1 //===-- llvm/MC/MCSchedule.h - Scheduling -----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the classes used to describe a subtarget's machine model
11 // for scheduling and other instruction cost heuristics.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_MC_MCSCHEDULE_H
16 #define LLVM_MC_MCSCHEDULE_H
17 
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/Support/DataTypes.h"
21 #include <cassert>
22 
23 namespace llvm {
24 
25 struct InstrItinerary;
26 class MCSubtargetInfo;
27 class MCInstrInfo;
28 class MCInst;
29 class InstrItineraryData;
30 
31 /// Define a kind of processor resource that will be modeled by the scheduler.
32 struct MCProcResourceDesc {
33   const char *Name;
34   unsigned NumUnits; // Number of resource of this kind
35   unsigned SuperIdx; // Index of the resources kind that contains this kind.
36 
37   // Number of resources that may be buffered.
38   //
39   // Buffered resources (BufferSize != 0) may be consumed at some indeterminate
40   // cycle after dispatch. This should be used for out-of-order cpus when
41   // instructions that use this resource can be buffered in a reservaton
42   // station.
43   //
44   // Unbuffered resources (BufferSize == 0) always consume their resource some
45   // fixed number of cycles after dispatch. If a resource is unbuffered, then
46   // the scheduler will avoid scheduling instructions with conflicting resources
47   // in the same cycle. This is for in-order cpus, or the in-order portion of
48   // an out-of-order cpus.
49   int BufferSize;
50 
51   // If the resource has sub-units, a pointer to the first element of an array
52   // of `NumUnits` elements containing the ProcResourceIdx of the sub units.
53   // nullptr if the resource does not have sub-units.
54   const unsigned *SubUnitsIdxBegin;
55 
56   bool operator==(const MCProcResourceDesc &Other) const {
57     return NumUnits == Other.NumUnits && SuperIdx == Other.SuperIdx
58       && BufferSize == Other.BufferSize;
59   }
60 };
61 
62 /// Identify one of the processor resource kinds consumed by a particular
63 /// scheduling class for the specified number of cycles.
64 struct MCWriteProcResEntry {
65   uint16_t ProcResourceIdx;
66   uint16_t Cycles;
67 
68   bool operator==(const MCWriteProcResEntry &Other) const {
69     return ProcResourceIdx == Other.ProcResourceIdx && Cycles == Other.Cycles;
70   }
71 };
72 
73 /// Specify the latency in cpu cycles for a particular scheduling class and def
74 /// index. -1 indicates an invalid latency. Heuristics would typically consider
75 /// an instruction with invalid latency to have infinite latency.  Also identify
76 /// the WriteResources of this def. When the operand expands to a sequence of
77 /// writes, this ID is the last write in the sequence.
78 struct MCWriteLatencyEntry {
79   int16_t Cycles;
80   uint16_t WriteResourceID;
81 
82   bool operator==(const MCWriteLatencyEntry &Other) const {
83     return Cycles == Other.Cycles && WriteResourceID == Other.WriteResourceID;
84   }
85 };
86 
87 /// Specify the number of cycles allowed after instruction issue before a
88 /// particular use operand reads its registers. This effectively reduces the
89 /// write's latency. Here we allow negative cycles for corner cases where
90 /// latency increases. This rule only applies when the entry's WriteResource
91 /// matches the write's WriteResource.
92 ///
93 /// MCReadAdvanceEntries are sorted first by operand index (UseIdx), then by
94 /// WriteResourceIdx.
95 struct MCReadAdvanceEntry {
96   unsigned UseIdx;
97   unsigned WriteResourceID;
98   int Cycles;
99 
100   bool operator==(const MCReadAdvanceEntry &Other) const {
101     return UseIdx == Other.UseIdx && WriteResourceID == Other.WriteResourceID
102       && Cycles == Other.Cycles;
103   }
104 };
105 
106 /// Summarize the scheduling resources required for an instruction of a
107 /// particular scheduling class.
108 ///
109 /// Defined as an aggregate struct for creating tables with initializer lists.
110 struct MCSchedClassDesc {
111   static const unsigned short InvalidNumMicroOps = (1U << 14) - 1;
112   static const unsigned short VariantNumMicroOps = InvalidNumMicroOps - 1;
113 
114 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
115   const char* Name;
116 #endif
117   uint16_t NumMicroOps : 14;
118   bool     BeginGroup : 1;
119   bool     EndGroup : 1;
120   uint16_t WriteProcResIdx; // First index into WriteProcResTable.
121   uint16_t NumWriteProcResEntries;
122   uint16_t WriteLatencyIdx; // First index into WriteLatencyTable.
123   uint16_t NumWriteLatencyEntries;
124   uint16_t ReadAdvanceIdx; // First index into ReadAdvanceTable.
125   uint16_t NumReadAdvanceEntries;
126 
isValidMCSchedClassDesc127   bool isValid() const {
128     return NumMicroOps != InvalidNumMicroOps;
129   }
isVariantMCSchedClassDesc130   bool isVariant() const {
131     return NumMicroOps == VariantNumMicroOps;
132   }
133 };
134 
135 /// Specify the cost of a register definition in terms of number of physical
136 /// register allocated at register renaming stage. For example, AMD Jaguar.
137 /// natively supports 128-bit data types, and operations on 256-bit registers
138 /// (i.e. YMM registers) are internally split into two COPs (complex operations)
139 /// and each COP updates a physical register. Basically, on Jaguar, a YMM
140 /// register write effectively consumes two physical registers. That means,
141 /// the cost of a YMM write in the BtVer2 model is 2.
142 struct MCRegisterCostEntry {
143   unsigned RegisterClassID;
144   unsigned Cost;
145 };
146 
147 /// A register file descriptor.
148 ///
149 /// This struct allows to describe processor register files. In particular, it
150 /// helps describing the size of the register file, as well as the cost of
151 /// allocating a register file at register renaming stage.
152 /// FIXME: this struct can be extended to provide information about the number
153 /// of read/write ports to the register file.  A value of zero for field
154 /// 'NumPhysRegs' means: this register file has an unbounded number of physical
155 /// registers.
156 struct MCRegisterFileDesc {
157   const char *Name;
158   uint16_t NumPhysRegs;
159   uint16_t NumRegisterCostEntries;
160   // Index of the first cost entry in MCExtraProcessorInfo::RegisterCostTable.
161   uint16_t RegisterCostEntryIdx;
162 };
163 
164 /// Provide extra details about the machine processor.
165 ///
166 /// This is a collection of "optional" processor information that is not
167 /// normally used by the LLVM machine schedulers, but that can be consumed by
168 /// external tools like llvm-mca to improve the quality of the peformance
169 /// analysis.
170 struct MCExtraProcessorInfo {
171   // Actual size of the reorder buffer in hardware.
172   unsigned ReorderBufferSize;
173   // Number of instructions retired per cycle.
174   unsigned MaxRetirePerCycle;
175   const MCRegisterFileDesc *RegisterFiles;
176   unsigned NumRegisterFiles;
177   const MCRegisterCostEntry *RegisterCostTable;
178   unsigned NumRegisterCostEntries;
179 
180   struct PfmCountersInfo {
181     // An optional name of a performance counter that can be used to measure
182     // cycles.
183     const char *CycleCounter;
184 
185     // For each MCProcResourceDesc defined by the processor, an optional list of
186     // names of performance counters that can be used to measure the resource
187     // utilization.
188     const char **IssueCounters;
189   };
190   PfmCountersInfo PfmCounters;
191 };
192 
193 /// Machine model for scheduling, bundling, and heuristics.
194 ///
195 /// The machine model directly provides basic information about the
196 /// microarchitecture to the scheduler in the form of properties. It also
197 /// optionally refers to scheduler resource tables and itinerary
198 /// tables. Scheduler resource tables model the latency and cost for each
199 /// instruction type. Itinerary tables are an independent mechanism that
200 /// provides a detailed reservation table describing each cycle of instruction
201 /// execution. Subtargets may define any or all of the above categories of data
202 /// depending on the type of CPU and selected scheduler.
203 ///
204 /// The machine independent properties defined here are used by the scheduler as
205 /// an abstract machine model. A real micro-architecture has a number of
206 /// buffers, queues, and stages. Declaring that a given machine-independent
207 /// abstract property corresponds to a specific physical property across all
208 /// subtargets can't be done. Nonetheless, the abstract model is
209 /// useful. Futhermore, subtargets typically extend this model with processor
210 /// specific resources to model any hardware features that can be exploited by
211 /// sceduling heuristics and aren't sufficiently represented in the abstract.
212 ///
213 /// The abstract pipeline is built around the notion of an "issue point". This
214 /// is merely a reference point for counting machine cycles. The physical
215 /// machine will have pipeline stages that delay execution. The scheduler does
216 /// not model those delays because they are irrelevant as long as they are
217 /// consistent. Inaccuracies arise when instructions have different execution
218 /// delays relative to each other, in addition to their intrinsic latency. Those
219 /// special cases can be handled by TableGen constructs such as, ReadAdvance,
220 /// which reduces latency when reading data, and ResourceCycles, which consumes
221 /// a processor resource when writing data for a number of abstract
222 /// cycles.
223 ///
224 /// TODO: One tool currently missing is the ability to add a delay to
225 /// ResourceCycles. That would be easy to add and would likely cover all cases
226 /// currently handled by the legacy itinerary tables.
227 ///
228 /// A note on out-of-order execution and, more generally, instruction
229 /// buffers. Part of the CPU pipeline is always in-order. The issue point, which
230 /// is the point of reference for counting cycles, only makes sense as an
231 /// in-order part of the pipeline. Other parts of the pipeline are sometimes
232 /// falling behind and sometimes catching up. It's only interesting to model
233 /// those other, decoupled parts of the pipeline if they may be predictably
234 /// resource constrained in a way that the scheduler can exploit.
235 ///
236 /// The LLVM machine model distinguishes between in-order constraints and
237 /// out-of-order constraints so that the target's scheduling strategy can apply
238 /// appropriate heuristics. For a well-balanced CPU pipeline, out-of-order
239 /// resources would not typically be treated as a hard scheduling
240 /// constraint. For example, in the GenericScheduler, a delay caused by limited
241 /// out-of-order resources is not directly reflected in the number of cycles
242 /// that the scheduler sees between issuing an instruction and its dependent
243 /// instructions. In other words, out-of-order resources don't directly increase
244 /// the latency between pairs of instructions. However, they can still be used
245 /// to detect potential bottlenecks across a sequence of instructions and bias
246 /// the scheduling heuristics appropriately.
247 struct MCSchedModel {
248   // IssueWidth is the maximum number of instructions that may be scheduled in
249   // the same per-cycle group. This is meant to be a hard in-order constraint
250   // (a.k.a. "hazard"). In the GenericScheduler strategy, no more than
251   // IssueWidth micro-ops can ever be scheduled in a particular cycle.
252   //
253   // In practice, IssueWidth is useful to model any bottleneck between the
254   // decoder (after micro-op expansion) and the out-of-order reservation
255   // stations or the decoder bandwidth itself. If the total number of
256   // reservation stations is also a bottleneck, or if any other pipeline stage
257   // has a bandwidth limitation, then that can be naturally modeled by adding an
258   // out-of-order processor resource.
259   unsigned IssueWidth;
260   static const unsigned DefaultIssueWidth = 1;
261 
262   // MicroOpBufferSize is the number of micro-ops that the processor may buffer
263   // for out-of-order execution.
264   //
265   // "0" means operations that are not ready in this cycle are not considered
266   // for scheduling (they go in the pending queue). Latency is paramount. This
267   // may be more efficient if many instructions are pending in a schedule.
268   //
269   // "1" means all instructions are considered for scheduling regardless of
270   // whether they are ready in this cycle. Latency still causes issue stalls,
271   // but we balance those stalls against other heuristics.
272   //
273   // "> 1" means the processor is out-of-order. This is a machine independent
274   // estimate of highly machine specific characteristics such as the register
275   // renaming pool and reorder buffer.
276   unsigned MicroOpBufferSize;
277   static const unsigned DefaultMicroOpBufferSize = 0;
278 
279   // LoopMicroOpBufferSize is the number of micro-ops that the processor may
280   // buffer for optimized loop execution. More generally, this represents the
281   // optimal number of micro-ops in a loop body. A loop may be partially
282   // unrolled to bring the count of micro-ops in the loop body closer to this
283   // number.
284   unsigned LoopMicroOpBufferSize;
285   static const unsigned DefaultLoopMicroOpBufferSize = 0;
286 
287   // LoadLatency is the expected latency of load instructions.
288   unsigned LoadLatency;
289   static const unsigned DefaultLoadLatency = 4;
290 
291   // HighLatency is the expected latency of "very high latency" operations.
292   // See TargetInstrInfo::isHighLatencyDef().
293   // By default, this is set to an arbitrarily high number of cycles
294   // likely to have some impact on scheduling heuristics.
295   unsigned HighLatency;
296   static const unsigned DefaultHighLatency = 10;
297 
298   // MispredictPenalty is the typical number of extra cycles the processor
299   // takes to recover from a branch misprediction.
300   unsigned MispredictPenalty;
301   static const unsigned DefaultMispredictPenalty = 10;
302 
303   bool PostRAScheduler; // default value is false
304 
305   bool CompleteModel;
306 
307   unsigned ProcID;
308   const MCProcResourceDesc *ProcResourceTable;
309   const MCSchedClassDesc *SchedClassTable;
310   unsigned NumProcResourceKinds;
311   unsigned NumSchedClasses;
312   // Instruction itinerary tables used by InstrItineraryData.
313   friend class InstrItineraryData;
314   const InstrItinerary *InstrItineraries;
315 
316   const MCExtraProcessorInfo *ExtraProcessorInfo;
317 
hasExtraProcessorInfoMCSchedModel318   bool hasExtraProcessorInfo() const { return ExtraProcessorInfo; }
319 
getProcessorIDMCSchedModel320   unsigned getProcessorID() const { return ProcID; }
321 
322   /// Does this machine model include instruction-level scheduling.
hasInstrSchedModelMCSchedModel323   bool hasInstrSchedModel() const { return SchedClassTable; }
324 
getExtraProcessorInfoMCSchedModel325   const MCExtraProcessorInfo &getExtraProcessorInfo() const {
326     assert(hasExtraProcessorInfo() &&
327            "No extra information available for this model");
328     return *ExtraProcessorInfo;
329   }
330 
331   /// Return true if this machine model data for all instructions with a
332   /// scheduling class (itinerary class or SchedRW list).
isCompleteMCSchedModel333   bool isComplete() const { return CompleteModel; }
334 
335   /// Return true if machine supports out of order execution.
isOutOfOrderMCSchedModel336   bool isOutOfOrder() const { return MicroOpBufferSize > 1; }
337 
getNumProcResourceKindsMCSchedModel338   unsigned getNumProcResourceKinds() const {
339     return NumProcResourceKinds;
340   }
341 
getProcResourceMCSchedModel342   const MCProcResourceDesc *getProcResource(unsigned ProcResourceIdx) const {
343     assert(hasInstrSchedModel() && "No scheduling machine model");
344 
345     assert(ProcResourceIdx < NumProcResourceKinds && "bad proc resource idx");
346     return &ProcResourceTable[ProcResourceIdx];
347   }
348 
getSchedClassDescMCSchedModel349   const MCSchedClassDesc *getSchedClassDesc(unsigned SchedClassIdx) const {
350     assert(hasInstrSchedModel() && "No scheduling machine model");
351 
352     assert(SchedClassIdx < NumSchedClasses && "bad scheduling class idx");
353     return &SchedClassTable[SchedClassIdx];
354   }
355 
356   /// Returns the latency value for the scheduling class.
357   static int computeInstrLatency(const MCSubtargetInfo &STI,
358                                  const MCSchedClassDesc &SCDesc);
359 
360   int computeInstrLatency(const MCSubtargetInfo &STI, unsigned SClass) const;
361   int computeInstrLatency(const MCSubtargetInfo &STI, const MCInstrInfo &MCII,
362                           const MCInst &Inst) const;
363 
364   // Returns the reciprocal throughput information from a MCSchedClassDesc.
365   static double
366   getReciprocalThroughput(const MCSubtargetInfo &STI,
367                           const MCSchedClassDesc &SCDesc);
368 
369   static double
370   getReciprocalThroughput(unsigned SchedClass, const InstrItineraryData &IID);
371 
372   double
373   getReciprocalThroughput(const MCSubtargetInfo &STI, const MCInstrInfo &MCII,
374                           const MCInst &Inst) const;
375 
376   /// Returns the default initialized model.
GetDefaultSchedModelMCSchedModel377   static const MCSchedModel &GetDefaultSchedModel() { return Default; }
378   static const MCSchedModel Default;
379 };
380 
381 } // namespace llvm
382 
383 #endif
384