1 //==-- llvm/CodeGen/GlobalISel/RegisterBankInfo.h ----------------*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file declares the API for the register bank info.
11 /// This API is responsible for handling the register banks.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_GLOBALISEL_REGBANKINFO_H
16 #define LLVM_CODEGEN_GLOBALISEL_REGBANKINFO_H
17 
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
21 #include "llvm/CodeGen/MachineValueType.h" // For SimpleValueType.
22 #include "llvm/Support/ErrorHandling.h"
23 
24 #include <cassert>
25 #include <memory> // For unique_ptr.
26 
27 namespace llvm {
28 class MachineInstr;
29 class MachineRegisterInfo;
30 class TargetInstrInfo;
31 class TargetRegisterInfo;
32 class raw_ostream;
33 
34 /// Holds all the information related to register banks.
35 class RegisterBankInfo {
36 public:
37   /// Helper struct that represents how a value is partially mapped
38   /// into a register.
39   /// The StartIdx and Length represent what region of the orginal
40   /// value this partial mapping covers.
41   /// This can be represented as a Mask of contiguous bit starting
42   /// at StartIdx bit and spanning Length bits.
43   /// StartIdx is the number of bits from the less significant bits.
44   struct PartialMapping {
45     /// Number of bits at which this partial mapping starts in the
46     /// original value.  The bits are counted from less significant
47     /// bits to most significant bits.
48     unsigned StartIdx;
49     /// Length of this mapping in bits. This is how many bits this
50     /// partial mapping covers in the original value:
51     /// from StartIdx to StartIdx + Length -1.
52     unsigned Length;
53     /// Register bank where the partial value lives.
54     const RegisterBank *RegBank;
55 
56     PartialMapping() = default;
57 
58     /// Provide a shortcut for quickly building PartialMapping.
PartialMappingPartialMapping59     PartialMapping(unsigned StartIdx, unsigned Length,
60                    const RegisterBank &RegBank)
61         : StartIdx(StartIdx), Length(Length), RegBank(&RegBank) {}
62 
63     /// \return the index of in the original value of the most
64     /// significant bit that this partial mapping covers.
getHighBitIdxPartialMapping65     unsigned getHighBitIdx() const { return StartIdx + Length - 1; }
66 
67     /// Print this partial mapping on dbgs() stream.
68     void dump() const;
69 
70     /// Print this partial mapping on \p OS;
71     void print(raw_ostream &OS) const;
72 
73     /// Check that the Mask is compatible with the RegBank.
74     /// Indeed, if the RegBank cannot accomadate the "active bits" of the mask,
75     /// there is no way this mapping is valid.
76     ///
77     /// \note This method does not check anything when assertions are disabled.
78     ///
79     /// \return True is the check was successful.
80     bool verify() const;
81   };
82 
83   /// Helper struct that represents how a value is mapped through
84   /// different register banks.
85   struct ValueMapping {
86     /// How the value is broken down between the different register banks.
87     SmallVector<PartialMapping, 2> BreakDown;
88 
89     /// Verify that this mapping makes sense for a value of \p ExpectedBitWidth.
90     /// \note This method does not check anything when assertions are disabled.
91     ///
92     /// \return True is the check was successful.
93     bool verify(unsigned ExpectedBitWidth) const;
94 
95     /// Print this on dbgs() stream.
96     void dump() const;
97 
98     /// Print this on \p OS;
99     void print(raw_ostream &OS) const;
100   };
101 
102   /// Helper class that represents how the value of an instruction may be
103   /// mapped and what is the related cost of such mapping.
104   class InstructionMapping {
105     /// Identifier of the mapping.
106     /// This is used to communicate between the target and the optimizers
107     /// which mapping should be realized.
108     unsigned ID;
109     /// Cost of this mapping.
110     unsigned Cost;
111     /// Mapping of all the operands.
112     std::unique_ptr<ValueMapping[]> OperandsMapping;
113     /// Number of operands.
114     unsigned NumOperands;
115 
getOperandMapping(unsigned i)116     ValueMapping &getOperandMapping(unsigned i) {
117       assert(i < getNumOperands() && "Out of bound operand");
118       return OperandsMapping[i];
119     }
120 
121   public:
122     /// Constructor for the mapping of an instruction.
123     /// \p NumOperands must be equal to number of all the operands of
124     /// the related instruction.
125     /// The rationale is that it is more efficient for the optimizers
126     /// to be able to assume that the mapping of the ith operand is
127     /// at the index i.
128     ///
129     /// \pre ID != InvalidMappingID
InstructionMapping(unsigned ID,unsigned Cost,unsigned NumOperands)130     InstructionMapping(unsigned ID, unsigned Cost, unsigned NumOperands)
131         : ID(ID), Cost(Cost), NumOperands(NumOperands) {
132       assert(getID() != InvalidMappingID &&
133              "Use the default constructor for invalid mapping");
134       OperandsMapping.reset(new ValueMapping[getNumOperands()]);
135     }
136 
137     /// Default constructor.
138     /// Use this constructor to express that the mapping is invalid.
InstructionMapping()139     InstructionMapping() : ID(InvalidMappingID), Cost(0), NumOperands(0) {}
140 
141     /// Get the cost.
getCost()142     unsigned getCost() const { return Cost; }
143 
144     /// Get the ID.
getID()145     unsigned getID() const { return ID; }
146 
147     /// Get the number of operands.
getNumOperands()148     unsigned getNumOperands() const { return NumOperands; }
149 
150     /// Get the value mapping of the ith operand.
getOperandMapping(unsigned i)151     const ValueMapping &getOperandMapping(unsigned i) const {
152       return const_cast<InstructionMapping *>(this)->getOperandMapping(i);
153     }
154 
155     /// Get the value mapping of the ith operand.
setOperandMapping(unsigned i,const ValueMapping & ValMapping)156     void setOperandMapping(unsigned i, const ValueMapping &ValMapping) {
157       getOperandMapping(i) = ValMapping;
158     }
159 
160     /// Check whether this object is valid.
161     /// This is a lightweight check for obvious wrong instance.
isValid()162     bool isValid() const { return getID() != InvalidMappingID; }
163 
164     /// Set the operand mapping for the \p OpIdx-th operand.
165     /// The mapping will consist of only one element in the break down list.
166     /// This element will map to \p RegBank and fully define a mask, whose
167     /// bitwidth matches the size of \p MaskSize.
168     void setOperandMapping(unsigned OpIdx, unsigned MaskSize,
169                            const RegisterBank &RegBank);
170 
171     /// Verifiy that this mapping makes sense for \p MI.
172     /// \pre \p MI must be connected to a MachineFunction.
173     ///
174     /// \note This method does not check anything when assertions are disabled.
175     ///
176     /// \return True is the check was successful.
177     bool verify(const MachineInstr &MI) const;
178 
179     /// Print this on dbgs() stream.
180     void dump() const;
181 
182     /// Print this on \p OS;
183     void print(raw_ostream &OS) const;
184   };
185 
186   /// Convenient type to represent the alternatives for mapping an
187   /// instruction.
188   /// \todo When we move to TableGen this should be an array ref.
189   typedef SmallVector<InstructionMapping, 4> InstructionMappings;
190 
191   /// Helper class use to get/create the virtual registers that will be used
192   /// to replace the MachineOperand when applying a mapping.
193   class OperandsMapper {
194     /// The OpIdx-th cell contains the index in NewVRegs where the VRegs of the
195     /// OpIdx-th operand starts. -1 means we do not have such mapping yet.
196     std::unique_ptr<int[]> OpToNewVRegIdx;
197     /// Hold the registers that will be used to map MI with InstrMapping.
198     SmallVector<unsigned, 8> NewVRegs;
199     /// Current MachineRegisterInfo, used to create new virtual registers.
200     MachineRegisterInfo &MRI;
201     /// Instruction being remapped.
202     MachineInstr &MI;
203     /// New mapping of the instruction.
204     const InstructionMapping &InstrMapping;
205 
206     /// Constant value identifying that the index in OpToNewVRegIdx
207     /// for an operand has not been set yet.
208     static const int DontKnowIdx;
209 
210     /// Get the range in NewVRegs to store all the partial
211     /// values for the \p OpIdx-th operand.
212     ///
213     /// \return The iterator range for the space created.
214     //
215     /// \pre getMI().getOperand(OpIdx).isReg()
216     iterator_range<SmallVectorImpl<unsigned>::iterator>
217     getVRegsMem(unsigned OpIdx);
218 
219     /// Get the end iterator for a range starting at \p StartIdx and
220     /// spannig \p NumVal in NewVRegs.
221     /// \pre StartIdx + NumVal <= NewVRegs.size()
222     SmallVectorImpl<unsigned>::const_iterator
223     getNewVRegsEnd(unsigned StartIdx, unsigned NumVal) const;
224     SmallVectorImpl<unsigned>::iterator getNewVRegsEnd(unsigned StartIdx,
225                                                        unsigned NumVal);
226 
227   public:
228     /// Create an OperandsMapper that will hold the information to apply \p
229     /// InstrMapping to \p MI.
230     /// \pre InstrMapping.verify(MI)
231     OperandsMapper(MachineInstr &MI, const InstructionMapping &InstrMapping,
232                    MachineRegisterInfo &MRI);
233 
234     /// Getters.
235     /// @{
236     /// The MachineInstr being remapped.
getMI()237     MachineInstr &getMI() const { return MI; }
238 
239     /// The final mapping of the instruction.
getInstrMapping()240     const InstructionMapping &getInstrMapping() const { return InstrMapping; }
241     /// @}
242 
243     /// Create as many new virtual registers as needed for the mapping of the \p
244     /// OpIdx-th operand.
245     /// The number of registers is determined by the number of breakdown for the
246     /// related operand in the instruction mapping.
247     ///
248     /// \pre getMI().getOperand(OpIdx).isReg()
249     ///
250     /// \post All the partial mapping of the \p OpIdx-th operand have been
251     /// assigned a new virtual register.
252     void createVRegs(unsigned OpIdx);
253 
254     /// Set the virtual register of the \p PartialMapIdx-th partial mapping of
255     /// the OpIdx-th operand to \p NewVReg.
256     ///
257     /// \pre getMI().getOperand(OpIdx).isReg()
258     /// \pre getInstrMapping().getOperandMapping(OpIdx).BreakDown.size() >
259     /// PartialMapIdx
260     /// \pre NewReg != 0
261     ///
262     /// \post the \p PartialMapIdx-th register of the value mapping of the \p
263     /// OpIdx-th operand has been set.
264     void setVRegs(unsigned OpIdx, unsigned PartialMapIdx, unsigned NewVReg);
265 
266     /// Get all the virtual registers required to map the \p OpIdx-th operand of
267     /// the instruction.
268     ///
269     /// This return an empty range when createVRegs or setVRegs has not been
270     /// called.
271     /// The iterator may be invalidated by a call to setVRegs or createVRegs.
272     ///
273     /// When \p ForDebug is true, we will not check that the list of new virtual
274     /// registers does not contain uninitialized values.
275     ///
276     /// \pre getMI().getOperand(OpIdx).isReg()
277     /// \pre ForDebug || All partial mappings have been set a register
278     iterator_range<SmallVectorImpl<unsigned>::const_iterator>
279     getVRegs(unsigned OpIdx, bool ForDebug = false) const;
280 
281     /// Print this operands mapper on dbgs() stream.
282     void dump() const;
283 
284     /// Print this operands mapper on \p OS stream.
285     void print(raw_ostream &OS, bool ForDebug = false) const;
286   };
287 
288 protected:
289   /// Hold the set of supported register banks.
290   std::unique_ptr<RegisterBank[]> RegBanks;
291   /// Total number of register banks.
292   unsigned NumRegBanks;
293 
294   /// Mapping from MVT::SimpleValueType to register banks.
295   std::unique_ptr<const RegisterBank *[]> VTToRegBank;
296 
297   /// Create a RegisterBankInfo that can accomodate up to \p NumRegBanks
298   /// RegisterBank instances.
299   ///
300   /// \note For the verify method to succeed all the \p NumRegBanks
301   /// must be initialized by createRegisterBank and updated with
302   /// addRegBankCoverage RegisterBank.
303   RegisterBankInfo(unsigned NumRegBanks);
304 
305   /// This constructor is meaningless.
306   /// It just provides a default constructor that can be used at link time
307   /// when GlobalISel is not built.
308   /// That way, targets can still inherit from this class without doing
309   /// crazy gymnastic to avoid link time failures.
310   /// \note That works because the constructor is inlined.
RegisterBankInfo()311   RegisterBankInfo() {
312     llvm_unreachable("This constructor should not be executed");
313   }
314 
315   /// Create a new register bank with the given parameter and add it
316   /// to RegBanks.
317   /// \pre \p ID must not already be used.
318   /// \pre \p ID < NumRegBanks.
319   void createRegisterBank(unsigned ID, const char *Name);
320 
321   /// Add \p RCId to the set of register class that the register bank,
322   /// identified \p ID, covers.
323   /// This method transitively adds all the sub classes and the subreg-classes
324   /// of \p RCId to the set of covered register classes.
325   /// It also adjusts the size of the register bank to reflect the maximal
326   /// size of a value that can be hold into that register bank.
327   ///
328   /// If \p AddTypeMapping is true, this method also records what types can
329   /// be mapped to \p ID. Although this done by default, targets may want to
330   /// disable it, espicially if a given type may be mapped on different
331   /// register bank. Indeed, in such case, this method only records the
332   /// first register bank where the type matches.
333   /// This information is only used to provide default mapping
334   /// (see getInstrMappingImpl).
335   ///
336   /// \note This method does *not* add the super classes of \p RCId.
337   /// The rationale is if \p ID covers the registers of \p RCId, that
338   /// does not necessarily mean that \p ID covers the set of registers
339   /// of RCId's superclasses.
340   /// This method does *not* add the superreg classes as well for consistents.
341   /// The expected use is to add the coverage top-down with respect to the
342   /// register hierarchy.
343   ///
344   /// \todo TableGen should just generate the BitSet vector for us.
345   void addRegBankCoverage(unsigned ID, unsigned RCId,
346                           const TargetRegisterInfo &TRI,
347                           bool AddTypeMapping = true);
348 
349   /// Get the register bank identified by \p ID.
getRegBank(unsigned ID)350   RegisterBank &getRegBank(unsigned ID) {
351     assert(ID < getNumRegBanks() && "Accessing an unknown register bank");
352     return RegBanks[ID];
353   }
354 
355   /// Get the register bank that has been recorded to cover \p SVT.
getRegBankForType(MVT::SimpleValueType SVT)356   const RegisterBank *getRegBankForType(MVT::SimpleValueType SVT) const {
357     if (!VTToRegBank)
358       return nullptr;
359     assert(SVT < MVT::SimpleValueType::LAST_VALUETYPE && "Out-of-bound access");
360     return VTToRegBank.get()[SVT];
361   }
362 
363   /// Record \p RegBank as the register bank that covers \p SVT.
364   /// If a record was already set for \p SVT, the mapping is not
365   /// updated, unless \p Force == true
366   ///
367   /// \post if getRegBankForType(SVT)\@pre == nullptr then
368   ///                       getRegBankForType(SVT) == &RegBank
369   /// \post if Force == true then getRegBankForType(SVT) == &RegBank
370   void recordRegBankForType(const RegisterBank &RegBank,
371                             MVT::SimpleValueType SVT, bool Force = false) {
372     if (!VTToRegBank) {
373       VTToRegBank.reset(
374           new const RegisterBank *[MVT::SimpleValueType::LAST_VALUETYPE]);
375       std::fill(&VTToRegBank[0],
376                 &VTToRegBank[MVT::SimpleValueType::LAST_VALUETYPE], nullptr);
377     }
378     assert(SVT < MVT::SimpleValueType::LAST_VALUETYPE && "Out-of-bound access");
379     // If we want to override the mapping or the mapping does not exits yet,
380     // set the register bank for SVT.
381     if (Force || !getRegBankForType(SVT))
382       VTToRegBank.get()[SVT] = &RegBank;
383   }
384 
385   /// Try to get the mapping of \p MI.
386   /// See getInstrMapping for more details on what a mapping represents.
387   ///
388   /// Unlike getInstrMapping the returned InstructionMapping may be invalid
389   /// (isValid() == false).
390   /// This means that the target independent code is not smart enough
391   /// to get the mapping of \p MI and thus, the target has to provide the
392   /// information for \p MI.
393   ///
394   /// This implementation is able to get the mapping of:
395   /// - Target specific instructions by looking at the encoding constraints.
396   /// - Any instruction if all the register operands are already been assigned
397   ///   a register, a register class, or a register bank.
398   /// - Copies and phis if at least one of the operand has been assigned a
399   ///   register, a register class, or a register bank.
400   /// In other words, this method will likely fail to find a mapping for
401   /// any generic opcode that has not been lowered by target specific code.
402   InstructionMapping getInstrMappingImpl(const MachineInstr &MI) const;
403 
404   /// Get the register bank for the \p OpIdx-th operand of \p MI form
405   /// the encoding constraints, if any.
406   ///
407   /// \return A register bank that covers the register class of the
408   /// related encoding constraints or nullptr if \p MI did not provide
409   /// enough information to deduce it.
410   const RegisterBank *
411   getRegBankFromConstraints(const MachineInstr &MI, unsigned OpIdx,
412                             const TargetInstrInfo &TII,
413                             const TargetRegisterInfo &TRI) const;
414 
415   /// Helper method to apply something that is like the default mapping.
416   /// Basically, that means that \p OpdMapper.getMI() is left untouched
417   /// aside from the reassignment of the register operand that have been
418   /// remapped.
419   /// If the mapping of one of the operand spans several registers, this
420   /// method will abort as this is not like a default mapping anymore.
421   ///
422   /// \pre For OpIdx in {0..\p OpdMapper.getMI().getNumOperands())
423   ///        the range OpdMapper.getVRegs(OpIdx) is empty or of size 1.
424   static void applyDefaultMapping(const OperandsMapper &OpdMapper);
425 
426   /// See ::applyMapping.
applyMappingImpl(const OperandsMapper & OpdMapper)427   virtual void applyMappingImpl(const OperandsMapper &OpdMapper) const {
428     llvm_unreachable("The target has to implement that part");
429   }
430 
431 public:
~RegisterBankInfo()432   virtual ~RegisterBankInfo() {}
433 
434   /// Get the register bank identified by \p ID.
getRegBank(unsigned ID)435   const RegisterBank &getRegBank(unsigned ID) const {
436     return const_cast<RegisterBankInfo *>(this)->getRegBank(ID);
437   }
438 
439   /// Get the register bank of \p Reg.
440   /// If Reg has not been assigned a register, a register class,
441   /// or a register bank, then this returns nullptr.
442   ///
443   /// \pre Reg != 0 (NoRegister)
444   const RegisterBank *getRegBank(unsigned Reg, const MachineRegisterInfo &MRI,
445                                  const TargetRegisterInfo &TRI) const;
446 
447   /// Get the total number of register banks.
getNumRegBanks()448   unsigned getNumRegBanks() const { return NumRegBanks; }
449 
450   /// Get a register bank that covers \p RC.
451   ///
452   /// \pre \p RC is a user-defined register class (as opposed as one
453   /// generated by TableGen).
454   ///
455   /// \note The mapping RC -> RegBank could be built while adding the
456   /// coverage for the register banks. However, we do not do it, because,
457   /// at least for now, we only need this information for register classes
458   /// that are used in the description of instruction. In other words,
459   /// there are just a handful of them and we do not want to waste space.
460   ///
461   /// \todo This should be TableGen'ed.
462   virtual const RegisterBank &
getRegBankFromRegClass(const TargetRegisterClass & RC)463   getRegBankFromRegClass(const TargetRegisterClass &RC) const {
464     llvm_unreachable("The target must override this method");
465   }
466 
467   /// Get the cost of a copy from \p B to \p A, or put differently,
468   /// get the cost of A = COPY B. Since register banks may cover
469   /// different size, \p Size specifies what will be the size in bits
470   /// that will be copied around.
471   ///
472   /// \note Since this is a copy, both registers have the same size.
copyCost(const RegisterBank & A,const RegisterBank & B,unsigned Size)473   virtual unsigned copyCost(const RegisterBank &A, const RegisterBank &B,
474                             unsigned Size) const {
475     // Optimistically assume that copies are coalesced. I.e., when
476     // they are on the same bank, they are free.
477     // Otherwise assume a non-zero cost of 1. The targets are supposed
478     // to override that properly anyway if they care.
479     return &A != &B;
480   }
481 
482   /// Identifier used when the related instruction mapping instance
483   /// is generated by target independent code.
484   /// Make sure not to use that identifier to avoid possible collision.
485   static const unsigned DefaultMappingID;
486 
487   /// Identifier used when the related instruction mapping instance
488   /// is generated by the default constructor.
489   /// Make sure not to use that identifier.
490   static const unsigned InvalidMappingID;
491 
492   /// Get the mapping of the different operands of \p MI
493   /// on the register bank.
494   /// This mapping should be the direct translation of \p MI.
495   /// In other words, when \p MI is mapped with the returned mapping,
496   /// only the register banks of the operands of \p MI need to be updated.
497   /// In particular, neither the opcode or the type of \p MI needs to be
498   /// updated for this direct mapping.
499   ///
500   /// The target independent implementation gives a mapping based on
501   /// the register classes for the target specific opcode.
502   /// It uses the ID RegisterBankInfo::DefaultMappingID for that mapping.
503   /// Make sure you do not use that ID for the alternative mapping
504   /// for MI. See getInstrAlternativeMappings for the alternative
505   /// mappings.
506   ///
507   /// For instance, if \p MI is a vector add, the mapping should
508   /// not be a scalarization of the add.
509   ///
510   /// \post returnedVal.verify(MI).
511   ///
512   /// \note If returnedVal does not verify MI, this would probably mean
513   /// that the target does not support that instruction.
514   virtual InstructionMapping getInstrMapping(const MachineInstr &MI) const;
515 
516   /// Get the alternative mappings for \p MI.
517   /// Alternative in the sense different from getInstrMapping.
518   virtual InstructionMappings
519   getInstrAlternativeMappings(const MachineInstr &MI) const;
520 
521   /// Get the possible mapping for \p MI.
522   /// A mapping defines where the different operands may live and at what cost.
523   /// For instance, let us consider:
524   /// v0(16) = G_ADD <2 x i8> v1, v2
525   /// The possible mapping could be:
526   ///
527   /// {/*ID*/VectorAdd, /*Cost*/1, /*v0*/{(0xFFFF, VPR)}, /*v1*/{(0xFFFF, VPR)},
528   ///                              /*v2*/{(0xFFFF, VPR)}}
529   /// {/*ID*/ScalarAddx2, /*Cost*/2, /*v0*/{(0x00FF, GPR),(0xFF00, GPR)},
530   ///                                /*v1*/{(0x00FF, GPR),(0xFF00, GPR)},
531   ///                                /*v2*/{(0x00FF, GPR),(0xFF00, GPR)}}
532   ///
533   /// \note The first alternative of the returned mapping should be the
534   /// direct translation of \p MI current form.
535   ///
536   /// \post !returnedVal.empty().
537   InstructionMappings getInstrPossibleMappings(const MachineInstr &MI) const;
538 
539   /// Apply \p OpdMapper.getInstrMapping() to \p OpdMapper.getMI().
540   /// After this call \p OpdMapper.getMI() may not be valid anymore.
541   /// \p OpdMapper.getInstrMapping().getID() carries the information of
542   /// what has been chosen to map \p OpdMapper.getMI(). This ID is set
543   /// by the various getInstrXXXMapping method.
544   ///
545   /// Therefore, getting the mapping and applying it should be kept in
546   /// sync.
applyMapping(const OperandsMapper & OpdMapper)547   void applyMapping(const OperandsMapper &OpdMapper) const {
548     // The only mapping we know how to handle is the default mapping.
549     if (OpdMapper.getInstrMapping().getID() == DefaultMappingID)
550       return applyDefaultMapping(OpdMapper);
551     // For other mapping, the target needs to do the right thing.
552     // If that means calling applyDefaultMapping, fine, but this
553     // must be explicitly stated.
554     applyMappingImpl(OpdMapper);
555   }
556 
557   /// Get the size in bits of \p Reg.
558   /// Utility method to get the size of any registers. Unlike
559   /// MachineRegisterInfo::getSize, the register does not need to be a
560   /// virtual register.
561   ///
562   /// \pre \p Reg != 0 (NoRegister).
563   static unsigned getSizeInBits(unsigned Reg, const MachineRegisterInfo &MRI,
564                                 const TargetRegisterInfo &TRI);
565 
566   /// Check that information hold by this instance make sense for the
567   /// given \p TRI.
568   ///
569   /// \note This method does not check anything when assertions are disabled.
570   ///
571   /// \return True is the check was successful.
572   bool verify(const TargetRegisterInfo &TRI) const;
573 };
574 
575 inline raw_ostream &
576 operator<<(raw_ostream &OS,
577            const RegisterBankInfo::PartialMapping &PartMapping) {
578   PartMapping.print(OS);
579   return OS;
580 }
581 
582 inline raw_ostream &
583 operator<<(raw_ostream &OS, const RegisterBankInfo::ValueMapping &ValMapping) {
584   ValMapping.print(OS);
585   return OS;
586 }
587 
588 inline raw_ostream &
589 operator<<(raw_ostream &OS,
590            const RegisterBankInfo::InstructionMapping &InstrMapping) {
591   InstrMapping.print(OS);
592   return OS;
593 }
594 
595 inline raw_ostream &
596 operator<<(raw_ostream &OS, const RegisterBankInfo::OperandsMapper &OpdMapper) {
597   OpdMapper.print(OS, /*ForDebug*/ false);
598   return OS;
599 }
600 } // End namespace llvm.
601 
602 #endif
603