1 //===- llvm/CallingConvLower.h - Calling Conventions ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the CCState and CCValAssign classes, used for lowering
11 // and implementing calling conventions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H
16 #define LLVM_CODEGEN_CALLINGCONVLOWER_H
17 
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/TargetCallingConv.h"
22 #include "llvm/IR/CallingConv.h"
23 #include "llvm/MC/MCRegisterInfo.h"
24 
25 namespace llvm {
26 
27 class CCState;
28 class MVT;
29 class TargetMachine;
30 class TargetRegisterInfo;
31 
32 /// CCValAssign - Represent assignment of one arg/retval to a location.
33 class CCValAssign {
34 public:
35   enum LocInfo {
36     Full,      // The value fills the full location.
37     SExt,      // The value is sign extended in the location.
38     ZExt,      // The value is zero extended in the location.
39     AExt,      // The value is extended with undefined upper bits.
40     SExtUpper, // The value is in the upper bits of the location and should be
41                // sign extended when retrieved.
42     ZExtUpper, // The value is in the upper bits of the location and should be
43                // zero extended when retrieved.
44     AExtUpper, // The value is in the upper bits of the location and should be
45                // extended with undefined upper bits when retrieved.
46     BCvt,      // The value is bit-converted in the location.
47     VExt,      // The value is vector-widened in the location.
48                // FIXME: Not implemented yet. Code that uses AExt to mean
49                // vector-widen should be fixed to use VExt instead.
50     FPExt,     // The floating-point value is fp-extended in the location.
51     Indirect   // The location contains pointer to the value.
52     // TODO: a subset of the value is in the location.
53   };
54 
55 private:
56   /// ValNo - This is the value number begin assigned (e.g. an argument number).
57   unsigned ValNo;
58 
59   /// Loc is either a stack offset or a register number.
60   unsigned Loc;
61 
62   /// isMem - True if this is a memory loc, false if it is a register loc.
63   unsigned isMem : 1;
64 
65   /// isCustom - True if this arg/retval requires special handling.
66   unsigned isCustom : 1;
67 
68   /// Information about how the value is assigned.
69   LocInfo HTP : 6;
70 
71   /// ValVT - The type of the value being assigned.
72   MVT ValVT;
73 
74   /// LocVT - The type of the location being assigned to.
75   MVT LocVT;
76 public:
77 
getReg(unsigned ValNo,MVT ValVT,unsigned RegNo,MVT LocVT,LocInfo HTP)78   static CCValAssign getReg(unsigned ValNo, MVT ValVT,
79                             unsigned RegNo, MVT LocVT,
80                             LocInfo HTP) {
81     CCValAssign Ret;
82     Ret.ValNo = ValNo;
83     Ret.Loc = RegNo;
84     Ret.isMem = false;
85     Ret.isCustom = false;
86     Ret.HTP = HTP;
87     Ret.ValVT = ValVT;
88     Ret.LocVT = LocVT;
89     return Ret;
90   }
91 
getCustomReg(unsigned ValNo,MVT ValVT,unsigned RegNo,MVT LocVT,LocInfo HTP)92   static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT,
93                                   unsigned RegNo, MVT LocVT,
94                                   LocInfo HTP) {
95     CCValAssign Ret;
96     Ret = getReg(ValNo, ValVT, RegNo, LocVT, HTP);
97     Ret.isCustom = true;
98     return Ret;
99   }
100 
getMem(unsigned ValNo,MVT ValVT,unsigned Offset,MVT LocVT,LocInfo HTP)101   static CCValAssign getMem(unsigned ValNo, MVT ValVT,
102                             unsigned Offset, MVT LocVT,
103                             LocInfo HTP) {
104     CCValAssign Ret;
105     Ret.ValNo = ValNo;
106     Ret.Loc = Offset;
107     Ret.isMem = true;
108     Ret.isCustom = false;
109     Ret.HTP = HTP;
110     Ret.ValVT = ValVT;
111     Ret.LocVT = LocVT;
112     return Ret;
113   }
114 
getCustomMem(unsigned ValNo,MVT ValVT,unsigned Offset,MVT LocVT,LocInfo HTP)115   static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT,
116                                   unsigned Offset, MVT LocVT,
117                                   LocInfo HTP) {
118     CCValAssign Ret;
119     Ret = getMem(ValNo, ValVT, Offset, LocVT, HTP);
120     Ret.isCustom = true;
121     return Ret;
122   }
123 
124   // There is no need to differentiate between a pending CCValAssign and other
125   // kinds, as they are stored in a different list.
126   static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
127                                 LocInfo HTP, unsigned ExtraInfo = 0) {
128     return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP);
129   }
130 
convertToReg(unsigned RegNo)131   void convertToReg(unsigned RegNo) {
132     Loc = RegNo;
133     isMem = false;
134   }
135 
convertToMem(unsigned Offset)136   void convertToMem(unsigned Offset) {
137     Loc = Offset;
138     isMem = true;
139   }
140 
getValNo()141   unsigned getValNo() const { return ValNo; }
getValVT()142   MVT getValVT() const { return ValVT; }
143 
isRegLoc()144   bool isRegLoc() const { return !isMem; }
isMemLoc()145   bool isMemLoc() const { return isMem; }
146 
needsCustom()147   bool needsCustom() const { return isCustom; }
148 
getLocReg()149   unsigned getLocReg() const { assert(isRegLoc()); return Loc; }
getLocMemOffset()150   unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; }
getExtraInfo()151   unsigned getExtraInfo() const { return Loc; }
getLocVT()152   MVT getLocVT() const { return LocVT; }
153 
getLocInfo()154   LocInfo getLocInfo() const { return HTP; }
isExtInLoc()155   bool isExtInLoc() const {
156     return (HTP == AExt || HTP == SExt || HTP == ZExt);
157   }
158 
isUpperBitsInLoc()159   bool isUpperBitsInLoc() const {
160     return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper;
161   }
162 };
163 
164 /// Describes a register that needs to be forwarded from the prologue to a
165 /// musttail call.
166 struct ForwardedRegister {
ForwardedRegisterForwardedRegister167   ForwardedRegister(unsigned VReg, MCPhysReg PReg, MVT VT)
168       : VReg(VReg), PReg(PReg), VT(VT) {}
169   unsigned VReg;
170   MCPhysReg PReg;
171   MVT VT;
172 };
173 
174 /// CCAssignFn - This function assigns a location for Val, updating State to
175 /// reflect the change.  It returns 'true' if it failed to handle Val.
176 typedef bool CCAssignFn(unsigned ValNo, MVT ValVT,
177                         MVT LocVT, CCValAssign::LocInfo LocInfo,
178                         ISD::ArgFlagsTy ArgFlags, CCState &State);
179 
180 /// CCCustomFn - This function assigns a location for Val, possibly updating
181 /// all args to reflect changes and indicates if it handled it. It must set
182 /// isCustom if it handles the arg and returns true.
183 typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT,
184                         MVT &LocVT, CCValAssign::LocInfo &LocInfo,
185                         ISD::ArgFlagsTy &ArgFlags, CCState &State);
186 
187 /// CCState - This class holds information needed while lowering arguments and
188 /// return values.  It captures which registers are already assigned and which
189 /// stack slots are used.  It provides accessors to allocate these values.
190 class CCState {
191 private:
192   CallingConv::ID CallingConv;
193   bool IsVarArg;
194   bool AnalyzingMustTailForwardedRegs = false;
195   MachineFunction &MF;
196   const TargetRegisterInfo &TRI;
197   SmallVectorImpl<CCValAssign> &Locs;
198   LLVMContext &Context;
199 
200   unsigned StackOffset;
201   unsigned MaxStackArgAlign;
202   SmallVector<uint32_t, 16> UsedRegs;
203   SmallVector<CCValAssign, 4> PendingLocs;
204   SmallVector<ISD::ArgFlagsTy, 4> PendingArgFlags;
205 
206   // ByValInfo and SmallVector<ByValInfo, 4> ByValRegs:
207   //
208   // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers
209   // tracking.
210   // Or, in another words it tracks byval parameters that are stored in
211   // general purpose registers.
212   //
213   // For 4 byte stack alignment,
214   // instance index means byval parameter number in formal
215   // arguments set. Assume, we have some "struct_type" with size = 4 bytes,
216   // then, for function "foo":
217   //
218   // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t)
219   //
220   // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2)
221   // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4).
222   //
223   // In case of 8 bytes stack alignment,
224   // ByValRegs may also contain information about wasted registers.
225   // In function shown above, r3 would be wasted according to AAPCS rules.
226   // And in that case ByValRegs[1].Waste would be "true".
227   // ByValRegs vector size still would be 2,
228   // while "%t" goes to the stack: it wouldn't be described in ByValRegs.
229   //
230   // Supposed use-case for this collection:
231   // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0.
232   // 2. HandleByVal fillups ByValRegs.
233   // 3. Argument analysis (LowerFormatArguments, for example). After
234   // some byval argument was analyzed, InRegsParamsProcessed is increased.
235   struct ByValInfo {
236     ByValInfo(unsigned B, unsigned E, bool IsWaste = false) :
BeginByValInfo237       Begin(B), End(E), Waste(IsWaste) {}
238     // First register allocated for current parameter.
239     unsigned Begin;
240 
241     // First after last register allocated for current parameter.
242     unsigned End;
243 
244     // Means that current range of registers doesn't belong to any
245     // parameters. It was wasted due to stack alignment rules.
246     // For more information see:
247     // AAPCS, 5.5 Parameter Passing, Stage C, C.3.
248     bool Waste;
249   };
250   SmallVector<ByValInfo, 4 > ByValRegs;
251 
252   // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed
253   // during argument analysis.
254   unsigned InRegsParamsProcessed;
255 
256 public:
257   CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
258           SmallVectorImpl<CCValAssign> &locs, LLVMContext &C);
259 
addLoc(const CCValAssign & V)260   void addLoc(const CCValAssign &V) {
261     Locs.push_back(V);
262   }
263 
getContext()264   LLVMContext &getContext() const { return Context; }
getMachineFunction()265   MachineFunction &getMachineFunction() const { return MF; }
getCallingConv()266   CallingConv::ID getCallingConv() const { return CallingConv; }
isVarArg()267   bool isVarArg() const { return IsVarArg; }
268 
269   /// getNextStackOffset - Return the next stack offset such that all stack
270   /// slots satisfy their alignment requirements.
getNextStackOffset()271   unsigned getNextStackOffset() const {
272     return StackOffset;
273   }
274 
275   /// getAlignedCallFrameSize - Return the size of the call frame needed to
276   /// be able to store all arguments and such that the alignment requirement
277   /// of each of the arguments is satisfied.
getAlignedCallFrameSize()278   unsigned getAlignedCallFrameSize() const {
279     return alignTo(StackOffset, MaxStackArgAlign);
280   }
281 
282   /// isAllocated - Return true if the specified register (or an alias) is
283   /// allocated.
isAllocated(unsigned Reg)284   bool isAllocated(unsigned Reg) const {
285     return UsedRegs[Reg/32] & (1 << (Reg&31));
286   }
287 
288   /// AnalyzeFormalArguments - Analyze an array of argument values,
289   /// incorporating info about the formals into this state.
290   void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
291                               CCAssignFn Fn);
292 
293   /// The function will invoke AnalyzeFormalArguments.
AnalyzeArguments(const SmallVectorImpl<ISD::InputArg> & Ins,CCAssignFn Fn)294   void AnalyzeArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
295                         CCAssignFn Fn) {
296     AnalyzeFormalArguments(Ins, Fn);
297   }
298 
299   /// AnalyzeReturn - Analyze the returned values of a return,
300   /// incorporating info about the result values into this state.
301   void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
302                      CCAssignFn Fn);
303 
304   /// CheckReturn - Analyze the return values of a function, returning
305   /// true if the return can be performed without sret-demotion, and
306   /// false otherwise.
307   bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
308                    CCAssignFn Fn);
309 
310   /// AnalyzeCallOperands - Analyze the outgoing arguments to a call,
311   /// incorporating info about the passed values into this state.
312   void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
313                            CCAssignFn Fn);
314 
315   /// AnalyzeCallOperands - Same as above except it takes vectors of types
316   /// and argument flags.
317   void AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
318                            SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
319                            CCAssignFn Fn);
320 
321   /// The function will invoke AnalyzeCallOperands.
AnalyzeArguments(const SmallVectorImpl<ISD::OutputArg> & Outs,CCAssignFn Fn)322   void AnalyzeArguments(const SmallVectorImpl<ISD::OutputArg> &Outs,
323                         CCAssignFn Fn) {
324     AnalyzeCallOperands(Outs, Fn);
325   }
326 
327   /// AnalyzeCallResult - Analyze the return values of a call,
328   /// incorporating info about the passed values into this state.
329   void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
330                          CCAssignFn Fn);
331 
332   /// A shadow allocated register is a register that was allocated
333   /// but wasn't added to the location list (Locs).
334   /// \returns true if the register was allocated as shadow or false otherwise.
335   bool IsShadowAllocatedReg(unsigned Reg) const;
336 
337   /// AnalyzeCallResult - Same as above except it's specialized for calls which
338   /// produce a single value.
339   void AnalyzeCallResult(MVT VT, CCAssignFn Fn);
340 
341   /// getFirstUnallocated - Return the index of the first unallocated register
342   /// in the set, or Regs.size() if they are all allocated.
getFirstUnallocated(ArrayRef<MCPhysReg> Regs)343   unsigned getFirstUnallocated(ArrayRef<MCPhysReg> Regs) const {
344     for (unsigned i = 0; i < Regs.size(); ++i)
345       if (!isAllocated(Regs[i]))
346         return i;
347     return Regs.size();
348   }
349 
350   /// AllocateReg - Attempt to allocate one register.  If it is not available,
351   /// return zero.  Otherwise, return the register, marking it and any aliases
352   /// as allocated.
AllocateReg(unsigned Reg)353   unsigned AllocateReg(unsigned Reg) {
354     if (isAllocated(Reg)) return 0;
355     MarkAllocated(Reg);
356     return Reg;
357   }
358 
359   /// Version of AllocateReg with extra register to be shadowed.
AllocateReg(unsigned Reg,unsigned ShadowReg)360   unsigned AllocateReg(unsigned Reg, unsigned ShadowReg) {
361     if (isAllocated(Reg)) return 0;
362     MarkAllocated(Reg);
363     MarkAllocated(ShadowReg);
364     return Reg;
365   }
366 
367   /// AllocateReg - Attempt to allocate one of the specified registers.  If none
368   /// are available, return zero.  Otherwise, return the first one available,
369   /// marking it and any aliases as allocated.
AllocateReg(ArrayRef<MCPhysReg> Regs)370   unsigned AllocateReg(ArrayRef<MCPhysReg> Regs) {
371     unsigned FirstUnalloc = getFirstUnallocated(Regs);
372     if (FirstUnalloc == Regs.size())
373       return 0;    // Didn't find the reg.
374 
375     // Mark the register and any aliases as allocated.
376     unsigned Reg = Regs[FirstUnalloc];
377     MarkAllocated(Reg);
378     return Reg;
379   }
380 
381   /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive
382   /// registers. If this is not possible, return zero. Otherwise, return the first
383   /// register of the block that were allocated, marking the entire block as allocated.
AllocateRegBlock(ArrayRef<MCPhysReg> Regs,unsigned RegsRequired)384   unsigned AllocateRegBlock(ArrayRef<MCPhysReg> Regs, unsigned RegsRequired) {
385     if (RegsRequired > Regs.size())
386       return 0;
387 
388     for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired;
389          ++StartIdx) {
390       bool BlockAvailable = true;
391       // Check for already-allocated regs in this block
392       for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
393         if (isAllocated(Regs[StartIdx + BlockIdx])) {
394           BlockAvailable = false;
395           break;
396         }
397       }
398       if (BlockAvailable) {
399         // Mark the entire block as allocated
400         for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
401           MarkAllocated(Regs[StartIdx + BlockIdx]);
402         }
403         return Regs[StartIdx];
404       }
405     }
406     // No block was available
407     return 0;
408   }
409 
410   /// Version of AllocateReg with list of registers to be shadowed.
AllocateReg(ArrayRef<MCPhysReg> Regs,const MCPhysReg * ShadowRegs)411   unsigned AllocateReg(ArrayRef<MCPhysReg> Regs, const MCPhysReg *ShadowRegs) {
412     unsigned FirstUnalloc = getFirstUnallocated(Regs);
413     if (FirstUnalloc == Regs.size())
414       return 0;    // Didn't find the reg.
415 
416     // Mark the register and any aliases as allocated.
417     unsigned Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc];
418     MarkAllocated(Reg);
419     MarkAllocated(ShadowReg);
420     return Reg;
421   }
422 
423   /// AllocateStack - Allocate a chunk of stack space with the specified size
424   /// and alignment.
AllocateStack(unsigned Size,unsigned Align)425   unsigned AllocateStack(unsigned Size, unsigned Align) {
426     assert(Align && ((Align - 1) & Align) == 0); // Align is power of 2.
427     StackOffset = alignTo(StackOffset, Align);
428     unsigned Result = StackOffset;
429     StackOffset += Size;
430     MaxStackArgAlign = std::max(Align, MaxStackArgAlign);
431     ensureMaxAlignment(Align);
432     return Result;
433   }
434 
ensureMaxAlignment(unsigned Align)435   void ensureMaxAlignment(unsigned Align) {
436     if (!AnalyzingMustTailForwardedRegs)
437       MF.getFrameInfo().ensureMaxAlignment(Align);
438   }
439 
440   /// Version of AllocateStack with extra register to be shadowed.
AllocateStack(unsigned Size,unsigned Align,unsigned ShadowReg)441   unsigned AllocateStack(unsigned Size, unsigned Align, unsigned ShadowReg) {
442     MarkAllocated(ShadowReg);
443     return AllocateStack(Size, Align);
444   }
445 
446   /// Version of AllocateStack with list of extra registers to be shadowed.
447   /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers.
AllocateStack(unsigned Size,unsigned Align,ArrayRef<MCPhysReg> ShadowRegs)448   unsigned AllocateStack(unsigned Size, unsigned Align,
449                          ArrayRef<MCPhysReg> ShadowRegs) {
450     for (unsigned i = 0; i < ShadowRegs.size(); ++i)
451       MarkAllocated(ShadowRegs[i]);
452     return AllocateStack(Size, Align);
453   }
454 
455   // HandleByVal - Allocate a stack slot large enough to pass an argument by
456   // value. The size and alignment information of the argument is encoded in its
457   // parameter attribute.
458   void HandleByVal(unsigned ValNo, MVT ValVT,
459                    MVT LocVT, CCValAssign::LocInfo LocInfo,
460                    int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags);
461 
462   // Returns count of byval arguments that are to be stored (even partly)
463   // in registers.
getInRegsParamsCount()464   unsigned getInRegsParamsCount() const { return ByValRegs.size(); }
465 
466   // Returns count of byval in-regs arguments proceed.
getInRegsParamsProcessed()467   unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; }
468 
469   // Get information about N-th byval parameter that is stored in registers.
470   // Here "ByValParamIndex" is N.
getInRegsParamInfo(unsigned InRegsParamRecordIndex,unsigned & BeginReg,unsigned & EndReg)471   void getInRegsParamInfo(unsigned InRegsParamRecordIndex,
472                           unsigned& BeginReg, unsigned& EndReg) const {
473     assert(InRegsParamRecordIndex < ByValRegs.size() &&
474            "Wrong ByVal parameter index");
475 
476     const ByValInfo& info = ByValRegs[InRegsParamRecordIndex];
477     BeginReg = info.Begin;
478     EndReg = info.End;
479   }
480 
481   // Add information about parameter that is kept in registers.
addInRegsParamInfo(unsigned RegBegin,unsigned RegEnd)482   void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) {
483     ByValRegs.push_back(ByValInfo(RegBegin, RegEnd));
484   }
485 
486   // Goes either to next byval parameter (excluding "waste" record), or
487   // to the end of collection.
488   // Returns false, if end is reached.
nextInRegsParam()489   bool nextInRegsParam() {
490     unsigned e = ByValRegs.size();
491     if (InRegsParamsProcessed < e)
492       ++InRegsParamsProcessed;
493     return InRegsParamsProcessed < e;
494   }
495 
496   // Clear byval registers tracking info.
clearByValRegsInfo()497   void clearByValRegsInfo() {
498     InRegsParamsProcessed = 0;
499     ByValRegs.clear();
500   }
501 
502   // Rewind byval registers tracking info.
rewindByValRegsInfo()503   void rewindByValRegsInfo() {
504     InRegsParamsProcessed = 0;
505   }
506 
507   // Get list of pending assignments
getPendingLocs()508   SmallVectorImpl<CCValAssign> &getPendingLocs() {
509     return PendingLocs;
510   }
511 
512   // Get a list of argflags for pending assignments.
getPendingArgFlags()513   SmallVectorImpl<ISD::ArgFlagsTy> &getPendingArgFlags() {
514     return PendingArgFlags;
515   }
516 
517   /// Compute the remaining unused register parameters that would be used for
518   /// the given value type. This is useful when varargs are passed in the
519   /// registers that normal prototyped parameters would be passed in, or for
520   /// implementing perfect forwarding.
521   void getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT,
522                                    CCAssignFn Fn);
523 
524   /// Compute the set of registers that need to be preserved and forwarded to
525   /// any musttail calls.
526   void analyzeMustTailForwardedRegisters(
527       SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
528       CCAssignFn Fn);
529 
530   /// Returns true if the results of the two calling conventions are compatible.
531   /// This is usually part of the check for tailcall eligibility.
532   static bool resultsCompatible(CallingConv::ID CalleeCC,
533                                 CallingConv::ID CallerCC, MachineFunction &MF,
534                                 LLVMContext &C,
535                                 const SmallVectorImpl<ISD::InputArg> &Ins,
536                                 CCAssignFn CalleeFn, CCAssignFn CallerFn);
537 
538   /// The function runs an additional analysis pass over function arguments.
539   /// It will mark each argument with the attribute flag SecArgPass.
540   /// After running, it will sort the locs list.
541   template <class T>
AnalyzeArgumentsSecondPass(const SmallVectorImpl<T> & Args,CCAssignFn Fn)542   void AnalyzeArgumentsSecondPass(const SmallVectorImpl<T> &Args,
543                                   CCAssignFn Fn) {
544     unsigned NumFirstPassLocs = Locs.size();
545 
546     /// Creates similar argument list to \p Args in which each argument is
547     /// marked using SecArgPass flag.
548     SmallVector<T, 16> SecPassArg;
549     // SmallVector<ISD::InputArg, 16> SecPassArg;
550     for (auto Arg : Args) {
551       Arg.Flags.setSecArgPass();
552       SecPassArg.push_back(Arg);
553     }
554 
555     // Run the second argument pass
556     AnalyzeArguments(SecPassArg, Fn);
557 
558     // Sort the locations of the arguments according to their original position.
559     SmallVector<CCValAssign, 16> TmpArgLocs;
560     std::swap(TmpArgLocs, Locs);
561     auto B = TmpArgLocs.begin(), E = TmpArgLocs.end();
562     std::merge(B, B + NumFirstPassLocs, B + NumFirstPassLocs, E,
563                std::back_inserter(Locs),
564                [](const CCValAssign &A, const CCValAssign &B) -> bool {
565                  return A.getValNo() < B.getValNo();
566                });
567   }
568 
569 private:
570   /// MarkAllocated - Mark a register and all of its aliases as allocated.
571   void MarkAllocated(unsigned Reg);
572 };
573 
574 } // end namespace llvm
575 
576 #endif // LLVM_CODEGEN_CALLINGCONVLOWER_H
577