return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1886 }
1887
expandVAArg(SDNode * Node)1888 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1889 SDLoc dl(Node);
1890 const TargetLowering &TLI = getTargetLoweringInfo();
1891 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1892 EVT VT = Node->getValueType(0);
1893 SDValue Tmp1 = Node->getOperand(0);
1894 SDValue Tmp2 = Node->getOperand(1);
1895 unsigned Align = Node->getConstantOperandVal(3);
1896
1897 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1898 Tmp2, MachinePointerInfo(V));
1899 SDValue VAList = VAListLoad;
1900
1901 if (Align > TLI.getMinStackArgumentAlignment()) {
1902 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1903
1904 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1905 getConstant(Align - 1, dl, VAList.getValueType()));
1906
1907 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1908 getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1909 }
1910
1911 // Increment the pointer, VAList, to the next vaarg
1912 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1913 getConstant(getDataLayout().getTypeAllocSize(
1914 VT.getTypeForEVT(*getContext())),
1915 dl, VAList.getValueType()));
1916 // Store the incremented VAList to the legalized pointer
1917 Tmp1 =
1918 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1919 // Load the actual argument out of the pointer VAList
1920 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1921 }
1922
expandVACopy(SDNode * Node)1923 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1924 SDLoc dl(Node);
1925 const TargetLowering &TLI = getTargetLoweringInfo();
1926 // This defaults to loading a pointer from the input and storing it to the
1927 // output, returning the chain.
1928 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1929 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1930 SDValue Tmp1 =
1931 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1932 Node->getOperand(2), MachinePointerInfo(VS));
1933 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1934 MachinePointerInfo(VD));
1935 }
1936
CreateStackTemporary(EVT VT,unsigned minAlign)1937 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1938 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1939 unsigned ByteSize = VT.getStoreSize();
1940 Type *Ty = VT.getTypeForEVT(*getContext());
1941 unsigned StackAlign =
1942 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1943
1944 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1945 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1946 }
1947
CreateStackTemporary(EVT VT1,EVT VT2)1948 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1949 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1950 Type *Ty1 = VT1.getTypeForEVT(*getContext());
1951 Type *Ty2 = VT2.getTypeForEVT(*getContext());
1952 const DataLayout &DL = getDataLayout();
1953 unsigned Align =
1954 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1955
1956 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1957 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1958 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1959 }
1960
FoldSetCC(EVT VT,SDValue N1,SDValue N2,ISD::CondCode Cond,const SDLoc & dl)1961 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1962 ISD::CondCode Cond, const SDLoc &dl) {
1963 EVT OpVT = N1.getValueType();
1964
1965 // These setcc operations always fold.
1966 switch (Cond) {
1967 default: break;
1968 case ISD::SETFALSE:
1969 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1970 case ISD::SETTRUE:
1971 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1972
1973 case ISD::SETOEQ:
1974 case ISD::SETOGT:
1975 case ISD::SETOGE:
1976 case ISD::SETOLT:
1977 case ISD::SETOLE:
1978 case ISD::SETONE:
1979 case ISD::SETO:
1980 case ISD::SETUO:
1981 case ISD::SETUEQ:
1982 case ISD::SETUNE:
1983 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1984 break;
1985 }
1986
1987 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1988 const APInt &C2 = N2C->getAPIntValue();
1989 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1990 const APInt &C1 = N1C->getAPIntValue();
1991
1992 switch (Cond) {
1993 default: llvm_unreachable("Unknown integer setcc!");
1994 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT);
1995 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT);
1996 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
1997 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
1998 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
1999 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2000 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2001 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2002 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2003 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2004 }
2005 }
2006 }
2007 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
2008 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
2009 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
2010 switch (Cond) {
2011 default: break;
2012 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
2013 return getUNDEF(VT);
2014 LLVM_FALLTHROUGH;
2015 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2016 OpVT);
2017 case ISD::SETNE: if (R==APFloat::cmpUnordered)
2018 return getUNDEF(VT);
2019 LLVM_FALLTHROUGH;
2020 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2021 R==APFloat::cmpLessThan, dl, VT,
2022 OpVT);
2023 case ISD::SETLT: if (R==APFloat::cmpUnordered)
2024 return getUNDEF(VT);
2025 LLVM_FALLTHROUGH;
2026 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2027 OpVT);
2028 case ISD::SETGT: if (R==APFloat::cmpUnordered)
2029 return getUNDEF(VT);
2030 LLVM_FALLTHROUGH;
2031 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2032 VT, OpVT);
2033 case ISD::SETLE: if (R==APFloat::cmpUnordered)
2034 return getUNDEF(VT);
2035 LLVM_FALLTHROUGH;
2036 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2037 R==APFloat::cmpEqual, dl, VT,
2038 OpVT);
2039 case ISD::SETGE: if (R==APFloat::cmpUnordered)
2040 return getUNDEF(VT);
2041 LLVM_FALLTHROUGH;
2042 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2043 R==APFloat::cmpEqual, dl, VT, OpVT);
2044 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2045 OpVT);
2046 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2047 OpVT);
2048 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2049 R==APFloat::cmpEqual, dl, VT,
2050 OpVT);
2051 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2052 OpVT);
2053 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2054 R==APFloat::cmpLessThan, dl, VT,
2055 OpVT);
2056 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2057 R==APFloat::cmpUnordered, dl, VT,
2058 OpVT);
2059 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2060 VT, OpVT);
2061 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2062 OpVT);
2063 }
2064 } else {
2065 // Ensure that the constant occurs on the RHS.
2066 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2067 MVT CompVT = N1.getValueType().getSimpleVT();
2068 if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
2069 return SDValue();
2070
2071 return getSetCC(dl, VT, N2, N1, SwappedCond);
2072 }
2073 }
2074
2075 // Could not fold it.
2076 return SDValue();
2077 }
2078
2079 /// See if the specified operand can be simplified with the knowledge that only
2080 /// the bits specified by Mask are used.
GetDemandedBits(SDValue V,const APInt & Mask)2081 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
2082 switch (V.getOpcode()) {
2083 default:
2084 break;
2085 case ISD::Constant: {
2086 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
2087 assert(CV && "Const value should be ConstSDNode.");
2088 const APInt &CVal = CV->getAPIntValue();
2089 APInt NewVal = CVal & Mask;
2090 if (NewVal != CVal)
2091 return getConstant(NewVal, SDLoc(V), V.getValueType());
2092 break;
2093 }
2094 case ISD::OR:
2095 case ISD::XOR:
2096 // If the LHS or RHS don't contribute bits to the or, drop them.
2097 if (MaskedValueIsZero(V.getOperand(0), Mask))
2098 return V.getOperand(1);
2099 if (MaskedValueIsZero(V.getOperand(1), Mask))
2100 return V.getOperand(0);
2101 break;
2102 case ISD::SRL:
2103 // Only look at single-use SRLs.
2104 if (!V.getNode()->hasOneUse())
2105 break;
2106 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2107 // See if we can recursively simplify the LHS.
2108 unsigned Amt = RHSC->getZExtValue();
2109
2110 // Watch out for shift count overflow though.
2111 if (Amt >= Mask.getBitWidth())
2112 break;
2113 APInt NewMask = Mask << Amt;
2114 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2115 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2116 V.getOperand(1));
2117 }
2118 break;
2119 case ISD::AND: {
2120 // X & -1 -> X (ignoring bits which aren't demanded).
2121 ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1));
2122 if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue()))
2123 return V.getOperand(0);
2124 break;
2125 }
2126 case ISD::ANY_EXTEND: {
2127 SDValue Src = V.getOperand(0);
2128 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2129 // Being conservative here - only peek through if we only demand bits in the
2130 // non-extended source (even though the extended bits are technically undef).
2131 if (Mask.getActiveBits() > SrcBitWidth)
2132 break;
2133 APInt SrcMask = Mask.trunc(SrcBitWidth);
2134 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2135 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2136 break;
2137 }
2138 }
2139 return SDValue();
2140 }
2141
2142 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2143 /// use this predicate to simplify operations downstream.
SignBitIsZero(SDValue Op,unsigned Depth) const2144 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2145 unsigned BitWidth = Op.getScalarValueSizeInBits();
2146 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2147 }
2148
2149 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2150 /// this predicate to simplify operations downstream. Mask is known to be zero
2151 /// for bits that V cannot have.
MaskedValueIsZero(SDValue Op,const APInt & Mask,unsigned Depth) const2152 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2153 unsigned Depth) const {
2154 KnownBits Known;
2155 computeKnownBits(Op, Known, Depth);
2156 return Mask.isSubsetOf(Known.Zero);
2157 }
2158
2159 /// Helper function that checks to see if a node is a constant or a
2160 /// build vector of splat constants at least within the demanded elts.
isConstOrDemandedConstSplat(SDValue N,const APInt & DemandedElts)2161 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N,
2162 const APInt &DemandedElts) {
2163 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
2164 return CN;
2165 if (N.getOpcode() != ISD::BUILD_VECTOR)
2166 return nullptr;
2167 EVT VT = N.getValueType();
2168 ConstantSDNode *Cst = nullptr;
2169 unsigned NumElts = VT.getVectorNumElements();
2170 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size");
2171 for (unsigned i = 0; i != NumElts; ++i) {
2172 if (!DemandedElts[i])
2173 continue;
2174 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i));
2175 if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) ||
2176 C->getValueType(0) != VT.getScalarType())
2177 return nullptr;
2178 Cst = C;
2179 }
2180 return Cst;
2181 }
2182
2183 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2184 /// is less than the element bit-width of the shift node, return it.
getValidShiftAmountConstant(SDValue V)2185 static const APInt *getValidShiftAmountConstant(SDValue V) {
2186 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2187 // Shifting more than the bitwidth is not valid.
2188 const APInt &ShAmt = SA->getAPIntValue();
2189 if (ShAmt.ult(V.getScalarValueSizeInBits()))
2190 return &ShAmt;
2191 }
2192 return nullptr;
2193 }
2194
2195 /// Determine which bits of Op are known to be either zero or one and return
2196 /// them in Known. For vectors, the known bits are those that are shared by
2197 /// every vector element.
computeKnownBits(SDValue Op,KnownBits & Known,unsigned Depth) const2198 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
2199 unsigned Depth) const {
2200 EVT VT = Op.getValueType();
2201 APInt DemandedElts = VT.isVector()
2202 ? APInt::getAllOnesValue(VT.getVectorNumElements())
2203 : APInt(1, 1);
2204 computeKnownBits(Op, Known, DemandedElts, Depth);
2205 }
2206
2207 /// Determine which bits of Op are known to be either zero or one and return
2208 /// them in Known. The DemandedElts argument allows us to only collect the known
2209 /// bits that are shared by the requested vector elements.
computeKnownBits(SDValue Op,KnownBits & Known,const APInt & DemandedElts,unsigned Depth) const2210 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
2211 const APInt &DemandedElts,
2212 unsigned Depth) const {
2213 unsigned BitWidth = Op.getScalarValueSizeInBits();
2214
2215 Known = KnownBits(BitWidth); // Don't know anything.
2216
2217 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2218 // We know all of the bits for a constant!
2219 Known.One = C->getAPIntValue();
2220 Known.Zero = ~Known.One;
2221 return;
2222 }
2223 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2224 // We know all of the bits for a constant fp!
2225 Known.One = C->getValueAPF().bitcastToAPInt();
2226 Known.Zero = ~Known.One;
2227 return;
2228 }
2229
2230 if (Depth == 6)
2231 return; // Limit search depth.
2232
2233 KnownBits Known2;
2234 unsigned NumElts = DemandedElts.getBitWidth();
2235
2236 if (!DemandedElts)
2237 return; // No demanded elts, better to assume we don't know anything.
2238
2239 unsigned Opcode = Op.getOpcode();
2240 switch (Opcode) {
2241 case ISD::BUILD_VECTOR:
2242 // Collect the known bits that are shared by every demanded vector element.
2243 assert(NumElts == Op.getValueType().getVectorNumElements() &&
2244 "Unexpected vector size");
2245 Known.Zero.setAllBits(); Known.One.setAllBits();
2246 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2247 if (!DemandedElts[i])
2248 continue;
2249
2250 SDValue SrcOp = Op.getOperand(i);
2251 computeKnownBits(SrcOp, Known2, Depth + 1);
2252
2253 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2254 if (SrcOp.getValueSizeInBits() != BitWidth) {
2255 assert(SrcOp.getValueSizeInBits() > BitWidth &&
2256 "Expected BUILD_VECTOR implicit truncation");
2257 Known2 = Known2.trunc(BitWidth);
2258 }
2259
2260 // Known bits are the values that are shared by every demanded element.
2261 Known.One &= Known2.One;
2262 Known.Zero &= Known2.Zero;
2263
2264 // If we don't know any bits, early out.
2265 if (Known.isUnknown())
2266 break;
2267 }
2268 break;
2269 case ISD::VECTOR_SHUFFLE: {
2270 // Collect the known bits that are shared by every vector element referenced
2271 // by the shuffle.
2272 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2273 Known.Zero.setAllBits(); Known.One.setAllBits();
2274 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2275 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2276 for (unsigned i = 0; i != NumElts; ++i) {
2277 if (!DemandedElts[i])
2278 continue;
2279
2280 int M = SVN->getMaskElt(i);
2281 if (M < 0) {
2282 // For UNDEF elements, we don't know anything about the common state of
2283 // the shuffle result.
2284 Known.resetAll();
2285 DemandedLHS.clearAllBits();
2286 DemandedRHS.clearAllBits();
2287 break;
2288 }
2289
2290 if ((unsigned)M < NumElts)
2291 DemandedLHS.setBit((unsigned)M % NumElts);
2292 else
2293 DemandedRHS.setBit((unsigned)M % NumElts);
2294 }
2295 // Known bits are the values that are shared by every demanded element.
2296 if (!!DemandedLHS) {
2297 SDValue LHS = Op.getOperand(0);
2298 computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1);
2299 Known.One &= Known2.One;
2300 Known.Zero &= Known2.Zero;
2301 }
2302 // If we don't know any bits, early out.
2303 if (Known.isUnknown())
2304 break;
2305 if (!!DemandedRHS) {
2306 SDValue RHS = Op.getOperand(1);
2307 computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1);
2308 Known.One &= Known2.One;
2309 Known.Zero &= Known2.Zero;
2310 }
2311 break;
2312 }
2313 case ISD::CONCAT_VECTORS: {
2314 // Split DemandedElts and test each of the demanded subvectors.
2315 Known.Zero.setAllBits(); Known.One.setAllBits();
2316 EVT SubVectorVT = Op.getOperand(0).getValueType();
2317 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2318 unsigned NumSubVectors = Op.getNumOperands();
2319 for (unsigned i = 0; i != NumSubVectors; ++i) {
2320 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2321 DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2322 if (!!DemandedSub) {
2323 SDValue Sub = Op.getOperand(i);
2324 computeKnownBits(Sub, Known2, DemandedSub, Depth + 1);
2325 Known.One &= Known2.One;
2326 Known.Zero &= Known2.Zero;
2327 }
2328 // If we don't know any bits, early out.
2329 if (Known.isUnknown())
2330 break;
2331 }
2332 break;
2333 }
2334 case ISD::INSERT_SUBVECTOR: {
2335 // If we know the element index, demand any elements from the subvector and
2336 // the remainder from the src its inserted into, otherwise demand them all.
2337 SDValue Src = Op.getOperand(0);
2338 SDValue Sub = Op.getOperand(1);
2339 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2340 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2341 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2342 Known.One.setAllBits();
2343 Known.Zero.setAllBits();
2344 uint64_t Idx = SubIdx->getZExtValue();
2345 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2346 if (!!DemandedSubElts) {
2347 computeKnownBits(Sub, Known, DemandedSubElts, Depth + 1);
2348 if (Known.isUnknown())
2349 break; // early-out.
2350 }
2351 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2352 APInt DemandedSrcElts = DemandedElts & ~SubMask;
2353 if (!!DemandedSrcElts) {
2354 computeKnownBits(Src, Known2, DemandedSrcElts, Depth + 1);
2355 Known.One &= Known2.One;
2356 Known.Zero &= Known2.Zero;
2357 }
2358 } else {
2359 computeKnownBits(Sub, Known, Depth + 1);
2360 if (Known.isUnknown())
2361 break; // early-out.
2362 computeKnownBits(Src, Known2, Depth + 1);
2363 Known.One &= Known2.One;
2364 Known.Zero &= Known2.Zero;
2365 }
2366 break;
2367 }
2368 case ISD::EXTRACT_SUBVECTOR: {
2369 // If we know the element index, just demand that subvector elements,
2370 // otherwise demand them all.
2371 SDValue Src = Op.getOperand(0);
2372 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2373 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2374 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2375 // Offset the demanded elts by the subvector index.
2376 uint64_t Idx = SubIdx->getZExtValue();
2377 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2378 computeKnownBits(Src, Known, DemandedSrc, Depth + 1);
2379 } else {
2380 computeKnownBits(Src, Known, Depth + 1);
2381 }
2382 break;
2383 }
2384 case ISD::BITCAST: {
2385 SDValue N0 = Op.getOperand(0);
2386 EVT SubVT = N0.getValueType();
2387 unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2388
2389 // Ignore bitcasts from unsupported types.
2390 if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2391 break;
2392
2393 // Fast handling of 'identity' bitcasts.
2394 if (BitWidth == SubBitWidth) {
2395 computeKnownBits(N0, Known, DemandedElts, Depth + 1);
2396 break;
2397 }
2398
2399 bool IsLE = getDataLayout().isLittleEndian();
2400
2401 // Bitcast 'small element' vector to 'large element' scalar/vector.
2402 if ((BitWidth % SubBitWidth) == 0) {
2403 assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2404
2405 // Collect known bits for the (larger) output by collecting the known
2406 // bits from each set of sub elements and shift these into place.
2407 // We need to separately call computeKnownBits for each set of
2408 // sub elements as the knownbits for each is likely to be different.
2409 unsigned SubScale = BitWidth / SubBitWidth;
2410 APInt SubDemandedElts(NumElts * SubScale, 0);
2411 for (unsigned i = 0; i != NumElts; ++i)
2412 if (DemandedElts[i])
2413 SubDemandedElts.setBit(i * SubScale);
2414
2415 for (unsigned i = 0; i != SubScale; ++i) {
2416 computeKnownBits(N0, Known2, SubDemandedElts.shl(i),
2417 Depth + 1);
2418 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2419 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2420 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2421 }
2422 }
2423
2424 // Bitcast 'large element' scalar/vector to 'small element' vector.
2425 if ((SubBitWidth % BitWidth) == 0) {
2426 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2427
2428 // Collect known bits for the (smaller) output by collecting the known
2429 // bits from the overlapping larger input elements and extracting the
2430 // sub sections we actually care about.
2431 unsigned SubScale = SubBitWidth / BitWidth;
2432 APInt SubDemandedElts(NumElts / SubScale, 0);
2433 for (unsigned i = 0; i != NumElts; ++i)
2434 if (DemandedElts[i])
2435 SubDemandedElts.setBit(i / SubScale);
2436
2437 computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1);
2438
2439 Known.Zero.setAllBits(); Known.One.setAllBits();
2440 for (unsigned i = 0; i != NumElts; ++i)
2441 if (DemandedElts[i]) {
2442 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2443 unsigned Offset = (Shifts % SubScale) * BitWidth;
2444 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2445 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2446 // If we don't know any bits, early out.
2447 if (Known.isUnknown())
2448 break;
2449 }
2450 }
2451 break;
2452 }
2453 case ISD::AND:
2454 // If either the LHS or the RHS are Zero, the result is zero.
2455 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2456 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2457
2458 // Output known-1 bits are only known if set in both the LHS & RHS.
2459 Known.One &= Known2.One;
2460 // Output known-0 are known to be clear if zero in either the LHS | RHS.
2461 Known.Zero |= Known2.Zero;
2462 break;
2463 case ISD::OR:
2464 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2465 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2466
2467 // Output known-0 bits are only known if clear in both the LHS & RHS.
2468 Known.Zero &= Known2.Zero;
2469 // Output known-1 are known to be set if set in either the LHS | RHS.
2470 Known.One |= Known2.One;
2471 break;
2472 case ISD::XOR: {
2473 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2474 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2475
2476 // Output known-0 bits are known if clear or set in both the LHS & RHS.
2477 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2478 // Output known-1 are known to be set if set in only one of the LHS, RHS.
2479 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2480 Known.Zero = KnownZeroOut;
2481 break;
2482 }
2483 case ISD::MUL: {
2484 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2485 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2486
2487 // If low bits are zero in either operand, output low known-0 bits.
2488 // Also compute a conservative estimate for high known-0 bits.
2489 // More trickiness is possible, but this is sufficient for the
2490 // interesting case of alignment computation.
2491 unsigned TrailZ = Known.countMinTrailingZeros() +
2492 Known2.countMinTrailingZeros();
2493 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
2494 Known2.countMinLeadingZeros(),
2495 BitWidth) - BitWidth;
2496
2497 Known.resetAll();
2498 Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2499 Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2500 break;
2501 }
2502 case ISD::UDIV: {
2503 // For the purposes of computing leading zeros we can conservatively
2504 // treat a udiv as a logical right shift by the power of 2 known to
2505 // be less than the denominator.
2506 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2507 unsigned LeadZ = Known2.countMinLeadingZeros();
2508
2509 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2510 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2511 if (RHSMaxLeadingZeros != BitWidth)
2512 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2513
2514 Known.Zero.setHighBits(LeadZ);
2515 break;
2516 }
2517 case ISD::SELECT:
2518 case ISD::VSELECT:
2519 computeKnownBits(Op.getOperand(2), Known, DemandedElts, Depth+1);
2520 // If we don't know any bits, early out.
2521 if (Known.isUnknown())
2522 break;
2523 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth+1);
2524
2525 // Only known if known in both the LHS and RHS.
2526 Known.One &= Known2.One;
2527 Known.Zero &= Known2.Zero;
2528 break;
2529 case ISD::SELECT_CC:
2530 computeKnownBits(Op.getOperand(3), Known, DemandedElts, Depth+1);
2531 // If we don't know any bits, early out.
2532 if (Known.isUnknown())
2533 break;
2534 computeKnownBits(Op.getOperand(2), Known2, DemandedElts, Depth+1);
2535
2536 // Only known if known in both the LHS and RHS.
2537 Known.One &= Known2.One;
2538 Known.Zero &= Known2.Zero;
2539 break;
2540 case ISD::SMULO:
2541 case ISD::UMULO:
2542 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2543 if (Op.getResNo() != 1)
2544 break;
2545 // The boolean result conforms to getBooleanContents.
2546 // If we know the result of a setcc has the top bits zero, use this info.
2547 // We know that we have an integer-based boolean since these operations
2548 // are only available for integer.
2549 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2550 TargetLowering::ZeroOrOneBooleanContent &&
2551 BitWidth > 1)
2552 Known.Zero.setBitsFrom(1);
2553 break;
2554 case ISD::SETCC:
2555 // If we know the result of a setcc has the top bits zero, use this info.
2556 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2557 TargetLowering::ZeroOrOneBooleanContent &&
2558 BitWidth > 1)
2559 Known.Zero.setBitsFrom(1);
2560 break;
2561 case ISD::SHL:
2562 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2563 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2564 unsigned Shift = ShAmt->getZExtValue();
2565 Known.Zero <<= Shift;
2566 Known.One <<= Shift;
2567 // Low bits are known zero.
2568 Known.Zero.setLowBits(Shift);
2569 }
2570 break;
2571 case ISD::SRL:
2572 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2573 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2574 unsigned Shift = ShAmt->getZExtValue();
2575 Known.Zero.lshrInPlace(Shift);
2576 Known.One.lshrInPlace(Shift);
2577 // High bits are known zero.
2578 Known.Zero.setHighBits(Shift);
2579 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2580 // If the shift amount is a vector of constants see if we can bound
2581 // the number of upper zero bits.
2582 unsigned ShiftAmountMin = BitWidth;
2583 for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2584 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2585 const APInt &ShAmt = C->getAPIntValue();
2586 if (ShAmt.ult(BitWidth)) {
2587 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2588 ShAmt.getZExtValue());
2589 continue;
2590 }
2591 }
2592 // Don't know anything.
2593 ShiftAmountMin = 0;
2594 break;
2595 }
2596
2597 Known.Zero.setHighBits(ShiftAmountMin);
2598 }
2599 break;
2600 case ISD::SRA:
2601 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2602 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2603 unsigned Shift = ShAmt->getZExtValue();
2604 // Sign extend known zero/one bit (else is unknown).
2605 Known.Zero.ashrInPlace(Shift);
2606 Known.One.ashrInPlace(Shift);
2607 }
2608 break;
2609 case ISD::SIGN_EXTEND_INREG: {
2610 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2611 unsigned EBits = EVT.getScalarSizeInBits();
2612
2613 // Sign extension. Compute the demanded bits in the result that are not
2614 // present in the input.
2615 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2616
2617 APInt InSignMask = APInt::getSignMask(EBits);
2618 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2619
2620 // If the sign extended bits are demanded, we know that the sign
2621 // bit is demanded.
2622 InSignMask = InSignMask.zext(BitWidth);
2623 if (NewBits.getBoolValue())
2624 InputDemandedBits |= InSignMask;
2625
2626 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2627 Known.One &= InputDemandedBits;
2628 Known.Zero &= InputDemandedBits;
2629
2630 // If the sign bit of the input is known set or clear, then we know the
2631 // top bits of the result.
2632 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear
2633 Known.Zero |= NewBits;
2634 Known.One &= ~NewBits;
2635 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set
2636 Known.One |= NewBits;
2637 Known.Zero &= ~NewBits;
2638 } else { // Input sign bit unknown
2639 Known.Zero &= ~NewBits;
2640 Known.One &= ~NewBits;
2641 }
2642 break;
2643 }
2644 case ISD::CTTZ:
2645 case ISD::CTTZ_ZERO_UNDEF: {
2646 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2647 // If we have a known 1, its position is our upper bound.
2648 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2649 unsigned LowBits = Log2_32(PossibleTZ) + 1;
2650 Known.Zero.setBitsFrom(LowBits);
2651 break;
2652 }
2653 case ISD::CTLZ:
2654 case ISD::CTLZ_ZERO_UNDEF: {
2655 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2656 // If we have a known 1, its position is our upper bound.
2657 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2658 unsigned LowBits = Log2_32(PossibleLZ) + 1;
2659 Known.Zero.setBitsFrom(LowBits);
2660 break;
2661 }
2662 case ISD::CTPOP: {
2663 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2664 // If we know some of the bits are zero, they can't be one.
2665 unsigned PossibleOnes = Known2.countMaxPopulation();
2666 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2667 break;
2668 }
2669 case ISD::LOAD: {
2670 LoadSDNode *LD = cast<LoadSDNode>(Op);
2671 // If this is a ZEXTLoad and we are looking at the loaded value.
2672 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2673 EVT VT = LD->getMemoryVT();
2674 unsigned MemBits = VT.getScalarSizeInBits();
2675 Known.Zero.setBitsFrom(MemBits);
2676 } else if (const MDNode *Ranges = LD->getRanges()) {
2677 if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2678 computeKnownBitsFromRangeMetadata(*Ranges, Known);
2679 }
2680 break;
2681 }
2682 case ISD::ZERO_EXTEND_VECTOR_INREG: {
2683 EVT InVT = Op.getOperand(0).getValueType();
2684 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
2685 computeKnownBits(Op.getOperand(0), Known, InDemandedElts, Depth + 1);
2686 Known = Known.zext(BitWidth);
2687 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2688 break;
2689 }
2690 case ISD::ZERO_EXTEND: {
2691 EVT InVT = Op.getOperand(0).getValueType();
2692 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2693 Known = Known.zext(BitWidth);
2694 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2695 break;
2696 }
2697 // TODO ISD::SIGN_EXTEND_VECTOR_INREG
2698 case ISD::SIGN_EXTEND: {
2699 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2700 // If the sign bit is known to be zero or one, then sext will extend
2701 // it to the top bits, else it will just zext.
2702 Known = Known.sext(BitWidth);
2703 break;
2704 }
2705 case ISD::ANY_EXTEND: {
2706 computeKnownBits(Op.getOperand(0), Known, Depth+1);
2707 Known = Known.zext(BitWidth);
2708 break;
2709 }
2710 case ISD::TRUNCATE: {
2711 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2712 Known = Known.trunc(BitWidth);
2713 break;
2714 }
2715 case ISD::AssertZext: {
2716 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2717 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2718 computeKnownBits(Op.getOperand(0), Known, Depth+1);
2719 Known.Zero |= (~InMask);
2720 Known.One &= (~Known.Zero);
2721 break;
2722 }
2723 case ISD::FGETSIGN:
2724 // All bits are zero except the low bit.
2725 Known.Zero.setBitsFrom(1);
2726 break;
2727 case ISD::USUBO:
2728 case ISD::SSUBO:
2729 if (Op.getResNo() == 1) {
2730 // If we know the result of a setcc has the top bits zero, use this info.
2731 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2732 TargetLowering::ZeroOrOneBooleanContent &&
2733 BitWidth > 1)
2734 Known.Zero.setBitsFrom(1);
2735 break;
2736 }
2737 LLVM_FALLTHROUGH;
2738 case ISD::SUB:
2739 case ISD::SUBC: {
2740 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2741 // We know that the top bits of C-X are clear if X contains less bits
2742 // than C (i.e. no wrap-around can happen). For example, 20-X is
2743 // positive if we can prove that X is >= 0 and < 16.
2744 if (CLHS->getAPIntValue().isNonNegative()) {
2745 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2746 // NLZ can't be BitWidth with no sign bit
2747 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2748 computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
2749 Depth + 1);
2750
2751 // If all of the MaskV bits are known to be zero, then we know the
2752 // output top bits are zero, because we now know that the output is
2753 // from [0-C].
2754 if ((Known2.Zero & MaskV) == MaskV) {
2755 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2756 // Top bits known zero.
2757 Known.Zero.setHighBits(NLZ2);
2758 }
2759 }
2760 }
2761
2762 // If low bits are know to be zero in both operands, then we know they are
2763 // going to be 0 in the result. Both addition and complement operations
2764 // preserve the low zero bits.
2765 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2766 unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2767 if (KnownZeroLow == 0)
2768 break;
2769
2770 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2771 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2772 Known.Zero.setLowBits(KnownZeroLow);
2773 break;
2774 }
2775 case ISD::UADDO:
2776 case ISD::SADDO:
2777 case ISD::ADDCARRY:
2778 if (Op.getResNo() == 1) {
2779 // If we know the result of a setcc has the top bits zero, use this info.
2780 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2781 TargetLowering::ZeroOrOneBooleanContent &&
2782 BitWidth > 1)
2783 Known.Zero.setBitsFrom(1);
2784 break;
2785 }
2786 LLVM_FALLTHROUGH;
2787 case ISD::ADD:
2788 case ISD::ADDC:
2789 case ISD::ADDE: {
2790 // Output known-0 bits are known if clear or set in both the low clear bits
2791 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
2792 // low 3 bits clear.
2793 // Output known-0 bits are also known if the top bits of each input are
2794 // known to be clear. For example, if one input has the top 10 bits clear
2795 // and the other has the top 8 bits clear, we know the top 7 bits of the
2796 // output must be clear.
2797 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2798 unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2799 unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2800
2801 computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
2802 Depth + 1);
2803 KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2804 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2805
2806 if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2807 // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2808 // use this information if we know (at least) that the low two bits are
2809 // clear. We then return to the caller that the low bit is unknown but
2810 // that other bits are known zero.
2811 if (KnownZeroLow >= 2)
2812 Known.Zero.setBits(1, KnownZeroLow);
2813 break;
2814 }
2815
2816 Known.Zero.setLowBits(KnownZeroLow);
2817 if (KnownZeroHigh > 1)
2818 Known.Zero.setHighBits(KnownZeroHigh - 1);
2819 break;
2820 }
2821 case ISD::SREM:
2822 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2823 const APInt &RA = Rem->getAPIntValue().abs();
2824 if (RA.isPowerOf2()) {
2825 APInt LowBits = RA - 1;
2826 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2827
2828 // The low bits of the first operand are unchanged by the srem.
2829 Known.Zero = Known2.Zero & LowBits;
2830 Known.One = Known2.One & LowBits;
2831
2832 // If the first operand is non-negative or has all low bits zero, then
2833 // the upper bits are all zero.
2834 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
2835 Known.Zero |= ~LowBits;
2836
2837 // If the first operand is negative and not all low bits are zero, then
2838 // the upper bits are all one.
2839 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
2840 Known.One |= ~LowBits;
2841 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
2842 }
2843 }
2844 break;
2845 case ISD::UREM: {
2846 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2847 const APInt &RA = Rem->getAPIntValue();
2848 if (RA.isPowerOf2()) {
2849 APInt LowBits = (RA - 1);
2850 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2851
2852 // The upper bits are all zero, the lower ones are unchanged.
2853 Known.Zero = Known2.Zero | ~LowBits;
2854 Known.One = Known2.One & LowBits;
2855 break;
2856 }
2857 }
2858
2859 // Since the result is less than or equal to either operand, any leading
2860 // zero bits in either operand must also exist in the result.
2861 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2862 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2863
2864 uint32_t Leaders =
2865 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
2866 Known.resetAll();
2867 Known.Zero.setHighBits(Leaders);
2868 break;
2869 }
2870 case ISD::EXTRACT_ELEMENT: {
2871 computeKnownBits(Op.getOperand(0), Known, Depth+1);
2872 const unsigned Index = Op.getConstantOperandVal(1);
2873 const unsigned BitWidth = Op.getValueSizeInBits();
2874
2875 // Remove low part of known bits mask
2876 Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
2877 Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
2878
2879 // Remove high part of known bit mask
2880 Known = Known.trunc(BitWidth);
2881 break;
2882 }
2883 case ISD::EXTRACT_VECTOR_ELT: {
2884 SDValue InVec = Op.getOperand(0);
2885 SDValue EltNo = Op.getOperand(1);
2886 EVT VecVT = InVec.getValueType();
2887 const unsigned BitWidth = Op.getValueSizeInBits();
2888 const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
2889 const unsigned NumSrcElts = VecVT.getVectorNumElements();
2890 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2891 // anything about the extended bits.
2892 if (BitWidth > EltBitWidth)
2893 Known = Known.trunc(EltBitWidth);
2894 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
2895 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
2896 // If we know the element index, just demand that vector element.
2897 unsigned Idx = ConstEltNo->getZExtValue();
2898 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
2899 computeKnownBits(InVec, Known, DemandedElt, Depth + 1);
2900 } else {
2901 // Unknown element index, so ignore DemandedElts and demand them all.
2902 computeKnownBits(InVec, Known, Depth + 1);
2903 }
2904 if (BitWidth > EltBitWidth)
2905 Known = Known.zext(BitWidth);
2906 break;
2907 }
2908 case ISD::INSERT_VECTOR_ELT: {
2909 SDValue InVec = Op.getOperand(0);
2910 SDValue InVal = Op.getOperand(1);
2911 SDValue EltNo = Op.getOperand(2);
2912
2913 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
2914 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
2915 // If we know the element index, split the demand between the
2916 // source vector and the inserted element.
2917 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
2918 unsigned EltIdx = CEltNo->getZExtValue();
2919
2920 // If we demand the inserted element then add its common known bits.
2921 if (DemandedElts[EltIdx]) {
2922 computeKnownBits(InVal, Known2, Depth + 1);
2923 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2924 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2925 }
2926
2927 // If we demand the source vector then add its common known bits, ensuring
2928 // that we don't demand the inserted element.
2929 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
2930 if (!!VectorElts) {
2931 computeKnownBits(InVec, Known2, VectorElts, Depth + 1);
2932 Known.One &= Known2.One;
2933 Known.Zero &= Known2.Zero;
2934 }
2935 } else {
2936 // Unknown element index, so ignore DemandedElts and demand them all.
2937 computeKnownBits(InVec, Known, Depth + 1);
2938 computeKnownBits(InVal, Known2, Depth + 1);
2939 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2940 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2941 }
2942 break;
2943 }
2944 case ISD::BITREVERSE: {
2945 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2946 Known.Zero = Known2.Zero.reverseBits();
2947 Known.One = Known2.One.reverseBits();
2948 break;
2949 }
2950 case ISD::BSWAP: {
2951 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2952 Known.Zero = Known2.Zero.byteSwap();
2953 Known.One = Known2.One.byteSwap();
2954 break;
2955 }
2956 case ISD::ABS: {
2957 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2958
2959 // If the source's MSB is zero then we know the rest of the bits already.
2960 if (Known2.isNonNegative()) {
2961 Known.Zero = Known2.Zero;
2962 Known.One = Known2.One;
2963 break;
2964 }
2965
2966 // We only know that the absolute values's MSB will be zero iff there is
2967 // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
2968 Known2.One.clearSignBit();
2969 if (Known2.One.getBoolValue()) {
2970 Known.Zero = APInt::getSignMask(BitWidth);
2971 break;
2972 }
2973 break;
2974 }
2975 case ISD::UMIN: {
2976 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2977 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2978
2979 // UMIN - we know that the result will have the maximum of the
2980 // known zero leading bits of the inputs.
2981 unsigned LeadZero = Known.countMinLeadingZeros();
2982 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
2983
2984 Known.Zero &= Known2.Zero;
2985 Known.One &= Known2.One;
2986 Known.Zero.setHighBits(LeadZero);
2987 break;
2988 }
2989 case ISD::UMAX: {
2990 computeKnownBits(Op.getOperand(0), Known, DemandedElts,
2991 Depth + 1);
2992 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2993
2994 // UMAX - we know that the result will have the maximum of the
2995 // known one leading bits of the inputs.
2996 unsigned LeadOne = Known.countMinLeadingOnes();
2997 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
2998
2999 Known.Zero &= Known2.Zero;
3000 Known.One &= Known2.One;
3001 Known.One.setHighBits(LeadOne);
3002 break;
3003 }
3004 case ISD::SMIN:
3005 case ISD::SMAX: {
3006 // If we have a clamp pattern, we know that the number of sign bits will be
3007 // the minimum of the clamp min/max range.
3008 bool IsMax = (Opcode == ISD::SMAX);
3009 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3010 if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3011 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3012 CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3013 DemandedElts);
3014 if (CstLow && CstHigh) {
3015 if (!IsMax)
3016 std::swap(CstLow, CstHigh);
3017
3018 const APInt &ValueLow = CstLow->getAPIntValue();
3019 const APInt &ValueHigh = CstHigh->getAPIntValue();
3020 if (ValueLow.sle(ValueHigh)) {
3021 unsigned LowSignBits = ValueLow.getNumSignBits();
3022 unsigned HighSignBits = ValueHigh.getNumSignBits();
3023 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3024 if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3025 Known.One.setHighBits(MinSignBits);
3026 break;
3027 }
3028 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3029 Known.Zero.setHighBits(MinSignBits);
3030 break;
3031 }
3032 }
3033 }
3034
3035 // Fallback - just get the shared known bits of the operands.
3036 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
3037 if (Known.isUnknown()) break; // Early-out
3038 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
3039 Known.Zero &= Known2.Zero;
3040 Known.One &= Known2.One;
3041 break;
3042 }
3043 case ISD::FrameIndex:
3044 case ISD::TargetFrameIndex:
3045 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3046 break;
3047
3048 default:
3049 if (Opcode < ISD::BUILTIN_OP_END)
3050 break;
3051 LLVM_FALLTHROUGH;
3052 case ISD::INTRINSIC_WO_CHAIN:
3053 case ISD::INTRINSIC_W_CHAIN:
3054 case ISD::INTRINSIC_VOID:
3055 // Allow the target to implement this method for its nodes.
3056 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3057 break;
3058 }
3059
3060 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3061 }
3062
computeOverflowKind(SDValue N0,SDValue N1) const3063 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3064 SDValue N1) const {
3065 // X + 0 never overflow
3066 if (isNullConstant(N1))
3067 return OFK_Never;
3068
3069 KnownBits N1Known;
3070 computeKnownBits(N1, N1Known);
3071 if (N1Known.Zero.getBoolValue()) {
3072 KnownBits N0Known;
3073 computeKnownBits(N0, N0Known);
3074
3075 bool overflow;
3076 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3077 if (!overflow)
3078 return OFK_Never;
3079 }
3080
3081 // mulhi + 1 never overflow
3082 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3083 (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3084 return OFK_Never;
3085
3086 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3087 KnownBits N0Known;
3088 computeKnownBits(N0, N0Known);
3089
3090 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3091 return OFK_Never;
3092 }
3093
3094 return OFK_Sometime;
3095 }
3096
isKnownToBeAPowerOfTwo(SDValue Val) const3097 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3098 EVT OpVT = Val.getValueType();
3099 unsigned BitWidth = OpVT.getScalarSizeInBits();
3100
3101 // Is the constant a known power of 2?
3102 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3103 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3104
3105 // A left-shift of a constant one will have exactly one bit set because
3106 // shifting the bit off the end is undefined.
3107 if (Val.getOpcode() == ISD::SHL) {
3108 auto *C = isConstOrConstSplat(Val.getOperand(0));
3109 if (C && C->getAPIntValue() == 1)
3110 return true;
3111 }
3112
3113 // Similarly, a logical right-shift of a constant sign-bit will have exactly
3114 // one bit set.
3115 if (Val.getOpcode() == ISD::SRL) {
3116 auto *C = isConstOrConstSplat(Val.getOperand(0));
3117 if (C && C->getAPIntValue().isSignMask())
3118 return true;
3119 }
3120
3121 // Are all operands of a build vector constant powers of two?
3122 if (Val.getOpcode() == ISD::BUILD_VECTOR)
3123 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3124 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3125 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3126 return false;
3127 }))
3128 return true;
3129
3130 // More could be done here, though the above checks are enough
3131 // to handle some common cases.
3132
3133 // Fall back to computeKnownBits to catch other known cases.
3134 KnownBits Known;
3135 computeKnownBits(Val, Known);
3136 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3137 }
3138
ComputeNumSignBits(SDValue Op,unsigned Depth) const3139 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3140 EVT VT = Op.getValueType();
3141 APInt DemandedElts = VT.isVector()
3142 ? APInt::getAllOnesValue(VT.getVectorNumElements())
3143 : APInt(1, 1);
3144 return ComputeNumSignBits(Op, DemandedElts, Depth);
3145 }
3146
ComputeNumSignBits(SDValue Op,const APInt & DemandedElts,unsigned Depth) const3147 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3148 unsigned Depth) const {
3149 EVT VT = Op.getValueType();
3150 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3151 unsigned VTBits = VT.getScalarSizeInBits();
3152 unsigned NumElts = DemandedElts.getBitWidth();
3153 unsigned Tmp, Tmp2;
3154 unsigned FirstAnswer = 1;
3155
3156 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3157 const APInt &Val = C->getAPIntValue();
3158 return Val.getNumSignBits();
3159 }
3160
3161 if (Depth == 6)
3162 return 1; // Limit search depth.
3163
3164 if (!DemandedElts)
3165 return 1; // No demanded elts, better to assume we don't know anything.
3166
3167 unsigned Opcode = Op.getOpcode();
3168 switch (Opcode) {
3169 default: break;
3170 case ISD::AssertSext:
3171 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3172 return VTBits-Tmp+1;
3173 case ISD::AssertZext:
3174 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3175 return VTBits-Tmp;
3176
3177 case ISD::BUILD_VECTOR:
3178 Tmp = VTBits;
3179 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3180 if (!DemandedElts[i])
3181 continue;
3182
3183 SDValue SrcOp = Op.getOperand(i);
3184 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3185
3186 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3187 if (SrcOp.getValueSizeInBits() != VTBits) {
3188 assert(SrcOp.getValueSizeInBits() > VTBits &&
3189 "Expected BUILD_VECTOR implicit truncation");
3190 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3191 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3192 }
3193 Tmp = std::min(Tmp, Tmp2);
3194 }
3195 return Tmp;
3196
3197 case ISD::VECTOR_SHUFFLE: {
3198 // Collect the minimum number of sign bits that are shared by every vector
3199 // element referenced by the shuffle.
3200 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3201 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3202 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3203 for (unsigned i = 0; i != NumElts; ++i) {
3204 int M = SVN->getMaskElt(i);
3205 if (!DemandedElts[i])
3206 continue;
3207 // For UNDEF elements, we don't know anything about the common state of
3208 // the shuffle result.
3209 if (M < 0)
3210 return 1;
3211 if ((unsigned)M < NumElts)
3212 DemandedLHS.setBit((unsigned)M % NumElts);
3213 else
3214 DemandedRHS.setBit((unsigned)M % NumElts);
3215 }
3216 Tmp = std::numeric_limits<unsigned>::max();
3217 if (!!DemandedLHS)
3218 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3219 if (!!DemandedRHS) {
3220 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3221 Tmp = std::min(Tmp, Tmp2);
3222 }
3223 // If we don't know anything, early out and try computeKnownBits fall-back.
3224 if (Tmp == 1)
3225 break;
3226 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3227 return Tmp;
3228 }
3229
3230 case ISD::BITCAST: {
3231 SDValue N0 = Op.getOperand(0);
3232 EVT SrcVT = N0.getValueType();
3233 unsigned SrcBits = SrcVT.getScalarSizeInBits();
3234
3235 // Ignore bitcasts from unsupported types..
3236 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3237 break;
3238
3239 // Fast handling of 'identity' bitcasts.
3240 if (VTBits == SrcBits)
3241 return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3242
3243 // Bitcast 'large element' scalar/vector to 'small element' vector.
3244 // TODO: Handle cases other than 'sign splat' when we have a use case.
3245 // Requires handling of DemandedElts and Endianness.
3246 if ((SrcBits % VTBits) == 0) {
3247 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3248 Tmp = ComputeNumSignBits(N0, Depth + 1);
3249 if (Tmp == SrcBits)
3250 return VTBits;
3251 }
3252 break;
3253 }
3254
3255 case ISD::SIGN_EXTEND:
3256 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3257 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3258 case ISD::SIGN_EXTEND_INREG:
3259 // Max of the input and what this extends.
3260 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3261 Tmp = VTBits-Tmp+1;
3262 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3263 return std::max(Tmp, Tmp2);
3264 case ISD::SIGN_EXTEND_VECTOR_INREG: {
3265 SDValue Src = Op.getOperand(0);
3266 EVT SrcVT = Src.getValueType();
3267 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
3268 Tmp = VTBits - SrcVT.getScalarSizeInBits();
3269 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3270 }
3271
3272 case ISD::SRA:
3273 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3274 // SRA X, C -> adds C sign bits.
3275 if (ConstantSDNode *C =
3276 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3277 APInt ShiftVal = C->getAPIntValue();
3278 ShiftVal += Tmp;
3279 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3280 }
3281 return Tmp;
3282 case ISD::SHL:
3283 if (ConstantSDNode *C =
3284 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3285 // shl destroys sign bits.
3286 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3287 if (C->getAPIntValue().uge(VTBits) || // Bad shift.
3288 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out.
3289 return Tmp - C->getZExtValue();
3290 }
3291 break;
3292 case ISD::AND:
3293 case ISD::OR:
3294 case ISD::XOR: // NOT is handled here.
3295 // Logical binary ops preserve the number of sign bits at the worst.
3296 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3297 if (Tmp != 1) {
3298 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3299 FirstAnswer = std::min(Tmp, Tmp2);
3300 // We computed what we know about the sign bits as our first
3301 // answer. Now proceed to the generic code that uses
3302 // computeKnownBits, and pick whichever answer is better.
3303 }
3304 break;
3305
3306 case ISD::SELECT:
3307 case ISD::VSELECT:
3308 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3309 if (Tmp == 1) return 1; // Early out.
3310 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3311 return std::min(Tmp, Tmp2);
3312 case ISD::SELECT_CC:
3313 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3314 if (Tmp == 1) return 1; // Early out.
3315 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3316 return std::min(Tmp, Tmp2);
3317
3318 case ISD::SMIN:
3319 case ISD::SMAX: {
3320 // If we have a clamp pattern, we know that the number of sign bits will be
3321 // the minimum of the clamp min/max range.
3322 bool IsMax = (Opcode == ISD::SMAX);
3323 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3324 if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3325 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3326 CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3327 DemandedElts);
3328 if (CstLow && CstHigh) {
3329 if (!IsMax)
3330 std::swap(CstLow, CstHigh);
3331 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3332 Tmp = CstLow->getAPIntValue().getNumSignBits();
3333 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3334 return std::min(Tmp, Tmp2);
3335 }
3336 }
3337
3338 // Fallback - just get the minimum number of sign bits of the operands.
3339 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3340 if (Tmp == 1)
3341 return 1; // Early out.
3342 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3343 return std::min(Tmp, Tmp2);
3344 }
3345 case ISD::UMIN:
3346 case ISD::UMAX:
3347 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3348 if (Tmp == 1)
3349 return 1; // Early out.
3350 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3351 return std::min(Tmp, Tmp2);
3352 case ISD::SADDO:
3353 case ISD::UADDO:
3354 case ISD::SSUBO:
3355 case ISD::USUBO:
3356 case ISD::SMULO:
3357 case ISD::UMULO:
3358 if (Op.getResNo() != 1)
3359 break;
3360 // The boolean result conforms to getBooleanContents. Fall through.
3361 // If setcc returns 0/-1, all bits are sign bits.
3362 // We know that we have an integer-based boolean since these operations
3363 // are only available for integer.
3364 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3365 TargetLowering::ZeroOrNegativeOneBooleanContent)
3366 return VTBits;
3367 break;
3368 case ISD::SETCC:
3369 // If setcc returns 0/-1, all bits are sign bits.
3370 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3371 TargetLowering::ZeroOrNegativeOneBooleanContent)
3372 return VTBits;
3373 break;
3374 case ISD::ROTL:
3375 case ISD::ROTR:
3376 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3377 unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3378
3379 // Handle rotate right by N like a rotate left by 32-N.
3380 if (Opcode == ISD::ROTR)
3381 RotAmt = (VTBits - RotAmt) % VTBits;
3382
3383 // If we aren't rotating out all of the known-in sign bits, return the
3384 // number that are left. This handles rotl(sext(x), 1) for example.
3385 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3386 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3387 }
3388 break;
3389 case ISD::ADD:
3390 case ISD::ADDC:
3391 // Add can have at most one carry bit. Thus we know that the output
3392 // is, at worst, one more bit than the inputs.
3393 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3394 if (Tmp == 1) return 1; // Early out.
3395
3396 // Special case decrementing a value (ADD X, -1):
3397 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3398 if (CRHS->isAllOnesValue()) {
3399 KnownBits Known;
3400 computeKnownBits(Op.getOperand(0), Known, Depth+1);
3401
3402 // If the input is known to be 0 or 1, the output is 0/-1, which is all
3403 // sign bits set.
3404 if ((Known.Zero | 1).isAllOnesValue())
3405 return VTBits;
3406
3407 // If we are subtracting one from a positive number, there is no carry
3408 // out of the result.
3409 if (Known.isNonNegative())
3410 return Tmp;
3411 }
3412
3413 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3414 if (Tmp2 == 1) return 1;
3415 return std::min(Tmp, Tmp2)-1;
3416
3417 case ISD::SUB:
3418 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3419 if (Tmp2 == 1) return 1;
3420
3421 // Handle NEG.
3422 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3423 if (CLHS->isNullValue()) {
3424 KnownBits Known;
3425 computeKnownBits(Op.getOperand(1), Known, Depth+1);
3426 // If the input is known to be 0 or 1, the output is 0/-1, which is all
3427 // sign bits set.
3428 if ((Known.Zero | 1).isAllOnesValue())
3429 return VTBits;
3430
3431 // If the input is known to be positive (the sign bit is known clear),
3432 // the output of the NEG has the same number of sign bits as the input.
3433 if (Known.isNonNegative())
3434 return Tmp2;
3435
3436 // Otherwise, we treat this like a SUB.
3437 }
3438
3439 // Sub can have at most one carry bit. Thus we know that the output
3440 // is, at worst, one more bit than the inputs.
3441 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3442 if (Tmp == 1) return 1; // Early out.
3443 return std::min(Tmp, Tmp2)-1;
3444 case ISD::TRUNCATE: {
3445 // Check if the sign bits of source go down as far as the truncated value.
3446 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3447 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3448 if (NumSrcSignBits > (NumSrcBits - VTBits))
3449 return NumSrcSignBits - (NumSrcBits - VTBits);
3450 break;
3451 }
3452 case ISD::EXTRACT_ELEMENT: {
3453 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3454 const int BitWidth = Op.getValueSizeInBits();
3455 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3456
3457 // Get reverse index (starting from 1), Op1 value indexes elements from
3458 // little end. Sign starts at big end.
3459 const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3460
3461 // If the sign portion ends in our element the subtraction gives correct
3462 // result. Otherwise it gives either negative or > bitwidth result
3463 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3464 }
3465 case ISD::INSERT_VECTOR_ELT: {
3466 SDValue InVec = Op.getOperand(0);
3467 SDValue InVal = Op.getOperand(1);
3468 SDValue EltNo = Op.getOperand(2);
3469 unsigned NumElts = InVec.getValueType().getVectorNumElements();
3470
3471 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3472 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3473 // If we know the element index, split the demand between the
3474 // source vector and the inserted element.
3475 unsigned EltIdx = CEltNo->getZExtValue();
3476
3477 // If we demand the inserted element then get its sign bits.
3478 Tmp = std::numeric_limits<unsigned>::max();
3479 if (DemandedElts[EltIdx]) {
3480 // TODO - handle implicit truncation of inserted elements.
3481 if (InVal.getScalarValueSizeInBits() != VTBits)
3482 break;
3483 Tmp = ComputeNumSignBits(InVal, Depth + 1);
3484 }
3485
3486 // If we demand the source vector then get its sign bits, and determine
3487 // the minimum.
3488 APInt VectorElts = DemandedElts;
3489 VectorElts.clearBit(EltIdx);
3490 if (!!VectorElts) {
3491 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3492 Tmp = std::min(Tmp, Tmp2);
3493 }
3494 } else {
3495 // Unknown element index, so ignore DemandedElts and demand them all.
3496 Tmp = ComputeNumSignBits(InVec, Depth + 1);
3497 Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3498 Tmp = std::min(Tmp, Tmp2);
3499 }
3500 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3501 return Tmp;
3502 }
3503 case ISD::EXTRACT_VECTOR_ELT: {
3504 SDValue InVec = Op.getOperand(0);
3505 SDValue EltNo = Op.getOperand(1);
3506 EVT VecVT = InVec.getValueType();
3507 const unsigned BitWidth = Op.getValueSizeInBits();
3508 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3509 const unsigned NumSrcElts = VecVT.getVectorNumElements();
3510
3511 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3512 // anything about sign bits. But if the sizes match we can derive knowledge
3513 // about sign bits from the vector operand.
3514 if (BitWidth != EltBitWidth)
3515 break;
3516
3517 // If we know the element index, just demand that vector element, else for
3518 // an unknown element index, ignore DemandedElts and demand them all.
3519 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3520 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3521 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3522 DemandedSrcElts =
3523 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3524
3525 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3526 }
3527 case ISD::EXTRACT_SUBVECTOR: {
3528 // If we know the element index, just demand that subvector elements,
3529 // otherwise demand them all.
3530 SDValue Src = Op.getOperand(0);
3531 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3532 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3533 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3534 // Offset the demanded elts by the subvector index.
3535 uint64_t Idx = SubIdx->getZExtValue();
3536 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3537 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3538 }
3539 return ComputeNumSignBits(Src, Depth + 1);
3540 }
3541 case ISD::CONCAT_VECTORS:
3542 // Determine the minimum number of sign bits across all demanded
3543 // elts of the input vectors. Early out if the result is already 1.
3544 Tmp = std::numeric_limits<unsigned>::max();
3545 EVT SubVectorVT = Op.getOperand(0).getValueType();
3546 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3547 unsigned NumSubVectors = Op.getNumOperands();
3548 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3549 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3550 DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3551 if (!DemandedSub)
3552 continue;
3553 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3554 Tmp = std::min(Tmp, Tmp2);
3555 }
3556 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3557 return Tmp;
3558 }
3559
3560 // If we are looking at the loaded value of the SDNode.
3561 if (Op.getResNo() == 0) {
3562 // Handle LOADX separately here. EXTLOAD case will fallthrough.
3563 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3564 unsigned ExtType = LD->getExtensionType();
3565 switch (ExtType) {
3566 default: break;
3567 case ISD::SEXTLOAD: // '17' bits known
3568 Tmp = LD->getMemoryVT().getScalarSizeInBits();
3569 return VTBits-Tmp+1;
3570 case ISD::ZEXTLOAD: // '16' bits known
3571 Tmp = LD->getMemoryVT().getScalarSizeInBits();
3572 return VTBits-Tmp;
3573 }
3574 }
3575 }
3576
3577 // Allow the target to implement this method for its nodes.
3578 if (Opcode >= ISD::BUILTIN_OP_END ||
3579 Opcode == ISD::INTRINSIC_WO_CHAIN ||
3580 Opcode == ISD::INTRINSIC_W_CHAIN ||
3581 Opcode == ISD::INTRINSIC_VOID) {
3582 unsigned NumBits =
3583 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3584 if (NumBits > 1)
3585 FirstAnswer = std::max(FirstAnswer, NumBits);
3586 }
3587
3588 // Finally, if we can prove that the top bits of the result are 0's or 1's,
3589 // use this information.
3590 KnownBits Known;
3591 computeKnownBits(Op, Known, DemandedElts, Depth);
3592
3593 APInt Mask;
3594 if (Known.isNonNegative()) { // sign bit is 0
3595 Mask = Known.Zero;
3596 } else if (Known.isNegative()) { // sign bit is 1;
3597 Mask = Known.One;
3598 } else {
3599 // Nothing known.
3600 return FirstAnswer;
3601 }
3602
3603 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
3604 // the number of identical bits in the top of the input value.
3605 Mask = ~Mask;
3606 Mask <<= Mask.getBitWidth()-VTBits;
3607 // Return # leading zeros. We use 'min' here in case Val was zero before
3608 // shifting. We don't want to return '64' as for an i32 "0".
3609 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3610 }
3611
isBaseWithConstantOffset(SDValue Op) const3612 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3613 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3614 !isa<ConstantSDNode>(Op.getOperand(1)))
3615 return false;
3616
3617 if (Op.getOpcode() == ISD::OR &&
3618 !MaskedValueIsZero(Op.getOperand(0),
3619 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3620 return false;
3621
3622 return true;
3623 }
3624
isKnownNeverNaN(SDValue Op) const3625 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
3626 // If we're told that NaNs won't happen, assume they won't.
3627 if (getTarget().Options.NoNaNsFPMath)
3628 return true;
3629
3630 if (Op->getFlags().hasNoNaNs())
3631 return true;
3632
3633 // If the value is a constant, we can obviously see if it is a NaN or not.
3634 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3635 return !C->getValueAPF().isNaN();
3636
3637 // TODO: Recognize more cases here.
3638
3639 return false;
3640 }
3641
isKnownNeverZeroFloat(SDValue Op) const3642 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
3643 assert(Op.getValueType().isFloatingPoint() &&
3644 "Floating point type expected");
3645
3646 // If the value is a constant, we can obviously see if it is a zero or not.
3647 // TODO: Add BuildVector support.
3648 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3649 return !C->isZero();
3650 return false;
3651 }
3652
isKnownNeverZero(SDValue Op) const3653 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3654 assert(!Op.getValueType().isFloatingPoint() &&
3655 "Floating point types unsupported - use isKnownNeverZeroFloat");
3656
3657 // If the value is a constant, we can obviously see if it is a zero or not.
3658 if (ISD::matchUnaryPredicate(
3659 Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
3660 return true;
3661
3662 // TODO: Recognize more cases here.
3663 switch (Op.getOpcode()) {
3664 default: break;
3665 case ISD::OR:
3666 if (isKnownNeverZero(Op.getOperand(1)) ||
3667 isKnownNeverZero(Op.getOperand(0)))
3668 return true;
3669 break;
3670 }
3671
3672 return false;
3673 }
3674
isEqualTo(SDValue A,SDValue B) const3675 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3676 // Check the obvious case.
3677 if (A == B) return true;
3678
3679 // For for negative and positive zero.
3680 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3681 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3682 if (CA->isZero() && CB->isZero()) return true;
3683
3684 // Otherwise they may not be equal.
3685 return false;
3686 }
3687
3688 // FIXME: unify with llvm::haveNoCommonBitsSet.
3689 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
haveNoCommonBitsSet(SDValue A,SDValue B) const3690 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3691 assert(A.getValueType() == B.getValueType() &&
3692 "Values must have the same type");
3693 KnownBits AKnown, BKnown;
3694 computeKnownBits(A, AKnown);
3695 computeKnownBits(B, BKnown);
3696 return (AKnown.Zero | BKnown.Zero).isAllOnesValue();
3697 }
3698
FoldCONCAT_VECTORS(const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,SelectionDAG & DAG)3699 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3700 ArrayRef<SDValue> Ops,
3701 SelectionDAG &DAG) {
3702 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
3703 assert(llvm::all_of(Ops,
3704 [Ops](SDValue Op) {
3705 return Ops[0].getValueType() == Op.getValueType();
3706 }) &&
3707 "Concatenation of vectors with inconsistent value types!");
3708 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
3709 VT.getVectorNumElements() &&
3710 "Incorrect element count in vector concatenation!");
3711
3712 if (Ops.size() == 1)
3713 return Ops[0];
3714
3715 // Concat of UNDEFs is UNDEF.
3716 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3717 return DAG.getUNDEF(VT);
3718
3719 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
3720 // simplified to one big BUILD_VECTOR.
3721 // FIXME: Add support for SCALAR_TO_VECTOR as well.
3722 EVT SVT = VT.getScalarType();
3723 SmallVector<SDValue, 16> Elts;
3724 for (SDValue Op : Ops) {
3725 EVT OpVT = Op.getValueType();
3726 if (Op.isUndef())
3727 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
3728 else if (Op.getOpcode() == ISD::BUILD_VECTOR)
3729 Elts.append(Op->op_begin(), Op->op_end());
3730 else
3731 return SDValue();
3732 }
3733
3734 // BUILD_VECTOR requires all inputs to be of the same type, find the
3735 // maximum type and extend them all.
3736 for (SDValue Op : Elts)
3737 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
3738
3739 if (SVT.bitsGT(VT.getScalarType()))
3740 for (SDValue &Op : Elts)
3741 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
3742 ? DAG.getZExtOrTrunc(Op, DL, SVT)
3743 : DAG.getSExtOrTrunc(Op, DL, SVT);
3744
3745 SDValue V = DAG.getBuildVector(VT, DL, Elts);
3746 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
3747 return V;
3748 }
3749
3750 /// Gets or creates the specified node.
getNode(unsigned Opcode,const SDLoc & DL,EVT VT)3751 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
3752 FoldingSetNodeID ID;
3753 AddNodeIDNode(ID, Opcode, getVTList(VT), None);
3754 void *IP = nullptr;
3755 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3756 return SDValue(E, 0);
3757
3758 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
3759 getVTList(VT));
3760 CSEMap.InsertNode(N, IP);
3761
3762 InsertNode(N);
3763 SDValue V = SDValue(N, 0);
3764 NewSDValueDbgMsg(V, "Creating new node: ", this);
3765 return V;
3766 }
3767
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue Operand,const SDNodeFlags Flags)3768 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3769 SDValue Operand, const SDNodeFlags Flags) {
3770 // Constant fold unary operations with an integer constant operand. Even
3771 // opaque constant will be folded, because the folding of unary operations
3772 // doesn't create new constants with different values. Nevertheless, the
3773 // opaque flag is preserved during folding to prevent future folding with
3774 // other constants.
3775 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
3776 const APInt &Val = C->getAPIntValue();
3777 switch (Opcode) {
3778 default: break;
3779 case ISD::SIGN_EXTEND:
3780 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
3781 C->isTargetOpcode(), C->isOpaque());
3782 case ISD::ANY_EXTEND:
3783 case ISD::ZERO_EXTEND:
3784 case ISD::TRUNCATE:
3785 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
3786 C->isTargetOpcode(), C->isOpaque());
3787 case ISD::UINT_TO_FP:
3788 case ISD::SINT_TO_FP: {
3789 APFloat apf(EVTToAPFloatSemantics(VT),
3790 APInt::getNullValue(VT.getSizeInBits()));
3791 (void)apf.convertFromAPInt(Val,
3792 Opcode==ISD::SINT_TO_FP,
3793 APFloat::rmNearestTiesToEven);
3794 return getConstantFP(apf, DL, VT);
3795 }
3796 case ISD::BITCAST:
3797 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
3798 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
3799 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
3800 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
3801 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
3802 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
3803 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
3804 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
3805 break;
3806 case ISD::ABS:
3807 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
3808 C->isOpaque());
3809 case ISD::BITREVERSE:
3810 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
3811 C->isOpaque());
3812 case ISD::BSWAP:
3813 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
3814 C->isOpaque());
3815 case ISD::CTPOP:
3816 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
3817 C->isOpaque());
3818 case ISD::CTLZ:
3819 case ISD::CTLZ_ZERO_UNDEF:
3820 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
3821 C->isOpaque());
3822 case ISD::CTTZ:
3823 case ISD::CTTZ_ZERO_UNDEF:
3824 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
3825 C->isOpaque());
3826 case ISD::FP16_TO_FP: {
3827 bool Ignored;
3828 APFloat FPV(APFloat::IEEEhalf(),
3829 (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
3830
3831 // This can return overflow, underflow, or inexact; we don't care.
3832 // FIXME need to be more flexible about rounding mode.
3833 (void)FPV.convert(EVTToAPFloatSemantics(VT),
3834 APFloat::rmNearestTiesToEven, &Ignored);
3835 return getConstantFP(FPV, DL, VT);
3836 }
3837 }
3838 }
3839
3840 // Constant fold unary operations with a floating point constant operand.
3841 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
3842 APFloat V = C->getValueAPF(); // make copy
3843 switch (Opcode) {
3844 case ISD::FNEG:
3845 V.changeSign();
3846 return getConstantFP(V, DL, VT);
3847 case ISD::FABS:
3848 V.clearSign();
3849 return getConstantFP(V, DL, VT);
3850 case ISD::FCEIL: {
3851 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
3852 if (fs == APFloat::opOK || fs == APFloat::opInexact)
3853 return getConstantFP(V, DL, VT);
3854 break;
3855 }
3856 case ISD::FTRUNC: {
3857 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
3858 if (fs == APFloat::opOK || fs == APFloat::opInexact)
3859 return getConstantFP(V, DL, VT);
3860 break;
3861 }
3862 case ISD::FFLOOR: {
3863 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
3864 if (fs == APFloat::opOK || fs == APFloat::opInexact)
3865 return getConstantFP(V, DL, VT);
3866 break;
3867 }
3868 case ISD::FP_EXTEND: {
3869 bool ignored;
3870 // This can return overflow, underflow, or inexact; we don't care.
3871 // FIXME need to be more flexible about rounding mode.
3872 (void)V.convert(EVTToAPFloatSemantics(VT),
3873 APFloat::rmNearestTiesToEven, &ignored);
3874 return getConstantFP(V, DL, VT);
3875 }
3876 case ISD::FP_TO_SINT:
3877 case ISD::FP_TO_UINT: {
3878 bool ignored;
3879 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
3880 // FIXME need to be more flexible about rounding mode.
3881 APFloat::opStatus s =
3882 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
3883 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
3884 break;
3885 return getConstant(IntVal, DL, VT);
3886 }
3887 case ISD::BITCAST:
3888 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
3889 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3890 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3891 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3892 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3893 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3894 break;
3895 case ISD::FP_TO_FP16: {
3896 bool Ignored;
3897 // This can return overflow, underflow, or inexact; we don't care.
3898 // FIXME need to be more flexible about rounding mode.
3899 (void)V.convert(APFloat::IEEEhalf(),
3900 APFloat::rmNearestTiesToEven, &Ignored);
3901 return getConstant(V.bitcastToAPInt(), DL, VT);
3902 }
3903 }
3904 }
3905
3906 // Constant fold unary operations with a vector integer or float operand.
3907 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3908 if (BV->isConstant()) {
3909 switch (Opcode) {
3910 default:
3911 // FIXME: Entirely reasonable to perform folding of other unary
3912 // operations here as the need arises.
3913 break;
3914 case ISD::FNEG:
3915 case ISD::FABS:
3916 case ISD::FCEIL:
3917 case ISD::FTRUNC:
3918 case ISD::FFLOOR:
3919 case ISD::FP_EXTEND:
3920 case ISD::FP_TO_SINT:
3921 case ISD::FP_TO_UINT:
3922 case ISD::TRUNCATE:
3923 case ISD::ANY_EXTEND:
3924 case ISD::ZERO_EXTEND:
3925 case ISD::SIGN_EXTEND:
3926 case ISD::UINT_TO_FP:
3927 case ISD::SINT_TO_FP:
3928 case ISD::ABS:
3929 case ISD::BITREVERSE:
3930 case ISD::BSWAP:
3931 case ISD::CTLZ:
3932 case ISD::CTLZ_ZERO_UNDEF:
3933 case ISD::CTTZ:
3934 case ISD::CTTZ_ZERO_UNDEF:
3935 case ISD::CTPOP: {
3936 SDValue Ops = { Operand };
3937 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3938 return Fold;
3939 }
3940 }
3941 }
3942 }
3943
3944 unsigned OpOpcode = Operand.getNode()->getOpcode();
3945 switch (Opcode) {
3946 case ISD::TokenFactor:
3947 case ISD::MERGE_VALUES:
3948 case ISD::CONCAT_VECTORS:
3949 return Operand; // Factor, merge or concat of one node? No need.
3950 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
3951 case ISD::FP_EXTEND:
3952 assert(VT.isFloatingPoint() &&
3953 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
3954 if (Operand.getValueType() == VT) return Operand; // noop conversion.
3955 assert((!VT.isVector() ||
3956 VT.getVectorNumElements() ==
3957 Operand.getValueType().getVectorNumElements()) &&
3958 "Vector element count mismatch!");
3959 assert(Operand.getValueType().bitsLT(VT) &&
3960 "Invalid fpext node, dst < src!");
3961 if (Operand.isUndef())
3962 return getUNDEF(VT);
3963 break;
3964 case ISD::SIGN_EXTEND:
3965 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3966 "Invalid SIGN_EXTEND!");
3967 if (Operand.getValueType() == VT) return Operand; // noop extension
3968 assert((!VT.isVector() ||
3969 VT.getVectorNumElements() ==
3970 Operand.getValueType().getVectorNumElements()) &&
3971 "Vector element count mismatch!");
3972 assert(Operand.getValueType().bitsLT(VT) &&
3973 "Invalid sext node, dst < src!");
3974 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
3975 return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3976 else if (OpOpcode == ISD::UNDEF)
3977 // sext(undef) = 0, because the top bits will all be the same.
3978 return getConstant(0, DL, VT);
3979 break;
3980 case ISD::ZERO_EXTEND:
3981 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3982 "Invalid ZERO_EXTEND!");
3983 if (Operand.getValueType() == VT) return Operand; // noop extension
3984 assert((!VT.isVector() ||
3985 VT.getVectorNumElements() ==
3986 Operand.getValueType().getVectorNumElements()) &&
3987 "Vector element count mismatch!");
3988 assert(Operand.getValueType().bitsLT(VT) &&
3989 "Invalid zext node, dst < src!");
3990 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
3991 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
3992 else if (OpOpcode == ISD::UNDEF)
3993 // zext(undef) = 0, because the top bits will be zero.
3994 return getConstant(0, DL, VT);
3995 break;
3996 case ISD::ANY_EXTEND:
3997 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3998 "Invalid ANY_EXTEND!");
3999 if (Operand.getValueType() == VT) return Operand; // noop extension
4000 assert((!VT.isVector() ||
4001 VT.getVectorNumElements() ==
4002 Operand.getValueType().getVectorNumElements()) &&
4003 "Vector element count mismatch!");
4004 assert(Operand.getValueType().bitsLT(VT) &&
4005 "Invalid anyext node, dst < src!");
4006
4007 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4008 OpOpcode == ISD::ANY_EXTEND)
4009 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
4010 return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4011 else if (OpOpcode == ISD::UNDEF)
4012 return getUNDEF(VT);
4013
4014 // (ext (trunc x)) -> x
4015 if (OpOpcode == ISD::TRUNCATE) {
4016 SDValue OpOp = Operand.getOperand(0);
4017 if (OpOp.getValueType() == VT) {
4018 transferDbgValues(Operand, OpOp);
4019 return OpOp;
4020 }
4021 }
4022 break;
4023 case ISD::TRUNCATE:
4024 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4025 "Invalid TRUNCATE!");
4026 if (Operand.getValueType() == VT) return Operand; // noop truncate
4027 assert((!VT.isVector() ||
4028 VT.getVectorNumElements() ==
4029 Operand.getValueType().getVectorNumElements()) &&
4030 "Vector element count mismatch!");
4031 assert(Operand.getValueType().bitsGT(VT) &&
4032 "Invalid truncate node, src < dst!");
4033 if (OpOpcode == ISD::TRUNCATE)
4034 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4035 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4036 OpOpcode == ISD::ANY_EXTEND) {
4037 // If the source is smaller than the dest, we still need an extend.
4038 if (Operand.getOperand(0).getValueType().getScalarType()
4039 .bitsLT(VT.getScalarType()))
4040 return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4041 if (Operand.getOperand(0).getValueType().bitsGT(VT))
4042 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4043 return Operand.getOperand(0);
4044 }
4045 if (OpOpcode == ISD::UNDEF)
4046 return getUNDEF(VT);
4047 break;
4048 case ISD::ABS:
4049 assert(VT.isInteger() && VT == Operand.getValueType() &&
4050 "Invalid ABS!");
4051 if (OpOpcode == ISD::UNDEF)
4052 return getUNDEF(VT);
4053 break;
4054 case ISD::BSWAP:
4055 assert(VT.isInteger() && VT == Operand.getValueType() &&
4056 "Invalid BSWAP!");
4057 assert((VT.getScalarSizeInBits() % 16 == 0) &&
4058 "BSWAP types must be a multiple of 16 bits!");
4059 if (OpOpcode == ISD::UNDEF)
4060 return getUNDEF(VT);
4061 break;
4062 case ISD::BITREVERSE:
4063 assert(VT.isInteger() && VT == Operand.getValueType() &&
4064 "Invalid BITREVERSE!");
4065 if (OpOpcode == ISD::UNDEF)
4066 return getUNDEF(VT);
4067 break;
4068 case ISD::BITCAST:
4069 // Basic sanity checking.
4070 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4071 "Cannot BITCAST between types of different sizes!");
4072 if (VT == Operand.getValueType()) return Operand; // noop conversion.
4073 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
4074 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4075 if (OpOpcode == ISD::UNDEF)
4076 return getUNDEF(VT);
4077 break;
4078 case ISD::SCALAR_TO_VECTOR:
4079 assert(VT.isVector() && !Operand.getValueType().isVector() &&
4080 (VT.getVectorElementType() == Operand.getValueType() ||
4081 (VT.getVectorElementType().isInteger() &&
4082 Operand.getValueType().isInteger() &&
4083 VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4084 "Illegal SCALAR_TO_VECTOR node!");
4085 if (OpOpcode == ISD::UNDEF)
4086 return getUNDEF(VT);
4087 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4088 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4089 isa<ConstantSDNode>(Operand.getOperand(1)) &&
4090 Operand.getConstantOperandVal(1) == 0 &&
4091 Operand.getOperand(0).getValueType() == VT)
4092 return Operand.getOperand(0);
4093 break;
4094 case ISD::FNEG:
4095 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4096 if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
4097 OpOpcode == ISD::FSUB)
4098 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4099 Operand.getOperand(0), Flags);
4100 if (OpOpcode == ISD::FNEG) // --X -> X
4101 return Operand.getOperand(0);
4102 break;
4103 case ISD::FABS:
4104 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
4105 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4106 break;
4107 }
4108
4109 SDNode *N;
4110 SDVTList VTs = getVTList(VT);
4111 SDValue Ops[] = {Operand};
4112 if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4113 FoldingSetNodeID ID;
4114 AddNodeIDNode(ID, Opcode, VTs, Ops);
4115 void *IP = nullptr;
4116 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4117 E->intersectFlagsWith(Flags);
4118 return SDValue(E, 0);
4119 }
4120
4121 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4122 N->setFlags(Flags);
4123 createOperands(N, Ops);
4124 CSEMap.InsertNode(N, IP);
4125 } else {
4126 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4127 createOperands(N, Ops);
4128 }
4129
4130 InsertNode(N);
4131 SDValue V = SDValue(N, 0);
4132 NewSDValueDbgMsg(V, "Creating new node: ", this);
4133 return V;
4134 }
4135
FoldValue(unsigned Opcode,const APInt & C1,const APInt & C2)4136 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4137 const APInt &C2) {
4138 switch (Opcode) {
4139 case ISD::ADD: return std::make_pair(C1 + C2, true);
4140 case ISD::SUB: return std::make_pair(C1 - C2, true);
4141 case ISD::MUL: return std::make_pair(C1 * C2, true);
4142 case ISD::AND: return std::make_pair(C1 & C2, true);
4143 case ISD::OR: return std::make_pair(C1 | C2, true);
4144 case ISD::XOR: return std::make_pair(C1 ^ C2, true);
4145 case ISD::SHL: return std::make_pair(C1 << C2, true);
4146 case ISD::SRL: return std::make_pair(C1.lshr(C2), true);
4147 case ISD::SRA: return std::make_pair(C1.ashr(C2), true);
4148 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4149 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4150 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4151 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4152 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4153 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4154 case ISD::UDIV:
4155 if (!C2.getBoolValue())
4156 break;
4157 return std::make_pair(C1.udiv(C2), true);
4158 case ISD::UREM:
4159 if (!C2.getBoolValue())
4160 break;
4161 return std::make_pair(C1.urem(C2), true);
4162 case ISD::SDIV:
4163 if (!C2.getBoolValue())
4164 break;
4165 return std::make_pair(C1.sdiv(C2), true);
4166 case ISD::SREM:
4167 if (!C2.getBoolValue())
4168 break;
4169 return std::make_pair(C1.srem(C2), true);
4170 }
4171 return std::make_pair(APInt(1, 0), false);
4172 }
4173
FoldConstantArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,const ConstantSDNode * Cst1,const ConstantSDNode * Cst2)4174 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4175 EVT VT, const ConstantSDNode *Cst1,
4176 const ConstantSDNode *Cst2) {
4177 if (Cst1->isOpaque() || Cst2->isOpaque())
4178 return SDValue();
4179
4180 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
4181 Cst2->getAPIntValue());
4182 if (!Folded.second)
4183 return SDValue();
4184 return getConstant(Folded.first, DL, VT);
4185 }
4186
FoldSymbolOffset(unsigned Opcode,EVT VT,const GlobalAddressSDNode * GA,const SDNode * N2)4187 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4188 const GlobalAddressSDNode *GA,
4189 const SDNode *N2) {
4190 if (GA->getOpcode() != ISD::GlobalAddress)
4191 return SDValue();
4192 if (!TLI->isOffsetFoldingLegal(GA))
4193 return SDValue();
4194 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
4195 if (!Cst2)
4196 return SDValue();
4197 int64_t Offset = Cst2->getSExtValue();
4198 switch (Opcode) {
4199 case ISD::ADD: break;
4200 case ISD::SUB: Offset = -uint64_t(Offset); break;
4201 default: return SDValue();
4202 }
4203 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
4204 GA->getOffset() + uint64_t(Offset));
4205 }
4206
isUndef(unsigned Opcode,ArrayRef<SDValue> Ops)4207 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4208 switch (Opcode) {
4209 case ISD::SDIV:
4210 case ISD::UDIV:
4211 case ISD::SREM:
4212 case ISD::UREM: {
4213 // If a divisor is zero/undef or any element of a divisor vector is
4214 // zero/undef, the whole op is undef.
4215 assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4216 SDValue Divisor = Ops[1];
4217 if (Divisor.isUndef() || isNullConstant(Divisor))
4218 return true;
4219
4220 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4221 llvm::any_of(Divisor->op_values(),
4222 [](SDValue V) { return V.isUndef() ||
4223 isNullConstant(V); });
4224 // TODO: Handle signed overflow.
4225 }
4226 // TODO: Handle oversized shifts.
4227 default:
4228 return false;
4229 }
4230 }
4231
FoldConstantArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,SDNode * Cst1,SDNode * Cst2)4232 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4233 EVT VT, SDNode *Cst1,
4234 SDNode *Cst2) {
4235 // If the opcode is a target-specific ISD node, there's nothing we can
4236 // do here and the operand rules may not line up with the below, so
4237 // bail early.
4238 if (Opcode >= ISD::BUILTIN_OP_END)
4239 return SDValue();
4240
4241 if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)}))
4242 return getUNDEF(VT);
4243
4244 // Handle the case of two scalars.
4245 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
4246 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
4247 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
4248 assert((!Folded || !VT.isVector()) &&
4249 "Can't fold vectors ops with scalar operands");
4250 return Folded;
4251 }
4252 }
4253
4254 // fold (add Sym, c) -> Sym+c
4255 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
4256 return FoldSymbolOffset(Opcode, VT, GA, Cst2);
4257 if (TLI->isCommutativeBinOp(Opcode))
4258 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
4259 return FoldSymbolOffset(Opcode, VT, GA, Cst1);
4260
4261 // For vectors extract each constant element into Inputs so we can constant
4262 // fold them individually.
4263 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
4264 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
4265 if (!BV1 || !BV2)
4266 return SDValue();
4267
4268 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
4269
4270 EVT SVT = VT.getScalarType();
4271 EVT LegalSVT = SVT;
4272 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4273 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4274 if (LegalSVT.bitsLT(SVT))
4275 return SDValue();
4276 }
4277 SmallVector<SDValue, 4> Outputs;
4278 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
4279 SDValue V1 = BV1->getOperand(I);
4280 SDValue V2 = BV2->getOperand(I);
4281
4282 if (SVT.isInteger()) {
4283 if (V1->getValueType(0).bitsGT(SVT))
4284 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4285 if (V2->getValueType(0).bitsGT(SVT))
4286 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4287 }
4288
4289 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4290 return SDValue();
4291
4292 // Fold one vector element.
4293 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4294 if (LegalSVT != SVT)
4295 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4296
4297 // Scalar folding only succeeded if the result is a constant or UNDEF.
4298 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4299 ScalarResult.getOpcode() != ISD::ConstantFP)
4300 return SDValue();
4301 Outputs.push_back(ScalarResult);
4302 }
4303
4304 assert(VT.getVectorNumElements() == Outputs.size() &&
4305 "Vector size mismatch!");
4306
4307 // We may have a vector type but a scalar result. Create a splat.
4308 Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4309
4310 // Build a big vector out of the scalar elements we generated.
4311 return getBuildVector(VT, SDLoc(), Outputs);
4312 }
4313
4314 // TODO: Merge with FoldConstantArithmetic
FoldConstantVectorArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)4315 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4316 const SDLoc &DL, EVT VT,
4317 ArrayRef<SDValue> Ops,
4318 const SDNodeFlags Flags) {
4319 // If the opcode is a target-specific ISD node, there's nothing we can
4320 // do here and the operand rules may not line up with the below, so
4321 // bail early.
4322 if (Opcode >= ISD::BUILTIN_OP_END)
4323 return SDValue();
4324
4325 if (isUndef(Opcode, Ops))
4326 return getUNDEF(VT);
4327
4328 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4329 if (!VT.isVector())
4330 return SDValue();
4331
4332 unsigned NumElts = VT.getVectorNumElements();
4333
4334 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4335 return !Op.getValueType().isVector() ||
4336 Op.getValueType().getVectorNumElements() == NumElts;
4337 };
4338
4339 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4340 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4341 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4342 (BV && BV->isConstant());
4343 };
4344
4345 // All operands must be vector types with the same number of elements as
4346 // the result type and must be either UNDEF or a build vector of constant
4347 // or UNDEF scalars.
4348 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4349 !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4350 return SDValue();
4351
4352 // If we are comparing vectors, then the result needs to be a i1 boolean
4353 // that is then sign-extended back to the legal result type.
4354 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4355
4356 // Find legal integer scalar type for constant promotion and
4357 // ensure that its scalar size is at least as large as source.
4358 EVT LegalSVT = VT.getScalarType();
4359 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4360 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4361 if (LegalSVT.bitsLT(VT.getScalarType()))
4362 return SDValue();
4363 }
4364
4365 // Constant fold each scalar lane separately.
4366 SmallVector<SDValue, 4> ScalarResults;
4367 for (unsigned i = 0; i != NumElts; i++) {
4368 SmallVector<SDValue, 4> ScalarOps;
4369 for (SDValue Op : Ops) {
4370 EVT InSVT = Op.getValueType().getScalarType();
4371 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4372 if (!InBV) {
4373 // We've checked that this is UNDEF or a constant of some kind.
4374 if (Op.isUndef())
4375 ScalarOps.push_back(getUNDEF(InSVT));
4376 else
4377 ScalarOps.push_back(Op);
4378 continue;
4379 }
4380
4381 SDValue ScalarOp = InBV->getOperand(i);
4382 EVT ScalarVT = ScalarOp.getValueType();
4383
4384 // Build vector (integer) scalar operands may need implicit
4385 // truncation - do this before constant folding.
4386 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4387 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4388
4389 ScalarOps.push_back(ScalarOp);
4390 }
4391
4392 // Constant fold the scalar operands.
4393 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4394
4395 // Legalize the (integer) scalar constant if necessary.
4396 if (LegalSVT != SVT)
4397 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4398
4399 // Scalar folding only succeeded if the result is a constant or UNDEF.
4400 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4401 ScalarResult.getOpcode() != ISD::ConstantFP)
4402 return SDValue();
4403 ScalarResults.push_back(ScalarResult);
4404 }
4405
4406 SDValue V = getBuildVector(VT, DL, ScalarResults);
4407 NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4408 return V;
4409 }
4410
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,const SDNodeFlags Flags)4411 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4412 SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4413 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4414 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4415 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4416 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4417
4418 // Canonicalize constant to RHS if commutative.
4419 if (TLI->isCommutativeBinOp(Opcode)) {
4420 if (N1C && !N2C) {
4421 std::swap(N1C, N2C);
4422 std::swap(N1, N2);
4423 } else if (N1CFP && !N2CFP) {
4424 std::swap(N1CFP, N2CFP);
4425 std::swap(N1, N2);
4426 }
4427 }
4428
4429 switch (Opcode) {
4430 default: break;
4431 case ISD::TokenFactor:
4432 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4433 N2.getValueType() == MVT::Other && "Invalid token factor!");
4434 // Fold trivial token factors.
4435 if (N1.getOpcode() == ISD::EntryToken) return N2;
4436 if (N2.getOpcode() == ISD::EntryToken) return N1;
4437 if (N1 == N2) return N1;
4438 break;
4439 case ISD::CONCAT_VECTORS: {
4440 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4441 SDValue Ops[] = {N1, N2};
4442 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4443 return V;
4444 break;
4445 }
4446 case ISD::AND:
4447 assert(VT.isInteger() && "This operator does not apply to FP types!");
4448 assert(N1.getValueType() == N2.getValueType() &&
4449 N1.getValueType() == VT && "Binary operator types must match!");
4450 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
4451 // worth handling here.
4452 if (N2C && N2C->isNullValue())
4453 return N2;
4454 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
4455 return N1;
4456 break;
4457 case ISD::OR:
4458 case ISD::XOR:
4459 case ISD::ADD:
4460 case ISD::SUB:
4461 assert(VT.isInteger() && "This operator does not apply to FP types!");
4462 assert(N1.getValueType() == N2.getValueType() &&
4463 N1.getValueType() == VT && "Binary operator types must match!");
4464 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
4465 // it's worth handling here.
4466 if (N2C && N2C->isNullValue())
4467 return N1;
4468 break;
4469 case ISD::UDIV:
4470 case ISD::UREM:
4471 case ISD::MULHU:
4472 case ISD::MULHS:
4473 case ISD::MUL:
4474 case ISD::SDIV:
4475 case ISD::SREM:
4476 case ISD::SMIN:
4477 case ISD::SMAX:
4478 case ISD::UMIN:
4479 case ISD::UMAX:
4480 assert(VT.isInteger() && "This operator does not apply to FP types!");
4481 assert(N1.getValueType() == N2.getValueType() &&
4482 N1.getValueType() == VT && "Binary operator types must match!");
4483 break;
4484 case ISD::FADD:
4485 case ISD::FSUB:
4486 case ISD::FMUL:
4487 case ISD::FDIV:
4488 case ISD::FREM:
4489 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4490 assert(N1.getValueType() == N2.getValueType() &&
4491 N1.getValueType() == VT && "Binary operator types must match!");
4492 break;
4493 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
4494 assert(N1.getValueType() == VT &&
4495 N1.getValueType().isFloatingPoint() &&
4496 N2.getValueType().isFloatingPoint() &&
4497 "Invalid FCOPYSIGN!");
4498 break;
4499 case ISD::SHL:
4500 case ISD::SRA:
4501 case ISD::SRL:
4502 case ISD::ROTL:
4503 case ISD::ROTR:
4504 assert(VT == N1.getValueType() &&
4505 "Shift operators return type must be the same as their first arg");
4506 assert(VT.isInteger() && N2.getValueType().isInteger() &&
4507 "Shifts only work on integers");
4508 assert((!VT.isVector() || VT == N2.getValueType()) &&
4509 "Vector shift amounts must be in the same as their first arg");
4510 // Verify that the shift amount VT is bit enough to hold valid shift
4511 // amounts. This catches things like trying to shift an i1024 value by an
4512 // i8, which is easy to fall into in generic code that uses
4513 // TLI.getShiftAmount().
4514 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4515 "Invalid use of small shift amount with oversized value!");
4516
4517 // Always fold shifts of i1 values so the code generator doesn't need to
4518 // handle them. Since we know the size of the shift has to be less than the
4519 // size of the value, the shift/rotate count is guaranteed to be zero.
4520 if (VT == MVT::i1)
4521 return N1;
4522 if (N2C && N2C->isNullValue())
4523 return N1;
4524 break;
4525 case ISD::FP_ROUND_INREG: {
4526 EVT EVT = cast<VTSDNode>(N2)->getVT();
4527 assert(VT == N1.getValueType() && "Not an inreg round!");
4528 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4529 "Cannot FP_ROUND_INREG integer types");
4530 assert(EVT.isVector() == VT.isVector() &&
4531 "FP_ROUND_INREG type should be vector iff the operand "
4532 "type is vector!");
4533 assert((!EVT.isVector() ||
4534 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4535 "Vector element counts must match in FP_ROUND_INREG");
4536 assert(EVT.bitsLE(VT) && "Not rounding down!");
4537 (void)EVT;
4538 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
4539 break;
4540 }
4541 case ISD::FP_ROUND:
4542 assert(VT.isFloatingPoint() &&
4543 N1.getValueType().isFloatingPoint() &&
4544 VT.bitsLE(N1.getValueType()) &&
4545 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4546 "Invalid FP_ROUND!");
4547 if (N1.getValueType() == VT) return N1; // noop conversion.
4548 break;
4549 case ISD::AssertSext:
4550 case ISD::AssertZext: {
4551 EVT EVT = cast<VTSDNode>(N2)->getVT();
4552 assert(VT == N1.getValueType() && "Not an inreg extend!");
4553 assert(VT.isInteger() && EVT.isInteger() &&
4554 "Cannot *_EXTEND_INREG FP types");
4555 assert(!EVT.isVector() &&
4556 "AssertSExt/AssertZExt type should be the vector element type "
4557 "rather than the vector type!");
4558 assert(EVT.bitsLE(VT) && "Not extending!");
4559 if (VT == EVT) return N1; // noop assertion.
4560 break;
4561 }
4562 case ISD::SIGN_EXTEND_INREG: {
4563 EVT EVT = cast<VTSDNode>(N2)->getVT();
4564 assert(VT == N1.getValueType() && "Not an inreg extend!");
4565 assert(VT.isInteger() && EVT.isInteger() &&
4566 "Cannot *_EXTEND_INREG FP types");
4567 assert(EVT.isVector() == VT.isVector() &&
4568 "SIGN_EXTEND_INREG type should be vector iff the operand "
4569 "type is vector!");
4570 assert((!EVT.isVector() ||
4571 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4572 "Vector element counts must match in SIGN_EXTEND_INREG");
4573 assert(EVT.bitsLE(VT) && "Not extending!");
4574 if (EVT == VT) return N1; // Not actually extending
4575
4576 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
4577 unsigned FromBits = EVT.getScalarSizeInBits();
4578 Val <<= Val.getBitWidth() - FromBits;
4579 Val.ashrInPlace(Val.getBitWidth() - FromBits);
4580 return getConstant(Val, DL, ConstantVT);
4581 };
4582
4583 if (N1C) {
4584 const APInt &Val = N1C->getAPIntValue();
4585 return SignExtendInReg(Val, VT);
4586 }
4587 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4588 SmallVector<SDValue, 8> Ops;
4589 llvm::EVT OpVT = N1.getOperand(0).getValueType();
4590 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4591 SDValue Op = N1.getOperand(i);
4592 if (Op.isUndef()) {
4593 Ops.push_back(getUNDEF(OpVT));
4594 continue;
4595 }
4596 ConstantSDNode *C = cast<ConstantSDNode>(Op);
4597 APInt Val = C->getAPIntValue();
4598 Ops.push_back(SignExtendInReg(Val, OpVT));
4599 }
4600 return getBuildVector(VT, DL, Ops);
4601 }
4602 break;
4603 }
4604 case ISD::EXTRACT_VECTOR_ELT:
4605 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
4606 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
4607 element type of the vector.");
4608
4609 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4610 if (N1.isUndef())
4611 return getUNDEF(VT);
4612
4613 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4614 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
4615 return getUNDEF(VT);
4616
4617 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4618 // expanding copies of large vectors from registers.
4619 if (N2C &&
4620 N1.getOpcode() == ISD::CONCAT_VECTORS &&
4621 N1.getNumOperands() > 0) {
4622 unsigned Factor =
4623 N1.getOperand(0).getValueType().getVectorNumElements();
4624 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4625 N1.getOperand(N2C->getZExtValue() / Factor),
4626 getConstant(N2C->getZExtValue() % Factor, DL,
4627 N2.getValueType()));
4628 }
4629
4630 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4631 // expanding large vector constants.
4632 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4633 SDValue Elt = N1.getOperand(N2C->getZExtValue());
4634
4635 if (VT != Elt.getValueType())
4636 // If the vector element type is not legal, the BUILD_VECTOR operands
4637 // are promoted and implicitly truncated, and the result implicitly
4638 // extended. Make that explicit here.
4639 Elt = getAnyExtOrTrunc(Elt, DL, VT);
4640
4641 return Elt;
4642 }
4643
4644 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
4645 // operations are lowered to scalars.
4646 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
4647 // If the indices are the same, return the inserted element else
4648 // if the indices are known different, extract the element from
4649 // the original vector.
4650 SDValue N1Op2 = N1.getOperand(2);
4651 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
4652
4653 if (N1Op2C && N2C) {
4654 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
4655 if (VT == N1.getOperand(1).getValueType())
4656 return N1.getOperand(1);
4657 else
4658 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
4659 }
4660
4661 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
4662 }
4663 }
4664
4665 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
4666 // when vector types are scalarized and v1iX is legal.
4667 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
4668 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
4669 N1.getValueType().getVectorNumElements() == 1) {
4670 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
4671 N1.getOperand(1));
4672 }
4673 break;
4674 case ISD::EXTRACT_ELEMENT:
4675 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
4676 assert(!N1.getValueType().isVector() && !VT.isVector() &&
4677 (N1.getValueType().isInteger() == VT.isInteger()) &&
4678 N1.getValueType() != VT &&
4679 "Wrong types for EXTRACT_ELEMENT!");
4680
4681 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
4682 // 64-bit integers into 32-bit parts. Instead of building the extract of
4683 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
4684 if (N1.getOpcode() == ISD::BUILD_PAIR)
4685 return N1.getOperand(N2C->getZExtValue());
4686
4687 // EXTRACT_ELEMENT of a constant int is also very common.
4688 if (N1C) {
4689 unsigned ElementSize = VT.getSizeInBits();
4690 unsigned Shift = ElementSize * N2C->getZExtValue();
4691 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
4692 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
4693 }
4694 break;
4695 case ISD::EXTRACT_SUBVECTOR:
4696 if (VT.isSimple() && N1.getValueType().isSimple()) {
4697 assert(VT.isVector() && N1.getValueType().isVector() &&
4698 "Extract subvector VTs must be a vectors!");
4699 assert(VT.getVectorElementType() ==
4700 N1.getValueType().getVectorElementType() &&
4701 "Extract subvector VTs must have the same element type!");
4702 assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
4703 "Extract subvector must be from larger vector to smaller vector!");
4704
4705 if (N2C) {
4706 assert((VT.getVectorNumElements() + N2C->getZExtValue()
4707 <= N1.getValueType().getVectorNumElements())
4708 && "Extract subvector overflow!");
4709 }
4710
4711 // Trivial extraction.
4712 if (VT.getSimpleVT() == N1.getSimpleValueType())
4713 return N1;
4714
4715 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
4716 if (N1.isUndef())
4717 return getUNDEF(VT);
4718
4719 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
4720 // the concat have the same type as the extract.
4721 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
4722 N1.getNumOperands() > 0 &&
4723 VT == N1.getOperand(0).getValueType()) {
4724 unsigned Factor = VT.getVectorNumElements();
4725 return N1.getOperand(N2C->getZExtValue() / Factor);
4726 }
4727
4728 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
4729 // during shuffle legalization.
4730 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
4731 VT == N1.getOperand(1).getValueType())
4732 return N1.getOperand(1);
4733 }
4734 break;
4735 }
4736
4737 // Perform trivial constant folding.
4738 if (SDValue SV =
4739 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
4740 return SV;
4741
4742 // Constant fold FP operations.
4743 bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4744 if (N1CFP) {
4745 if (N2CFP) {
4746 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
4747 APFloat::opStatus s;
4748 switch (Opcode) {
4749 case ISD::FADD:
4750 s = V1.add(V2, APFloat::rmNearestTiesToEven);
4751 if (!HasFPExceptions || s != APFloat::opInvalidOp)
4752 return getConstantFP(V1, DL, VT);
4753 break;
4754 case ISD::FSUB:
4755 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
4756 if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4757 return getConstantFP(V1, DL, VT);
4758 break;
4759 case ISD::FMUL:
4760 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
4761 if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4762 return getConstantFP(V1, DL, VT);
4763 break;
4764 case ISD::FDIV:
4765 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
4766 if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4767 s!=APFloat::opDivByZero)) {
4768 return getConstantFP(V1, DL, VT);
4769 }
4770 break;
4771 case ISD::FREM :
4772 s = V1.mod(V2);
4773 if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4774 s!=APFloat::opDivByZero)) {
4775 return getConstantFP(V1, DL, VT);
4776 }
4777 break;
4778 case ISD::FCOPYSIGN:
4779 V1.copySign(V2);
4780 return getConstantFP(V1, DL, VT);
4781 default: break;
4782 }
4783 }
4784
4785 if (Opcode == ISD::FP_ROUND) {
4786 APFloat V = N1CFP->getValueAPF(); // make copy
4787 bool ignored;
4788 // This can return overflow, underflow, or inexact; we don't care.
4789 // FIXME need to be more flexible about rounding mode.
4790 (void)V.convert(EVTToAPFloatSemantics(VT),
4791 APFloat::rmNearestTiesToEven, &ignored);
4792 return getConstantFP(V, DL, VT);
4793 }
4794 }
4795
4796 // Any FP binop with an undef operand is folded to NaN. This matches the
4797 // behavior of the IR optimizer.
4798 switch (Opcode) {
4799 case ISD::FADD:
4800 case ISD::FSUB:
4801 case ISD::FMUL:
4802 case ISD::FDIV:
4803 case ISD::FREM:
4804 if (N1.isUndef() || N2.isUndef())
4805 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
4806 }
4807
4808 // Canonicalize an UNDEF to the RHS, even over a constant.
4809 if (N1.isUndef()) {
4810 if (TLI->isCommutativeBinOp(Opcode)) {
4811 std::swap(N1, N2);
4812 } else {
4813 switch (Opcode) {
4814 case ISD::FP_ROUND_INREG:
4815 case ISD::SIGN_EXTEND_INREG:
4816 case ISD::SUB:
4817 return getUNDEF(VT); // fold op(undef, arg2) -> undef
4818 case ISD::UDIV:
4819 case ISD::SDIV:
4820 case ISD::UREM:
4821 case ISD::SREM:
4822 case ISD::SRA:
4823 case ISD::SRL:
4824 case ISD::SHL:
4825 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0
4826 }
4827 }
4828 }
4829
4830 // Fold a bunch of operators when the RHS is undef.
4831 if (N2.isUndef()) {
4832 switch (Opcode) {
4833 case ISD::XOR:
4834 if (N1.isUndef())
4835 // Handle undef ^ undef -> 0 special case. This is a common
4836 // idiom (misuse).
4837 return getConstant(0, DL, VT);
4838 LLVM_FALLTHROUGH;
4839 case ISD::ADD:
4840 case ISD::ADDC:
4841 case ISD::ADDE:
4842 case ISD::SUB:
4843 case ISD::UDIV:
4844 case ISD::SDIV:
4845 case ISD::UREM:
4846 case ISD::SREM:
4847 case ISD::SRA:
4848 case ISD::SRL:
4849 case ISD::SHL:
4850 return getUNDEF(VT); // fold op(arg1, undef) -> undef
4851 case ISD::MUL:
4852 case ISD::AND:
4853 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0
4854 case ISD::OR:
4855 return getAllOnesConstant(DL, VT);
4856 }
4857 }
4858
4859 // Memoize this node if possible.
4860 SDNode *N;
4861 SDVTList VTs = getVTList(VT);
4862 SDValue Ops[] = {N1, N2};
4863 if (VT != MVT::Glue) {
4864 FoldingSetNodeID ID;
4865 AddNodeIDNode(ID, Opcode, VTs, Ops);
4866 void *IP = nullptr;
4867 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4868 E->intersectFlagsWith(Flags);
4869 return SDValue(E, 0);
4870 }
4871
4872 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4873 N->setFlags(Flags);
4874 createOperands(N, Ops);
4875 CSEMap.InsertNode(N, IP);
4876 } else {
4877 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4878 createOperands(N, Ops);
4879 }
4880
4881 InsertNode(N);
4882 SDValue V = SDValue(N, 0);
4883 NewSDValueDbgMsg(V, "Creating new node: ", this);
4884 return V;
4885 }
4886
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,const SDNodeFlags Flags)4887 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4888 SDValue N1, SDValue N2, SDValue N3,
4889 const SDNodeFlags Flags) {
4890 // Perform various simplifications.
4891 switch (Opcode) {
4892 case ISD::FMA: {
4893 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4894 assert(N1.getValueType() == VT && N2.getValueType() == VT &&
4895 N3.getValueType() == VT && "FMA types must match!");
4896 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4897 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4898 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
4899 if (N1CFP && N2CFP && N3CFP) {
4900 APFloat V1 = N1CFP->getValueAPF();
4901 const APFloat &V2 = N2CFP->getValueAPF();
4902 const APFloat &V3 = N3CFP->getValueAPF();
4903 APFloat::opStatus s =
4904 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
4905 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
4906 return getConstantFP(V1, DL, VT);
4907 }
4908 break;
4909 }
4910 case ISD::CONCAT_VECTORS: {
4911 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4912 SDValue Ops[] = {N1, N2, N3};
4913 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4914 return V;
4915 break;
4916 }
4917 case ISD::SETCC: {
4918 // Use FoldSetCC to simplify SETCC's.
4919 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
4920 return V;
4921 // Vector constant folding.
4922 SDValue Ops[] = {N1, N2, N3};
4923 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
4924 NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
4925 return V;
4926 }
4927 break;
4928 }
4929 case ISD::SELECT:
4930 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
4931 if (N1C->getZExtValue())
4932 return N2; // select true, X, Y -> X
4933 return N3; // select false, X, Y -> Y
4934 }
4935
4936 if (N2 == N3) return N2; // select C, X, X -> X
4937 break;
4938 case ISD::VECTOR_SHUFFLE:
4939 llvm_unreachable("should use getVectorShuffle constructor!");
4940 case ISD::INSERT_VECTOR_ELT: {
4941 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
4942 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
4943 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4944 return getUNDEF(VT);
4945 break;
4946 }
4947 case ISD::INSERT_SUBVECTOR: {
4948 SDValue Index = N3;
4949 if (VT.isSimple() && N1.getValueType().isSimple()
4950 && N2.getValueType().isSimple()) {
4951 assert(VT.isVector() && N1.getValueType().isVector() &&
4952 N2.getValueType().isVector() &&
4953 "Insert subvector VTs must be a vectors");
4954 assert(VT == N1.getValueType() &&
4955 "Dest and insert subvector source types must match!");
4956 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
4957 "Insert subvector must be from smaller vector to larger vector!");
4958 if (isa<ConstantSDNode>(Index)) {
4959 assert((N2.getValueType().getVectorNumElements() +
4960 cast<ConstantSDNode>(Index)->getZExtValue()
4961 <= VT.getVectorNumElements())
4962 && "Insert subvector overflow!");
4963 }
4964
4965 // Trivial insertion.
4966 if (VT.getSimpleVT() == N2.getSimpleValueType())
4967 return N2;
4968 }
4969 break;
4970 }
4971 case ISD::BITCAST:
4972 // Fold bit_convert nodes from a type to themselves.
4973 if (N1.getValueType() == VT)
4974 return N1;
4975 break;
4976 }
4977
4978 // Memoize node if it doesn't produce a flag.
4979 SDNode *N;
4980 SDVTList VTs = getVTList(VT);
4981 SDValue Ops[] = {N1, N2, N3};
4982 if (VT != MVT::Glue) {
4983 FoldingSetNodeID ID;
4984 AddNodeIDNode(ID, Opcode, VTs, Ops);
4985 void *IP = nullptr;
4986 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4987 E->intersectFlagsWith(Flags);
4988 return SDValue(E, 0);
4989 }
4990
4991 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4992 N->setFlags(Flags);
4993 createOperands(N, Ops);
4994 CSEMap.InsertNode(N, IP);
4995 } else {
4996 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4997 createOperands(N, Ops);
4998 }
4999
5000 InsertNode(N);
5001 SDValue V = SDValue(N, 0);
5002 NewSDValueDbgMsg(V, "Creating new node: ", this);
5003 return V;
5004 }
5005
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4)5006 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5007 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5008 SDValue Ops[] = { N1, N2, N3, N4 };
5009 return getNode(Opcode, DL, VT, Ops);
5010 }
5011
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)5012 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5013 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5014 SDValue N5) {
5015 SDValue Ops[] = { N1, N2, N3, N4, N5 };
5016 return getNode(Opcode, DL, VT, Ops);
5017 }
5018
5019 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5020 /// the incoming stack arguments to be loaded from the stack.
getStackArgumentTokenFactor(SDValue Chain)5021 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5022 SmallVector<SDValue, 8> ArgChains;
5023
5024 // Include the original chain at the beginning of the list. When this is
5025 // used by target LowerCall hooks, this helps legalize find the
5026 // CALLSEQ_BEGIN node.
5027 ArgChains.push_back(Chain);
5028
5029 // Add a chain value for each stack argument.
5030 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5031 UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5032 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5033 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5034 if (FI->getIndex() < 0)
5035 ArgChains.push_back(SDValue(L, 1));
5036
5037 // Build a tokenfactor for all the chains.
5038 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5039 }
5040
5041 /// getMemsetValue - Vectorized representation of the memset value
5042 /// operand.
getMemsetValue(SDValue Value,EVT VT,SelectionDAG & DAG,const SDLoc & dl)5043 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5044 const SDLoc &dl) {
5045 assert(!Value.isUndef());
5046
5047 unsigned NumBits = VT.getScalarSizeInBits();
5048 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5049 assert(C->getAPIntValue().getBitWidth() == 8);
5050 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5051 if (VT.isInteger())
5052 return DAG.getConstant(Val, dl, VT);
5053 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5054 VT);
5055 }
5056
5057 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5058 EVT IntVT = VT.getScalarType();
5059 if (!IntVT.isInteger())
5060 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5061
5062 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5063 if (NumBits > 8) {
5064 // Use a multiplication with 0x010101... to extend the input to the
5065 // required length.
5066 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5067 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5068 DAG.getConstant(Magic, dl, IntVT));
5069 }
5070
5071 if (VT != Value.getValueType() && !VT.isInteger())
5072 Value = DAG.getBitcast(VT.getScalarType(), Value);
5073 if (VT != Value.getValueType())
5074 Value = DAG.getSplatBuildVector(VT, dl, Value);
5075
5076 return Value;
5077 }
5078
5079 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5080 /// used when a memcpy is turned into a memset when the source is a constant
5081 /// string ptr.
getMemsetStringVal(EVT VT,const SDLoc & dl,SelectionDAG & DAG,const TargetLowering & TLI,const ConstantDataArraySlice & Slice)5082 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5083 const TargetLowering &TLI,
5084 const ConstantDataArraySlice &Slice) {
5085 // Handle vector with all elements zero.
5086 if (Slice.Array == nullptr) {
5087 if (VT.isInteger())
5088 return DAG.getConstant(0, dl, VT);
5089 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5090 return DAG.getConstantFP(0.0, dl, VT);
5091 else if (VT.isVector()) {
5092 unsigned NumElts = VT.getVectorNumElements();
5093 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5094 return DAG.getNode(ISD::BITCAST, dl, VT,
5095 DAG.getConstant(0, dl,
5096 EVT::getVectorVT(*DAG.getContext(),
5097 EltVT, NumElts)));
5098 } else
5099 llvm_unreachable("Expected type!");
5100 }
5101
5102 assert(!VT.isVector() && "Can't handle vector type here!");
5103 unsigned NumVTBits = VT.getSizeInBits();
5104 unsigned NumVTBytes = NumVTBits / 8;
5105 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5106
5107 APInt Val(NumVTBits, 0);
5108 if (DAG.getDataLayout().isLittleEndian()) {
5109 for (unsigned i = 0; i != NumBytes; ++i)
5110 Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5111 } else {
5112 for (unsigned i = 0; i != NumBytes; ++i)
5113 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5114 }
5115
5116 // If the "cost" of materializing the integer immediate is less than the cost
5117 // of a load, then it is cost effective to turn the load into the immediate.
5118 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5119 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5120 return DAG.getConstant(Val, dl, VT);
5121 return SDValue(nullptr, 0);
5122 }
5123
getMemBasePlusOffset(SDValue Base,unsigned Offset,const SDLoc & DL)5124 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5125 const SDLoc &DL) {
5126 EVT VT = Base.getValueType();
5127 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5128 }
5129
5130 /// Returns true if memcpy source is constant data.
isMemSrcFromConstant(SDValue Src,ConstantDataArraySlice & Slice)5131 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5132 uint64_t SrcDelta = 0;
5133 GlobalAddressSDNode *G = nullptr;
5134 if (Src.getOpcode() == ISD::GlobalAddress)
5135 G = cast<GlobalAddressSDNode>(Src);
5136 else if (Src.getOpcode() == ISD::ADD &&
5137 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5138 Src.getOperand(1).getOpcode() == ISD::Constant) {
5139 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5140 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5141 }
5142 if (!G)
5143 return false;
5144
5145 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5146 SrcDelta + G->getOffset());
5147 }
5148
5149 /// Determines the optimal series of memory ops to replace the memset / memcpy.
5150 /// Return true if the number of memory ops is below the threshold (Limit).
5151 /// It returns the types of the sequence of memory ops to perform
5152 /// memset / memcpy by reference.
FindOptimalMemOpLowering(std::vector<EVT> & MemOps,unsigned Limit,uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,bool AllowOverlap,unsigned DstAS,unsigned SrcAS,SelectionDAG & DAG,const TargetLowering & TLI)5153 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
5154 unsigned Limit, uint64_t Size,
5155 unsigned DstAlign, unsigned SrcAlign,
5156 bool IsMemset,
5157 bool ZeroMemset,
5158 bool MemcpyStrSrc,
5159 bool AllowOverlap,
5160 unsigned DstAS, unsigned SrcAS,
5161 SelectionDAG &DAG,
5162 const TargetLowering &TLI) {
5163 assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
5164 "Expecting memcpy / memset source to meet alignment requirement!");
5165 // If 'SrcAlign' is zero, that means the memory operation does not need to
5166 // load the value, i.e. memset or memcpy from constant string. Otherwise,
5167 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
5168 // is the specified alignment of the memory operation. If it is zero, that
5169 // means it's possible to change the alignment of the destination.
5170 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
5171 // not need to be loaded.
5172 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
5173 IsMemset, ZeroMemset, MemcpyStrSrc,
5174 DAG.getMachineFunction());
5175
5176 if (VT == MVT::Other) {
5177 // Use the largest integer type whose alignment constraints are satisfied.
5178 // We only need to check DstAlign here as SrcAlign is always greater or
5179 // equal to DstAlign (or zero).
5180 VT = MVT::i64;
5181 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
5182 !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
5183 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
5184 assert(VT.isInteger());
5185
5186 // Find the largest legal integer type.
5187 MVT LVT = MVT::i64;
5188 while (!TLI.isTypeLegal(LVT))
5189 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
5190 assert(LVT.isInteger());
5191
5192 // If the type we've chosen is larger than the largest legal integer type
5193 // then use that instead.
5194 if (VT.bitsGT(LVT))
5195 VT = LVT;
5196 }
5197
5198 unsigned NumMemOps = 0;
5199 while (Size != 0) {
5200 unsigned VTSize = VT.getSizeInBits() / 8;
5201 while (VTSize > Size) {
5202 // For now, only use non-vector load / store's for the left-over pieces.
5203 EVT NewVT = VT;
5204 unsigned NewVTSize;
5205
5206 bool Found = false;
5207 if (VT.isVector() || VT.isFloatingPoint()) {
5208 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
5209 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
5210 TLI.isSafeMemOpType(NewVT.getSimpleVT()))
5211 Found = true;
5212 else if (NewVT == MVT::i64 &&
5213 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
5214 TLI.isSafeMemOpType(MVT::f64)) {
5215 // i64 is usually not legal on 32-bit targets, but f64 may be.
5216 NewVT = MVT::f64;
5217 Found = true;
5218 }
5219 }
5220
5221 if (!Found) {
5222 do {
5223 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
5224 if (NewVT == MVT::i8)
5225 break;
5226 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
5227 }
5228 NewVTSize = NewVT.getSizeInBits() / 8;
5229
5230 // If the new VT cannot cover all of the remaining bits, then consider
5231 // issuing a (or a pair of) unaligned and overlapping load / store.
5232 // FIXME: Only does this for 64-bit or more since we don't have proper
5233 // cost model for unaligned load / store.
5234 bool Fast;
5235 if (NumMemOps && AllowOverlap &&
5236 VTSize >= 8 && NewVTSize < Size &&
5237 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
5238 VTSize = Size;
5239 else {
5240 VT = NewVT;
5241 VTSize = NewVTSize;
5242 }
5243 }
5244
5245 if (++NumMemOps > Limit)
5246 return false;
5247
5248 MemOps.push_back(VT);
5249 Size -= VTSize;
5250 }
5251
5252 return true;
5253 }
5254
shouldLowerMemFuncForSize(const MachineFunction & MF)5255 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5256 // On Darwin, -Os means optimize for size without hurting performance, so
5257 // only really optimize for size when -Oz (MinSize) is used.
5258 if (MF.getTarget().getTargetTriple().isOSDarwin())
5259 return MF.getFunction().optForMinSize();
5260 return MF.getFunction().optForSize();
5261 }
5262
chainLoadsAndStoresForMemcpy(SelectionDAG & DAG,const SDLoc & dl,SmallVector<SDValue,32> & OutChains,unsigned From,unsigned To,SmallVector<SDValue,16> & OutLoadChains,SmallVector<SDValue,16> & OutStoreChains)5263 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5264 SmallVector<SDValue, 32> &OutChains, unsigned From,
5265 unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5266 SmallVector<SDValue, 16> &OutStoreChains) {
5267 assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5268 assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5269 SmallVector<SDValue, 16> GluedLoadChains;
5270 for (unsigned i = From; i < To; ++i) {
5271 OutChains.push_back(OutLoadChains[i]);
5272 GluedLoadChains.push_back(OutLoadChains[i]);
5273 }
5274
5275 // Chain for all loads.
5276 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5277 GluedLoadChains);
5278
5279 for (unsigned i = From; i < To; ++i) {
5280 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5281 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5282 ST->getBasePtr(), ST->getMemoryVT(),
5283 ST->getMemOperand());
5284 OutChains.push_back(NewStore);
5285 }
5286 }
5287
getMemcpyLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)5288 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5289 SDValue Chain, SDValue Dst, SDValue Src,
5290 uint64_t Size, unsigned Align,
5291 bool isVol, bool AlwaysInline,
5292 MachinePointerInfo DstPtrInfo,
5293 MachinePointerInfo SrcPtrInfo) {
5294 // Turn a memcpy of undef to nop.
5295 if (Src.isUndef())
5296 return Chain;
5297
5298 // Expand memcpy to a series of load and store ops if the size operand falls
5299 // below a certain threshold.
5300 // TODO: In the AlwaysInline case, if the size is big then generate a loop
5301 // rather than maybe a humongous number of loads and stores.
5302 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5303 const DataLayout &DL = DAG.getDataLayout();
5304 LLVMContext &C = *DAG.getContext();
5305 std::vector<EVT> MemOps;
5306 bool DstAlignCanChange = false;
5307 MachineFunction &MF = DAG.getMachineFunction();
5308 MachineFrameInfo &MFI = MF.getFrameInfo();
5309 bool OptSize = shouldLowerMemFuncForSize(MF);
5310 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5311 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5312 DstAlignCanChange = true;
5313 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5314 if (Align > SrcAlign)
5315 SrcAlign = Align;
5316 ConstantDataArraySlice Slice;
5317 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5318 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5319 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5320
5321 if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5322 (DstAlignCanChange ? 0 : Align),
5323 (isZeroConstant ? 0 : SrcAlign),
5324 false, false, CopyFromConstant, true,
5325 DstPtrInfo.getAddrSpace(),
5326 SrcPtrInfo.getAddrSpace(),
5327 DAG, TLI))
5328 return SDValue();
5329
5330 if (DstAlignCanChange) {
5331 Type *Ty = MemOps[0].getTypeForEVT(C);
5332 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5333
5334 // Don't promote to an alignment that would require dynamic stack
5335 // realignment.
5336 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5337 if (!TRI->needsStackRealignment(MF))
5338 while (NewAlign > Align &&
5339 DL.exceedsNaturalStackAlignment(NewAlign))
5340 NewAlign /= 2;
5341
5342 if (NewAlign > Align) {
5343 // Give the stack frame object a larger alignment if needed.
5344 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5345 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5346 Align = NewAlign;
5347 }
5348 }
5349
5350 MachineMemOperand::Flags MMOFlags =
5351 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5352 SmallVector<SDValue, 16> OutLoadChains;
5353 SmallVector<SDValue, 16> OutStoreChains;
5354 SmallVector<SDValue, 32> OutChains;
5355 unsigned NumMemOps = MemOps.size();
5356 uint64_t SrcOff = 0, DstOff = 0;
5357 for (unsigned i = 0; i != NumMemOps; ++i) {
5358 EVT VT = MemOps[i];
5359 unsigned VTSize = VT.getSizeInBits() / 8;
5360 SDValue Value, Store;
5361
5362 if (VTSize > Size) {
5363 // Issuing an unaligned load / store pair that overlaps with the previous
5364 // pair. Adjust the offset accordingly.
5365 assert(i == NumMemOps-1 && i != 0);
5366 SrcOff -= VTSize - Size;
5367 DstOff -= VTSize - Size;
5368 }
5369
5370 if (CopyFromConstant &&
5371 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5372 // It's unlikely a store of a vector immediate can be done in a single
5373 // instruction. It would require a load from a constantpool first.
5374 // We only handle zero vectors here.
5375 // FIXME: Handle other cases where store of vector immediate is done in
5376 // a single instruction.
5377 ConstantDataArraySlice SubSlice;
5378 if (SrcOff < Slice.Length) {
5379 SubSlice = Slice;
5380 SubSlice.move(SrcOff);
5381 } else {
5382 // This is an out-of-bounds access and hence UB. Pretend we read zero.
5383 SubSlice.Array = nullptr;
5384 SubSlice.Offset = 0;
5385 SubSlice.Length = VTSize;
5386 }
5387 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5388 if (Value.getNode()) {
5389 Store = DAG.getStore(Chain, dl, Value,
5390 DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5391 DstPtrInfo.getWithOffset(DstOff), Align,
5392 MMOFlags);
5393 OutChains.push_back(Store);
5394 }
5395 }
5396
5397 if (!Store.getNode()) {
5398 // The type might not be legal for the target. This should only happen
5399 // if the type is smaller than a legal type, as on PPC, so the right
5400 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
5401 // to Load/Store if NVT==VT.
5402 // FIXME does the case above also need this?
5403 EVT NVT = TLI.getTypeToTransformTo(C, VT);
5404 assert(NVT.bitsGE(VT));
5405
5406 bool isDereferenceable =
5407 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5408 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5409 if (isDereferenceable)
5410 SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5411
5412 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5413 DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5414 SrcPtrInfo.getWithOffset(SrcOff), VT,
5415 MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5416 OutLoadChains.push_back(Value.getValue(1));
5417
5418 Store = DAG.getTruncStore(
5419 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5420 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5421 OutStoreChains.push_back(Store);
5422 }
5423 SrcOff += VTSize;
5424 DstOff += VTSize;
5425 Size -= VTSize;
5426 }
5427
5428 unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5429 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5430 unsigned NumLdStInMemcpy = OutStoreChains.size();
5431
5432 if (NumLdStInMemcpy) {
5433 // It may be that memcpy might be converted to memset if it's memcpy
5434 // of constants. In such a case, we won't have loads and stores, but
5435 // just stores. In the absence of loads, there is nothing to gang up.
5436 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5437 // If target does not care, just leave as it.
5438 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5439 OutChains.push_back(OutLoadChains[i]);
5440 OutChains.push_back(OutStoreChains[i]);
5441 }
5442 } else {
5443 // Ld/St less than/equal limit set by target.
5444 if (NumLdStInMemcpy <= GluedLdStLimit) {
5445 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5446 NumLdStInMemcpy, OutLoadChains,
5447 OutStoreChains);
5448 } else {
5449 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
5450 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5451 unsigned GlueIter = 0;
5452
5453 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5454 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5455 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
5456
5457 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5458 OutLoadChains, OutStoreChains);
5459 GlueIter += GluedLdStLimit;
5460 }
5461
5462 // Residual ld/st.
5463 if (RemainingLdStInMemcpy) {
5464 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5465 RemainingLdStInMemcpy, OutLoadChains,
5466 OutStoreChains);
5467 }
5468 }
5469 }
5470 }
5471 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5472 }
5473
getMemmoveLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)5474 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5475 SDValue Chain, SDValue Dst, SDValue Src,
5476 uint64_t Size, unsigned Align,
5477 bool isVol, bool AlwaysInline,
5478 MachinePointerInfo DstPtrInfo,
5479 MachinePointerInfo SrcPtrInfo) {
5480 // Turn a memmove of undef to nop.
5481 if (Src.isUndef())
5482 return Chain;
5483
5484 // Expand memmove to a series of load and store ops if the size operand falls
5485 // below a certain threshold.
5486 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5487 const DataLayout &DL = DAG.getDataLayout();
5488 LLVMContext &C = *DAG.getContext();
5489 std::vector<EVT> MemOps;
5490 bool DstAlignCanChange = false;
5491 MachineFunction &MF = DAG.getMachineFunction();
5492 MachineFrameInfo &MFI = MF.getFrameInfo();
5493 bool OptSize = shouldLowerMemFuncForSize(MF);
5494 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5495 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5496 DstAlignCanChange = true;
5497 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5498 if (Align > SrcAlign)
5499 SrcAlign = Align;
5500 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5501
5502 if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5503 (DstAlignCanChange ? 0 : Align), SrcAlign,
5504 false, false, false, false,
5505 DstPtrInfo.getAddrSpace(),
5506 SrcPtrInfo.getAddrSpace(),
5507 DAG, TLI))
5508 return SDValue();
5509
5510 if (DstAlignCanChange) {
5511 Type *Ty = MemOps[0].getTypeForEVT(C);
5512 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5513 if (NewAlign > Align) {
5514 // Give the stack frame object a larger alignment if needed.
5515 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5516 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5517 Align = NewAlign;
5518 }
5519 }
5520
5521 MachineMemOperand::Flags MMOFlags =
5522 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5523 uint64_t SrcOff = 0, DstOff = 0;
5524 SmallVector<SDValue, 8> LoadValues;
5525 SmallVector<SDValue, 8> LoadChains;
5526 SmallVector<SDValue, 8> OutChains;
5527 unsigned NumMemOps = MemOps.size();
5528 for (unsigned i = 0; i < NumMemOps; i++) {
5529 EVT VT = MemOps[i];
5530 unsigned VTSize = VT.getSizeInBits() / 8;
5531 SDValue Value;
5532
5533 bool isDereferenceable =
5534 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5535 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5536 if (isDereferenceable)
5537 SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5538
5539 Value =
5540 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5541 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5542 LoadValues.push_back(Value);
5543 LoadChains.push_back(Value.getValue(1));
5544 SrcOff += VTSize;
5545 }
5546 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5547 OutChains.clear();
5548 for (unsigned i = 0; i < NumMemOps; i++) {
5549 EVT VT = MemOps[i];
5550 unsigned VTSize = VT.getSizeInBits() / 8;
5551 SDValue Store;
5552
5553 Store = DAG.getStore(Chain, dl, LoadValues[i],
5554 DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5555 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5556 OutChains.push_back(Store);
5557 DstOff += VTSize;
5558 }
5559
5560 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5561 }
5562
5563 /// Lower the call to 'memset' intrinsic function into a series of store
5564 /// operations.
5565 ///
5566 /// \param DAG Selection DAG where lowered code is placed.
5567 /// \param dl Link to corresponding IR location.
5568 /// \param Chain Control flow dependency.
5569 /// \param Dst Pointer to destination memory location.
5570 /// \param Src Value of byte to write into the memory.
5571 /// \param Size Number of bytes to write.
5572 /// \param Align Alignment of the destination in bytes.
5573 /// \param isVol True if destination is volatile.
5574 /// \param DstPtrInfo IR information on the memory pointer.
5575 /// \returns New head in the control flow, if lowering was successful, empty
5576 /// SDValue otherwise.
5577 ///
5578 /// The function tries to replace 'llvm.memset' intrinsic with several store
5579 /// operations and value calculation code. This is usually profitable for small
5580 /// memory size.
getMemsetStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,MachinePointerInfo DstPtrInfo)5581 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5582 SDValue Chain, SDValue Dst, SDValue Src,
5583 uint64_t Size, unsigned Align, bool isVol,
5584 MachinePointerInfo DstPtrInfo) {
5585 // Turn a memset of undef to nop.
5586 if (Src.isUndef())
5587 return Chain;
5588
5589 // Expand memset to a series of load/store ops if the size operand
5590 // falls below a certain threshold.
5591 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5592 std::vector<EVT> MemOps;
5593 bool DstAlignCanChange = false;
5594 MachineFunction &MF = DAG.getMachineFunction();
5595 MachineFrameInfo &MFI = MF.getFrameInfo();
5596 bool OptSize = shouldLowerMemFuncForSize(MF);
5597 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5598 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5599 DstAlignCanChange = true;
5600 bool IsZeroVal =
5601 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5602 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5603 Size, (DstAlignCanChange ? 0 : Align), 0,
5604 true, IsZeroVal, false, true,
5605 DstPtrInfo.getAddrSpace(), ~0u,
5606 DAG, TLI))
5607 return SDValue();
5608
5609 if (DstAlignCanChange) {
5610 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5611 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5612 if (NewAlign > Align) {
5613 // Give the stack frame object a larger alignment if needed.
5614 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5615 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5616 Align = NewAlign;
5617 }
5618 }
5619
5620 SmallVector<SDValue, 8> OutChains;
5621 uint64_t DstOff = 0;
5622 unsigned NumMemOps = MemOps.size();
5623
5624 // Find the largest store and generate the bit pattern for it.
5625 EVT LargestVT = MemOps[0];
5626 for (unsigned i = 1; i < NumMemOps; i++)
5627 if (MemOps[i].bitsGT(LargestVT))
5628 LargestVT = MemOps[i];
5629 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
5630
5631 for (unsigned i = 0; i < NumMemOps; i++) {
5632 EVT VT = MemOps[i];
5633 unsigned VTSize = VT.getSizeInBits() / 8;
5634 if (VTSize > Size) {
5635 // Issuing an unaligned load / store pair that overlaps with the previous
5636 // pair. Adjust the offset accordingly.
5637 assert(i == NumMemOps-1 && i != 0);
5638 DstOff -= VTSize - Size;
5639 }
5640
5641 // If this store is smaller than the largest store see whether we can get
5642 // the smaller value for free with a truncate.
5643 SDValue Value = MemSetValue;
5644 if (VT.bitsLT(LargestVT)) {
5645 if (!LargestVT.isVector() && !VT.isVector() &&
5646 TLI.isTruncateFree(LargestVT, VT))
5647 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
5648 else
5649 Value = getMemsetValue(Src, VT, DAG, dl);
5650 }
5651 assert(Value.getValueType() == VT && "Value with wrong type.");
5652 SDValue Store = DAG.getStore(
5653 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5654 DstPtrInfo.getWithOffset(DstOff), Align,
5655 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
5656 OutChains.push_back(Store);
5657 DstOff += VT.getSizeInBits() / 8;
5658 Size -= VTSize;
5659 }
5660
5661 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5662 }
5663
checkAddrSpaceIsValidForLibcall(const TargetLowering * TLI,unsigned AS)5664 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
5665 unsigned AS) {
5666 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
5667 // pointer operands can be losslessly bitcasted to pointers of address space 0
5668 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
5669 report_fatal_error("cannot lower memory intrinsic in address space " +
5670 Twine(AS));
5671 }
5672 }
5673
getMemcpy(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool AlwaysInline,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)5674 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
5675 SDValue Src, SDValue Size, unsigned Align,
5676 bool isVol, bool AlwaysInline, bool isTailCall,
5677 MachinePointerInfo DstPtrInfo,
5678 MachinePointerInfo SrcPtrInfo) {
5679 assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5680
5681 // Check to see if we should lower the memcpy to loads and stores first.
5682 // For cases within the target-specified limits, this is the best choice.
5683 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5684 if (ConstantSize) {
5685 // Memcpy with size zero? Just return the original chain.
5686 if (ConstantSize->isNullValue())
5687 return Chain;
5688
5689 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5690 ConstantSize->getZExtValue(),Align,
5691 isVol, false, DstPtrInfo, SrcPtrInfo);
5692 if (Result.getNode())
5693 return Result;
5694 }
5695
5696 // Then check to see if we should lower the memcpy with target-specific
5697 // code. If the target chooses to do this, this is the next best.
5698 if (TSI) {
5699 SDValue Result = TSI->EmitTargetCodeForMemcpy(
5700 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
5701 DstPtrInfo, SrcPtrInfo);
5702 if (Result.getNode())
5703 return Result;
5704 }
5705
5706 // If we really need inline code and the target declined to provide it,
5707 // use a (potentially long) sequence of loads and stores.
5708 if (AlwaysInline) {
5709 assert(ConstantSize && "AlwaysInline requires a constant size!");
5710 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5711 ConstantSize->getZExtValue(), Align, isVol,
5712 true, DstPtrInfo, SrcPtrInfo);
5713 }
5714
5715 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5716 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5717
5718 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
5719 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
5720 // respect volatile, so they may do things like read or write memory
5721 // beyond the given memory regions. But fixing this isn't easy, and most
5722 // people don't care.
5723
5724 // Emit a library call.
5725 TargetLowering::ArgListTy Args;
5726 TargetLowering::ArgListEntry Entry;
5727 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5728 Entry.Node = Dst; Args.push_back(Entry);
5729 Entry.Node = Src; Args.push_back(Entry);
5730 Entry.Node = Size; Args.push_back(Entry);
5731 // FIXME: pass in SDLoc
5732 TargetLowering::CallLoweringInfo CLI(*this);
5733 CLI.setDebugLoc(dl)
5734 .setChain(Chain)
5735 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
5736 Dst.getValueType().getTypeForEVT(*getContext()),
5737 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
5738 TLI->getPointerTy(getDataLayout())),
5739 std::move(Args))
5740 .setDiscardResult()
5741 .setTailCall(isTailCall);
5742
5743 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5744 return CallResult.second;
5745 }
5746
getAtomicMemcpy(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Src,unsigned SrcAlign,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)5747 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
5748 SDValue Dst, unsigned DstAlign,
5749 SDValue Src, unsigned SrcAlign,
5750 SDValue Size, Type *SizeTy,
5751 unsigned ElemSz, bool isTailCall,
5752 MachinePointerInfo DstPtrInfo,
5753 MachinePointerInfo SrcPtrInfo) {
5754 // Emit a library call.
5755 TargetLowering::ArgListTy Args;
5756 TargetLowering::ArgListEntry Entry;
5757 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5758 Entry.Node = Dst;
5759 Args.push_back(Entry);
5760
5761 Entry.Node = Src;
5762 Args.push_back(Entry);
5763
5764 Entry.Ty = SizeTy;
5765 Entry.Node = Size;
5766 Args.push_back(Entry);
5767
5768 RTLIB::Libcall LibraryCall =
5769 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5770 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5771 report_fatal_error("Unsupported element size");
5772
5773 TargetLowering::CallLoweringInfo CLI(*this);
5774 CLI.setDebugLoc(dl)
5775 .setChain(Chain)
5776 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5777 Type::getVoidTy(*getContext()),
5778 getExternalSymbol(TLI->getLibcallName(LibraryCall),
5779 TLI->getPointerTy(getDataLayout())),
5780 std::move(Args))
5781 .setDiscardResult()
5782 .setTailCall(isTailCall);
5783
5784 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5785 return CallResult.second;
5786 }
5787
getMemmove(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)5788 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
5789 SDValue Src, SDValue Size, unsigned Align,
5790 bool isVol, bool isTailCall,
5791 MachinePointerInfo DstPtrInfo,
5792 MachinePointerInfo SrcPtrInfo) {
5793 assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5794
5795 // Check to see if we should lower the memmove to loads and stores first.
5796 // For cases within the target-specified limits, this is the best choice.
5797 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5798 if (ConstantSize) {
5799 // Memmove with size zero? Just return the original chain.
5800 if (ConstantSize->isNullValue())
5801 return Chain;
5802
5803 SDValue Result =
5804 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
5805 ConstantSize->getZExtValue(), Align, isVol,
5806 false, DstPtrInfo, SrcPtrInfo);
5807 if (Result.getNode())
5808 return Result;
5809 }
5810
5811 // Then check to see if we should lower the memmove with target-specific
5812 // code. If the target chooses to do this, this is the next best.
5813 if (TSI) {
5814 SDValue Result = TSI->EmitTargetCodeForMemmove(
5815 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
5816 if (Result.getNode())
5817 return Result;
5818 }
5819
5820 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5821 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5822
5823 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
5824 // not be safe. See memcpy above for more details.
5825
5826 // Emit a library call.
5827 TargetLowering::ArgListTy Args;
5828 TargetLowering::ArgListEntry Entry;
5829 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5830 Entry.Node = Dst; Args.push_back(Entry);
5831 Entry.Node = Src; Args.push_back(Entry);
5832 Entry.Node = Size; Args.push_back(Entry);
5833 // FIXME: pass in SDLoc
5834 TargetLowering::CallLoweringInfo CLI(*this);
5835 CLI.setDebugLoc(dl)
5836 .setChain(Chain)
5837 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
5838 Dst.getValueType().getTypeForEVT(*getContext()),
5839 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
5840 TLI->getPointerTy(getDataLayout())),
5841 std::move(Args))
5842 .setDiscardResult()
5843 .setTailCall(isTailCall);
5844
5845 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5846 return CallResult.second;
5847 }
5848
getAtomicMemmove(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Src,unsigned SrcAlign,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)5849 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
5850 SDValue Dst, unsigned DstAlign,
5851 SDValue Src, unsigned SrcAlign,
5852 SDValue Size, Type *SizeTy,
5853 unsigned ElemSz, bool isTailCall,
5854 MachinePointerInfo DstPtrInfo,
5855 MachinePointerInfo SrcPtrInfo) {
5856 // Emit a library call.
5857 TargetLowering::ArgListTy Args;
5858 TargetLowering::ArgListEntry Entry;
5859 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5860 Entry.Node = Dst;
5861 Args.push_back(Entry);
5862
5863 Entry.Node = Src;
5864 Args.push_back(Entry);
5865
5866 Entry.Ty = SizeTy;
5867 Entry.Node = Size;
5868 Args.push_back(Entry);
5869
5870 RTLIB::Libcall LibraryCall =
5871 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5872 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5873 report_fatal_error("Unsupported element size");
5874
5875 TargetLowering::CallLoweringInfo CLI(*this);
5876 CLI.setDebugLoc(dl)
5877 .setChain(Chain)
5878 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5879 Type::getVoidTy(*getContext()),
5880 getExternalSymbol(TLI->getLibcallName(LibraryCall),
5881 TLI->getPointerTy(getDataLayout())),
5882 std::move(Args))
5883 .setDiscardResult()
5884 .setTailCall(isTailCall);
5885
5886 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5887 return CallResult.second;
5888 }
5889
getMemset(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool isTailCall,MachinePointerInfo DstPtrInfo)5890 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
5891 SDValue Src, SDValue Size, unsigned Align,
5892 bool isVol, bool isTailCall,
5893 MachinePointerInfo DstPtrInfo) {
5894 assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5895
5896 // Check to see if we should lower the memset to stores first.
5897 // For cases within the target-specified limits, this is the best choice.
5898 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5899 if (ConstantSize) {
5900 // Memset with size zero? Just return the original chain.
5901 if (ConstantSize->isNullValue())
5902 return Chain;
5903
5904 SDValue Result =
5905 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
5906 Align, isVol, DstPtrInfo);
5907
5908 if (Result.getNode())
5909 return Result;
5910 }
5911
5912 // Then check to see if we should lower the memset with target-specific
5913 // code. If the target chooses to do this, this is the next best.
5914 if (TSI) {
5915 SDValue Result = TSI->EmitTargetCodeForMemset(
5916 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
5917 if (Result.getNode())
5918 return Result;
5919 }
5920
5921 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5922
5923 // Emit a library call.
5924 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
5925 TargetLowering::ArgListTy Args;
5926 TargetLowering::ArgListEntry Entry;
5927 Entry.Node = Dst; Entry.Ty = IntPtrTy;
5928 Args.push_back(Entry);
5929 Entry.Node = Src;
5930 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
5931 Args.push_back(Entry);
5932 Entry.Node = Size;
5933 Entry.Ty = IntPtrTy;
5934 Args.push_back(Entry);
5935
5936 // FIXME: pass in SDLoc
5937 TargetLowering::CallLoweringInfo CLI(*this);
5938 CLI.setDebugLoc(dl)
5939 .setChain(Chain)
5940 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
5941 Dst.getValueType().getTypeForEVT(*getContext()),
5942 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
5943 TLI->getPointerTy(getDataLayout())),
5944 std::move(Args))
5945 .setDiscardResult()
5946 .setTailCall(isTailCall);
5947
5948 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5949 return CallResult.second;
5950 }
5951
getAtomicMemset(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Value,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo)5952 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
5953 SDValue Dst, unsigned DstAlign,
5954 SDValue Value, SDValue Size, Type *SizeTy,
5955 unsigned ElemSz, bool isTailCall,
5956 MachinePointerInfo DstPtrInfo) {
5957 // Emit a library call.
5958 TargetLowering::ArgListTy Args;
5959 TargetLowering::ArgListEntry Entry;
5960 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5961 Entry.Node = Dst;
5962 Args.push_back(Entry);
5963
5964 Entry.Ty = Type::getInt8Ty(*getContext());
5965 Entry.Node = Value;
5966 Args.push_back(Entry);
5967
5968 Entry.Ty = SizeTy;
5969 Entry.Node = Size;
5970 Args.push_back(Entry);
5971
5972 RTLIB::Libcall LibraryCall =
5973 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5974 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5975 report_fatal_error("Unsupported element size");
5976
5977 TargetLowering::CallLoweringInfo CLI(*this);
5978 CLI.setDebugLoc(dl)
5979 .setChain(Chain)
5980 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5981 Type::getVoidTy(*getContext()),
5982 getExternalSymbol(TLI->getLibcallName(LibraryCall),
5983 TLI->getPointerTy(getDataLayout())),
5984 std::move(Args))
5985 .setDiscardResult()
5986 .setTailCall(isTailCall);
5987
5988 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5989 return CallResult.second;
5990 }
5991
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTList,ArrayRef<SDValue> Ops,MachineMemOperand * MMO)5992 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5993 SDVTList VTList, ArrayRef<SDValue> Ops,
5994 MachineMemOperand *MMO) {
5995 FoldingSetNodeID ID;
5996 ID.AddInteger(MemVT.getRawBits());
5997 AddNodeIDNode(ID, Opcode, VTList, Ops);
5998 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5999 void* IP = nullptr;
6000 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6001 cast<AtomicSDNode>(E)->refineAlignment(MMO);
6002 return SDValue(E, 0);
6003 }
6004
6005 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6006 VTList, MemVT, MMO);
6007 createOperands(N, Ops);
6008
6009 CSEMap.InsertNode(N, IP);
6010 InsertNode(N);
6011 return SDValue(N, 0);
6012 }
6013
getAtomicCmpSwap(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTs,SDValue Chain,SDValue Ptr,SDValue Cmp,SDValue Swp,MachinePointerInfo PtrInfo,unsigned Alignment,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SyncScope::ID SSID)6014 SDValue SelectionDAG::getAtomicCmpSwap(
6015 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
6016 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
6017 unsigned Alignment, AtomicOrdering SuccessOrdering,
6018 AtomicOrdering FailureOrdering, SyncScope::ID SSID) {
6019 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6020 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6021 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6022
6023 if (Alignment == 0) // Ensure that codegen never sees alignment 0
6024 Alignment = getEVTAlignment(MemVT);
6025
6026 MachineFunction &MF = getMachineFunction();
6027
6028 // FIXME: Volatile isn't really correct; we should keep track of atomic
6029 // orderings in the memoperand.
6030 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
6031 MachineMemOperand::MOStore;
6032 MachineMemOperand *MMO =
6033 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
6034 AAMDNodes(), nullptr, SSID, SuccessOrdering,
6035 FailureOrdering);
6036
6037 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
6038 }
6039
getAtomicCmpSwap(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTs,SDValue Chain,SDValue Ptr,SDValue Cmp,SDValue Swp,MachineMemOperand * MMO)6040 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6041 EVT MemVT, SDVTList VTs, SDValue Chain,
6042 SDValue Ptr, SDValue Cmp, SDValue Swp,
6043 MachineMemOperand *MMO) {
6044 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6045 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6046 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6047
6048 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6049 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6050 }
6051
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Val,const Value * PtrVal,unsigned Alignment,AtomicOrdering Ordering,SyncScope::ID SSID)6052 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6053 SDValue Chain, SDValue Ptr, SDValue Val,
6054 const Value *PtrVal, unsigned Alignment,
6055 AtomicOrdering Ordering,
6056 SyncScope::ID SSID) {
6057 if (Alignment == 0) // Ensure that codegen never sees alignment 0
6058 Alignment = getEVTAlignment(MemVT);
6059
6060 MachineFunction &MF = getMachineFunction();
6061 // An atomic store does not load. An atomic load does not store.
6062 // (An atomicrmw obviously both loads and stores.)
6063 // For now, atomics are considered to be volatile always, and they are
6064 // chained as such.
6065 // FIXME: Volatile isn't really correct; we should keep track of atomic
6066 // orderings in the memoperand.
6067 auto Flags = MachineMemOperand::MOVolatile;
6068 if (Opcode != ISD::ATOMIC_STORE)
6069 Flags |= MachineMemOperand::MOLoad;
6070 if (Opcode != ISD::ATOMIC_LOAD)
6071 Flags |= MachineMemOperand::MOStore;
6072
6073 MachineMemOperand *MMO =
6074 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
6075 MemVT.getStoreSize(), Alignment, AAMDNodes(),
6076 nullptr, SSID, Ordering);
6077
6078 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
6079 }
6080
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Val,MachineMemOperand * MMO)6081 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6082 SDValue Chain, SDValue Ptr, SDValue Val,
6083 MachineMemOperand *MMO) {
6084 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6085 Opcode == ISD::ATOMIC_LOAD_SUB ||
6086 Opcode == ISD::ATOMIC_LOAD_AND ||
6087 Opcode == ISD::ATOMIC_LOAD_CLR ||
6088 Opcode == ISD::ATOMIC_LOAD_OR ||
6089 Opcode == ISD::ATOMIC_LOAD_XOR ||
6090 Opcode == ISD::ATOMIC_LOAD_NAND ||
6091 Opcode == ISD::ATOMIC_LOAD_MIN ||
6092 Opcode == ISD::ATOMIC_LOAD_MAX ||
6093 Opcode == ISD::ATOMIC_LOAD_UMIN ||
6094 Opcode == ISD::ATOMIC_LOAD_UMAX ||
6095 Opcode == ISD::ATOMIC_SWAP ||
6096 Opcode == ISD::ATOMIC_STORE) &&
6097 "Invalid Atomic Op");
6098
6099 EVT VT = Val.getValueType();
6100
6101 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6102 getVTList(VT, MVT::Other);
6103 SDValue Ops[] = {Chain, Ptr, Val};
6104 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6105 }
6106
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,EVT VT,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO)6107 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6108 EVT VT, SDValue Chain, SDValue Ptr,
6109 MachineMemOperand *MMO) {
6110 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6111
6112 SDVTList VTs = getVTList(VT, MVT::Other);
6113 SDValue Ops[] = {Chain, Ptr};
6114 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6115 }
6116
6117 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
getMergeValues(ArrayRef<SDValue> Ops,const SDLoc & dl)6118 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6119 if (Ops.size() == 1)
6120 return Ops[0];
6121
6122 SmallVector<EVT, 4> VTs;
6123 VTs.reserve(Ops.size());
6124 for (unsigned i = 0; i < Ops.size(); ++i)
6125 VTs.push_back(Ops[i].getValueType());
6126 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6127 }
6128
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachinePointerInfo PtrInfo,unsigned Align,MachineMemOperand::Flags Flags,unsigned Size)6129 SDValue SelectionDAG::getMemIntrinsicNode(
6130 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6131 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6132 MachineMemOperand::Flags Flags, unsigned Size) {
6133 if (Align == 0) // Ensure that codegen never sees alignment 0
6134 Align = getEVTAlignment(MemVT);
6135
6136 if (!Size)
6137 Size = MemVT.getStoreSize();
6138
6139 MachineFunction &MF = getMachineFunction();
6140 MachineMemOperand *MMO =
6141 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
6142
6143 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6144 }
6145
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachineMemOperand * MMO)6146 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6147 SDVTList VTList,
6148 ArrayRef<SDValue> Ops, EVT MemVT,
6149 MachineMemOperand *MMO) {
6150 assert((Opcode == ISD::INTRINSIC_VOID ||
6151 Opcode == ISD::INTRINSIC_W_CHAIN ||
6152 Opcode == ISD::PREFETCH ||
6153 Opcode == ISD::LIFETIME_START ||
6154 Opcode == ISD::LIFETIME_END ||
6155 ((int)Opcode <= std::numeric_limits<int>::max() &&
6156 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6157 "Opcode is not a memory-accessing opcode!");
6158
6159 // Memoize the node unless it returns a flag.
6160 MemIntrinsicSDNode *N;
6161 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6162 FoldingSetNodeID ID;
6163 AddNodeIDNode(ID, Opcode, VTList, Ops);
6164 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6165 Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6166 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6167 void *IP = nullptr;
6168 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6169 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6170 return SDValue(E, 0);
6171 }
6172
6173 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6174 VTList, MemVT, MMO);
6175 createOperands(N, Ops);
6176
6177 CSEMap.InsertNode(N, IP);
6178 } else {
6179 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6180 VTList, MemVT, MMO);
6181 createOperands(N, Ops);
6182 }
6183 InsertNode(N);
6184 return SDValue(N, 0);
6185 }
6186
6187 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6188 /// MachinePointerInfo record from it. This is particularly useful because the
6189 /// code generator has many cases where it doesn't bother passing in a
6190 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(const MachinePointerInfo & Info,SelectionDAG & DAG,SDValue Ptr,int64_t Offset=0)6191 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6192 SelectionDAG &DAG, SDValue Ptr,
6193 int64_t Offset = 0) {
6194 // If this is FI+Offset, we can model it.
6195 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6196 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6197 FI->getIndex(), Offset);
6198
6199 // If this is (FI+Offset1)+Offset2, we can model it.
6200 if (Ptr.getOpcode() != ISD::ADD ||
6201 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6202 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6203 return Info;
6204
6205 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6206 return MachinePointerInfo::getFixedStack(
6207 DAG.getMachineFunction(), FI,
6208 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6209 }
6210
6211 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6212 /// MachinePointerInfo record from it. This is particularly useful because the
6213 /// code generator has many cases where it doesn't bother passing in a
6214 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(const MachinePointerInfo & Info,SelectionDAG & DAG,SDValue Ptr,SDValue OffsetOp)6215 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6216 SelectionDAG &DAG, SDValue Ptr,
6217 SDValue OffsetOp) {
6218 // If the 'Offset' value isn't a constant, we can't handle this.
6219 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6220 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6221 if (OffsetOp.isUndef())
6222 return InferPointerInfo(Info, DAG, Ptr);
6223 return Info;
6224 }
6225
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,MachinePointerInfo PtrInfo,EVT MemVT,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges)6226 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6227 EVT VT, const SDLoc &dl, SDValue Chain,
6228 SDValue Ptr, SDValue Offset,
6229 MachinePointerInfo PtrInfo, EVT MemVT,
6230 unsigned Alignment,
6231 MachineMemOperand::Flags MMOFlags,
6232 const AAMDNodes &AAInfo, const MDNode *Ranges) {
6233 assert(Chain.getValueType() == MVT::Other &&
6234 "Invalid chain type");
6235 if (Alignment == 0) // Ensure that codegen never sees alignment 0
6236 Alignment = getEVTAlignment(MemVT);
6237
6238 MMOFlags |= MachineMemOperand::MOLoad;
6239 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6240 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6241 // clients.
6242 if (PtrInfo.V.isNull())
6243 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6244
6245 MachineFunction &MF = getMachineFunction();
6246 MachineMemOperand *MMO = MF.getMachineMemOperand(
6247 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6248 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6249 }
6250
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,EVT MemVT,MachineMemOperand * MMO)6251 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6252 EVT VT, const SDLoc &dl, SDValue Chain,
6253 SDValue Ptr, SDValue Offset, EVT MemVT,
6254 MachineMemOperand *MMO) {
6255 if (VT == MemVT) {
6256 ExtType = ISD::NON_EXTLOAD;
6257 } else if (ExtType == ISD::NON_EXTLOAD) {
6258 assert(VT == MemVT && "Non-extending load from different memory type!");
6259 } else {
6260 // Extending load.
6261 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6262 "Should only be an extending load, not truncating!");
6263 assert(VT.isInteger() == MemVT.isInteger() &&
6264 "Cannot convert from FP to Int or Int -> FP!");
6265 assert(VT.isVector() == MemVT.isVector() &&
6266 "Cannot use an ext load to convert to or from a vector!");
6267 assert((!VT.isVector() ||
6268 VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6269 "Cannot use an ext load to change the number of vector elements!");
6270 }
6271
6272 bool Indexed = AM != ISD::UNINDEXED;
6273 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6274
6275 SDVTList VTs = Indexed ?
6276 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6277 SDValue Ops[] = { Chain, Ptr, Offset };
6278 FoldingSetNodeID ID;
6279 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6280 ID.AddInteger(MemVT.getRawBits());
6281 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6282 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6283 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6284 void *IP = nullptr;
6285 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6286 cast<LoadSDNode>(E)->refineAlignment(MMO);
6287 return SDValue(E, 0);
6288 }
6289 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6290 ExtType, MemVT, MMO);
6291 createOperands(N, Ops);
6292
6293 CSEMap.InsertNode(N, IP);
6294 InsertNode(N);
6295 SDValue V(N, 0);
6296 NewSDValueDbgMsg(V, "Creating new node: ", this);
6297 return V;
6298 }
6299
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges)6300 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6301 SDValue Ptr, MachinePointerInfo PtrInfo,
6302 unsigned Alignment,
6303 MachineMemOperand::Flags MMOFlags,
6304 const AAMDNodes &AAInfo, const MDNode *Ranges) {
6305 SDValue Undef = getUNDEF(Ptr.getValueType());
6306 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6307 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6308 }
6309
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO)6310 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6311 SDValue Ptr, MachineMemOperand *MMO) {
6312 SDValue Undef = getUNDEF(Ptr.getValueType());
6313 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6314 VT, MMO);
6315 }
6316
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,EVT MemVT,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)6317 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6318 EVT VT, SDValue Chain, SDValue Ptr,
6319 MachinePointerInfo PtrInfo, EVT MemVT,
6320 unsigned Alignment,
6321 MachineMemOperand::Flags MMOFlags,
6322 const AAMDNodes &AAInfo) {
6323 SDValue Undef = getUNDEF(Ptr.getValueType());
6324 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6325 MemVT, Alignment, MMOFlags, AAInfo);
6326 }
6327
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,EVT MemVT,MachineMemOperand * MMO)6328 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6329 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6330 MachineMemOperand *MMO) {
6331 SDValue Undef = getUNDEF(Ptr.getValueType());
6332 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6333 MemVT, MMO);
6334 }
6335
getIndexedLoad(SDValue OrigLoad,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)6336 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6337 SDValue Base, SDValue Offset,
6338 ISD::MemIndexedMode AM) {
6339 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6340 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6341 // Don't propagate the invariant or dereferenceable flags.
6342 auto MMOFlags =
6343 LD->getMemOperand()->getFlags() &
6344 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6345 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6346 LD->getChain(), Base, Offset, LD->getPointerInfo(),
6347 LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6348 LD->getAAInfo());
6349 }
6350
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)6351 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6352 SDValue Ptr, MachinePointerInfo PtrInfo,
6353 unsigned Alignment,
6354 MachineMemOperand::Flags MMOFlags,
6355 const AAMDNodes &AAInfo) {
6356 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6357 if (Alignment == 0) // Ensure that codegen never sees alignment 0
6358 Alignment = getEVTAlignment(Val.getValueType());
6359
6360 MMOFlags |= MachineMemOperand::MOStore;
6361 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6362
6363 if (PtrInfo.V.isNull())
6364 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6365
6366 MachineFunction &MF = getMachineFunction();
6367 MachineMemOperand *MMO = MF.getMachineMemOperand(
6368 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6369 return getStore(Chain, dl, Val, Ptr, MMO);
6370 }
6371
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachineMemOperand * MMO)6372 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6373 SDValue Ptr, MachineMemOperand *MMO) {
6374 assert(Chain.getValueType() == MVT::Other &&
6375 "Invalid chain type");
6376 EVT VT = Val.getValueType();
6377 SDVTList VTs = getVTList(MVT::Other);
6378 SDValue Undef = getUNDEF(Ptr.getValueType());
6379 SDValue Ops[] = { Chain, Val, Ptr, Undef };
6380 FoldingSetNodeID ID;
6381 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6382 ID.AddInteger(VT.getRawBits());
6383 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6384 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6385 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6386 void *IP = nullptr;
6387 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6388 cast<StoreSDNode>(E)->refineAlignment(MMO);
6389 return SDValue(E, 0);
6390 }
6391 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6392 ISD::UNINDEXED, false, VT, MMO);
6393 createOperands(N, Ops);
6394
6395 CSEMap.InsertNode(N, IP);
6396 InsertNode(N);
6397 SDValue V(N, 0);
6398 NewSDValueDbgMsg(V, "Creating new node: ", this);
6399 return V;
6400 }
6401
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,EVT SVT,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)6402 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6403 SDValue Ptr, MachinePointerInfo PtrInfo,
6404 EVT SVT, unsigned Alignment,
6405 MachineMemOperand::Flags MMOFlags,
6406 const AAMDNodes &AAInfo) {
6407 assert(Chain.getValueType() == MVT::Other &&
6408 "Invalid chain type");
6409 if (Alignment == 0) // Ensure that codegen never sees alignment 0
6410 Alignment = getEVTAlignment(SVT);
6411
6412 MMOFlags |= MachineMemOperand::MOStore;
6413 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6414
6415 if (PtrInfo.V.isNull())
6416 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6417
6418 MachineFunction &MF = getMachineFunction();
6419 MachineMemOperand *MMO = MF.getMachineMemOperand(
6420 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6421 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6422 }
6423
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,EVT SVT,MachineMemOperand * MMO)6424 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6425 SDValue Ptr, EVT SVT,
6426 MachineMemOperand *MMO) {
6427 EVT VT = Val.getValueType();
6428
6429 assert(Chain.getValueType() == MVT::Other &&
6430 "Invalid chain type");
6431 if (VT == SVT)
6432 return getStore(Chain, dl, Val, Ptr, MMO);
6433
6434 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6435 "Should only be a truncating store, not extending!");
6436 assert(VT.isInteger() == SVT.isInteger() &&
6437 "Can't do FP-INT conversion!");
6438 assert(VT.isVector() == SVT.isVector() &&
6439 "Cannot use trunc store to convert to or from a vector!");
6440 assert((!VT.isVector() ||
6441 VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6442 "Cannot use trunc store to change the number of vector elements!");
6443
6444 SDVTList VTs = getVTList(MVT::Other);
6445 SDValue Undef = getUNDEF(Ptr.getValueType());
6446 SDValue Ops[] = { Chain, Val, Ptr, Undef };
6447 FoldingSetNodeID ID;
6448 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6449 ID.AddInteger(SVT.getRawBits());
6450 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6451 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6452 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6453 void *IP = nullptr;
6454 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6455 cast<StoreSDNode>(E)->refineAlignment(MMO);
6456 return SDValue(E, 0);
6457 }
6458 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6459 ISD::UNINDEXED, true, SVT, MMO);
6460 createOperands(N, Ops);
6461
6462 CSEMap.InsertNode(N, IP);
6463 InsertNode(N);
6464 SDValue V(N, 0);
6465 NewSDValueDbgMsg(V, "Creating new node: ", this);
6466 return V;
6467 }
6468
getIndexedStore(SDValue OrigStore,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)6469 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6470 SDValue Base, SDValue Offset,
6471 ISD::MemIndexedMode AM) {
6472 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6473 assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6474 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6475 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6476 FoldingSetNodeID ID;
6477 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6478 ID.AddInteger(ST->getMemoryVT().getRawBits());
6479 ID.AddInteger(ST->getRawSubclassData());
6480 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6481 void *IP = nullptr;
6482 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6483 return SDValue(E, 0);
6484
6485 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6486 ST->isTruncatingStore(), ST->getMemoryVT(),
6487 ST->getMemOperand());
6488 createOperands(N, Ops);
6489
6490 CSEMap.InsertNode(N, IP);
6491 InsertNode(N);
6492 SDValue V(N, 0);
6493 NewSDValueDbgMsg(V, "Creating new node: ", this);
6494 return V;
6495 }
6496
getMaskedLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Mask,SDValue Src0,EVT MemVT,MachineMemOperand * MMO,ISD::LoadExtType ExtTy,bool isExpanding)6497 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6498 SDValue Ptr, SDValue Mask, SDValue Src0,
6499 EVT MemVT, MachineMemOperand *MMO,
6500 ISD::LoadExtType ExtTy, bool isExpanding) {
6501 SDVTList VTs = getVTList(VT, MVT::Other);
6502 SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
6503 FoldingSetNodeID ID;
6504 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6505 ID.AddInteger(VT.getRawBits());
6506 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6507 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6508 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6509 void *IP = nullptr;
6510 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6511 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6512 return SDValue(E, 0);
6513 }
6514 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6515 ExtTy, isExpanding, MemVT, MMO);
6516 createOperands(N, Ops);
6517
6518 CSEMap.InsertNode(N, IP);
6519 InsertNode(N);
6520 SDValue V(N, 0);
6521 NewSDValueDbgMsg(V, "Creating new node: ", this);
6522 return V;
6523 }
6524
getMaskedStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,SDValue Mask,EVT MemVT,MachineMemOperand * MMO,bool IsTruncating,bool IsCompressing)6525 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6526 SDValue Val, SDValue Ptr, SDValue Mask,
6527 EVT MemVT, MachineMemOperand *MMO,
6528 bool IsTruncating, bool IsCompressing) {
6529 assert(Chain.getValueType() == MVT::Other &&
6530 "Invalid chain type");
6531 EVT VT = Val.getValueType();
6532 SDVTList VTs = getVTList(MVT::Other);
6533 SDValue Ops[] = { Chain, Ptr, Mask, Val };
6534 FoldingSetNodeID ID;
6535 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6536 ID.AddInteger(VT.getRawBits());
6537 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6538 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6539 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6540 void *IP = nullptr;
6541 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6542 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6543 return SDValue(E, 0);
6544 }
6545 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6546 IsTruncating, IsCompressing, MemVT, MMO);
6547 createOperands(N, Ops);
6548
6549 CSEMap.InsertNode(N, IP);
6550 InsertNode(N);
6551 SDValue V(N, 0);
6552 NewSDValueDbgMsg(V, "Creating new node: ", this);
6553 return V;
6554 }
6555
getMaskedGather(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO)6556 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6557 ArrayRef<SDValue> Ops,
6558 MachineMemOperand *MMO) {
6559 assert(Ops.size() == 6 && "Incompatible number of operands");
6560
6561 FoldingSetNodeID ID;
6562 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6563 ID.AddInteger(VT.getRawBits());
6564 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6565 dl.getIROrder(), VTs, VT, MMO));
6566 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6567 void *IP = nullptr;
6568 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6569 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6570 return SDValue(E, 0);
6571 }
6572
6573 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6574 VTs, VT, MMO);
6575 createOperands(N, Ops);
6576
6577 assert(N->getValue().getValueType() == N->getValueType(0) &&
6578 "Incompatible type of the PassThru value in MaskedGatherSDNode");
6579 assert(N->getMask().getValueType().getVectorNumElements() ==
6580 N->getValueType(0).getVectorNumElements() &&
6581 "Vector width mismatch between mask and data");
6582 assert(N->getIndex().getValueType().getVectorNumElements() ==
6583 N->getValueType(0).getVectorNumElements() &&
6584 "Vector width mismatch between index and data");
6585 assert(isa<ConstantSDNode>(N->getScale()) &&
6586 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6587 "Scale should be a constant power of 2");
6588
6589 CSEMap.InsertNode(N, IP);
6590 InsertNode(N);
6591 SDValue V(N, 0);
6592 NewSDValueDbgMsg(V, "Creating new node: ", this);
6593 return V;
6594 }
6595
getMaskedScatter(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO)6596 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6597 ArrayRef<SDValue> Ops,
6598 MachineMemOperand *MMO) {
6599 assert(Ops.size() == 6 && "Incompatible number of operands");
6600
6601 FoldingSetNodeID ID;
6602 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6603 ID.AddInteger(VT.getRawBits());
6604 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6605 dl.getIROrder(), VTs, VT, MMO));
6606 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6607 void *IP = nullptr;
6608 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6609 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6610 return SDValue(E, 0);
6611 }
6612 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6613 VTs, VT, MMO);
6614 createOperands(N, Ops);
6615
6616 assert(N->getMask().getValueType().getVectorNumElements() ==
6617 N->getValue().getValueType().getVectorNumElements() &&
6618 "Vector width mismatch between mask and data");
6619 assert(N->getIndex().getValueType().getVectorNumElements() ==
6620 N->getValue().getValueType().getVectorNumElements() &&
6621 "Vector width mismatch between index and data");
6622 assert(isa<ConstantSDNode>(N->getScale()) &&
6623 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6624 "Scale should be a constant power of 2");
6625
6626 CSEMap.InsertNode(N, IP);
6627 InsertNode(N);
6628 SDValue V(N, 0);
6629 NewSDValueDbgMsg(V, "Creating new node: ", this);
6630 return V;
6631 }
6632
getVAArg(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue SV,unsigned Align)6633 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
6634 SDValue Ptr, SDValue SV, unsigned Align) {
6635 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
6636 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
6637 }
6638
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDUse> Ops)6639 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6640 ArrayRef<SDUse> Ops) {
6641 switch (Ops.size()) {
6642 case 0: return getNode(Opcode, DL, VT);
6643 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
6644 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
6645 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6646 default: break;
6647 }
6648
6649 // Copy from an SDUse array into an SDValue array for use with
6650 // the regular getNode logic.
6651 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
6652 return getNode(Opcode, DL, VT, NewOps);
6653 }
6654
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)6655 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6656 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
6657 unsigned NumOps = Ops.size();
6658 switch (NumOps) {
6659 case 0: return getNode(Opcode, DL, VT);
6660 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
6661 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
6662 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6663 default: break;
6664 }
6665
6666 switch (Opcode) {
6667 default: break;
6668 case ISD::CONCAT_VECTORS:
6669 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
6670 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
6671 return V;
6672 break;
6673 case ISD::SELECT_CC:
6674 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
6675 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
6676 "LHS and RHS of condition must have same type!");
6677 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6678 "True and False arms of SelectCC must have same type!");
6679 assert(Ops[2].getValueType() == VT &&
6680 "select_cc node must be of same type as true and false value!");
6681 break;
6682 case ISD::BR_CC:
6683 assert(NumOps == 5 && "BR_CC takes 5 operands!");
6684 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6685 "LHS/RHS of comparison should match types!");
6686 break;
6687 }
6688
6689 // Memoize nodes.
6690 SDNode *N;
6691 SDVTList VTs = getVTList(VT);
6692
6693 if (VT != MVT::Glue) {
6694 FoldingSetNodeID ID;
6695 AddNodeIDNode(ID, Opcode, VTs, Ops);
6696 void *IP = nullptr;
6697
6698 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6699 return SDValue(E, 0);
6700
6701 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6702 createOperands(N, Ops);
6703
6704 CSEMap.InsertNode(N, IP);
6705 } else {
6706 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6707 createOperands(N, Ops);
6708 }
6709
6710 InsertNode(N);
6711 SDValue V(N, 0);
6712 NewSDValueDbgMsg(V, "Creating new node: ", this);
6713 return V;
6714 }
6715
getNode(unsigned Opcode,const SDLoc & DL,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)6716 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6717 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
6718 return getNode(Opcode, DL, getVTList(ResultTys), Ops);
6719 }
6720
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,ArrayRef<SDValue> Ops)6721 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6722 ArrayRef<SDValue> Ops) {
6723 if (VTList.NumVTs == 1)
6724 return getNode(Opcode, DL, VTList.VTs[0], Ops);
6725
6726 #if 0
6727 switch (Opcode) {
6728 // FIXME: figure out how to safely handle things like
6729 // int foo(int x) { return 1 << (x & 255); }
6730 // int bar() { return foo(256); }
6731 case ISD::SRA_PARTS:
6732 case ISD::SRL_PARTS:
6733 case ISD::SHL_PARTS:
6734 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
6735 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
6736 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6737 else if (N3.getOpcode() == ISD::AND)
6738 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
6739 // If the and is only masking out bits that cannot effect the shift,
6740 // eliminate the and.
6741 unsigned NumBits = VT.getScalarSizeInBits()*2;
6742 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
6743 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6744 }
6745 break;
6746 }
6747 #endif
6748
6749 // Memoize the node unless it returns a flag.
6750 SDNode *N;
6751 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6752 FoldingSetNodeID ID;
6753 AddNodeIDNode(ID, Opcode, VTList, Ops);
6754 void *IP = nullptr;
6755 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6756 return SDValue(E, 0);
6757
6758 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6759 createOperands(N, Ops);
6760 CSEMap.InsertNode(N, IP);
6761 } else {
6762 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6763 createOperands(N, Ops);
6764 }
6765 InsertNode(N);
6766 SDValue V(N, 0);
6767 NewSDValueDbgMsg(V, "Creating new node: ", this);
6768 return V;
6769 }
6770
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList)6771 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6772 SDVTList VTList) {
6773 return getNode(Opcode, DL, VTList, None);
6774 }
6775
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1)6776 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6777 SDValue N1) {
6778 SDValue Ops[] = { N1 };
6779 return getNode(Opcode, DL, VTList, Ops);
6780 }
6781
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2)6782 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6783 SDValue N1, SDValue N2) {
6784 SDValue Ops[] = { N1, N2 };
6785 return getNode(Opcode, DL, VTList, Ops);
6786 }
6787
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3)6788 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6789 SDValue N1, SDValue N2, SDValue N3) {
6790 SDValue Ops[] = { N1, N2, N3 };
6791 return getNode(Opcode, DL, VTList, Ops);
6792 }
6793
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4)6794 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6795 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6796 SDValue Ops[] = { N1, N2, N3, N4 };
6797 return getNode(Opcode, DL, VTList, Ops);
6798 }
6799
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)6800 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6801 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6802 SDValue N5) {
6803 SDValue Ops[] = { N1, N2, N3, N4, N5 };
6804 return getNode(Opcode, DL, VTList, Ops);
6805 }
6806
getVTList(EVT VT)6807 SDVTList SelectionDAG::getVTList(EVT VT) {
6808 return makeVTList(SDNode::getValueTypeList(VT), 1);
6809 }
6810
getVTList(EVT VT1,EVT VT2)6811 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
6812 FoldingSetNodeID ID;
6813 ID.AddInteger(2U);
6814 ID.AddInteger(VT1.getRawBits());
6815 ID.AddInteger(VT2.getRawBits());
6816
6817 void *IP = nullptr;
6818 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6819 if (!Result) {
6820 EVT *Array = Allocator.Allocate<EVT>(2);
6821 Array[0] = VT1;
6822 Array[1] = VT2;
6823 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
6824 VTListMap.InsertNode(Result, IP);
6825 }
6826 return Result->getSDVTList();
6827 }
6828
getVTList(EVT VT1,EVT VT2,EVT VT3)6829 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
6830 FoldingSetNodeID ID;
6831 ID.AddInteger(3U);
6832 ID.AddInteger(VT1.getRawBits());
6833 ID.AddInteger(VT2.getRawBits());
6834 ID.AddInteger(VT3.getRawBits());
6835
6836 void *IP = nullptr;
6837 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6838 if (!Result) {
6839 EVT *Array = Allocator.Allocate<EVT>(3);
6840 Array[0] = VT1;
6841 Array[1] = VT2;
6842 Array[2] = VT3;
6843 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
6844 VTListMap.InsertNode(Result, IP);
6845 }
6846 return Result->getSDVTList();
6847 }
6848
getVTList(EVT VT1,EVT VT2,EVT VT3,EVT VT4)6849 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
6850 FoldingSetNodeID ID;
6851 ID.AddInteger(4U);
6852 ID.AddInteger(VT1.getRawBits());
6853 ID.AddInteger(VT2.getRawBits());
6854 ID.AddInteger(VT3.getRawBits());
6855 ID.AddInteger(VT4.getRawBits());
6856
6857 void *IP = nullptr;
6858 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6859 if (!Result) {
6860 EVT *Array = Allocator.Allocate<EVT>(4);
6861 Array[0] = VT1;
6862 Array[1] = VT2;
6863 Array[2] = VT3;
6864 Array[3] = VT4;
6865 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
6866 VTListMap.InsertNode(Result, IP);
6867 }
6868 return Result->getSDVTList();
6869 }
6870
getVTList(ArrayRef<EVT> VTs)6871 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
6872 unsigned NumVTs = VTs.size();
6873 FoldingSetNodeID ID;
6874 ID.AddInteger(NumVTs);
6875 for (unsigned index = 0; index < NumVTs; index++) {
6876 ID.AddInteger(VTs[index].getRawBits());
6877 }
6878
6879 void *IP = nullptr;
6880 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6881 if (!Result) {
6882 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
6883 std::copy(VTs.begin(), VTs.end(), Array);
6884 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
6885 VTListMap.InsertNode(Result, IP);
6886 }
6887 return Result->getSDVTList();
6888 }
6889
6890
6891 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
6892 /// specified operands. If the resultant node already exists in the DAG,
6893 /// this does not modify the specified node, instead it returns the node that
6894 /// already exists. If the resultant node does not exist in the DAG, the
6895 /// input node is returned. As a degenerate case, if you specify the same
6896 /// input operands as the node already has, the input node is returned.
UpdateNodeOperands(SDNode * N,SDValue Op)6897 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
6898 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
6899
6900 // Check to see if there is no change.
6901 if (Op == N->getOperand(0)) return N;
6902
6903 // See if the modified node already exists.
6904 void *InsertPos = nullptr;
6905 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
6906 return Existing;
6907
6908 // Nope it doesn't. Remove the node from its current place in the maps.
6909 if (InsertPos)
6910 if (!RemoveNodeFromCSEMaps(N))
6911 InsertPos = nullptr;
6912
6913 // Now we update the operands.
6914 N->OperandList[0].set(Op);
6915
6916 updateDivergence(N);
6917 // If this gets put into a CSE map, add it.
6918 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6919 return N;
6920 }
6921
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2)6922 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
6923 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
6924
6925 // Check to see if there is no change.
6926 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
6927 return N; // No operands changed, just return the input node.
6928
6929 // See if the modified node already exists.
6930 void *InsertPos = nullptr;
6931 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
6932 return Existing;
6933
6934 // Nope it doesn't. Remove the node from its current place in the maps.
6935 if (InsertPos)
6936 if (!RemoveNodeFromCSEMaps(N))
6937 InsertPos = nullptr;
6938
6939 // Now we update the operands.
6940 if (N->OperandList[0] != Op1)
6941 N->OperandList[0].set(Op1);
6942 if (N->OperandList[1] != Op2)
6943 N->OperandList[1].set(Op2);
6944
6945 updateDivergence(N);
6946 // If this gets put into a CSE map, add it.
6947 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6948 return N;
6949 }
6950
6951 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3)6952 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
6953 SDValue Ops[] = { Op1, Op2, Op3 };
6954 return UpdateNodeOperands(N, Ops);
6955 }
6956
6957 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4)6958 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6959 SDValue Op3, SDValue Op4) {
6960 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
6961 return UpdateNodeOperands(N, Ops);
6962 }
6963
6964 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4,SDValue Op5)6965 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6966 SDValue Op3, SDValue Op4, SDValue Op5) {
6967 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
6968 return UpdateNodeOperands(N, Ops);
6969 }
6970
6971 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,ArrayRef<SDValue> Ops)6972 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
6973 unsigned NumOps = Ops.size();
6974 assert(N->getNumOperands() == NumOps &&
6975 "Update with wrong number of operands");
6976
6977 // If no operands changed just return the input node.
6978 if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
6979 return N;
6980
6981 // See if the modified node already exists.
6982 void *InsertPos = nullptr;
6983 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
6984 return Existing;
6985
6986 // Nope it doesn't. Remove the node from its current place in the maps.
6987 if (InsertPos)
6988 if (!RemoveNodeFromCSEMaps(N))
6989 InsertPos = nullptr;
6990
6991 // Now we update the operands.
6992 for (unsigned i = 0; i != NumOps; ++i)
6993 if (N->OperandList[i] != Ops[i])
6994 N->OperandList[i].set(Ops[i]);
6995
6996 updateDivergence(N);
6997 // If this gets put into a CSE map, add it.
6998 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6999 return N;
7000 }
7001
7002 /// DropOperands - Release the operands and set this node to have
7003 /// zero operands.
DropOperands()7004 void SDNode::DropOperands() {
7005 // Unlike the code in MorphNodeTo that does this, we don't need to
7006 // watch for dead nodes here.
7007 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7008 SDUse &Use = *I++;
7009 Use.set(SDValue());
7010 }
7011 }
7012
7013 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7014 /// machine opcode.
7015 ///
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT)7016 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7017 EVT VT) {
7018 SDVTList VTs = getVTList(VT);
7019 return SelectNodeTo(N, MachineOpc, VTs, None);
7020 }
7021
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1)7022 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7023 EVT VT, SDValue Op1) {
7024 SDVTList VTs = getVTList(VT);
7025 SDValue Ops[] = { Op1 };
7026 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7027 }
7028
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2)7029 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7030 EVT VT, SDValue Op1,
7031 SDValue Op2) {
7032 SDVTList VTs = getVTList(VT);
7033 SDValue Ops[] = { Op1, Op2 };
7034 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7035 }
7036
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)7037 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7038 EVT VT, SDValue Op1,
7039 SDValue Op2, SDValue Op3) {
7040 SDVTList VTs = getVTList(VT);
7041 SDValue Ops[] = { Op1, Op2, Op3 };
7042 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7043 }
7044
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,ArrayRef<SDValue> Ops)7045 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7046 EVT VT, ArrayRef<SDValue> Ops) {
7047 SDVTList VTs = getVTList(VT);
7048 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7049 }
7050
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)7051 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7052 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7053 SDVTList VTs = getVTList(VT1, VT2);
7054 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7055 }
7056
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2)7057 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7058 EVT VT1, EVT VT2) {
7059 SDVTList VTs = getVTList(VT1, VT2);
7060 return SelectNodeTo(N, MachineOpc, VTs, None);
7061 }
7062
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)7063 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7064 EVT VT1, EVT VT2, EVT VT3,
7065 ArrayRef<SDValue> Ops) {
7066 SDVTList VTs = getVTList(VT1, VT2, VT3);
7067 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7068 }
7069
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)7070 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7071 EVT VT1, EVT VT2,
7072 SDValue Op1, SDValue Op2) {
7073 SDVTList VTs = getVTList(VT1, VT2);
7074 SDValue Ops[] = { Op1, Op2 };
7075 return SelectNodeTo(N, MachineOpc, VTs, Ops);
7076 }
7077
SelectNodeTo(SDNode * N,unsigned MachineOpc,SDVTList VTs,ArrayRef<SDValue> Ops)7078 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7079 SDVTList VTs,ArrayRef<SDValue> Ops) {
7080 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7081 // Reset the NodeID to -1.
7082 New->setNodeId(-1);
7083 if (New != N) {
7084 ReplaceAllUsesWith(N, New);
7085 RemoveDeadNode(N);
7086 }
7087 return New;
7088 }
7089
7090 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7091 /// the line number information on the merged node since it is not possible to
7092 /// preserve the information that operation is associated with multiple lines.
7093 /// This will make the debugger working better at -O0, were there is a higher
7094 /// probability having other instructions associated with that line.
7095 ///
7096 /// For IROrder, we keep the smaller of the two
UpdateSDLocOnMergeSDNode(SDNode * N,const SDLoc & OLoc)7097 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7098 DebugLoc NLoc = N->getDebugLoc();
7099 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7100 N->setDebugLoc(DebugLoc());
7101 }
7102 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7103 N->setIROrder(Order);
7104 return N;
7105 }
7106
7107 /// MorphNodeTo - This *mutates* the specified node to have the specified
7108 /// return type, opcode, and operands.
7109 ///
7110 /// Note that MorphNodeTo returns the resultant node. If there is already a
7111 /// node of the specified opcode and operands, it returns that node instead of
7112 /// the current one. Note that the SDLoc need not be the same.
7113 ///
7114 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7115 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7116 /// node, and because it doesn't require CSE recalculation for any of
7117 /// the node's users.
7118 ///
7119 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7120 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7121 /// the legalizer which maintain worklists that would need to be updated when
7122 /// deleting things.
MorphNodeTo(SDNode * N,unsigned Opc,SDVTList VTs,ArrayRef<SDValue> Ops)7123 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7124 SDVTList VTs, ArrayRef<SDValue> Ops) {
7125 // If an identical node already exists, use it.
7126 void *IP = nullptr;
7127 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7128 FoldingSetNodeID ID;
7129 AddNodeIDNode(ID, Opc, VTs, Ops);
7130 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7131 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7132 }
7133
7134 if (!RemoveNodeFromCSEMaps(N))
7135 IP = nullptr;
7136
7137 // Start the morphing.
7138 N->NodeType = Opc;
7139 N->ValueList = VTs.VTs;
7140 N->NumValues = VTs.NumVTs;
7141
7142 // Clear the operands list, updating used nodes to remove this from their
7143 // use list. Keep track of any operands that become dead as a result.
7144 SmallPtrSet<SDNode*, 16> DeadNodeSet;
7145 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7146 SDUse &Use = *I++;
7147 SDNode *Used = Use.getNode();
7148 Use.set(SDValue());
7149 if (Used->use_empty())
7150 DeadNodeSet.insert(Used);
7151 }
7152
7153 // For MachineNode, initialize the memory references information.
7154 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7155 MN->setMemRefs(nullptr, nullptr);
7156
7157 // Swap for an appropriately sized array from the recycler.
7158 removeOperands(N);
7159 createOperands(N, Ops);
7160
7161 // Delete any nodes that are still dead after adding the uses for the
7162 // new operands.
7163 if (!DeadNodeSet.empty()) {
7164 SmallVector<SDNode *, 16> DeadNodes;
7165 for (SDNode *N : DeadNodeSet)
7166 if (N->use_empty())
7167 DeadNodes.push_back(N);
7168 RemoveDeadNodes(DeadNodes);
7169 }
7170
7171 if (IP)
7172 CSEMap.InsertNode(N, IP); // Memoize the new node.
7173 return N;
7174 }
7175
mutateStrictFPToFP(SDNode * Node)7176 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7177 unsigned OrigOpc = Node->getOpcode();
7178 unsigned NewOpc;
7179 bool IsUnary = false;
7180 bool IsTernary = false;
7181 switch (OrigOpc) {
7182 default:
7183 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7184 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
7185 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
7186 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
7187 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
7188 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
7189 case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
7190 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
7191 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
7192 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
7193 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
7194 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
7195 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
7196 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
7197 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
7198 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
7199 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
7200 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
7201 case ISD::STRICT_FNEARBYINT:
7202 NewOpc = ISD::FNEARBYINT;
7203 IsUnary = true;
7204 break;
7205 }
7206
7207 // We're taking this node out of the chain, so we need to re-link things.
7208 SDValue InputChain = Node->getOperand(0);
7209 SDValue OutputChain = SDValue(Node, 1);
7210 ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7211
7212 SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
7213 SDNode *Res = nullptr;
7214 if (IsUnary)
7215 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
7216 else if (IsTernary)
7217 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7218 Node->getOperand(2),
7219 Node->getOperand(3)});
7220 else
7221 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7222 Node->getOperand(2) });
7223
7224 // MorphNodeTo can operate in two ways: if an existing node with the
7225 // specified operands exists, it can just return it. Otherwise, it
7226 // updates the node in place to have the requested operands.
7227 if (Res == Node) {
7228 // If we updated the node in place, reset the node ID. To the isel,
7229 // this should be just like a newly allocated machine node.
7230 Res->setNodeId(-1);
7231 } else {
7232 ReplaceAllUsesWith(Node, Res);
7233 RemoveDeadNode(Node);
7234 }
7235
7236 return Res;
7237 }
7238
7239 /// getMachineNode - These are used for target selectors to create a new node
7240 /// with specified return type(s), MachineInstr opcode, and operands.
7241 ///
7242 /// Note that getMachineNode returns the resultant node. If there is already a
7243 /// node of the specified opcode and operands, it returns that node instead of
7244 /// the current one.
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT)7245 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7246 EVT VT) {
7247 SDVTList VTs = getVTList(VT);
7248 return getMachineNode(Opcode, dl, VTs, None);
7249 }
7250
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1)7251 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7252 EVT VT, SDValue Op1) {
7253 SDVTList VTs = getVTList(VT);
7254 SDValue Ops[] = { Op1 };
7255 return getMachineNode(Opcode, dl, VTs, Ops);
7256 }
7257
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2)7258 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7259 EVT VT, SDValue Op1, SDValue Op2) {
7260 SDVTList VTs = getVTList(VT);
7261 SDValue Ops[] = { Op1, Op2 };
7262 return getMachineNode(Opcode, dl, VTs, Ops);
7263 }
7264
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)7265 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7266 EVT VT, SDValue Op1, SDValue Op2,
7267 SDValue Op3) {
7268 SDVTList VTs = getVTList(VT);
7269 SDValue Ops[] = { Op1, Op2, Op3 };
7270 return getMachineNode(Opcode, dl, VTs, Ops);
7271 }
7272
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,ArrayRef<SDValue> Ops)7273 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7274 EVT VT, ArrayRef<SDValue> Ops) {
7275 SDVTList VTs = getVTList(VT);
7276 return getMachineNode(Opcode, dl, VTs, Ops);
7277 }
7278
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)7279 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7280 EVT VT1, EVT VT2, SDValue Op1,
7281 SDValue Op2) {
7282 SDVTList VTs = getVTList(VT1, VT2);
7283 SDValue Ops[] = { Op1, Op2 };
7284 return getMachineNode(Opcode, dl, VTs, Ops);
7285 }
7286
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2,SDValue Op3)7287 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7288 EVT VT1, EVT VT2, SDValue Op1,
7289 SDValue Op2, SDValue Op3) {
7290 SDVTList VTs = getVTList(VT1, VT2);
7291 SDValue Ops[] = { Op1, Op2, Op3 };
7292 return getMachineNode(Opcode, dl, VTs, Ops);
7293 }
7294
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)7295 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7296 EVT VT1, EVT VT2,
7297 ArrayRef<SDValue> Ops) {
7298 SDVTList VTs = getVTList(VT1, VT2);
7299 return getMachineNode(Opcode, dl, VTs, Ops);
7300 }
7301
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2)7302 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7303 EVT VT1, EVT VT2, EVT VT3,
7304 SDValue Op1, SDValue Op2) {
7305 SDVTList VTs = getVTList(VT1, VT2, VT3);
7306 SDValue Ops[] = { Op1, Op2 };
7307 return getMachineNode(Opcode, dl, VTs, Ops);
7308 }
7309
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2,SDValue Op3)7310 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7311 EVT VT1, EVT VT2, EVT VT3,
7312 SDValue Op1, SDValue Op2,
7313 SDValue Op3) {
7314 SDVTList VTs = getVTList(VT1, VT2, VT3);
7315 SDValue Ops[] = { Op1, Op2, Op3 };
7316 return getMachineNode(Opcode, dl, VTs, Ops);
7317 }
7318
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)7319 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7320 EVT VT1, EVT VT2, EVT VT3,
7321 ArrayRef<SDValue> Ops) {
7322 SDVTList VTs = getVTList(VT1, VT2, VT3);
7323 return getMachineNode(Opcode, dl, VTs, Ops);
7324 }
7325
getMachineNode(unsigned Opcode,const SDLoc & dl,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)7326 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7327 ArrayRef<EVT> ResultTys,
7328 ArrayRef<SDValue> Ops) {
7329 SDVTList VTs = getVTList(ResultTys);
7330 return getMachineNode(Opcode, dl, VTs, Ops);
7331 }
7332
getMachineNode(unsigned Opcode,const SDLoc & DL,SDVTList VTs,ArrayRef<SDValue> Ops)7333 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7334 SDVTList VTs,
7335 ArrayRef<SDValue> Ops) {
7336 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7337 MachineSDNode *N;
7338 void *IP = nullptr;
7339
7340 if (DoCSE) {
7341 FoldingSetNodeID ID;
7342 AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7343 IP = nullptr;
7344 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7345 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7346 }
7347 }
7348
7349 // Allocate a new MachineSDNode.
7350 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7351 createOperands(N, Ops);
7352
7353 if (DoCSE)
7354 CSEMap.InsertNode(N, IP);
7355
7356 InsertNode(N);
7357 return N;
7358 }
7359
7360 /// getTargetExtractSubreg - A convenience function for creating
7361 /// TargetOpcode::EXTRACT_SUBREG nodes.
getTargetExtractSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand)7362 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7363 SDValue Operand) {
7364 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7365 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7366 VT, Operand, SRIdxVal);
7367 return SDValue(Subreg, 0);
7368 }
7369
7370 /// getTargetInsertSubreg - A convenience function for creating
7371 /// TargetOpcode::INSERT_SUBREG nodes.
getTargetInsertSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand,SDValue Subreg)7372 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7373 SDValue Operand, SDValue Subreg) {
7374 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7375 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7376 VT, Operand, Subreg, SRIdxVal);
7377 return SDValue(Result, 0);
7378 }
7379
7380 /// getNodeIfExists - Get the specified node if it's already available, or
7381 /// else return NULL.
getNodeIfExists(unsigned Opcode,SDVTList VTList,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)7382 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7383 ArrayRef<SDValue> Ops,
7384 const SDNodeFlags Flags) {
7385 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7386 FoldingSetNodeID ID;
7387 AddNodeIDNode(ID, Opcode, VTList, Ops);
7388 void *IP = nullptr;
7389 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7390 E->intersectFlagsWith(Flags);
7391 return E;
7392 }
7393 }
7394 return nullptr;
7395 }
7396
7397 /// getDbgValue - Creates a SDDbgValue node.
7398 ///
7399 /// SDNode
getDbgValue(DIVariable * Var,DIExpression * Expr,SDNode * N,unsigned R,bool IsIndirect,const DebugLoc & DL,unsigned O)7400 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7401 SDNode *N, unsigned R, bool IsIndirect,
7402 const DebugLoc &DL, unsigned O) {
7403 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7404 "Expected inlined-at fields to agree");
7405 return new (DbgInfo->getAlloc())
7406 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7407 }
7408
7409 /// Constant
getConstantDbgValue(DIVariable * Var,DIExpression * Expr,const Value * C,const DebugLoc & DL,unsigned O)7410 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7411 DIExpression *Expr,
7412 const Value *C,
7413 const DebugLoc &DL, unsigned O) {
7414 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7415 "Expected inlined-at fields to agree");
7416 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7417 }
7418
7419 /// FrameIndex
getFrameIndexDbgValue(DIVariable * Var,DIExpression * Expr,unsigned FI,bool IsIndirect,const DebugLoc & DL,unsigned O)7420 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7421 DIExpression *Expr, unsigned FI,
7422 bool IsIndirect,
7423 const DebugLoc &DL,
7424 unsigned O) {
7425 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7426 "Expected inlined-at fields to agree");
7427 return new (DbgInfo->getAlloc())
7428 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7429 }
7430
7431 /// VReg
getVRegDbgValue(DIVariable * Var,DIExpression * Expr,unsigned VReg,bool IsIndirect,const DebugLoc & DL,unsigned O)7432 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7433 DIExpression *Expr,
7434 unsigned VReg, bool IsIndirect,
7435 const DebugLoc &DL, unsigned O) {
7436 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7437 "Expected inlined-at fields to agree");
7438 return new (DbgInfo->getAlloc())
7439 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7440 }
7441
transferDbgValues(SDValue From,SDValue To,unsigned OffsetInBits,unsigned SizeInBits,bool InvalidateDbg)7442 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7443 unsigned OffsetInBits, unsigned SizeInBits,
7444 bool InvalidateDbg) {
7445 SDNode *FromNode = From.getNode();
7446 SDNode *ToNode = To.getNode();
7447 assert(FromNode && ToNode && "Can't modify dbg values");
7448
7449 // PR35338
7450 // TODO: assert(From != To && "Redundant dbg value transfer");
7451 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7452 if (From == To || FromNode == ToNode)
7453 return;
7454
7455 if (!FromNode->getHasDebugValue())
7456 return;
7457
7458 SmallVector<SDDbgValue *, 2> ClonedDVs;
7459 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
7460 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
7461 continue;
7462
7463 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7464
7465 // Just transfer the dbg value attached to From.
7466 if (Dbg->getResNo() != From.getResNo())
7467 continue;
7468
7469 DIVariable *Var = Dbg->getVariable();
7470 auto *Expr = Dbg->getExpression();
7471 // If a fragment is requested, update the expression.
7472 if (SizeInBits) {
7473 // When splitting a larger (e.g., sign-extended) value whose
7474 // lower bits are described with an SDDbgValue, do not attempt
7475 // to transfer the SDDbgValue to the upper bits.
7476 if (auto FI = Expr->getFragmentInfo())
7477 if (OffsetInBits + SizeInBits > FI->SizeInBits)
7478 continue;
7479 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
7480 SizeInBits);
7481 if (!Fragment)
7482 continue;
7483 Expr = *Fragment;
7484 }
7485 // Clone the SDDbgValue and move it to To.
7486 SDDbgValue *Clone =
7487 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
7488 Dbg->getDebugLoc(), Dbg->getOrder());
7489 ClonedDVs.push_back(Clone);
7490
7491 if (InvalidateDbg)
7492 Dbg->setIsInvalidated();
7493 }
7494
7495 for (SDDbgValue *Dbg : ClonedDVs)
7496 AddDbgValue(Dbg, ToNode, false);
7497 }
7498
salvageDebugInfo(SDNode & N)7499 void SelectionDAG::salvageDebugInfo(SDNode &N) {
7500 if (!N.getHasDebugValue())
7501 return;
7502
7503 SmallVector<SDDbgValue *, 2> ClonedDVs;
7504 for (auto DV : GetDbgValues(&N)) {
7505 if (DV->isInvalidated())
7506 continue;
7507 switch (N.getOpcode()) {
7508 default:
7509 break;
7510 case ISD::ADD:
7511 SDValue N0 = N.getOperand(0);
7512 SDValue N1 = N.getOperand(1);
7513 if (!isConstantIntBuildVectorOrConstantInt(N0) &&
7514 isConstantIntBuildVectorOrConstantInt(N1)) {
7515 uint64_t Offset = N.getConstantOperandVal(1);
7516 // Rewrite an ADD constant node into a DIExpression. Since we are
7517 // performing arithmetic to compute the variable's *value* in the
7518 // DIExpression, we need to mark the expression with a
7519 // DW_OP_stack_value.
7520 auto *DIExpr = DV->getExpression();
7521 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
7522 DIExpression::NoDeref,
7523 DIExpression::WithStackValue);
7524 SDDbgValue *Clone =
7525 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
7526 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
7527 ClonedDVs.push_back(Clone);
7528 DV->setIsInvalidated();
7529 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
7530 N0.getNode()->dumprFull(this);
7531 dbgs() << " into " << *DIExpr << '\n');
7532 }
7533 }
7534 }
7535
7536 for (SDDbgValue *Dbg : ClonedDVs)
7537 AddDbgValue(Dbg, Dbg->getSDNode(), false);
7538 }
7539
7540 /// Creates a SDDbgLabel node.
getDbgLabel(DILabel * Label,const DebugLoc & DL,unsigned O)7541 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
7542 const DebugLoc &DL, unsigned O) {
7543 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
7544 "Expected inlined-at fields to agree");
7545 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
7546 }
7547
7548 namespace {
7549
7550 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
7551 /// pointed to by a use iterator is deleted, increment the use iterator
7552 /// so that it doesn't dangle.
7553 ///
7554 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
7555 SDNode::use_iterator &UI;
7556 SDNode::use_iterator &UE;
7557
NodeDeleted(SDNode * N,SDNode * E)7558 void NodeDeleted(SDNode *N, SDNode *E) override {
7559 // Increment the iterator as needed.
7560 while (UI != UE && N == *UI)
7561 ++UI;
7562 }
7563
7564 public:
RAUWUpdateListener(SelectionDAG & d,SDNode::use_iterator & ui,SDNode::use_iterator & ue)7565 RAUWUpdateListener(SelectionDAG &d,
7566 SDNode::use_iterator &ui,
7567 SDNode::use_iterator &ue)
7568 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
7569 };
7570
7571 } // end anonymous namespace
7572
7573 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7574 /// This can cause recursive merging of nodes in the DAG.
7575 ///
7576 /// This version assumes From has a single result value.
7577 ///
ReplaceAllUsesWith(SDValue FromN,SDValue To)7578 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
7579 SDNode *From = FromN.getNode();
7580 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
7581 "Cannot replace with this method!");
7582 assert(From != To.getNode() && "Cannot replace uses of with self");
7583
7584 // Preserve Debug Values
7585 transferDbgValues(FromN, To);
7586
7587 // Iterate over all the existing uses of From. New uses will be added
7588 // to the beginning of the use list, which we avoid visiting.
7589 // This specifically avoids visiting uses of From that arise while the
7590 // replacement is happening, because any such uses would be the result
7591 // of CSE: If an existing node looks like From after one of its operands
7592 // is replaced by To, we don't want to replace of all its users with To
7593 // too. See PR3018 for more info.
7594 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7595 RAUWUpdateListener Listener(*this, UI, UE);
7596 while (UI != UE) {
7597 SDNode *User = *UI;
7598
7599 // This node is about to morph, remove its old self from the CSE maps.
7600 RemoveNodeFromCSEMaps(User);
7601
7602 // A user can appear in a use list multiple times, and when this
7603 // happens the uses are usually next to each other in the list.
7604 // To help reduce the number of CSE recomputations, process all
7605 // the uses of this user that we can find this way.
7606 do {
7607 SDUse &Use = UI.getUse();
7608 ++UI;
7609 Use.set(To);
7610 if (To->isDivergent() != From->isDivergent())
7611 updateDivergence(User);
7612 } while (UI != UE && *UI == User);
7613 // Now that we have modified User, add it back to the CSE maps. If it
7614 // already exists there, recursively merge the results together.
7615 AddModifiedNodeToCSEMaps(User);
7616 }
7617
7618 // If we just RAUW'd the root, take note.
7619 if (FromN == getRoot())
7620 setRoot(To);
7621 }
7622
7623 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7624 /// This can cause recursive merging of nodes in the DAG.
7625 ///
7626 /// This version assumes that for each value of From, there is a
7627 /// corresponding value in To in the same position with the same type.
7628 ///
ReplaceAllUsesWith(SDNode * From,SDNode * To)7629 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
7630 #ifndef NDEBUG
7631 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7632 assert((!From->hasAnyUseOfValue(i) ||
7633 From->getValueType(i) == To->getValueType(i)) &&
7634 "Cannot use this version of ReplaceAllUsesWith!");
7635 #endif
7636
7637 // Handle the trivial case.
7638 if (From == To)
7639 return;
7640
7641 // Preserve Debug Info. Only do this if there's a use.
7642 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7643 if (From->hasAnyUseOfValue(i)) {
7644 assert((i < To->getNumValues()) && "Invalid To location");
7645 transferDbgValues(SDValue(From, i), SDValue(To, i));
7646 }
7647
7648 // Iterate over just the existing users of From. See the comments in
7649 // the ReplaceAllUsesWith above.
7650 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7651 RAUWUpdateListener Listener(*this, UI, UE);
7652 while (UI != UE) {
7653 SDNode *User = *UI;
7654
7655 // This node is about to morph, remove its old self from the CSE maps.
7656 RemoveNodeFromCSEMaps(User);
7657
7658 // A user can appear in a use list multiple times, and when this
7659 // happens the uses are usually next to each other in the list.
7660 // To help reduce the number of CSE recomputations, process all
7661 // the uses of this user that we can find this way.
7662 do {
7663 SDUse &Use = UI.getUse();
7664 ++UI;
7665 Use.setNode(To);
7666 if (To->isDivergent() != From->isDivergent())
7667 updateDivergence(User);
7668 } while (UI != UE && *UI == User);
7669
7670 // Now that we have modified User, add it back to the CSE maps. If it
7671 // already exists there, recursively merge the results together.
7672 AddModifiedNodeToCSEMaps(User);
7673 }
7674
7675 // If we just RAUW'd the root, take note.
7676 if (From == getRoot().getNode())
7677 setRoot(SDValue(To, getRoot().getResNo()));
7678 }
7679
7680 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7681 /// This can cause recursive merging of nodes in the DAG.
7682 ///
7683 /// This version can replace From with any result values. To must match the
7684 /// number and types of values returned by From.
ReplaceAllUsesWith(SDNode * From,const SDValue * To)7685 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
7686 if (From->getNumValues() == 1) // Handle the simple case efficiently.
7687 return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
7688
7689 // Preserve Debug Info.
7690 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7691 transferDbgValues(SDValue(From, i), *To);
7692
7693 // Iterate over just the existing users of From. See the comments in
7694 // the ReplaceAllUsesWith above.
7695 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7696 RAUWUpdateListener Listener(*this, UI, UE);
7697 while (UI != UE) {
7698 SDNode *User = *UI;
7699
7700 // This node is about to morph, remove its old self from the CSE maps.
7701 RemoveNodeFromCSEMaps(User);
7702
7703 // A user can appear in a use list multiple times, and when this
7704 // happens the uses are usually next to each other in the list.
7705 // To help reduce the number of CSE recomputations, process all
7706 // the uses of this user that we can find this way.
7707 do {
7708 SDUse &Use = UI.getUse();
7709 const SDValue &ToOp = To[Use.getResNo()];
7710 ++UI;
7711 Use.set(ToOp);
7712 if (To->getNode()->isDivergent() != From->isDivergent())
7713 updateDivergence(User);
7714 } while (UI != UE && *UI == User);
7715 // Now that we have modified User, add it back to the CSE maps. If it
7716 // already exists there, recursively merge the results together.
7717 AddModifiedNodeToCSEMaps(User);
7718 }
7719
7720 // If we just RAUW'd the root, take note.
7721 if (From == getRoot().getNode())
7722 setRoot(SDValue(To[getRoot().getResNo()]));
7723 }
7724
7725 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
7726 /// uses of other values produced by From.getNode() alone. The Deleted
7727 /// vector is handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValueWith(SDValue From,SDValue To)7728 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
7729 // Handle the really simple, really trivial case efficiently.
7730 if (From == To) return;
7731
7732 // Handle the simple, trivial, case efficiently.
7733 if (From.getNode()->getNumValues() == 1) {
7734 ReplaceAllUsesWith(From, To);
7735 return;
7736 }
7737
7738 // Preserve Debug Info.
7739 transferDbgValues(From, To);
7740
7741 // Iterate over just the existing users of From. See the comments in
7742 // the ReplaceAllUsesWith above.
7743 SDNode::use_iterator UI = From.getNode()->use_begin(),
7744 UE = From.getNode()->use_end();
7745 RAUWUpdateListener Listener(*this, UI, UE);
7746 while (UI != UE) {
7747 SDNode *User = *UI;
7748 bool UserRemovedFromCSEMaps = false;
7749
7750 // A user can appear in a use list multiple times, and when this
7751 // happens the uses are usually next to each other in the list.
7752 // To help reduce the number of CSE recomputations, process all
7753 // the uses of this user that we can find this way.
7754 do {
7755 SDUse &Use = UI.getUse();
7756
7757 // Skip uses of different values from the same node.
7758 if (Use.getResNo() != From.getResNo()) {
7759 ++UI;
7760 continue;
7761 }
7762
7763 // If this node hasn't been modified yet, it's still in the CSE maps,
7764 // so remove its old self from the CSE maps.
7765 if (!UserRemovedFromCSEMaps) {
7766 RemoveNodeFromCSEMaps(User);
7767 UserRemovedFromCSEMaps = true;
7768 }
7769
7770 ++UI;
7771 Use.set(To);
7772 if (To->isDivergent() != From->isDivergent())
7773 updateDivergence(User);
7774 } while (UI != UE && *UI == User);
7775 // We are iterating over all uses of the From node, so if a use
7776 // doesn't use the specific value, no changes are made.
7777 if (!UserRemovedFromCSEMaps)
7778 continue;
7779
7780 // Now that we have modified User, add it back to the CSE maps. If it
7781 // already exists there, recursively merge the results together.
7782 AddModifiedNodeToCSEMaps(User);
7783 }
7784
7785 // If we just RAUW'd the root, take note.
7786 if (From == getRoot())
7787 setRoot(To);
7788 }
7789
7790 namespace {
7791
7792 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
7793 /// to record information about a use.
7794 struct UseMemo {
7795 SDNode *User;
7796 unsigned Index;
7797 SDUse *Use;
7798 };
7799
7800 /// operator< - Sort Memos by User.
operator <(const UseMemo & L,const UseMemo & R)7801 bool operator<(const UseMemo &L, const UseMemo &R) {
7802 return (intptr_t)L.User < (intptr_t)R.User;
7803 }
7804
7805 } // end anonymous namespace
7806
updateDivergence(SDNode * N)7807 void SelectionDAG::updateDivergence(SDNode * N)
7808 {
7809 if (TLI->isSDNodeAlwaysUniform(N))
7810 return;
7811 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
7812 for (auto &Op : N->ops()) {
7813 if (Op.Val.getValueType() != MVT::Other)
7814 IsDivergent |= Op.getNode()->isDivergent();
7815 }
7816 if (N->SDNodeBits.IsDivergent != IsDivergent) {
7817 N->SDNodeBits.IsDivergent = IsDivergent;
7818 for (auto U : N->uses()) {
7819 updateDivergence(U);
7820 }
7821 }
7822 }
7823
7824
CreateTopologicalOrder(std::vector<SDNode * > & Order)7825 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) {
7826 DenseMap<SDNode *, unsigned> Degree;
7827 Order.reserve(AllNodes.size());
7828 for (auto & N : allnodes()) {
7829 unsigned NOps = N.getNumOperands();
7830 Degree[&N] = NOps;
7831 if (0 == NOps)
7832 Order.push_back(&N);
7833 }
7834 for (std::vector<SDNode *>::iterator I = Order.begin();
7835 I!=Order.end();++I) {
7836 SDNode * N = *I;
7837 for (auto U : N->uses()) {
7838 unsigned &UnsortedOps = Degree[U];
7839 if (0 == --UnsortedOps)
7840 Order.push_back(U);
7841 }
7842 }
7843 }
7844
VerifyDAGDiverence()7845 void SelectionDAG::VerifyDAGDiverence()
7846 {
7847 std::vector<SDNode*> TopoOrder;
7848 CreateTopologicalOrder(TopoOrder);
7849 const TargetLowering &TLI = getTargetLoweringInfo();
7850 DenseMap<const SDNode *, bool> DivergenceMap;
7851 for (auto &N : allnodes()) {
7852 DivergenceMap[&N] = false;
7853 }
7854 for (auto N : TopoOrder) {
7855 bool IsDivergent = DivergenceMap[N];
7856 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
7857 for (auto &Op : N->ops()) {
7858 if (Op.Val.getValueType() != MVT::Other)
7859 IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
7860 }
7861 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
7862 DivergenceMap[N] = true;
7863 }
7864 }
7865 for (auto &N : allnodes()) {
7866 (void)N;
7867 assert(DivergenceMap[&N] == N.isDivergent() &&
7868 "Divergence bit inconsistency detected\n");
7869 }
7870 }
7871
7872
7873 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
7874 /// uses of other values produced by From.getNode() alone. The same value
7875 /// may appear in both the From and To list. The Deleted vector is
7876 /// handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValuesWith(const SDValue * From,const SDValue * To,unsigned Num)7877 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
7878 const SDValue *To,
7879 unsigned Num){
7880 // Handle the simple, trivial case efficiently.
7881 if (Num == 1)
7882 return ReplaceAllUsesOfValueWith(*From, *To);
7883
7884 transferDbgValues(*From, *To);
7885
7886 // Read up all the uses and make records of them. This helps
7887 // processing new uses that are introduced during the
7888 // replacement process.
7889 SmallVector<UseMemo, 4> Uses;
7890 for (unsigned i = 0; i != Num; ++i) {
7891 unsigned FromResNo = From[i].getResNo();
7892 SDNode *FromNode = From[i].getNode();
7893 for (SDNode::use_iterator UI = FromNode->use_begin(),
7894 E = FromNode->use_end(); UI != E; ++UI) {
7895 SDUse &Use = UI.getUse();
7896 if (Use.getResNo() == FromResNo) {
7897 UseMemo Memo = { *UI, i, &Use };
7898 Uses.push_back(Memo);
7899 }
7900 }
7901 }
7902
7903 // Sort the uses, so that all the uses from a given User are together.
7904 llvm::sort(Uses.begin(), Uses.end());
7905
7906 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
7907 UseIndex != UseIndexEnd; ) {
7908 // We know that this user uses some value of From. If it is the right
7909 // value, update it.
7910 SDNode *User = Uses[UseIndex].User;
7911
7912 // This node is about to morph, remove its old self from the CSE maps.
7913 RemoveNodeFromCSEMaps(User);
7914
7915 // The Uses array is sorted, so all the uses for a given User
7916 // are next to each other in the list.
7917 // To help reduce the number of CSE recomputations, process all
7918 // the uses of this user that we can find this way.
7919 do {
7920 unsigned i = Uses[UseIndex].Index;
7921 SDUse &Use = *Uses[UseIndex].Use;
7922 ++UseIndex;
7923
7924 Use.set(To[i]);
7925 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
7926
7927 // Now that we have modified User, add it back to the CSE maps. If it
7928 // already exists there, recursively merge the results together.
7929 AddModifiedNodeToCSEMaps(User);
7930 }
7931 }
7932
7933 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
7934 /// based on their topological order. It returns the maximum id and a vector
7935 /// of the SDNodes* in assigned order by reference.
AssignTopologicalOrder()7936 unsigned SelectionDAG::AssignTopologicalOrder() {
7937 unsigned DAGSize = 0;
7938
7939 // SortedPos tracks the progress of the algorithm. Nodes before it are
7940 // sorted, nodes after it are unsorted. When the algorithm completes
7941 // it is at the end of the list.
7942 allnodes_iterator SortedPos = allnodes_begin();
7943
7944 // Visit all the nodes. Move nodes with no operands to the front of
7945 // the list immediately. Annotate nodes that do have operands with their
7946 // operand count. Before we do this, the Node Id fields of the nodes
7947 // may contain arbitrary values. After, the Node Id fields for nodes
7948 // before SortedPos will contain the topological sort index, and the
7949 // Node Id fields for nodes At SortedPos and after will contain the
7950 // count of outstanding operands.
7951 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
7952 SDNode *N = &*I++;
7953 checkForCycles(N, this);
7954 unsigned Degree = N->getNumOperands();
7955 if (Degree == 0) {
7956 // A node with no uses, add it to the result array immediately.
7957 N->setNodeId(DAGSize++);
7958 allnodes_iterator Q(N);
7959 if (Q != SortedPos)
7960 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
7961 assert(SortedPos != AllNodes.end() && "Overran node list");
7962 ++SortedPos;
7963 } else {
7964 // Temporarily use the Node Id as scratch space for the degree count.
7965 N->setNodeId(Degree);
7966 }
7967 }
7968
7969 // Visit all the nodes. As we iterate, move nodes into sorted order,
7970 // such that by the time the end is reached all nodes will be sorted.
7971 for (SDNode &Node : allnodes()) {
7972 SDNode *N = &Node;
7973 checkForCycles(N, this);
7974 // N is in sorted position, so all its uses have one less operand
7975 // that needs to be sorted.
7976 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
7977 UI != UE; ++UI) {
7978 SDNode *P = *UI;
7979 unsigned Degree = P->getNodeId();
7980 assert(Degree != 0 && "Invalid node degree");
7981 --Degree;
7982 if (Degree == 0) {
7983 // All of P's operands are sorted, so P may sorted now.
7984 P->setNodeId(DAGSize++);
7985 if (P->getIterator() != SortedPos)
7986 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
7987 assert(SortedPos != AllNodes.end() && "Overran node list");
7988 ++SortedPos;
7989 } else {
7990 // Update P's outstanding operand count.
7991 P->setNodeId(Degree);
7992 }
7993 }
7994 if (Node.getIterator() == SortedPos) {
7995 #ifndef NDEBUG
7996 allnodes_iterator I(N);
7997 SDNode *S = &*++I;
7998 dbgs() << "Overran sorted position:\n";
7999 S->dumprFull(this); dbgs() << "\n";
8000 dbgs() << "Checking if this is due to cycles\n";
8001 checkForCycles(this, true);
8002 #endif
8003 llvm_unreachable(nullptr);
8004 }
8005 }
8006
8007 assert(SortedPos == AllNodes.end() &&
8008 "Topological sort incomplete!");
8009 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8010 "First node in topological sort is not the entry token!");
8011 assert(AllNodes.front().getNodeId() == 0 &&
8012 "First node in topological sort has non-zero id!");
8013 assert(AllNodes.front().getNumOperands() == 0 &&
8014 "First node in topological sort has operands!");
8015 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8016 "Last node in topologic sort has unexpected id!");
8017 assert(AllNodes.back().use_empty() &&
8018 "Last node in topologic sort has users!");
8019 assert(DAGSize == allnodes_size() && "Node count mismatch!");
8020 return DAGSize;
8021 }
8022
8023 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8024 /// value is produced by SD.
AddDbgValue(SDDbgValue * DB,SDNode * SD,bool isParameter)8025 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8026 if (SD) {
8027 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8028 SD->setHasDebugValue(true);
8029 }
8030 DbgInfo->add(DB, SD, isParameter);
8031 }
8032
AddDbgLabel(SDDbgLabel * DB)8033 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8034 DbgInfo->add(DB);
8035 }
8036
makeEquivalentMemoryOrdering(LoadSDNode * OldLoad,SDValue NewMemOp)8037 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8038 SDValue NewMemOp) {
8039 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8040 // The new memory operation must have the same position as the old load in
8041 // terms of memory dependency. Create a TokenFactor for the old load and new
8042 // memory operation and update uses of the old load's output chain to use that
8043 // TokenFactor.
8044 SDValue OldChain = SDValue(OldLoad, 1);
8045 SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8046 if (!OldLoad->hasAnyUseOfValue(1))
8047 return NewChain;
8048
8049 SDValue TokenFactor =
8050 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8051 ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8052 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8053 return TokenFactor;
8054 }
8055
8056 //===----------------------------------------------------------------------===//
8057 // SDNode Class
8058 //===----------------------------------------------------------------------===//
8059
isNullConstant(SDValue V)8060 bool llvm::isNullConstant(SDValue V) {
8061 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8062 return Const != nullptr && Const->isNullValue();
8063 }
8064
isNullFPConstant(SDValue V)8065 bool llvm::isNullFPConstant(SDValue V) {
8066 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8067 return Const != nullptr && Const->isZero() && !Const->isNegative();
8068 }
8069
isAllOnesConstant(SDValue V)8070 bool llvm::isAllOnesConstant(SDValue V) {
8071 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8072 return Const != nullptr && Const->isAllOnesValue();
8073 }
8074
isOneConstant(SDValue V)8075 bool llvm::isOneConstant(SDValue V) {
8076 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8077 return Const != nullptr && Const->isOne();
8078 }
8079
isBitwiseNot(SDValue V)8080 bool llvm::isBitwiseNot(SDValue V) {
8081 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
8082 }
8083
isConstOrConstSplat(SDValue N)8084 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
8085 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8086 return CN;
8087
8088 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8089 BitVector UndefElements;
8090 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8091
8092 // BuildVectors can truncate their operands. Ignore that case here.
8093 // FIXME: We blindly ignore splats which include undef which is overly
8094 // pessimistic.
8095 if (CN && UndefElements.none() &&
8096 CN->getValueType(0) == N.getValueType().getScalarType())
8097 return CN;
8098 }
8099
8100 return nullptr;
8101 }
8102
isConstOrConstSplatFP(SDValue N)8103 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
8104 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8105 return CN;
8106
8107 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8108 BitVector UndefElements;
8109 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8110
8111 if (CN && UndefElements.none())
8112 return CN;
8113 }
8114
8115 return nullptr;
8116 }
8117
~HandleSDNode()8118 HandleSDNode::~HandleSDNode() {
8119 DropOperands();
8120 }
8121
GlobalAddressSDNode(unsigned Opc,unsigned Order,const DebugLoc & DL,const GlobalValue * GA,EVT VT,int64_t o,unsigned char TF)8122 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8123 const DebugLoc &DL,
8124 const GlobalValue *GA, EVT VT,
8125 int64_t o, unsigned char TF)
8126 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8127 TheGlobal = GA;
8128 }
8129
AddrSpaceCastSDNode(unsigned Order,const DebugLoc & dl,EVT VT,unsigned SrcAS,unsigned DestAS)8130 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8131 EVT VT, unsigned SrcAS,
8132 unsigned DestAS)
8133 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8134 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8135
MemSDNode(unsigned Opc,unsigned Order,const DebugLoc & dl,SDVTList VTs,EVT memvt,MachineMemOperand * mmo)8136 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8137 SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8138 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8139 MemSDNodeBits.IsVolatile = MMO->isVolatile();
8140 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8141 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8142 MemSDNodeBits.IsInvariant = MMO->isInvariant();
8143
8144 // We check here that the size of the memory operand fits within the size of
8145 // the MMO. This is because the MMO might indicate only a possible address
8146 // range instead of specifying the affected memory addresses precisely.
8147 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8148 }
8149
8150 /// Profile - Gather unique data for the node.
8151 ///
Profile(FoldingSetNodeID & ID) const8152 void SDNode::Profile(FoldingSetNodeID &ID) const {
8153 AddNodeIDNode(ID, this);
8154 }
8155
8156 namespace {
8157
8158 struct EVTArray {
8159 std::vector<EVT> VTs;
8160
EVTArray__anondd3ff8410d11::EVTArray8161 EVTArray() {
8162 VTs.reserve(MVT::LAST_VALUETYPE);
8163 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8164 VTs.push_back(MVT((MVT::SimpleValueType)i));
8165 }
8166 };
8167
8168 } // end anonymous namespace
8169
8170 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8171 static ManagedStatic<EVTArray> SimpleVTArray;
8172 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8173
8174 /// getValueTypeList - Return a pointer to the specified value type.
8175 ///
getValueTypeList(EVT VT)8176 const EVT *SDNode::getValueTypeList(EVT VT) {
8177 if (VT.isExtended()) {
8178 sys::SmartScopedLock<true> Lock(*VTMutex);
8179 return &(*EVTs->insert(VT).first);
8180 } else {
8181 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8182 "Value type out of range!");
8183 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8184 }
8185 }
8186
8187 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8188 /// indicated value. This method ignores uses of other values defined by this
8189 /// operation.
hasNUsesOfValue(unsigned NUses,unsigned Value) const8190 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8191 assert(Value < getNumValues() && "Bad value!");
8192
8193 // TODO: Only iterate over uses of a given value of the node
8194 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8195 if (UI.getUse().getResNo() == Value) {
8196 if (NUses == 0)
8197 return false;
8198 --NUses;
8199 }
8200 }
8201
8202 // Found exactly the right number of uses?
8203 return NUses == 0;
8204 }
8205
8206 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8207 /// value. This method ignores uses of other values defined by this operation.
hasAnyUseOfValue(unsigned Value) const8208 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8209 assert(Value < getNumValues() && "Bad value!");
8210
8211 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8212 if (UI.getUse().getResNo() == Value)
8213 return true;
8214
8215 return false;
8216 }
8217
8218 /// isOnlyUserOf - Return true if this node is the only use of N.
isOnlyUserOf(const SDNode * N) const8219 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8220 bool Seen = false;
8221 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8222 SDNode *User = *I;
8223 if (User == this)
8224 Seen = true;
8225 else
8226 return false;
8227 }
8228
8229 return Seen;
8230 }
8231
8232 /// Return true if the only users of N are contained in Nodes.
areOnlyUsersOf(ArrayRef<const SDNode * > Nodes,const SDNode * N)8233 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8234 bool Seen = false;
8235 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8236 SDNode *User = *I;
8237 if (llvm::any_of(Nodes,
8238 [&User](const SDNode *Node) { return User == Node; }))
8239 Seen = true;
8240 else
8241 return false;
8242 }
8243
8244 return Seen;
8245 }
8246
8247 /// isOperand - Return true if this node is an operand of N.
isOperandOf(const SDNode * N) const8248 bool SDValue::isOperandOf(const SDNode *N) const {
8249 for (const SDValue &Op : N->op_values())
8250 if (*this == Op)
8251 return true;
8252 return false;
8253 }
8254
isOperandOf(const SDNode * N) const8255 bool SDNode::isOperandOf(const SDNode *N) const {
8256 for (const SDValue &Op : N->op_values())
8257 if (this == Op.getNode())
8258 return true;
8259 return false;
8260 }
8261
8262 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8263 /// be a chain) reaches the specified operand without crossing any
8264 /// side-effecting instructions on any chain path. In practice, this looks
8265 /// through token factors and non-volatile loads. In order to remain efficient,
8266 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8267 ///
8268 /// Note that we only need to examine chains when we're searching for
8269 /// side-effects; SelectionDAG requires that all side-effects are represented
8270 /// by chains, even if another operand would force a specific ordering. This
8271 /// constraint is necessary to allow transformations like splitting loads.
reachesChainWithoutSideEffects(SDValue Dest,unsigned Depth) const8272 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8273 unsigned Depth) const {
8274 if (*this == Dest) return true;
8275
8276 // Don't search too deeply, we just want to be able to see through
8277 // TokenFactor's etc.
8278 if (Depth == 0) return false;
8279
8280 // If this is a token factor, all inputs to the TF happen in parallel.
8281 if (getOpcode() == ISD::TokenFactor) {
8282 // First, try a shallow search.
8283 if (is_contained((*this)->ops(), Dest)) {
8284 // We found the chain we want as an operand of this TokenFactor.
8285 // Essentially, we reach the chain without side-effects if we could
8286 // serialize the TokenFactor into a simple chain of operations with
8287 // Dest as the last operation. This is automatically true if the
8288 // chain has one use: there are no other ordering constraints.
8289 // If the chain has more than one use, we give up: some other
8290 // use of Dest might force a side-effect between Dest and the current
8291 // node.
8292 if (Dest.hasOneUse())
8293 return true;
8294 }
8295 // Next, try a deep search: check whether every operand of the TokenFactor
8296 // reaches Dest.
8297 return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8298 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8299 });
8300 }
8301
8302 // Loads don't have side effects, look through them.
8303 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8304 if (!Ld->isVolatile())
8305 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8306 }
8307 return false;
8308 }
8309
hasPredecessor(const SDNode * N) const8310 bool SDNode::hasPredecessor(const SDNode *N) const {
8311 SmallPtrSet<const SDNode *, 32> Visited;
8312 SmallVector<const SDNode *, 16> Worklist;
8313 Worklist.push_back(this);
8314 return hasPredecessorHelper(N, Visited, Worklist);
8315 }
8316
intersectFlagsWith(const SDNodeFlags Flags)8317 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8318 this->Flags.intersectWith(Flags);
8319 }
8320
UnrollVectorOp(SDNode * N,unsigned ResNE)8321 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
8322 assert(N->getNumValues() == 1 &&
8323 "Can't unroll a vector with multiple results!");
8324
8325 EVT VT = N->getValueType(0);
8326 unsigned NE = VT.getVectorNumElements();
8327 EVT EltVT = VT.getVectorElementType();
8328 SDLoc dl(N);
8329
8330 SmallVector<SDValue, 8> Scalars;
8331 SmallVector<SDValue, 4> Operands(N->getNumOperands());
8332
8333 // If ResNE is 0, fully unroll the vector op.
8334 if (ResNE == 0)
8335 ResNE = NE;
8336 else if (NE > ResNE)
8337 NE = ResNE;
8338
8339 unsigned i;
8340 for (i= 0; i != NE; ++i) {
8341 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
8342 SDValue Operand = N->getOperand(j);
8343 EVT OperandVT = Operand.getValueType();
8344 if (OperandVT.isVector()) {
8345 // A vector operand; extract a single element.
8346 EVT OperandEltVT = OperandVT.getVectorElementType();
8347 Operands[j] =
8348 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
8349 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
8350 } else {
8351 // A scalar operand; just use it as is.
8352 Operands[j] = Operand;
8353 }
8354 }
8355
8356 switch (N->getOpcode()) {
8357 default: {
8358 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
8359 N->getFlags()));
8360 break;
8361 }
8362 case ISD::VSELECT:
8363 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
8364 break;
8365 case ISD::SHL:
8366 case ISD::SRA:
8367 case ISD::SRL:
8368 case ISD::ROTL:
8369 case ISD::ROTR:
8370 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
8371 getShiftAmountOperand(Operands[0].getValueType(),
8372 Operands[1])));
8373 break;
8374 case ISD::SIGN_EXTEND_INREG:
8375 case ISD::FP_ROUND_INREG: {
8376 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
8377 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
8378 Operands[0],
8379 getValueType(ExtVT)));
8380 }
8381 }
8382 }
8383
8384 for (; i < ResNE; ++i)
8385 Scalars.push_back(getUNDEF(EltVT));
8386
8387 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
8388 return getBuildVector(VecVT, dl, Scalars);
8389 }
8390
areNonVolatileConsecutiveLoads(LoadSDNode * LD,LoadSDNode * Base,unsigned Bytes,int Dist) const8391 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
8392 LoadSDNode *Base,
8393 unsigned Bytes,
8394 int Dist) const {
8395 if (LD->isVolatile() || Base->isVolatile())
8396 return false;
8397 if (LD->isIndexed() || Base->isIndexed())
8398 return false;
8399 if (LD->getChain() != Base->getChain())
8400 return false;
8401 EVT VT = LD->getValueType(0);
8402 if (VT.getSizeInBits() / 8 != Bytes)
8403 return false;
8404
8405 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
8406 auto LocDecomp = BaseIndexOffset::match(LD, *this);
8407
8408 int64_t Offset = 0;
8409 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
8410 return (Dist * Bytes == Offset);
8411 return false;
8412 }
8413
8414 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
8415 /// it cannot be inferred.
InferPtrAlignment(SDValue Ptr) const8416 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
8417 // If this is a GlobalAddress + cst, return the alignment.
8418 const GlobalValue *GV;
8419 int64_t GVOffset = 0;
8420 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
8421 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
8422 KnownBits Known(IdxWidth);
8423 llvm::computeKnownBits(GV, Known, getDataLayout());
8424 unsigned AlignBits = Known.countMinTrailingZeros();
8425 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
8426 if (Align)
8427 return MinAlign(Align, GVOffset);
8428 }
8429
8430 // If this is a direct reference to a stack slot, use information about the
8431 // stack slot's alignment.
8432 int FrameIdx = 1 << 31;
8433 int64_t FrameOffset = 0;
8434 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
8435 FrameIdx = FI->getIndex();
8436 } else if (isBaseWithConstantOffset(Ptr) &&
8437 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
8438 // Handle FI+Cst
8439 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
8440 FrameOffset = Ptr.getConstantOperandVal(1);
8441 }
8442
8443 if (FrameIdx != (1 << 31)) {
8444 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
8445 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
8446 FrameOffset);
8447 return FIInfoAlign;
8448 }
8449
8450 return 0;
8451 }
8452
8453 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
8454 /// which is split (or expanded) into two not necessarily identical pieces.
GetSplitDestVTs(const EVT & VT) const8455 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
8456 // Currently all types are split in half.
8457 EVT LoVT, HiVT;
8458 if (!VT.isVector())
8459 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
8460 else
8461 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
8462
8463 return std::make_pair(LoVT, HiVT);
8464 }
8465
8466 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
8467 /// low/high part.
8468 std::pair<SDValue, SDValue>
SplitVector(const SDValue & N,const SDLoc & DL,const EVT & LoVT,const EVT & HiVT)8469 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
8470 const EVT &HiVT) {
8471 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
8472 N.getValueType().getVectorNumElements() &&
8473 "More vector elements requested than available!");
8474 SDValue Lo, Hi;
8475 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
8476 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
8477 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
8478 getConstant(LoVT.getVectorNumElements(), DL,
8479 TLI->getVectorIdxTy(getDataLayout())));
8480 return std::make_pair(Lo, Hi);
8481 }
8482
ExtractVectorElements(SDValue Op,SmallVectorImpl<SDValue> & Args,unsigned Start,unsigned Count)8483 void SelectionDAG::ExtractVectorElements(SDValue Op,
8484 SmallVectorImpl<SDValue> &Args,
8485 unsigned Start, unsigned Count) {
8486 EVT VT = Op.getValueType();
8487 if (Count == 0)
8488 Count = VT.getVectorNumElements();
8489
8490 EVT EltVT = VT.getVectorElementType();
8491 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
8492 SDLoc SL(Op);
8493 for (unsigned i = Start, e = Start + Count; i != e; ++i) {
8494 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
8495 Op, getConstant(i, SL, IdxTy)));
8496 }
8497 }
8498
8499 // getAddressSpace - Return the address space this GlobalAddress belongs to.
getAddressSpace() const8500 unsigned GlobalAddressSDNode::getAddressSpace() const {
8501 return getGlobal()->getType()->getAddressSpace();
8502 }
8503
getType() const8504 Type *ConstantPoolSDNode::getType() const {
8505 if (isMachineConstantPoolEntry())
8506 return Val.MachineCPVal->getType();
8507 return Val.ConstVal->getType();
8508 }
8509
isConstantSplat(APInt & SplatValue,APInt & SplatUndef,unsigned & SplatBitSize,bool & HasAnyUndefs,unsigned MinSplatBits,bool IsBigEndian) const8510 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
8511 unsigned &SplatBitSize,
8512 bool &HasAnyUndefs,
8513 unsigned MinSplatBits,
8514 bool IsBigEndian) const {
8515 EVT VT = getValueType(0);
8516 assert(VT.isVector() && "Expected a vector type");
8517 unsigned VecWidth = VT.getSizeInBits();
8518 if (MinSplatBits > VecWidth)
8519 return false;
8520
8521 // FIXME: The widths are based on this node's type, but build vectors can
8522 // truncate their operands.
8523 SplatValue = APInt(VecWidth, 0);
8524 SplatUndef = APInt(VecWidth, 0);
8525
8526 // Get the bits. Bits with undefined values (when the corresponding element
8527 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
8528 // in SplatValue. If any of the values are not constant, give up and return
8529 // false.
8530 unsigned int NumOps = getNumOperands();
8531 assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
8532 unsigned EltWidth = VT.getScalarSizeInBits();
8533
8534 for (unsigned j = 0; j < NumOps; ++j) {
8535 unsigned i = IsBigEndian ? NumOps - 1 - j : j;
8536 SDValue OpVal = getOperand(i);
8537 unsigned BitPos = j * EltWidth;
8538
8539 if (OpVal.isUndef())
8540 SplatUndef.setBits(BitPos, BitPos + EltWidth);
8541 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
8542 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
8543 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
8544 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
8545 else
8546 return false;
8547 }
8548
8549 // The build_vector is all constants or undefs. Find the smallest element
8550 // size that splats the vector.
8551 HasAnyUndefs = (SplatUndef != 0);
8552
8553 // FIXME: This does not work for vectors with elements less than 8 bits.
8554 while (VecWidth > 8) {
8555 unsigned HalfSize = VecWidth / 2;
8556 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
8557 APInt LowValue = SplatValue.trunc(HalfSize);
8558 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
8559 APInt LowUndef = SplatUndef.trunc(HalfSize);
8560
8561 // If the two halves do not match (ignoring undef bits), stop here.
8562 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
8563 MinSplatBits > HalfSize)
8564 break;
8565
8566 SplatValue = HighValue | LowValue;
8567 SplatUndef = HighUndef & LowUndef;
8568
8569 VecWidth = HalfSize;
8570 }
8571
8572 SplatBitSize = VecWidth;
8573 return true;
8574 }
8575
getSplatValue(BitVector * UndefElements) const8576 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
8577 if (UndefElements) {
8578 UndefElements->clear();
8579 UndefElements->resize(getNumOperands());
8580 }
8581 SDValue Splatted;
8582 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
8583 SDValue Op = getOperand(i);
8584 if (Op.isUndef()) {
8585 if (UndefElements)
8586 (*UndefElements)[i] = true;
8587 } else if (!Splatted) {
8588 Splatted = Op;
8589 } else if (Splatted != Op) {
8590 return SDValue();
8591 }
8592 }
8593
8594 if (!Splatted) {
8595 assert(getOperand(0).isUndef() &&
8596 "Can only have a splat without a constant for all undefs.");
8597 return getOperand(0);
8598 }
8599
8600 return Splatted;
8601 }
8602
8603 ConstantSDNode *
getConstantSplatNode(BitVector * UndefElements) const8604 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
8605 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
8606 }
8607
8608 ConstantFPSDNode *
getConstantFPSplatNode(BitVector * UndefElements) const8609 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
8610 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
8611 }
8612
8613 int32_t
getConstantFPSplatPow2ToLog2Int(BitVector * UndefElements,uint32_t BitWidth) const8614 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
8615 uint32_t BitWidth) const {
8616 if (ConstantFPSDNode *CN =
8617 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
8618 bool IsExact;
8619 APSInt IntVal(BitWidth);
8620 const APFloat &APF = CN->getValueAPF();
8621 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
8622 APFloat::opOK ||
8623 !IsExact)
8624 return -1;
8625
8626 return IntVal.exactLogBase2();
8627 }
8628 return -1;
8629 }
8630
isConstant() const8631 bool BuildVectorSDNode::isConstant() const {
8632 for (const SDValue &Op : op_values()) {
8633 unsigned Opc = Op.getOpcode();
8634 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
8635 return false;
8636 }
8637 return true;
8638 }
8639
isSplatMask(const int * Mask,EVT VT)8640 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
8641 // Find the first non-undef value in the shuffle mask.
8642 unsigned i, e;
8643 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
8644 /* search */;
8645
8646 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
8647
8648 // Make sure all remaining elements are either undef or the same as the first
8649 // non-undef value.
8650 for (int Idx = Mask[i]; i != e; ++i)
8651 if (Mask[i] >= 0 && Mask[i] != Idx)
8652 return false;
8653 return true;
8654 }
8655
8656 // Returns the SDNode if it is a constant integer BuildVector
8657 // or constant integer.
isConstantIntBuildVectorOrConstantInt(SDValue N)8658 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
8659 if (isa<ConstantSDNode>(N))
8660 return N.getNode();
8661 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
8662 return N.getNode();
8663 // Treat a GlobalAddress supporting constant offset folding as a
8664 // constant integer.
8665 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
8666 if (GA->getOpcode() == ISD::GlobalAddress &&
8667 TLI->isOffsetFoldingLegal(GA))
8668 return GA;
8669 return nullptr;
8670 }
8671
isConstantFPBuildVectorOrConstantFP(SDValue N)8672 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
8673 if (isa<ConstantFPSDNode>(N))
8674 return N.getNode();
8675
8676 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
8677 return N.getNode();
8678
8679 return nullptr;
8680 }
8681
createOperands(SDNode * Node,ArrayRef<SDValue> Vals)8682 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
8683 assert(!Node->OperandList && "Node already has operands");
8684 SDUse *Ops = OperandRecycler.allocate(
8685 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
8686
8687 bool IsDivergent = false;
8688 for (unsigned I = 0; I != Vals.size(); ++I) {
8689 Ops[I].setUser(Node);
8690 Ops[I].setInitial(Vals[I]);
8691 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
8692 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
8693 }
8694 Node->NumOperands = Vals.size();
8695 Node->OperandList = Ops;
8696 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
8697 if (!TLI->isSDNodeAlwaysUniform(Node))
8698 Node->SDNodeBits.IsDivergent = IsDivergent;
8699 checkForCycles(Node);
8700 }
8701
8702 #ifndef NDEBUG
checkForCyclesHelper(const SDNode * N,SmallPtrSetImpl<const SDNode * > & Visited,SmallPtrSetImpl<const SDNode * > & Checked,const llvm::SelectionDAG * DAG)8703 static void checkForCyclesHelper(const SDNode *N,
8704 SmallPtrSetImpl<const SDNode*> &Visited,
8705 SmallPtrSetImpl<const SDNode*> &Checked,
8706 const llvm::SelectionDAG *DAG) {
8707 // If this node has already been checked, don't check it again.
8708 if (Checked.count(N))
8709 return;
8710
8711 // If a node has already been visited on this depth-first walk, reject it as
8712 // a cycle.
8713 if (!Visited.insert(N).second) {
8714 errs() << "Detected cycle in SelectionDAG\n";
8715 dbgs() << "Offending node:\n";
8716 N->dumprFull(DAG); dbgs() << "\n";
8717 abort();
8718 }
8719
8720 for (const SDValue &Op : N->op_values())
8721 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
8722
8723 Checked.insert(N);
8724 Visited.erase(N);
8725 }
8726 #endif
8727
checkForCycles(const llvm::SDNode * N,const llvm::SelectionDAG * DAG,bool force)8728 void llvm::checkForCycles(const llvm::SDNode *N,
8729 const llvm::SelectionDAG *DAG,
8730 bool force) {
8731 #ifndef NDEBUG
8732 bool check = force;
8733 #ifdef EXPENSIVE_CHECKS
8734 check = true;
8735 #endif // EXPENSIVE_CHECKS
8736 if (check) {
8737 assert(N && "Checking nonexistent SDNode");
8738 SmallPtrSet<const SDNode*, 32> visited;
8739 SmallPtrSet<const SDNode*, 32> checked;
8740 checkForCyclesHelper(N, visited, checked, DAG);
8741 }
8742 #endif // !NDEBUG
8743 }
8744
checkForCycles(const llvm::SelectionDAG * DAG,bool force)8745 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
8746 checkForCycles(DAG->getRoot().getNode(), DAG, force);
8747 }
8748