1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "isel"
126 
127 /// LimitFloatPrecision - Generate low-precision inline sequences for
128 /// some float libcalls (6, 8 or 12 bits).
129 static unsigned LimitFloatPrecision;
130 
131 static cl::opt<unsigned, true>
132     LimitFPPrecision("limit-float-precision",
133                      cl::desc("Generate low-precision inline sequences "
134                               "for some float libcalls"),
135                      cl::location(LimitFloatPrecision), cl::Hidden,
136                      cl::init(0));
137 
138 static cl::opt<unsigned> SwitchPeelThreshold(
139     "switch-peel-threshold", cl::Hidden, cl::init(66),
140     cl::desc("Set the case probability threshold for peeling the case from a "
141              "switch statement. A value greater than 100 will void this "
142              "optimization"));
143 
144 // Limit the width of DAG chains. This is important in general to prevent
145 // DAG-based analysis from blowing up. For example, alias analysis and
146 // load clustering may not complete in reasonable time. It is difficult to
147 // recognize and avoid this situation within each individual analysis, and
148 // future analyses are likely to have the same behavior. Limiting DAG width is
149 // the safe approach and will be especially important with global DAGs.
150 //
151 // MaxParallelChains default is arbitrarily high to avoid affecting
152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
153 // sequence over this should have been converted to llvm.memcpy by the
154 // frontend. It is easy to induce this behavior with .ll code such as:
155 // %buffer = alloca [4096 x i8]
156 // %data = load [4096 x i8]* %argPtr
157 // store [4096 x i8] %data, [4096 x i8]* %buffer
158 static const unsigned MaxParallelChains = 64;
159 
160 // Return the calling convention if the Value passed requires ABI mangling as it
161 // is a parameter to a function or a return value from a function which is not
162 // an intrinsic.
getABIRegCopyCC(const Value * V)163 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
164   if (auto *R = dyn_cast<ReturnInst>(V))
165     return R->getParent()->getParent()->getCallingConv();
166 
167   if (auto *CI = dyn_cast<CallInst>(V)) {
168     const bool IsInlineAsm = CI->isInlineAsm();
169     const bool IsIndirectFunctionCall =
170         !IsInlineAsm && !CI->getCalledFunction();
171 
172     // It is possible that the call instruction is an inline asm statement or an
173     // indirect function call in which case the return value of
174     // getCalledFunction() would be nullptr.
175     const bool IsInstrinsicCall =
176         !IsInlineAsm && !IsIndirectFunctionCall &&
177         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
178 
179     if (!IsInlineAsm && !IsInstrinsicCall)
180       return CI->getCallingConv();
181   }
182 
183   return None;
184 }
185 
186 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
187                                       const SDValue *Parts, unsigned NumParts,
188                                       MVT PartVT, EVT ValueVT, const Value *V,
189                                       Optional<CallingConv::ID> CC);
190 
191 /// getCopyFromParts - Create a value that contains the specified legal parts
192 /// combined into the value they represent.  If the parts combine to a type
193 /// larger than ValueVT then AssertOp can be used to specify whether the extra
194 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
195 /// (ISD::AssertSext).
getCopyFromParts(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V,Optional<CallingConv::ID> CC=None,Optional<ISD::NodeType> AssertOp=None)196 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
197                                 const SDValue *Parts, unsigned NumParts,
198                                 MVT PartVT, EVT ValueVT, const Value *V,
199                                 Optional<CallingConv::ID> CC = None,
200                                 Optional<ISD::NodeType> AssertOp = None) {
201   if (ValueVT.isVector())
202     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
203                                   CC);
204 
205   assert(NumParts > 0 && "No parts to assemble!");
206   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
207   SDValue Val = Parts[0];
208 
209   if (NumParts > 1) {
210     // Assemble the value from multiple parts.
211     if (ValueVT.isInteger()) {
212       unsigned PartBits = PartVT.getSizeInBits();
213       unsigned ValueBits = ValueVT.getSizeInBits();
214 
215       // Assemble the power of 2 part.
216       unsigned RoundParts = NumParts & (NumParts - 1) ?
217         1 << Log2_32(NumParts) : NumParts;
218       unsigned RoundBits = PartBits * RoundParts;
219       EVT RoundVT = RoundBits == ValueBits ?
220         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
221       SDValue Lo, Hi;
222 
223       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
224 
225       if (RoundParts > 2) {
226         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
227                               PartVT, HalfVT, V);
228         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
229                               RoundParts / 2, PartVT, HalfVT, V);
230       } else {
231         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
232         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
233       }
234 
235       if (DAG.getDataLayout().isBigEndian())
236         std::swap(Lo, Hi);
237 
238       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
239 
240       if (RoundParts < NumParts) {
241         // Assemble the trailing non-power-of-2 part.
242         unsigned OddParts = NumParts - RoundParts;
243         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
244         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
245                               OddVT, V, CC);
246 
247         // Combine the round and odd parts.
248         Lo = Val;
249         if (DAG.getDataLayout().isBigEndian())
250           std::swap(Lo, Hi);
251         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
252         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
253         Hi =
254             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
255                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
256                                         TLI.getPointerTy(DAG.getDataLayout())));
257         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
258         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
259       }
260     } else if (PartVT.isFloatingPoint()) {
261       // FP split into multiple FP parts (for ppcf128)
262       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
263              "Unexpected split");
264       SDValue Lo, Hi;
265       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
266       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
267       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
268         std::swap(Lo, Hi);
269       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
270     } else {
271       // FP split into integer parts (soft fp)
272       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
273              !PartVT.isVector() && "Unexpected split");
274       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
275       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
276     }
277   }
278 
279   // There is now one part, held in Val.  Correct it to match ValueVT.
280   // PartEVT is the type of the register class that holds the value.
281   // ValueVT is the type of the inline asm operation.
282   EVT PartEVT = Val.getValueType();
283 
284   if (PartEVT == ValueVT)
285     return Val;
286 
287   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
288       ValueVT.bitsLT(PartEVT)) {
289     // For an FP value in an integer part, we need to truncate to the right
290     // width first.
291     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
292     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
293   }
294 
295   // Handle types that have the same size.
296   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
297     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
298 
299   // Handle types with different sizes.
300   if (PartEVT.isInteger() && ValueVT.isInteger()) {
301     if (ValueVT.bitsLT(PartEVT)) {
302       // For a truncate, see if we have any information to
303       // indicate whether the truncated bits will always be
304       // zero or sign-extension.
305       if (AssertOp.hasValue())
306         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
307                           DAG.getValueType(ValueVT));
308       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
309     }
310     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
311   }
312 
313   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
314     // FP_ROUND's are always exact here.
315     if (ValueVT.bitsLT(Val.getValueType()))
316       return DAG.getNode(
317           ISD::FP_ROUND, DL, ValueVT, Val,
318           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
319 
320     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
321   }
322 
323   llvm_unreachable("Unknown mismatch!");
324 }
325 
diagnosePossiblyInvalidConstraint(LLVMContext & Ctx,const Value * V,const Twine & ErrMsg)326 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
327                                               const Twine &ErrMsg) {
328   const Instruction *I = dyn_cast_or_null<Instruction>(V);
329   if (!V)
330     return Ctx.emitError(ErrMsg);
331 
332   const char *AsmError = ", possible invalid constraint for vector type";
333   if (const CallInst *CI = dyn_cast<CallInst>(I))
334     if (isa<InlineAsm>(CI->getCalledValue()))
335       return Ctx.emitError(I, ErrMsg + AsmError);
336 
337   return Ctx.emitError(I, ErrMsg);
338 }
339 
340 /// getCopyFromPartsVector - Create a value that contains the specified legal
341 /// parts combined into the value they represent.  If the parts combine to a
342 /// type larger than ValueVT then AssertOp can be used to specify whether the
343 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
344 /// ValueVT (ISD::AssertSext).
getCopyFromPartsVector(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V,Optional<CallingConv::ID> CallConv)345 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
346                                       const SDValue *Parts, unsigned NumParts,
347                                       MVT PartVT, EVT ValueVT, const Value *V,
348                                       Optional<CallingConv::ID> CallConv) {
349   assert(ValueVT.isVector() && "Not a vector value");
350   assert(NumParts > 0 && "No parts to assemble!");
351   const bool IsABIRegCopy = CallConv.hasValue();
352 
353   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
354   SDValue Val = Parts[0];
355 
356   // Handle a multi-element vector.
357   if (NumParts > 1) {
358     EVT IntermediateVT;
359     MVT RegisterVT;
360     unsigned NumIntermediates;
361     unsigned NumRegs;
362 
363     if (IsABIRegCopy) {
364       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
365           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
366           NumIntermediates, RegisterVT);
367     } else {
368       NumRegs =
369           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
370                                      NumIntermediates, RegisterVT);
371     }
372 
373     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
374     NumParts = NumRegs; // Silence a compiler warning.
375     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
376     assert(RegisterVT.getSizeInBits() ==
377            Parts[0].getSimpleValueType().getSizeInBits() &&
378            "Part type sizes don't match!");
379 
380     // Assemble the parts into intermediate operands.
381     SmallVector<SDValue, 8> Ops(NumIntermediates);
382     if (NumIntermediates == NumParts) {
383       // If the register was not expanded, truncate or copy the value,
384       // as appropriate.
385       for (unsigned i = 0; i != NumParts; ++i)
386         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
387                                   PartVT, IntermediateVT, V);
388     } else if (NumParts > 0) {
389       // If the intermediate type was expanded, build the intermediate
390       // operands from the parts.
391       assert(NumParts % NumIntermediates == 0 &&
392              "Must expand into a divisible number of parts!");
393       unsigned Factor = NumParts / NumIntermediates;
394       for (unsigned i = 0; i != NumIntermediates; ++i)
395         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
396                                   PartVT, IntermediateVT, V);
397     }
398 
399     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
400     // intermediate operands.
401     EVT BuiltVectorTy =
402         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
403                          (IntermediateVT.isVector()
404                               ? IntermediateVT.getVectorNumElements() * NumParts
405                               : NumIntermediates));
406     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
407                                                 : ISD::BUILD_VECTOR,
408                       DL, BuiltVectorTy, Ops);
409   }
410 
411   // There is now one part, held in Val.  Correct it to match ValueVT.
412   EVT PartEVT = Val.getValueType();
413 
414   if (PartEVT == ValueVT)
415     return Val;
416 
417   if (PartEVT.isVector()) {
418     // If the element type of the source/dest vectors are the same, but the
419     // parts vector has more elements than the value vector, then we have a
420     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
421     // elements we want.
422     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
423       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
424              "Cannot narrow, it would be a lossy transformation");
425       return DAG.getNode(
426           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
427           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
428     }
429 
430     // Vector/Vector bitcast.
431     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
432       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
433 
434     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
435       "Cannot handle this kind of promotion");
436     // Promoted vector extract
437     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
438 
439   }
440 
441   // Trivial bitcast if the types are the same size and the destination
442   // vector type is legal.
443   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
444       TLI.isTypeLegal(ValueVT))
445     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
446 
447   if (ValueVT.getVectorNumElements() != 1) {
448      // Certain ABIs require that vectors are passed as integers. For vectors
449      // are the same size, this is an obvious bitcast.
450      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
451        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
452      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
453        // Bitcast Val back the original type and extract the corresponding
454        // vector we want.
455        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
456        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
457                                            ValueVT.getVectorElementType(), Elts);
458        Val = DAG.getBitcast(WiderVecType, Val);
459        return DAG.getNode(
460            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
461            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
462      }
463 
464      diagnosePossiblyInvalidConstraint(
465          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
466      return DAG.getUNDEF(ValueVT);
467   }
468 
469   // Handle cases such as i8 -> <1 x i1>
470   EVT ValueSVT = ValueVT.getVectorElementType();
471   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
472     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
473                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
474 
475   return DAG.getBuildVector(ValueVT, DL, Val);
476 }
477 
478 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
479                                  SDValue Val, SDValue *Parts, unsigned NumParts,
480                                  MVT PartVT, const Value *V,
481                                  Optional<CallingConv::ID> CallConv);
482 
483 /// getCopyToParts - Create a series of nodes that contain the specified value
484 /// split into legal parts.  If the parts contain more bits than Val, then, for
485 /// integers, ExtendKind can be used to specify how to generate the extra bits.
getCopyToParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V,Optional<CallingConv::ID> CallConv=None,ISD::NodeType ExtendKind=ISD::ANY_EXTEND)486 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
487                            SDValue *Parts, unsigned NumParts, MVT PartVT,
488                            const Value *V,
489                            Optional<CallingConv::ID> CallConv = None,
490                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
491   EVT ValueVT = Val.getValueType();
492 
493   // Handle the vector case separately.
494   if (ValueVT.isVector())
495     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
496                                 CallConv);
497 
498   unsigned PartBits = PartVT.getSizeInBits();
499   unsigned OrigNumParts = NumParts;
500   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
501          "Copying to an illegal type!");
502 
503   if (NumParts == 0)
504     return;
505 
506   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
507   EVT PartEVT = PartVT;
508   if (PartEVT == ValueVT) {
509     assert(NumParts == 1 && "No-op copy with multiple parts!");
510     Parts[0] = Val;
511     return;
512   }
513 
514   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
515     // If the parts cover more bits than the value has, promote the value.
516     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
517       assert(NumParts == 1 && "Do not know what to promote to!");
518       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
519     } else {
520       if (ValueVT.isFloatingPoint()) {
521         // FP values need to be bitcast, then extended if they are being put
522         // into a larger container.
523         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
524         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
525       }
526       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
527              ValueVT.isInteger() &&
528              "Unknown mismatch!");
529       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
530       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
531       if (PartVT == MVT::x86mmx)
532         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533     }
534   } else if (PartBits == ValueVT.getSizeInBits()) {
535     // Different types of the same size.
536     assert(NumParts == 1 && PartEVT != ValueVT);
537     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
538   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
539     // If the parts cover less bits than value has, truncate the value.
540     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
541            ValueVT.isInteger() &&
542            "Unknown mismatch!");
543     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
544     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
545     if (PartVT == MVT::x86mmx)
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547   }
548 
549   // The value may have changed - recompute ValueVT.
550   ValueVT = Val.getValueType();
551   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
552          "Failed to tile the value with PartVT!");
553 
554   if (NumParts == 1) {
555     if (PartEVT != ValueVT) {
556       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
557                                         "scalar-to-vector conversion failed");
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559     }
560 
561     Parts[0] = Val;
562     return;
563   }
564 
565   // Expand the value into multiple parts.
566   if (NumParts & (NumParts - 1)) {
567     // The number of parts is not a power of 2.  Split off and copy the tail.
568     assert(PartVT.isInteger() && ValueVT.isInteger() &&
569            "Do not know what to expand to!");
570     unsigned RoundParts = 1 << Log2_32(NumParts);
571     unsigned RoundBits = RoundParts * PartBits;
572     unsigned OddParts = NumParts - RoundParts;
573     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
574                                  DAG.getIntPtrConstant(RoundBits, DL));
575     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
576                    CallConv);
577 
578     if (DAG.getDataLayout().isBigEndian())
579       // The odd parts were reversed by getCopyToParts - unreverse them.
580       std::reverse(Parts + RoundParts, Parts + NumParts);
581 
582     NumParts = RoundParts;
583     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
584     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
585   }
586 
587   // The number of parts is a power of 2.  Repeatedly bisect the value using
588   // EXTRACT_ELEMENT.
589   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
590                          EVT::getIntegerVT(*DAG.getContext(),
591                                            ValueVT.getSizeInBits()),
592                          Val);
593 
594   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
595     for (unsigned i = 0; i < NumParts; i += StepSize) {
596       unsigned ThisBits = StepSize * PartBits / 2;
597       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
598       SDValue &Part0 = Parts[i];
599       SDValue &Part1 = Parts[i+StepSize/2];
600 
601       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
602                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
603       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
605 
606       if (ThisBits == PartBits && ThisVT != PartVT) {
607         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
608         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
609       }
610     }
611   }
612 
613   if (DAG.getDataLayout().isBigEndian())
614     std::reverse(Parts, Parts + OrigNumParts);
615 }
616 
617 /// getCopyToPartsVector - Create a series of nodes that contain the specified
618 /// value split into legal parts.
getCopyToPartsVector(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V,Optional<CallingConv::ID> CallConv)619 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
620                                  SDValue Val, SDValue *Parts, unsigned NumParts,
621                                  MVT PartVT, const Value *V,
622                                  Optional<CallingConv::ID> CallConv) {
623   EVT ValueVT = Val.getValueType();
624   assert(ValueVT.isVector() && "Not a vector");
625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
626   const bool IsABIRegCopy = CallConv.hasValue();
627 
628   if (NumParts == 1) {
629     EVT PartEVT = PartVT;
630     if (PartEVT == ValueVT) {
631       // Nothing to do.
632     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
633       // Bitconvert vector->vector case.
634       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
635     } else if (PartVT.isVector() &&
636                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
637                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
638       EVT ElementVT = PartVT.getVectorElementType();
639       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
640       // undef elements.
641       SmallVector<SDValue, 16> Ops;
642       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
643         Ops.push_back(DAG.getNode(
644             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
645             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
646 
647       for (unsigned i = ValueVT.getVectorNumElements(),
648            e = PartVT.getVectorNumElements(); i != e; ++i)
649         Ops.push_back(DAG.getUNDEF(ElementVT));
650 
651       Val = DAG.getBuildVector(PartVT, DL, Ops);
652 
653       // FIXME: Use CONCAT for 2x -> 4x.
654 
655       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
656       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
657     } else if (PartVT.isVector() &&
658                PartEVT.getVectorElementType().bitsGE(
659                  ValueVT.getVectorElementType()) &&
660                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
661 
662       // Promoted vector extract
663       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
664     } else {
665       if (ValueVT.getVectorNumElements() == 1) {
666         Val = DAG.getNode(
667             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
668             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
669       } else {
670         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
671                "lossy conversion of vector to scalar type");
672         EVT IntermediateType =
673             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
674         Val = DAG.getBitcast(IntermediateType, Val);
675         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
676       }
677     }
678 
679     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
680     Parts[0] = Val;
681     return;
682   }
683 
684   // Handle a multi-element vector.
685   EVT IntermediateVT;
686   MVT RegisterVT;
687   unsigned NumIntermediates;
688   unsigned NumRegs;
689   if (IsABIRegCopy) {
690     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
691         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
692         NumIntermediates, RegisterVT);
693   } else {
694     NumRegs =
695         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
696                                    NumIntermediates, RegisterVT);
697   }
698   unsigned NumElements = ValueVT.getVectorNumElements();
699 
700   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
701   NumParts = NumRegs; // Silence a compiler warning.
702   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
703 
704   // Convert the vector to the appropiate type if necessary.
705   unsigned DestVectorNoElts =
706       NumIntermediates *
707       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
708   EVT BuiltVectorTy = EVT::getVectorVT(
709       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
710   if (Val.getValueType() != BuiltVectorTy)
711     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
712 
713   // Split the vector into intermediate operands.
714   SmallVector<SDValue, 8> Ops(NumIntermediates);
715   for (unsigned i = 0; i != NumIntermediates; ++i) {
716     if (IntermediateVT.isVector())
717       Ops[i] =
718           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
719                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
720                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
721     else
722       Ops[i] = DAG.getNode(
723           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
724           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
725   }
726 
727   // Split the intermediate operands into legal parts.
728   if (NumParts == NumIntermediates) {
729     // If the register was not expanded, promote or copy the value,
730     // as appropriate.
731     for (unsigned i = 0; i != NumParts; ++i)
732       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
733   } else if (NumParts > 0) {
734     // If the intermediate type was expanded, split each the value into
735     // legal parts.
736     assert(NumIntermediates != 0 && "division by zero");
737     assert(NumParts % NumIntermediates == 0 &&
738            "Must expand into a divisible number of parts!");
739     unsigned Factor = NumParts / NumIntermediates;
740     for (unsigned i = 0; i != NumIntermediates; ++i)
741       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
742                      CallConv);
743   }
744 }
745 
RegsForValue(const SmallVector<unsigned,4> & regs,MVT regvt,EVT valuevt,Optional<CallingConv::ID> CC)746 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
747                            EVT valuevt, Optional<CallingConv::ID> CC)
748     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
749       RegCount(1, regs.size()), CallConv(CC) {}
750 
RegsForValue(LLVMContext & Context,const TargetLowering & TLI,const DataLayout & DL,unsigned Reg,Type * Ty,Optional<CallingConv::ID> CC)751 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
752                            const DataLayout &DL, unsigned Reg, Type *Ty,
753                            Optional<CallingConv::ID> CC) {
754   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
755 
756   CallConv = CC;
757 
758   for (EVT ValueVT : ValueVTs) {
759     unsigned NumRegs =
760         isABIMangled()
761             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
762             : TLI.getNumRegisters(Context, ValueVT);
763     MVT RegisterVT =
764         isABIMangled()
765             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
766             : TLI.getRegisterType(Context, ValueVT);
767     for (unsigned i = 0; i != NumRegs; ++i)
768       Regs.push_back(Reg + i);
769     RegVTs.push_back(RegisterVT);
770     RegCount.push_back(NumRegs);
771     Reg += NumRegs;
772   }
773 }
774 
getCopyFromRegs(SelectionDAG & DAG,FunctionLoweringInfo & FuncInfo,const SDLoc & dl,SDValue & Chain,SDValue * Flag,const Value * V) const775 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
776                                       FunctionLoweringInfo &FuncInfo,
777                                       const SDLoc &dl, SDValue &Chain,
778                                       SDValue *Flag, const Value *V) const {
779   // A Value with type {} or [0 x %t] needs no registers.
780   if (ValueVTs.empty())
781     return SDValue();
782 
783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
784 
785   // Assemble the legal parts into the final values.
786   SmallVector<SDValue, 4> Values(ValueVTs.size());
787   SmallVector<SDValue, 8> Parts;
788   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
789     // Copy the legal parts from the registers.
790     EVT ValueVT = ValueVTs[Value];
791     unsigned NumRegs = RegCount[Value];
792     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
793                                           *DAG.getContext(),
794                                           CallConv.getValue(), RegVTs[Value])
795                                     : RegVTs[Value];
796 
797     Parts.resize(NumRegs);
798     for (unsigned i = 0; i != NumRegs; ++i) {
799       SDValue P;
800       if (!Flag) {
801         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
802       } else {
803         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
804         *Flag = P.getValue(2);
805       }
806 
807       Chain = P.getValue(1);
808       Parts[i] = P;
809 
810       // If the source register was virtual and if we know something about it,
811       // add an assert node.
812       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
813           !RegisterVT.isInteger() || RegisterVT.isVector())
814         continue;
815 
816       const FunctionLoweringInfo::LiveOutInfo *LOI =
817         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
818       if (!LOI)
819         continue;
820 
821       unsigned RegSize = RegisterVT.getSizeInBits();
822       unsigned NumSignBits = LOI->NumSignBits;
823       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
824 
825       if (NumZeroBits == RegSize) {
826         // The current value is a zero.
827         // Explicitly express that as it would be easier for
828         // optimizations to kick in.
829         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
830         continue;
831       }
832 
833       // FIXME: We capture more information than the dag can represent.  For
834       // now, just use the tightest assertzext/assertsext possible.
835       bool isSExt;
836       EVT FromVT(MVT::Other);
837       if (NumZeroBits) {
838         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
839         isSExt = false;
840       } else if (NumSignBits > 1) {
841         FromVT =
842             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
843         isSExt = true;
844       } else {
845         continue;
846       }
847       // Add an assertion node.
848       assert(FromVT != MVT::Other);
849       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
850                              RegisterVT, P, DAG.getValueType(FromVT));
851     }
852 
853     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
854                                      RegisterVT, ValueVT, V, CallConv);
855     Part += NumRegs;
856     Parts.clear();
857   }
858 
859   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
860 }
861 
getCopyToRegs(SDValue Val,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,SDValue * Flag,const Value * V,ISD::NodeType PreferredExtendType) const862 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
863                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
864                                  const Value *V,
865                                  ISD::NodeType PreferredExtendType) const {
866   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
867   ISD::NodeType ExtendKind = PreferredExtendType;
868 
869   // Get the list of the values's legal parts.
870   unsigned NumRegs = Regs.size();
871   SmallVector<SDValue, 8> Parts(NumRegs);
872   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
873     unsigned NumParts = RegCount[Value];
874 
875     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
876                                           *DAG.getContext(),
877                                           CallConv.getValue(), RegVTs[Value])
878                                     : RegVTs[Value];
879 
880     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
881       ExtendKind = ISD::ZERO_EXTEND;
882 
883     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
884                    NumParts, RegisterVT, V, CallConv, ExtendKind);
885     Part += NumParts;
886   }
887 
888   // Copy the parts into the registers.
889   SmallVector<SDValue, 8> Chains(NumRegs);
890   for (unsigned i = 0; i != NumRegs; ++i) {
891     SDValue Part;
892     if (!Flag) {
893       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
894     } else {
895       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
896       *Flag = Part.getValue(1);
897     }
898 
899     Chains[i] = Part.getValue(0);
900   }
901 
902   if (NumRegs == 1 || Flag)
903     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
904     // flagged to it. That is the CopyToReg nodes and the user are considered
905     // a single scheduling unit. If we create a TokenFactor and return it as
906     // chain, then the TokenFactor is both a predecessor (operand) of the
907     // user as well as a successor (the TF operands are flagged to the user).
908     // c1, f1 = CopyToReg
909     // c2, f2 = CopyToReg
910     // c3     = TokenFactor c1, c2
911     // ...
912     //        = op c3, ..., f2
913     Chain = Chains[NumRegs-1];
914   else
915     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
916 }
917 
AddInlineAsmOperands(unsigned Code,bool HasMatching,unsigned MatchingIdx,const SDLoc & dl,SelectionDAG & DAG,std::vector<SDValue> & Ops) const918 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
919                                         unsigned MatchingIdx, const SDLoc &dl,
920                                         SelectionDAG &DAG,
921                                         std::vector<SDValue> &Ops) const {
922   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
923 
924   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
925   if (HasMatching)
926     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
927   else if (!Regs.empty() &&
928            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
929     // Put the register class of the virtual registers in the flag word.  That
930     // way, later passes can recompute register class constraints for inline
931     // assembly as well as normal instructions.
932     // Don't do this for tied operands that can use the regclass information
933     // from the def.
934     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
935     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
936     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
937   }
938 
939   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
940   Ops.push_back(Res);
941 
942   if (Code == InlineAsm::Kind_Clobber) {
943     // Clobbers should always have a 1:1 mapping with registers, and may
944     // reference registers that have illegal (e.g. vector) types. Hence, we
945     // shouldn't try to apply any sort of splitting logic to them.
946     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
947            "No 1:1 mapping from clobbers to regs?");
948     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
949     (void)SP;
950     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
951       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
952       assert(
953           (Regs[I] != SP ||
954            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
955           "If we clobbered the stack pointer, MFI should know about it.");
956     }
957     return;
958   }
959 
960   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
961     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
962     MVT RegisterVT = RegVTs[Value];
963     for (unsigned i = 0; i != NumRegs; ++i) {
964       assert(Reg < Regs.size() && "Mismatch in # registers expected");
965       unsigned TheReg = Regs[Reg++];
966       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
967     }
968   }
969 }
970 
971 SmallVector<std::pair<unsigned, unsigned>, 4>
getRegsAndSizes() const972 RegsForValue::getRegsAndSizes() const {
973   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
974   unsigned I = 0;
975   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
976     unsigned RegCount = std::get<0>(CountAndVT);
977     MVT RegisterVT = std::get<1>(CountAndVT);
978     unsigned RegisterSize = RegisterVT.getSizeInBits();
979     for (unsigned E = I + RegCount; I != E; ++I)
980       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
981   }
982   return OutVec;
983 }
984 
init(GCFunctionInfo * gfi,AliasAnalysis * aa,const TargetLibraryInfo * li)985 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
986                                const TargetLibraryInfo *li) {
987   AA = aa;
988   GFI = gfi;
989   LibInfo = li;
990   DL = &DAG.getDataLayout();
991   Context = DAG.getContext();
992   LPadToCallSiteMap.clear();
993 }
994 
clear()995 void SelectionDAGBuilder::clear() {
996   NodeMap.clear();
997   UnusedArgNodeMap.clear();
998   PendingLoads.clear();
999   PendingExports.clear();
1000   CurInst = nullptr;
1001   HasTailCall = false;
1002   SDNodeOrder = LowestSDNodeOrder;
1003   StatepointLowering.clear();
1004 }
1005 
clearDanglingDebugInfo()1006 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1007   DanglingDebugInfoMap.clear();
1008 }
1009 
getRoot()1010 SDValue SelectionDAGBuilder::getRoot() {
1011   if (PendingLoads.empty())
1012     return DAG.getRoot();
1013 
1014   if (PendingLoads.size() == 1) {
1015     SDValue Root = PendingLoads[0];
1016     DAG.setRoot(Root);
1017     PendingLoads.clear();
1018     return Root;
1019   }
1020 
1021   // Otherwise, we have to make a token factor node.
1022   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1023                              PendingLoads);
1024   PendingLoads.clear();
1025   DAG.setRoot(Root);
1026   return Root;
1027 }
1028 
getControlRoot()1029 SDValue SelectionDAGBuilder::getControlRoot() {
1030   SDValue Root = DAG.getRoot();
1031 
1032   if (PendingExports.empty())
1033     return Root;
1034 
1035   // Turn all of the CopyToReg chains into one factored node.
1036   if (Root.getOpcode() != ISD::EntryToken) {
1037     unsigned i = 0, e = PendingExports.size();
1038     for (; i != e; ++i) {
1039       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1040       if (PendingExports[i].getNode()->getOperand(0) == Root)
1041         break;  // Don't add the root if we already indirectly depend on it.
1042     }
1043 
1044     if (i == e)
1045       PendingExports.push_back(Root);
1046   }
1047 
1048   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1049                      PendingExports);
1050   PendingExports.clear();
1051   DAG.setRoot(Root);
1052   return Root;
1053 }
1054 
visit(const Instruction & I)1055 void SelectionDAGBuilder::visit(const Instruction &I) {
1056   // Set up outgoing PHI node register values before emitting the terminator.
1057   if (isa<TerminatorInst>(&I)) {
1058     HandlePHINodesInSuccessorBlocks(I.getParent());
1059   }
1060 
1061   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1062   if (!isa<DbgInfoIntrinsic>(I))
1063     ++SDNodeOrder;
1064 
1065   CurInst = &I;
1066 
1067   visit(I.getOpcode(), I);
1068 
1069   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1070     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1071     // maps to this instruction.
1072     // TODO: We could handle all flags (nsw, etc) here.
1073     // TODO: If an IR instruction maps to >1 node, only the final node will have
1074     //       flags set.
1075     if (SDNode *Node = getNodeForIRValue(&I)) {
1076       SDNodeFlags IncomingFlags;
1077       IncomingFlags.copyFMF(*FPMO);
1078       if (!Node->getFlags().isDefined())
1079         Node->setFlags(IncomingFlags);
1080       else
1081         Node->intersectFlagsWith(IncomingFlags);
1082     }
1083   }
1084 
1085   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
1086       !isStatepoint(&I)) // statepoints handle their exports internally
1087     CopyToExportRegsIfNeeded(&I);
1088 
1089   CurInst = nullptr;
1090 }
1091 
visitPHI(const PHINode &)1092 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1093   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1094 }
1095 
visit(unsigned Opcode,const User & I)1096 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1097   // Note: this doesn't use InstVisitor, because it has to work with
1098   // ConstantExpr's in addition to instructions.
1099   switch (Opcode) {
1100   default: llvm_unreachable("Unknown instruction type encountered!");
1101     // Build the switch statement using the Instruction.def file.
1102 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1103     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1104 #include "llvm/IR/Instruction.def"
1105   }
1106 }
1107 
dropDanglingDebugInfo(const DILocalVariable * Variable,const DIExpression * Expr)1108 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1109                                                 const DIExpression *Expr) {
1110   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1111     const DbgValueInst *DI = DDI.getDI();
1112     DIVariable *DanglingVariable = DI->getVariable();
1113     DIExpression *DanglingExpr = DI->getExpression();
1114     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1115       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1116       return true;
1117     }
1118     return false;
1119   };
1120 
1121   for (auto &DDIMI : DanglingDebugInfoMap) {
1122     DanglingDebugInfoVector &DDIV = DDIMI.second;
1123     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1124   }
1125 }
1126 
1127 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1128 // generate the debug data structures now that we've seen its definition.
resolveDanglingDebugInfo(const Value * V,SDValue Val)1129 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1130                                                    SDValue Val) {
1131   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1132   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1133     return;
1134 
1135   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1136   for (auto &DDI : DDIV) {
1137     const DbgValueInst *DI = DDI.getDI();
1138     assert(DI && "Ill-formed DanglingDebugInfo");
1139     DebugLoc dl = DDI.getdl();
1140     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1141     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1142     DILocalVariable *Variable = DI->getVariable();
1143     DIExpression *Expr = DI->getExpression();
1144     assert(Variable->isValidLocationForIntrinsic(dl) &&
1145            "Expected inlined-at fields to agree");
1146     SDDbgValue *SDV;
1147     if (Val.getNode()) {
1148       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1149         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1150                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1151         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1152         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1153         // inserted after the definition of Val when emitting the instructions
1154         // after ISel. An alternative could be to teach
1155         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1156         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1157                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1158                    << ValSDNodeOrder << "\n");
1159         SDV = getDbgValue(Val, Variable, Expr, dl,
1160                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1161         DAG.AddDbgValue(SDV, Val.getNode(), false);
1162       } else
1163         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1164                           << "in EmitFuncArgumentDbgValue\n");
1165     } else
1166       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1167   }
1168   DDIV.clear();
1169 }
1170 
1171 /// getCopyFromRegs - If there was virtual register allocated for the value V
1172 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
getCopyFromRegs(const Value * V,Type * Ty)1173 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1174   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1175   SDValue Result;
1176 
1177   if (It != FuncInfo.ValueMap.end()) {
1178     unsigned InReg = It->second;
1179 
1180     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1181                      DAG.getDataLayout(), InReg, Ty, getABIRegCopyCC(V));
1182     SDValue Chain = DAG.getEntryNode();
1183     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1184                                  V);
1185     resolveDanglingDebugInfo(V, Result);
1186   }
1187 
1188   return Result;
1189 }
1190 
1191 /// getValue - Return an SDValue for the given Value.
getValue(const Value * V)1192 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1193   // If we already have an SDValue for this value, use it. It's important
1194   // to do this first, so that we don't create a CopyFromReg if we already
1195   // have a regular SDValue.
1196   SDValue &N = NodeMap[V];
1197   if (N.getNode()) return N;
1198 
1199   // If there's a virtual register allocated and initialized for this
1200   // value, use it.
1201   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1202     return copyFromReg;
1203 
1204   // Otherwise create a new SDValue and remember it.
1205   SDValue Val = getValueImpl(V);
1206   NodeMap[V] = Val;
1207   resolveDanglingDebugInfo(V, Val);
1208   return Val;
1209 }
1210 
1211 // Return true if SDValue exists for the given Value
findValue(const Value * V) const1212 bool SelectionDAGBuilder::findValue(const Value *V) const {
1213   return (NodeMap.find(V) != NodeMap.end()) ||
1214     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1215 }
1216 
1217 /// getNonRegisterValue - Return an SDValue for the given Value, but
1218 /// don't look in FuncInfo.ValueMap for a virtual register.
getNonRegisterValue(const Value * V)1219 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1220   // If we already have an SDValue for this value, use it.
1221   SDValue &N = NodeMap[V];
1222   if (N.getNode()) {
1223     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1224       // Remove the debug location from the node as the node is about to be used
1225       // in a location which may differ from the original debug location.  This
1226       // is relevant to Constant and ConstantFP nodes because they can appear
1227       // as constant expressions inside PHI nodes.
1228       N->setDebugLoc(DebugLoc());
1229     }
1230     return N;
1231   }
1232 
1233   // Otherwise create a new SDValue and remember it.
1234   SDValue Val = getValueImpl(V);
1235   NodeMap[V] = Val;
1236   resolveDanglingDebugInfo(V, Val);
1237   return Val;
1238 }
1239 
1240 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1241 /// Create an SDValue for the given value.
getValueImpl(const Value * V)1242 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1243   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1244 
1245   if (const Constant *C = dyn_cast<Constant>(V)) {
1246     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1247 
1248     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1249       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1250 
1251     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1252       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1253 
1254     if (isa<ConstantPointerNull>(C)) {
1255       unsigned AS = V->getType()->getPointerAddressSpace();
1256       return DAG.getConstant(0, getCurSDLoc(),
1257                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1258     }
1259 
1260     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1261       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1262 
1263     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1264       return DAG.getUNDEF(VT);
1265 
1266     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1267       visit(CE->getOpcode(), *CE);
1268       SDValue N1 = NodeMap[V];
1269       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1270       return N1;
1271     }
1272 
1273     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1274       SmallVector<SDValue, 4> Constants;
1275       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1276            OI != OE; ++OI) {
1277         SDNode *Val = getValue(*OI).getNode();
1278         // If the operand is an empty aggregate, there are no values.
1279         if (!Val) continue;
1280         // Add each leaf value from the operand to the Constants list
1281         // to form a flattened list of all the values.
1282         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1283           Constants.push_back(SDValue(Val, i));
1284       }
1285 
1286       return DAG.getMergeValues(Constants, getCurSDLoc());
1287     }
1288 
1289     if (const ConstantDataSequential *CDS =
1290           dyn_cast<ConstantDataSequential>(C)) {
1291       SmallVector<SDValue, 4> Ops;
1292       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1293         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1294         // Add each leaf value from the operand to the Constants list
1295         // to form a flattened list of all the values.
1296         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1297           Ops.push_back(SDValue(Val, i));
1298       }
1299 
1300       if (isa<ArrayType>(CDS->getType()))
1301         return DAG.getMergeValues(Ops, getCurSDLoc());
1302       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1303     }
1304 
1305     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1306       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1307              "Unknown struct or array constant!");
1308 
1309       SmallVector<EVT, 4> ValueVTs;
1310       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1311       unsigned NumElts = ValueVTs.size();
1312       if (NumElts == 0)
1313         return SDValue(); // empty struct
1314       SmallVector<SDValue, 4> Constants(NumElts);
1315       for (unsigned i = 0; i != NumElts; ++i) {
1316         EVT EltVT = ValueVTs[i];
1317         if (isa<UndefValue>(C))
1318           Constants[i] = DAG.getUNDEF(EltVT);
1319         else if (EltVT.isFloatingPoint())
1320           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1321         else
1322           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1323       }
1324 
1325       return DAG.getMergeValues(Constants, getCurSDLoc());
1326     }
1327 
1328     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1329       return DAG.getBlockAddress(BA, VT);
1330 
1331     VectorType *VecTy = cast<VectorType>(V->getType());
1332     unsigned NumElements = VecTy->getNumElements();
1333 
1334     // Now that we know the number and type of the elements, get that number of
1335     // elements into the Ops array based on what kind of constant it is.
1336     SmallVector<SDValue, 16> Ops;
1337     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1338       for (unsigned i = 0; i != NumElements; ++i)
1339         Ops.push_back(getValue(CV->getOperand(i)));
1340     } else {
1341       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1342       EVT EltVT =
1343           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1344 
1345       SDValue Op;
1346       if (EltVT.isFloatingPoint())
1347         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1348       else
1349         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1350       Ops.assign(NumElements, Op);
1351     }
1352 
1353     // Create a BUILD_VECTOR node.
1354     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1355   }
1356 
1357   // If this is a static alloca, generate it as the frameindex instead of
1358   // computation.
1359   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1360     DenseMap<const AllocaInst*, int>::iterator SI =
1361       FuncInfo.StaticAllocaMap.find(AI);
1362     if (SI != FuncInfo.StaticAllocaMap.end())
1363       return DAG.getFrameIndex(SI->second,
1364                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1365   }
1366 
1367   // If this is an instruction which fast-isel has deferred, select it now.
1368   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1369     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1370 
1371     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1372                      Inst->getType(), getABIRegCopyCC(V));
1373     SDValue Chain = DAG.getEntryNode();
1374     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1375   }
1376 
1377   llvm_unreachable("Can't get register for value!");
1378 }
1379 
visitCatchPad(const CatchPadInst & I)1380 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1381   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1382   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1383   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1384   bool IsSEH = isAsynchronousEHPersonality(Pers);
1385   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1386   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1387   if (!IsSEH)
1388     CatchPadMBB->setIsEHScopeEntry();
1389   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1390   if (IsMSVCCXX || IsCoreCLR)
1391     CatchPadMBB->setIsEHFuncletEntry();
1392   // Wasm does not need catchpads anymore
1393   if (!IsWasmCXX)
1394     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1395                             getControlRoot()));
1396 }
1397 
visitCatchRet(const CatchReturnInst & I)1398 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1399   // Update machine-CFG edge.
1400   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1401   FuncInfo.MBB->addSuccessor(TargetMBB);
1402 
1403   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1404   bool IsSEH = isAsynchronousEHPersonality(Pers);
1405   if (IsSEH) {
1406     // If this is not a fall-through branch or optimizations are switched off,
1407     // emit the branch.
1408     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1409         TM.getOptLevel() == CodeGenOpt::None)
1410       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1411                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1412     return;
1413   }
1414 
1415   // Figure out the funclet membership for the catchret's successor.
1416   // This will be used by the FuncletLayout pass to determine how to order the
1417   // BB's.
1418   // A 'catchret' returns to the outer scope's color.
1419   Value *ParentPad = I.getCatchSwitchParentPad();
1420   const BasicBlock *SuccessorColor;
1421   if (isa<ConstantTokenNone>(ParentPad))
1422     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1423   else
1424     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1425   assert(SuccessorColor && "No parent funclet for catchret!");
1426   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1427   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1428 
1429   // Create the terminator node.
1430   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1431                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1432                             DAG.getBasicBlock(SuccessorColorMBB));
1433   DAG.setRoot(Ret);
1434 }
1435 
visitCleanupPad(const CleanupPadInst & CPI)1436 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1437   // Don't emit any special code for the cleanuppad instruction. It just marks
1438   // the start of an EH scope/funclet.
1439   FuncInfo.MBB->setIsEHScopeEntry();
1440   FuncInfo.MBB->setIsEHFuncletEntry();
1441   FuncInfo.MBB->setIsCleanupFuncletEntry();
1442 }
1443 
1444 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1445 /// many places it could ultimately go. In the IR, we have a single unwind
1446 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1447 /// This function skips over imaginary basic blocks that hold catchswitch
1448 /// instructions, and finds all the "real" machine
1449 /// basic block destinations. As those destinations may not be successors of
1450 /// EHPadBB, here we also calculate the edge probability to those destinations.
1451 /// The passed-in Prob is the edge probability to EHPadBB.
findUnwindDestinations(FunctionLoweringInfo & FuncInfo,const BasicBlock * EHPadBB,BranchProbability Prob,SmallVectorImpl<std::pair<MachineBasicBlock *,BranchProbability>> & UnwindDests)1452 static void findUnwindDestinations(
1453     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1454     BranchProbability Prob,
1455     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1456         &UnwindDests) {
1457   EHPersonality Personality =
1458     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1459   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1460   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1461   bool IsSEH = isAsynchronousEHPersonality(Personality);
1462 
1463   while (EHPadBB) {
1464     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1465     BasicBlock *NewEHPadBB = nullptr;
1466     if (isa<LandingPadInst>(Pad)) {
1467       // Stop on landingpads. They are not funclets.
1468       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1469       break;
1470     } else if (isa<CleanupPadInst>(Pad)) {
1471       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1472       // personalities.
1473       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1474       UnwindDests.back().first->setIsEHScopeEntry();
1475       UnwindDests.back().first->setIsEHFuncletEntry();
1476       break;
1477     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1478       // Add the catchpad handlers to the possible destinations.
1479       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1480         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1481         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1482         if (IsMSVCCXX || IsCoreCLR)
1483           UnwindDests.back().first->setIsEHFuncletEntry();
1484         if (!IsSEH)
1485           UnwindDests.back().first->setIsEHScopeEntry();
1486       }
1487       NewEHPadBB = CatchSwitch->getUnwindDest();
1488     } else {
1489       continue;
1490     }
1491 
1492     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1493     if (BPI && NewEHPadBB)
1494       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1495     EHPadBB = NewEHPadBB;
1496   }
1497 }
1498 
visitCleanupRet(const CleanupReturnInst & I)1499 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1500   // Update successor info.
1501   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1502   auto UnwindDest = I.getUnwindDest();
1503   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1504   BranchProbability UnwindDestProb =
1505       (BPI && UnwindDest)
1506           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1507           : BranchProbability::getZero();
1508   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1509   for (auto &UnwindDest : UnwindDests) {
1510     UnwindDest.first->setIsEHPad();
1511     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1512   }
1513   FuncInfo.MBB->normalizeSuccProbs();
1514 
1515   // Create the terminator node.
1516   SDValue Ret =
1517       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1518   DAG.setRoot(Ret);
1519 }
1520 
visitCatchSwitch(const CatchSwitchInst & CSI)1521 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1522   report_fatal_error("visitCatchSwitch not yet implemented!");
1523 }
1524 
visitRet(const ReturnInst & I)1525 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1526   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1527   auto &DL = DAG.getDataLayout();
1528   SDValue Chain = getControlRoot();
1529   SmallVector<ISD::OutputArg, 8> Outs;
1530   SmallVector<SDValue, 8> OutVals;
1531 
1532   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1533   // lower
1534   //
1535   //   %val = call <ty> @llvm.experimental.deoptimize()
1536   //   ret <ty> %val
1537   //
1538   // differently.
1539   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1540     LowerDeoptimizingReturn();
1541     return;
1542   }
1543 
1544   if (!FuncInfo.CanLowerReturn) {
1545     unsigned DemoteReg = FuncInfo.DemoteRegister;
1546     const Function *F = I.getParent()->getParent();
1547 
1548     // Emit a store of the return value through the virtual register.
1549     // Leave Outs empty so that LowerReturn won't try to load return
1550     // registers the usual way.
1551     SmallVector<EVT, 1> PtrValueVTs;
1552     ComputeValueVTs(TLI, DL,
1553                     F->getReturnType()->getPointerTo(
1554                         DAG.getDataLayout().getAllocaAddrSpace()),
1555                     PtrValueVTs);
1556 
1557     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1558                                         DemoteReg, PtrValueVTs[0]);
1559     SDValue RetOp = getValue(I.getOperand(0));
1560 
1561     SmallVector<EVT, 4> ValueVTs;
1562     SmallVector<uint64_t, 4> Offsets;
1563     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1564     unsigned NumValues = ValueVTs.size();
1565 
1566     SmallVector<SDValue, 4> Chains(NumValues);
1567     for (unsigned i = 0; i != NumValues; ++i) {
1568       // An aggregate return value cannot wrap around the address space, so
1569       // offsets to its parts don't wrap either.
1570       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1571       Chains[i] = DAG.getStore(
1572           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1573           // FIXME: better loc info would be nice.
1574           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1575     }
1576 
1577     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1578                         MVT::Other, Chains);
1579   } else if (I.getNumOperands() != 0) {
1580     SmallVector<EVT, 4> ValueVTs;
1581     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1582     unsigned NumValues = ValueVTs.size();
1583     if (NumValues) {
1584       SDValue RetOp = getValue(I.getOperand(0));
1585 
1586       const Function *F = I.getParent()->getParent();
1587 
1588       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1589       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1590                                           Attribute::SExt))
1591         ExtendKind = ISD::SIGN_EXTEND;
1592       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1593                                                Attribute::ZExt))
1594         ExtendKind = ISD::ZERO_EXTEND;
1595 
1596       LLVMContext &Context = F->getContext();
1597       bool RetInReg = F->getAttributes().hasAttribute(
1598           AttributeList::ReturnIndex, Attribute::InReg);
1599 
1600       for (unsigned j = 0; j != NumValues; ++j) {
1601         EVT VT = ValueVTs[j];
1602 
1603         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1604           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1605 
1606         CallingConv::ID CC = F->getCallingConv();
1607 
1608         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1609         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1610         SmallVector<SDValue, 4> Parts(NumParts);
1611         getCopyToParts(DAG, getCurSDLoc(),
1612                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1613                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1614 
1615         // 'inreg' on function refers to return value
1616         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1617         if (RetInReg)
1618           Flags.setInReg();
1619 
1620         // Propagate extension type if any
1621         if (ExtendKind == ISD::SIGN_EXTEND)
1622           Flags.setSExt();
1623         else if (ExtendKind == ISD::ZERO_EXTEND)
1624           Flags.setZExt();
1625 
1626         for (unsigned i = 0; i < NumParts; ++i) {
1627           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1628                                         VT, /*isfixed=*/true, 0, 0));
1629           OutVals.push_back(Parts[i]);
1630         }
1631       }
1632     }
1633   }
1634 
1635   // Push in swifterror virtual register as the last element of Outs. This makes
1636   // sure swifterror virtual register will be returned in the swifterror
1637   // physical register.
1638   const Function *F = I.getParent()->getParent();
1639   if (TLI.supportSwiftError() &&
1640       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1641     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1642     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1643     Flags.setSwiftError();
1644     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1645                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1646                                   true /*isfixed*/, 1 /*origidx*/,
1647                                   0 /*partOffs*/));
1648     // Create SDNode for the swifterror virtual register.
1649     OutVals.push_back(
1650         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1651                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1652                         EVT(TLI.getPointerTy(DL))));
1653   }
1654 
1655   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1656   CallingConv::ID CallConv =
1657     DAG.getMachineFunction().getFunction().getCallingConv();
1658   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1659       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1660 
1661   // Verify that the target's LowerReturn behaved as expected.
1662   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1663          "LowerReturn didn't return a valid chain!");
1664 
1665   // Update the DAG with the new chain value resulting from return lowering.
1666   DAG.setRoot(Chain);
1667 }
1668 
1669 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1670 /// created for it, emit nodes to copy the value into the virtual
1671 /// registers.
CopyToExportRegsIfNeeded(const Value * V)1672 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1673   // Skip empty types
1674   if (V->getType()->isEmptyTy())
1675     return;
1676 
1677   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1678   if (VMI != FuncInfo.ValueMap.end()) {
1679     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1680     CopyValueToVirtualRegister(V, VMI->second);
1681   }
1682 }
1683 
1684 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1685 /// the current basic block, add it to ValueMap now so that we'll get a
1686 /// CopyTo/FromReg.
ExportFromCurrentBlock(const Value * V)1687 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1688   // No need to export constants.
1689   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1690 
1691   // Already exported?
1692   if (FuncInfo.isExportedInst(V)) return;
1693 
1694   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1695   CopyValueToVirtualRegister(V, Reg);
1696 }
1697 
isExportableFromCurrentBlock(const Value * V,const BasicBlock * FromBB)1698 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1699                                                      const BasicBlock *FromBB) {
1700   // The operands of the setcc have to be in this block.  We don't know
1701   // how to export them from some other block.
1702   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1703     // Can export from current BB.
1704     if (VI->getParent() == FromBB)
1705       return true;
1706 
1707     // Is already exported, noop.
1708     return FuncInfo.isExportedInst(V);
1709   }
1710 
1711   // If this is an argument, we can export it if the BB is the entry block or
1712   // if it is already exported.
1713   if (isa<Argument>(V)) {
1714     if (FromBB == &FromBB->getParent()->getEntryBlock())
1715       return true;
1716 
1717     // Otherwise, can only export this if it is already exported.
1718     return FuncInfo.isExportedInst(V);
1719   }
1720 
1721   // Otherwise, constants can always be exported.
1722   return true;
1723 }
1724 
1725 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1726 BranchProbability
getEdgeProbability(const MachineBasicBlock * Src,const MachineBasicBlock * Dst) const1727 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1728                                         const MachineBasicBlock *Dst) const {
1729   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1730   const BasicBlock *SrcBB = Src->getBasicBlock();
1731   const BasicBlock *DstBB = Dst->getBasicBlock();
1732   if (!BPI) {
1733     // If BPI is not available, set the default probability as 1 / N, where N is
1734     // the number of successors.
1735     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1736     return BranchProbability(1, SuccSize);
1737   }
1738   return BPI->getEdgeProbability(SrcBB, DstBB);
1739 }
1740 
addSuccessorWithProb(MachineBasicBlock * Src,MachineBasicBlock * Dst,BranchProbability Prob)1741 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1742                                                MachineBasicBlock *Dst,
1743                                                BranchProbability Prob) {
1744   if (!FuncInfo.BPI)
1745     Src->addSuccessorWithoutProb(Dst);
1746   else {
1747     if (Prob.isUnknown())
1748       Prob = getEdgeProbability(Src, Dst);
1749     Src->addSuccessor(Dst, Prob);
1750   }
1751 }
1752 
InBlock(const Value * V,const BasicBlock * BB)1753 static bool InBlock(const Value *V, const BasicBlock *BB) {
1754   if (const Instruction *I = dyn_cast<Instruction>(V))
1755     return I->getParent() == BB;
1756   return true;
1757 }
1758 
1759 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1760 /// This function emits a branch and is used at the leaves of an OR or an
1761 /// AND operator tree.
1762 void
EmitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,BranchProbability TProb,BranchProbability FProb,bool InvertCond)1763 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1764                                                   MachineBasicBlock *TBB,
1765                                                   MachineBasicBlock *FBB,
1766                                                   MachineBasicBlock *CurBB,
1767                                                   MachineBasicBlock *SwitchBB,
1768                                                   BranchProbability TProb,
1769                                                   BranchProbability FProb,
1770                                                   bool InvertCond) {
1771   const BasicBlock *BB = CurBB->getBasicBlock();
1772 
1773   // If the leaf of the tree is a comparison, merge the condition into
1774   // the caseblock.
1775   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1776     // The operands of the cmp have to be in this block.  We don't know
1777     // how to export them from some other block.  If this is the first block
1778     // of the sequence, no exporting is needed.
1779     if (CurBB == SwitchBB ||
1780         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1781          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1782       ISD::CondCode Condition;
1783       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1784         ICmpInst::Predicate Pred =
1785             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1786         Condition = getICmpCondCode(Pred);
1787       } else {
1788         const FCmpInst *FC = cast<FCmpInst>(Cond);
1789         FCmpInst::Predicate Pred =
1790             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1791         Condition = getFCmpCondCode(Pred);
1792         if (TM.Options.NoNaNsFPMath)
1793           Condition = getFCmpCodeWithoutNaN(Condition);
1794       }
1795 
1796       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1797                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1798       SwitchCases.push_back(CB);
1799       return;
1800     }
1801   }
1802 
1803   // Create a CaseBlock record representing this branch.
1804   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1805   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1806                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1807   SwitchCases.push_back(CB);
1808 }
1809 
1810 /// FindMergedConditions - If Cond is an expression like
FindMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,Instruction::BinaryOps Opc,BranchProbability TProb,BranchProbability FProb,bool InvertCond)1811 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1812                                                MachineBasicBlock *TBB,
1813                                                MachineBasicBlock *FBB,
1814                                                MachineBasicBlock *CurBB,
1815                                                MachineBasicBlock *SwitchBB,
1816                                                Instruction::BinaryOps Opc,
1817                                                BranchProbability TProb,
1818                                                BranchProbability FProb,
1819                                                bool InvertCond) {
1820   // Skip over not part of the tree and remember to invert op and operands at
1821   // next level.
1822   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1823     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1824     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1825       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1826                            !InvertCond);
1827       return;
1828     }
1829   }
1830 
1831   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1832   // Compute the effective opcode for Cond, taking into account whether it needs
1833   // to be inverted, e.g.
1834   //   and (not (or A, B)), C
1835   // gets lowered as
1836   //   and (and (not A, not B), C)
1837   unsigned BOpc = 0;
1838   if (BOp) {
1839     BOpc = BOp->getOpcode();
1840     if (InvertCond) {
1841       if (BOpc == Instruction::And)
1842         BOpc = Instruction::Or;
1843       else if (BOpc == Instruction::Or)
1844         BOpc = Instruction::And;
1845     }
1846   }
1847 
1848   // If this node is not part of the or/and tree, emit it as a branch.
1849   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1850       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1851       BOp->getParent() != CurBB->getBasicBlock() ||
1852       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1853       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1854     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1855                                  TProb, FProb, InvertCond);
1856     return;
1857   }
1858 
1859   //  Create TmpBB after CurBB.
1860   MachineFunction::iterator BBI(CurBB);
1861   MachineFunction &MF = DAG.getMachineFunction();
1862   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1863   CurBB->getParent()->insert(++BBI, TmpBB);
1864 
1865   if (Opc == Instruction::Or) {
1866     // Codegen X | Y as:
1867     // BB1:
1868     //   jmp_if_X TBB
1869     //   jmp TmpBB
1870     // TmpBB:
1871     //   jmp_if_Y TBB
1872     //   jmp FBB
1873     //
1874 
1875     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1876     // The requirement is that
1877     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1878     //     = TrueProb for original BB.
1879     // Assuming the original probabilities are A and B, one choice is to set
1880     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1881     // A/(1+B) and 2B/(1+B). This choice assumes that
1882     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1883     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1884     // TmpBB, but the math is more complicated.
1885 
1886     auto NewTrueProb = TProb / 2;
1887     auto NewFalseProb = TProb / 2 + FProb;
1888     // Emit the LHS condition.
1889     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1890                          NewTrueProb, NewFalseProb, InvertCond);
1891 
1892     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1893     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1894     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1895     // Emit the RHS condition into TmpBB.
1896     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1897                          Probs[0], Probs[1], InvertCond);
1898   } else {
1899     assert(Opc == Instruction::And && "Unknown merge op!");
1900     // Codegen X & Y as:
1901     // BB1:
1902     //   jmp_if_X TmpBB
1903     //   jmp FBB
1904     // TmpBB:
1905     //   jmp_if_Y TBB
1906     //   jmp FBB
1907     //
1908     //  This requires creation of TmpBB after CurBB.
1909 
1910     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1911     // The requirement is that
1912     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1913     //     = FalseProb for original BB.
1914     // Assuming the original probabilities are A and B, one choice is to set
1915     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1916     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1917     // TrueProb for BB1 * FalseProb for TmpBB.
1918 
1919     auto NewTrueProb = TProb + FProb / 2;
1920     auto NewFalseProb = FProb / 2;
1921     // Emit the LHS condition.
1922     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1923                          NewTrueProb, NewFalseProb, InvertCond);
1924 
1925     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1926     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1927     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1928     // Emit the RHS condition into TmpBB.
1929     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1930                          Probs[0], Probs[1], InvertCond);
1931   }
1932 }
1933 
1934 /// If the set of cases should be emitted as a series of branches, return true.
1935 /// If we should emit this as a bunch of and/or'd together conditions, return
1936 /// false.
1937 bool
ShouldEmitAsBranches(const std::vector<CaseBlock> & Cases)1938 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1939   if (Cases.size() != 2) return true;
1940 
1941   // If this is two comparisons of the same values or'd or and'd together, they
1942   // will get folded into a single comparison, so don't emit two blocks.
1943   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1944        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1945       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1946        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1947     return false;
1948   }
1949 
1950   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1951   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1952   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1953       Cases[0].CC == Cases[1].CC &&
1954       isa<Constant>(Cases[0].CmpRHS) &&
1955       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1956     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1957       return false;
1958     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1959       return false;
1960   }
1961 
1962   return true;
1963 }
1964 
visitBr(const BranchInst & I)1965 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1966   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1967 
1968   // Update machine-CFG edges.
1969   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1970 
1971   if (I.isUnconditional()) {
1972     // Update machine-CFG edges.
1973     BrMBB->addSuccessor(Succ0MBB);
1974 
1975     // If this is not a fall-through branch or optimizations are switched off,
1976     // emit the branch.
1977     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1978       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1979                               MVT::Other, getControlRoot(),
1980                               DAG.getBasicBlock(Succ0MBB)));
1981 
1982     return;
1983   }
1984 
1985   // If this condition is one of the special cases we handle, do special stuff
1986   // now.
1987   const Value *CondVal = I.getCondition();
1988   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1989 
1990   // If this is a series of conditions that are or'd or and'd together, emit
1991   // this as a sequence of branches instead of setcc's with and/or operations.
1992   // As long as jumps are not expensive, this should improve performance.
1993   // For example, instead of something like:
1994   //     cmp A, B
1995   //     C = seteq
1996   //     cmp D, E
1997   //     F = setle
1998   //     or C, F
1999   //     jnz foo
2000   // Emit:
2001   //     cmp A, B
2002   //     je foo
2003   //     cmp D, E
2004   //     jle foo
2005   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2006     Instruction::BinaryOps Opcode = BOp->getOpcode();
2007     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2008         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2009         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2010       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2011                            Opcode,
2012                            getEdgeProbability(BrMBB, Succ0MBB),
2013                            getEdgeProbability(BrMBB, Succ1MBB),
2014                            /*InvertCond=*/false);
2015       // If the compares in later blocks need to use values not currently
2016       // exported from this block, export them now.  This block should always
2017       // be the first entry.
2018       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2019 
2020       // Allow some cases to be rejected.
2021       if (ShouldEmitAsBranches(SwitchCases)) {
2022         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2023           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2024           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2025         }
2026 
2027         // Emit the branch for this block.
2028         visitSwitchCase(SwitchCases[0], BrMBB);
2029         SwitchCases.erase(SwitchCases.begin());
2030         return;
2031       }
2032 
2033       // Okay, we decided not to do this, remove any inserted MBB's and clear
2034       // SwitchCases.
2035       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2036         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2037 
2038       SwitchCases.clear();
2039     }
2040   }
2041 
2042   // Create a CaseBlock record representing this branch.
2043   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2044                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2045 
2046   // Use visitSwitchCase to actually insert the fast branch sequence for this
2047   // cond branch.
2048   visitSwitchCase(CB, BrMBB);
2049 }
2050 
2051 /// visitSwitchCase - Emits the necessary code to represent a single node in
2052 /// the binary search tree resulting from lowering a switch instruction.
visitSwitchCase(CaseBlock & CB,MachineBasicBlock * SwitchBB)2053 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2054                                           MachineBasicBlock *SwitchBB) {
2055   SDValue Cond;
2056   SDValue CondLHS = getValue(CB.CmpLHS);
2057   SDLoc dl = CB.DL;
2058 
2059   // Build the setcc now.
2060   if (!CB.CmpMHS) {
2061     // Fold "(X == true)" to X and "(X == false)" to !X to
2062     // handle common cases produced by branch lowering.
2063     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2064         CB.CC == ISD::SETEQ)
2065       Cond = CondLHS;
2066     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2067              CB.CC == ISD::SETEQ) {
2068       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2069       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2070     } else
2071       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2072   } else {
2073     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2074 
2075     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2076     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2077 
2078     SDValue CmpOp = getValue(CB.CmpMHS);
2079     EVT VT = CmpOp.getValueType();
2080 
2081     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2082       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2083                           ISD::SETLE);
2084     } else {
2085       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2086                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2087       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2088                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2089     }
2090   }
2091 
2092   // Update successor info
2093   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2094   // TrueBB and FalseBB are always different unless the incoming IR is
2095   // degenerate. This only happens when running llc on weird IR.
2096   if (CB.TrueBB != CB.FalseBB)
2097     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2098   SwitchBB->normalizeSuccProbs();
2099 
2100   // If the lhs block is the next block, invert the condition so that we can
2101   // fall through to the lhs instead of the rhs block.
2102   if (CB.TrueBB == NextBlock(SwitchBB)) {
2103     std::swap(CB.TrueBB, CB.FalseBB);
2104     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2105     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2106   }
2107 
2108   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2109                                MVT::Other, getControlRoot(), Cond,
2110                                DAG.getBasicBlock(CB.TrueBB));
2111 
2112   // Insert the false branch. Do this even if it's a fall through branch,
2113   // this makes it easier to do DAG optimizations which require inverting
2114   // the branch condition.
2115   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2116                        DAG.getBasicBlock(CB.FalseBB));
2117 
2118   DAG.setRoot(BrCond);
2119 }
2120 
2121 /// visitJumpTable - Emit JumpTable node in the current MBB
visitJumpTable(JumpTable & JT)2122 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2123   // Emit the code for the jump table
2124   assert(JT.Reg != -1U && "Should lower JT Header first!");
2125   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2126   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2127                                      JT.Reg, PTy);
2128   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2129   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2130                                     MVT::Other, Index.getValue(1),
2131                                     Table, Index);
2132   DAG.setRoot(BrJumpTable);
2133 }
2134 
2135 /// visitJumpTableHeader - This function emits necessary code to produce index
2136 /// in the JumpTable from switch case.
visitJumpTableHeader(JumpTable & JT,JumpTableHeader & JTH,MachineBasicBlock * SwitchBB)2137 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2138                                                JumpTableHeader &JTH,
2139                                                MachineBasicBlock *SwitchBB) {
2140   SDLoc dl = getCurSDLoc();
2141 
2142   // Subtract the lowest switch case value from the value being switched on and
2143   // conditional branch to default mbb if the result is greater than the
2144   // difference between smallest and largest cases.
2145   SDValue SwitchOp = getValue(JTH.SValue);
2146   EVT VT = SwitchOp.getValueType();
2147   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2148                             DAG.getConstant(JTH.First, dl, VT));
2149 
2150   // The SDNode we just created, which holds the value being switched on minus
2151   // the smallest case value, needs to be copied to a virtual register so it
2152   // can be used as an index into the jump table in a subsequent basic block.
2153   // This value may be smaller or larger than the target's pointer type, and
2154   // therefore require extension or truncating.
2155   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2156   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2157 
2158   unsigned JumpTableReg =
2159       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2160   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2161                                     JumpTableReg, SwitchOp);
2162   JT.Reg = JumpTableReg;
2163 
2164   // Emit the range check for the jump table, and branch to the default block
2165   // for the switch statement if the value being switched on exceeds the largest
2166   // case in the switch.
2167   SDValue CMP = DAG.getSetCC(
2168       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2169                                  Sub.getValueType()),
2170       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2171 
2172   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2173                                MVT::Other, CopyTo, CMP,
2174                                DAG.getBasicBlock(JT.Default));
2175 
2176   // Avoid emitting unnecessary branches to the next block.
2177   if (JT.MBB != NextBlock(SwitchBB))
2178     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2179                          DAG.getBasicBlock(JT.MBB));
2180 
2181   DAG.setRoot(BrCond);
2182 }
2183 
2184 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2185 /// variable if there exists one.
getLoadStackGuard(SelectionDAG & DAG,const SDLoc & DL,SDValue & Chain)2186 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2187                                  SDValue &Chain) {
2188   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2189   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2190   MachineFunction &MF = DAG.getMachineFunction();
2191   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2192   MachineSDNode *Node =
2193       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2194   if (Global) {
2195     MachinePointerInfo MPInfo(Global);
2196     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2197     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2198                  MachineMemOperand::MODereferenceable;
2199     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2200                                        DAG.getEVTAlignment(PtrTy));
2201     Node->setMemRefs(MemRefs, MemRefs + 1);
2202   }
2203   return SDValue(Node, 0);
2204 }
2205 
2206 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2207 /// tail spliced into a stack protector check success bb.
2208 ///
2209 /// For a high level explanation of how this fits into the stack protector
2210 /// generation see the comment on the declaration of class
2211 /// StackProtectorDescriptor.
visitSPDescriptorParent(StackProtectorDescriptor & SPD,MachineBasicBlock * ParentBB)2212 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2213                                                   MachineBasicBlock *ParentBB) {
2214 
2215   // First create the loads to the guard/stack slot for the comparison.
2216   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2217   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2218 
2219   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2220   int FI = MFI.getStackProtectorIndex();
2221 
2222   SDValue Guard;
2223   SDLoc dl = getCurSDLoc();
2224   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2225   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2226   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2227 
2228   // Generate code to load the content of the guard slot.
2229   SDValue GuardVal = DAG.getLoad(
2230       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2231       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2232       MachineMemOperand::MOVolatile);
2233 
2234   if (TLI.useStackGuardXorFP())
2235     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2236 
2237   // Retrieve guard check function, nullptr if instrumentation is inlined.
2238   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2239     // The target provides a guard check function to validate the guard value.
2240     // Generate a call to that function with the content of the guard slot as
2241     // argument.
2242     auto *Fn = cast<Function>(GuardCheck);
2243     FunctionType *FnTy = Fn->getFunctionType();
2244     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2245 
2246     TargetLowering::ArgListTy Args;
2247     TargetLowering::ArgListEntry Entry;
2248     Entry.Node = GuardVal;
2249     Entry.Ty = FnTy->getParamType(0);
2250     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2251       Entry.IsInReg = true;
2252     Args.push_back(Entry);
2253 
2254     TargetLowering::CallLoweringInfo CLI(DAG);
2255     CLI.setDebugLoc(getCurSDLoc())
2256       .setChain(DAG.getEntryNode())
2257       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2258                  getValue(GuardCheck), std::move(Args));
2259 
2260     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2261     DAG.setRoot(Result.second);
2262     return;
2263   }
2264 
2265   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2266   // Otherwise, emit a volatile load to retrieve the stack guard value.
2267   SDValue Chain = DAG.getEntryNode();
2268   if (TLI.useLoadStackGuardNode()) {
2269     Guard = getLoadStackGuard(DAG, dl, Chain);
2270   } else {
2271     const Value *IRGuard = TLI.getSDagStackGuard(M);
2272     SDValue GuardPtr = getValue(IRGuard);
2273 
2274     Guard =
2275         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2276                     Align, MachineMemOperand::MOVolatile);
2277   }
2278 
2279   // Perform the comparison via a subtract/getsetcc.
2280   EVT VT = Guard.getValueType();
2281   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2282 
2283   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2284                                                         *DAG.getContext(),
2285                                                         Sub.getValueType()),
2286                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2287 
2288   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2289   // branch to failure MBB.
2290   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2291                                MVT::Other, GuardVal.getOperand(0),
2292                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2293   // Otherwise branch to success MBB.
2294   SDValue Br = DAG.getNode(ISD::BR, dl,
2295                            MVT::Other, BrCond,
2296                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2297 
2298   DAG.setRoot(Br);
2299 }
2300 
2301 /// Codegen the failure basic block for a stack protector check.
2302 ///
2303 /// A failure stack protector machine basic block consists simply of a call to
2304 /// __stack_chk_fail().
2305 ///
2306 /// For a high level explanation of how this fits into the stack protector
2307 /// generation see the comment on the declaration of class
2308 /// StackProtectorDescriptor.
2309 void
visitSPDescriptorFailure(StackProtectorDescriptor & SPD)2310 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2311   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2312   SDValue Chain =
2313       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2314                       None, false, getCurSDLoc(), false, false).second;
2315   DAG.setRoot(Chain);
2316 }
2317 
2318 /// visitBitTestHeader - This function emits necessary code to produce value
2319 /// suitable for "bit tests"
visitBitTestHeader(BitTestBlock & B,MachineBasicBlock * SwitchBB)2320 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2321                                              MachineBasicBlock *SwitchBB) {
2322   SDLoc dl = getCurSDLoc();
2323 
2324   // Subtract the minimum value
2325   SDValue SwitchOp = getValue(B.SValue);
2326   EVT VT = SwitchOp.getValueType();
2327   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2328                             DAG.getConstant(B.First, dl, VT));
2329 
2330   // Check range
2331   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2332   SDValue RangeCmp = DAG.getSetCC(
2333       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2334                                  Sub.getValueType()),
2335       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2336 
2337   // Determine the type of the test operands.
2338   bool UsePtrType = false;
2339   if (!TLI.isTypeLegal(VT))
2340     UsePtrType = true;
2341   else {
2342     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2343       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2344         // Switch table case range are encoded into series of masks.
2345         // Just use pointer type, it's guaranteed to fit.
2346         UsePtrType = true;
2347         break;
2348       }
2349   }
2350   if (UsePtrType) {
2351     VT = TLI.getPointerTy(DAG.getDataLayout());
2352     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2353   }
2354 
2355   B.RegVT = VT.getSimpleVT();
2356   B.Reg = FuncInfo.CreateReg(B.RegVT);
2357   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2358 
2359   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2360 
2361   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2362   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2363   SwitchBB->normalizeSuccProbs();
2364 
2365   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2366                                 MVT::Other, CopyTo, RangeCmp,
2367                                 DAG.getBasicBlock(B.Default));
2368 
2369   // Avoid emitting unnecessary branches to the next block.
2370   if (MBB != NextBlock(SwitchBB))
2371     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2372                           DAG.getBasicBlock(MBB));
2373 
2374   DAG.setRoot(BrRange);
2375 }
2376 
2377 /// visitBitTestCase - this function produces one "bit test"
visitBitTestCase(BitTestBlock & BB,MachineBasicBlock * NextMBB,BranchProbability BranchProbToNext,unsigned Reg,BitTestCase & B,MachineBasicBlock * SwitchBB)2378 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2379                                            MachineBasicBlock* NextMBB,
2380                                            BranchProbability BranchProbToNext,
2381                                            unsigned Reg,
2382                                            BitTestCase &B,
2383                                            MachineBasicBlock *SwitchBB) {
2384   SDLoc dl = getCurSDLoc();
2385   MVT VT = BB.RegVT;
2386   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2387   SDValue Cmp;
2388   unsigned PopCount = countPopulation(B.Mask);
2389   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2390   if (PopCount == 1) {
2391     // Testing for a single bit; just compare the shift count with what it
2392     // would need to be to shift a 1 bit in that position.
2393     Cmp = DAG.getSetCC(
2394         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2395         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2396         ISD::SETEQ);
2397   } else if (PopCount == BB.Range) {
2398     // There is only one zero bit in the range, test for it directly.
2399     Cmp = DAG.getSetCC(
2400         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2401         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2402         ISD::SETNE);
2403   } else {
2404     // Make desired shift
2405     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2406                                     DAG.getConstant(1, dl, VT), ShiftOp);
2407 
2408     // Emit bit tests and jumps
2409     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2410                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2411     Cmp = DAG.getSetCC(
2412         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2413         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2414   }
2415 
2416   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2417   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2418   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2419   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2420   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2421   // one as they are relative probabilities (and thus work more like weights),
2422   // and hence we need to normalize them to let the sum of them become one.
2423   SwitchBB->normalizeSuccProbs();
2424 
2425   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2426                               MVT::Other, getControlRoot(),
2427                               Cmp, DAG.getBasicBlock(B.TargetBB));
2428 
2429   // Avoid emitting unnecessary branches to the next block.
2430   if (NextMBB != NextBlock(SwitchBB))
2431     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2432                         DAG.getBasicBlock(NextMBB));
2433 
2434   DAG.setRoot(BrAnd);
2435 }
2436 
visitInvoke(const InvokeInst & I)2437 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2438   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2439 
2440   // Retrieve successors. Look through artificial IR level blocks like
2441   // catchswitch for successors.
2442   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2443   const BasicBlock *EHPadBB = I.getSuccessor(1);
2444 
2445   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2446   // have to do anything here to lower funclet bundles.
2447   assert(!I.hasOperandBundlesOtherThan(
2448              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2449          "Cannot lower invokes with arbitrary operand bundles yet!");
2450 
2451   const Value *Callee(I.getCalledValue());
2452   const Function *Fn = dyn_cast<Function>(Callee);
2453   if (isa<InlineAsm>(Callee))
2454     visitInlineAsm(&I);
2455   else if (Fn && Fn->isIntrinsic()) {
2456     switch (Fn->getIntrinsicID()) {
2457     default:
2458       llvm_unreachable("Cannot invoke this intrinsic");
2459     case Intrinsic::donothing:
2460       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2461       break;
2462     case Intrinsic::experimental_patchpoint_void:
2463     case Intrinsic::experimental_patchpoint_i64:
2464       visitPatchpoint(&I, EHPadBB);
2465       break;
2466     case Intrinsic::experimental_gc_statepoint:
2467       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2468       break;
2469     }
2470   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2471     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2472     // Eventually we will support lowering the @llvm.experimental.deoptimize
2473     // intrinsic, and right now there are no plans to support other intrinsics
2474     // with deopt state.
2475     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2476   } else {
2477     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2478   }
2479 
2480   // If the value of the invoke is used outside of its defining block, make it
2481   // available as a virtual register.
2482   // We already took care of the exported value for the statepoint instruction
2483   // during call to the LowerStatepoint.
2484   if (!isStatepoint(I)) {
2485     CopyToExportRegsIfNeeded(&I);
2486   }
2487 
2488   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2489   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2490   BranchProbability EHPadBBProb =
2491       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2492           : BranchProbability::getZero();
2493   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2494 
2495   // Update successor info.
2496   addSuccessorWithProb(InvokeMBB, Return);
2497   for (auto &UnwindDest : UnwindDests) {
2498     UnwindDest.first->setIsEHPad();
2499     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2500   }
2501   InvokeMBB->normalizeSuccProbs();
2502 
2503   // Drop into normal successor.
2504   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2505                           MVT::Other, getControlRoot(),
2506                           DAG.getBasicBlock(Return)));
2507 }
2508 
visitResume(const ResumeInst & RI)2509 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2510   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2511 }
2512 
visitLandingPad(const LandingPadInst & LP)2513 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2514   assert(FuncInfo.MBB->isEHPad() &&
2515          "Call to landingpad not in landing pad!");
2516 
2517   MachineBasicBlock *MBB = FuncInfo.MBB;
2518   addLandingPadInfo(LP, *MBB);
2519 
2520   // If there aren't registers to copy the values into (e.g., during SjLj
2521   // exceptions), then don't bother to create these DAG nodes.
2522   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2523   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2524   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2525       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2526     return;
2527 
2528   // If landingpad's return type is token type, we don't create DAG nodes
2529   // for its exception pointer and selector value. The extraction of exception
2530   // pointer or selector value from token type landingpads is not currently
2531   // supported.
2532   if (LP.getType()->isTokenTy())
2533     return;
2534 
2535   SmallVector<EVT, 2> ValueVTs;
2536   SDLoc dl = getCurSDLoc();
2537   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2538   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2539 
2540   // Get the two live-in registers as SDValues. The physregs have already been
2541   // copied into virtual registers.
2542   SDValue Ops[2];
2543   if (FuncInfo.ExceptionPointerVirtReg) {
2544     Ops[0] = DAG.getZExtOrTrunc(
2545         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2546                            FuncInfo.ExceptionPointerVirtReg,
2547                            TLI.getPointerTy(DAG.getDataLayout())),
2548         dl, ValueVTs[0]);
2549   } else {
2550     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2551   }
2552   Ops[1] = DAG.getZExtOrTrunc(
2553       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2554                          FuncInfo.ExceptionSelectorVirtReg,
2555                          TLI.getPointerTy(DAG.getDataLayout())),
2556       dl, ValueVTs[1]);
2557 
2558   // Merge into one.
2559   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2560                             DAG.getVTList(ValueVTs), Ops);
2561   setValue(&LP, Res);
2562 }
2563 
sortAndRangeify(CaseClusterVector & Clusters)2564 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2565 #ifndef NDEBUG
2566   for (const CaseCluster &CC : Clusters)
2567     assert(CC.Low == CC.High && "Input clusters must be single-case");
2568 #endif
2569 
2570   llvm::sort(Clusters.begin(), Clusters.end(),
2571              [](const CaseCluster &a, const CaseCluster &b) {
2572     return a.Low->getValue().slt(b.Low->getValue());
2573   });
2574 
2575   // Merge adjacent clusters with the same destination.
2576   const unsigned N = Clusters.size();
2577   unsigned DstIndex = 0;
2578   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2579     CaseCluster &CC = Clusters[SrcIndex];
2580     const ConstantInt *CaseVal = CC.Low;
2581     MachineBasicBlock *Succ = CC.MBB;
2582 
2583     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2584         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2585       // If this case has the same successor and is a neighbour, merge it into
2586       // the previous cluster.
2587       Clusters[DstIndex - 1].High = CaseVal;
2588       Clusters[DstIndex - 1].Prob += CC.Prob;
2589     } else {
2590       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2591                    sizeof(Clusters[SrcIndex]));
2592     }
2593   }
2594   Clusters.resize(DstIndex);
2595 }
2596 
UpdateSplitBlock(MachineBasicBlock * First,MachineBasicBlock * Last)2597 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2598                                            MachineBasicBlock *Last) {
2599   // Update JTCases.
2600   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2601     if (JTCases[i].first.HeaderBB == First)
2602       JTCases[i].first.HeaderBB = Last;
2603 
2604   // Update BitTestCases.
2605   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2606     if (BitTestCases[i].Parent == First)
2607       BitTestCases[i].Parent = Last;
2608 }
2609 
visitIndirectBr(const IndirectBrInst & I)2610 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2611   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2612 
2613   // Update machine-CFG edges with unique successors.
2614   SmallSet<BasicBlock*, 32> Done;
2615   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2616     BasicBlock *BB = I.getSuccessor(i);
2617     bool Inserted = Done.insert(BB).second;
2618     if (!Inserted)
2619         continue;
2620 
2621     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2622     addSuccessorWithProb(IndirectBrMBB, Succ);
2623   }
2624   IndirectBrMBB->normalizeSuccProbs();
2625 
2626   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2627                           MVT::Other, getControlRoot(),
2628                           getValue(I.getAddress())));
2629 }
2630 
visitUnreachable(const UnreachableInst & I)2631 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2632   if (!DAG.getTarget().Options.TrapUnreachable)
2633     return;
2634 
2635   // We may be able to ignore unreachable behind a noreturn call.
2636   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2637     const BasicBlock &BB = *I.getParent();
2638     if (&I != &BB.front()) {
2639       BasicBlock::const_iterator PredI =
2640         std::prev(BasicBlock::const_iterator(&I));
2641       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2642         if (Call->doesNotReturn())
2643           return;
2644       }
2645     }
2646   }
2647 
2648   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2649 }
2650 
visitFSub(const User & I)2651 void SelectionDAGBuilder::visitFSub(const User &I) {
2652   // -0.0 - X --> fneg
2653   Type *Ty = I.getType();
2654   if (isa<Constant>(I.getOperand(0)) &&
2655       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2656     SDValue Op2 = getValue(I.getOperand(1));
2657     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2658                              Op2.getValueType(), Op2));
2659     return;
2660   }
2661 
2662   visitBinary(I, ISD::FSUB);
2663 }
2664 
2665 /// Checks if the given instruction performs a vector reduction, in which case
2666 /// we have the freedom to alter the elements in the result as long as the
2667 /// reduction of them stays unchanged.
isVectorReductionOp(const User * I)2668 static bool isVectorReductionOp(const User *I) {
2669   const Instruction *Inst = dyn_cast<Instruction>(I);
2670   if (!Inst || !Inst->getType()->isVectorTy())
2671     return false;
2672 
2673   auto OpCode = Inst->getOpcode();
2674   switch (OpCode) {
2675   case Instruction::Add:
2676   case Instruction::Mul:
2677   case Instruction::And:
2678   case Instruction::Or:
2679   case Instruction::Xor:
2680     break;
2681   case Instruction::FAdd:
2682   case Instruction::FMul:
2683     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2684       if (FPOp->getFastMathFlags().isFast())
2685         break;
2686     LLVM_FALLTHROUGH;
2687   default:
2688     return false;
2689   }
2690 
2691   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2692   // Ensure the reduction size is a power of 2.
2693   if (!isPowerOf2_32(ElemNum))
2694     return false;
2695 
2696   unsigned ElemNumToReduce = ElemNum;
2697 
2698   // Do DFS search on the def-use chain from the given instruction. We only
2699   // allow four kinds of operations during the search until we reach the
2700   // instruction that extracts the first element from the vector:
2701   //
2702   //   1. The reduction operation of the same opcode as the given instruction.
2703   //
2704   //   2. PHI node.
2705   //
2706   //   3. ShuffleVector instruction together with a reduction operation that
2707   //      does a partial reduction.
2708   //
2709   //   4. ExtractElement that extracts the first element from the vector, and we
2710   //      stop searching the def-use chain here.
2711   //
2712   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2713   // from 1-3 to the stack to continue the DFS. The given instruction is not
2714   // a reduction operation if we meet any other instructions other than those
2715   // listed above.
2716 
2717   SmallVector<const User *, 16> UsersToVisit{Inst};
2718   SmallPtrSet<const User *, 16> Visited;
2719   bool ReduxExtracted = false;
2720 
2721   while (!UsersToVisit.empty()) {
2722     auto User = UsersToVisit.back();
2723     UsersToVisit.pop_back();
2724     if (!Visited.insert(User).second)
2725       continue;
2726 
2727     for (const auto &U : User->users()) {
2728       auto Inst = dyn_cast<Instruction>(U);
2729       if (!Inst)
2730         return false;
2731 
2732       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2733         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2734           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2735             return false;
2736         UsersToVisit.push_back(U);
2737       } else if (const ShuffleVectorInst *ShufInst =
2738                      dyn_cast<ShuffleVectorInst>(U)) {
2739         // Detect the following pattern: A ShuffleVector instruction together
2740         // with a reduction that do partial reduction on the first and second
2741         // ElemNumToReduce / 2 elements, and store the result in
2742         // ElemNumToReduce / 2 elements in another vector.
2743 
2744         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2745         if (ResultElements < ElemNum)
2746           return false;
2747 
2748         if (ElemNumToReduce == 1)
2749           return false;
2750         if (!isa<UndefValue>(U->getOperand(1)))
2751           return false;
2752         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2753           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2754             return false;
2755         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2756           if (ShufInst->getMaskValue(i) != -1)
2757             return false;
2758 
2759         // There is only one user of this ShuffleVector instruction, which
2760         // must be a reduction operation.
2761         if (!U->hasOneUse())
2762           return false;
2763 
2764         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2765         if (!U2 || U2->getOpcode() != OpCode)
2766           return false;
2767 
2768         // Check operands of the reduction operation.
2769         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2770             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2771           UsersToVisit.push_back(U2);
2772           ElemNumToReduce /= 2;
2773         } else
2774           return false;
2775       } else if (isa<ExtractElementInst>(U)) {
2776         // At this moment we should have reduced all elements in the vector.
2777         if (ElemNumToReduce != 1)
2778           return false;
2779 
2780         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2781         if (!Val || !Val->isZero())
2782           return false;
2783 
2784         ReduxExtracted = true;
2785       } else
2786         return false;
2787     }
2788   }
2789   return ReduxExtracted;
2790 }
2791 
visitBinary(const User & I,unsigned Opcode)2792 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2793   SDNodeFlags Flags;
2794   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2795     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2796     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2797   }
2798   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2799     Flags.setExact(ExactOp->isExact());
2800   }
2801   if (isVectorReductionOp(&I)) {
2802     Flags.setVectorReduction(true);
2803     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2804   }
2805 
2806   SDValue Op1 = getValue(I.getOperand(0));
2807   SDValue Op2 = getValue(I.getOperand(1));
2808   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2809                                      Op1, Op2, Flags);
2810   setValue(&I, BinNodeValue);
2811 }
2812 
visitShift(const User & I,unsigned Opcode)2813 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2814   SDValue Op1 = getValue(I.getOperand(0));
2815   SDValue Op2 = getValue(I.getOperand(1));
2816 
2817   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2818       Op2.getValueType(), DAG.getDataLayout());
2819 
2820   // Coerce the shift amount to the right type if we can.
2821   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2822     unsigned ShiftSize = ShiftTy.getSizeInBits();
2823     unsigned Op2Size = Op2.getValueSizeInBits();
2824     SDLoc DL = getCurSDLoc();
2825 
2826     // If the operand is smaller than the shift count type, promote it.
2827     if (ShiftSize > Op2Size)
2828       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2829 
2830     // If the operand is larger than the shift count type but the shift
2831     // count type has enough bits to represent any shift value, truncate
2832     // it now. This is a common case and it exposes the truncate to
2833     // optimization early.
2834     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2835       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2836     // Otherwise we'll need to temporarily settle for some other convenient
2837     // type.  Type legalization will make adjustments once the shiftee is split.
2838     else
2839       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2840   }
2841 
2842   bool nuw = false;
2843   bool nsw = false;
2844   bool exact = false;
2845 
2846   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2847 
2848     if (const OverflowingBinaryOperator *OFBinOp =
2849             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2850       nuw = OFBinOp->hasNoUnsignedWrap();
2851       nsw = OFBinOp->hasNoSignedWrap();
2852     }
2853     if (const PossiblyExactOperator *ExactOp =
2854             dyn_cast<const PossiblyExactOperator>(&I))
2855       exact = ExactOp->isExact();
2856   }
2857   SDNodeFlags Flags;
2858   Flags.setExact(exact);
2859   Flags.setNoSignedWrap(nsw);
2860   Flags.setNoUnsignedWrap(nuw);
2861   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2862                             Flags);
2863   setValue(&I, Res);
2864 }
2865 
visitSDiv(const User & I)2866 void SelectionDAGBuilder::visitSDiv(const User &I) {
2867   SDValue Op1 = getValue(I.getOperand(0));
2868   SDValue Op2 = getValue(I.getOperand(1));
2869 
2870   SDNodeFlags Flags;
2871   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2872                  cast<PossiblyExactOperator>(&I)->isExact());
2873   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2874                            Op2, Flags));
2875 }
2876 
visitICmp(const User & I)2877 void SelectionDAGBuilder::visitICmp(const User &I) {
2878   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2879   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2880     predicate = IC->getPredicate();
2881   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2882     predicate = ICmpInst::Predicate(IC->getPredicate());
2883   SDValue Op1 = getValue(I.getOperand(0));
2884   SDValue Op2 = getValue(I.getOperand(1));
2885   ISD::CondCode Opcode = getICmpCondCode(predicate);
2886 
2887   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2888                                                         I.getType());
2889   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2890 }
2891 
visitFCmp(const User & I)2892 void SelectionDAGBuilder::visitFCmp(const User &I) {
2893   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2894   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2895     predicate = FC->getPredicate();
2896   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2897     predicate = FCmpInst::Predicate(FC->getPredicate());
2898   SDValue Op1 = getValue(I.getOperand(0));
2899   SDValue Op2 = getValue(I.getOperand(1));
2900 
2901   ISD::CondCode Condition = getFCmpCondCode(predicate);
2902   auto *FPMO = dyn_cast<FPMathOperator>(&I);
2903   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2904     Condition = getFCmpCodeWithoutNaN(Condition);
2905 
2906   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2907                                                         I.getType());
2908   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2909 }
2910 
2911 // Check if the condition of the select has one use or two users that are both
2912 // selects with the same condition.
hasOnlySelectUsers(const Value * Cond)2913 static bool hasOnlySelectUsers(const Value *Cond) {
2914   return llvm::all_of(Cond->users(), [](const Value *V) {
2915     return isa<SelectInst>(V);
2916   });
2917 }
2918 
visitSelect(const User & I)2919 void SelectionDAGBuilder::visitSelect(const User &I) {
2920   SmallVector<EVT, 4> ValueVTs;
2921   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2922                   ValueVTs);
2923   unsigned NumValues = ValueVTs.size();
2924   if (NumValues == 0) return;
2925 
2926   SmallVector<SDValue, 4> Values(NumValues);
2927   SDValue Cond     = getValue(I.getOperand(0));
2928   SDValue LHSVal   = getValue(I.getOperand(1));
2929   SDValue RHSVal   = getValue(I.getOperand(2));
2930   auto BaseOps = {Cond};
2931   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2932     ISD::VSELECT : ISD::SELECT;
2933 
2934   // Min/max matching is only viable if all output VTs are the same.
2935   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2936     EVT VT = ValueVTs[0];
2937     LLVMContext &Ctx = *DAG.getContext();
2938     auto &TLI = DAG.getTargetLoweringInfo();
2939 
2940     // We care about the legality of the operation after it has been type
2941     // legalized.
2942     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2943            VT != TLI.getTypeToTransformTo(Ctx, VT))
2944       VT = TLI.getTypeToTransformTo(Ctx, VT);
2945 
2946     // If the vselect is legal, assume we want to leave this as a vector setcc +
2947     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2948     // min/max is legal on the scalar type.
2949     bool UseScalarMinMax = VT.isVector() &&
2950       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2951 
2952     Value *LHS, *RHS;
2953     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2954     ISD::NodeType Opc = ISD::DELETED_NODE;
2955     switch (SPR.Flavor) {
2956     case SPF_UMAX:    Opc = ISD::UMAX; break;
2957     case SPF_UMIN:    Opc = ISD::UMIN; break;
2958     case SPF_SMAX:    Opc = ISD::SMAX; break;
2959     case SPF_SMIN:    Opc = ISD::SMIN; break;
2960     case SPF_FMINNUM:
2961       switch (SPR.NaNBehavior) {
2962       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2963       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2964       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2965       case SPNB_RETURNS_ANY: {
2966         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2967           Opc = ISD::FMINNUM;
2968         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2969           Opc = ISD::FMINNAN;
2970         else if (UseScalarMinMax)
2971           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2972             ISD::FMINNUM : ISD::FMINNAN;
2973         break;
2974       }
2975       }
2976       break;
2977     case SPF_FMAXNUM:
2978       switch (SPR.NaNBehavior) {
2979       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2980       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2981       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2982       case SPNB_RETURNS_ANY:
2983 
2984         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2985           Opc = ISD::FMAXNUM;
2986         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2987           Opc = ISD::FMAXNAN;
2988         else if (UseScalarMinMax)
2989           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2990             ISD::FMAXNUM : ISD::FMAXNAN;
2991         break;
2992       }
2993       break;
2994     default: break;
2995     }
2996 
2997     if (Opc != ISD::DELETED_NODE &&
2998         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2999          (UseScalarMinMax &&
3000           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3001         // If the underlying comparison instruction is used by any other
3002         // instruction, the consumed instructions won't be destroyed, so it is
3003         // not profitable to convert to a min/max.
3004         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3005       OpCode = Opc;
3006       LHSVal = getValue(LHS);
3007       RHSVal = getValue(RHS);
3008       BaseOps = {};
3009     }
3010   }
3011 
3012   for (unsigned i = 0; i != NumValues; ++i) {
3013     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3014     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3015     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3016     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3017                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3018                             Ops);
3019   }
3020 
3021   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3022                            DAG.getVTList(ValueVTs), Values));
3023 }
3024 
visitTrunc(const User & I)3025 void SelectionDAGBuilder::visitTrunc(const User &I) {
3026   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3027   SDValue N = getValue(I.getOperand(0));
3028   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3029                                                         I.getType());
3030   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3031 }
3032 
visitZExt(const User & I)3033 void SelectionDAGBuilder::visitZExt(const User &I) {
3034   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3035   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3036   SDValue N = getValue(I.getOperand(0));
3037   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3038                                                         I.getType());
3039   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3040 }
3041 
visitSExt(const User & I)3042 void SelectionDAGBuilder::visitSExt(const User &I) {
3043   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3044   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3045   SDValue N = getValue(I.getOperand(0));
3046   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3047                                                         I.getType());
3048   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3049 }
3050 
visitFPTrunc(const User & I)3051 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3052   // FPTrunc is never a no-op cast, no need to check
3053   SDValue N = getValue(I.getOperand(0));
3054   SDLoc dl = getCurSDLoc();
3055   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3056   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3057   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3058                            DAG.getTargetConstant(
3059                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3060 }
3061 
visitFPExt(const User & I)3062 void SelectionDAGBuilder::visitFPExt(const User &I) {
3063   // FPExt is never a no-op cast, no need to check
3064   SDValue N = getValue(I.getOperand(0));
3065   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3066                                                         I.getType());
3067   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3068 }
3069 
visitFPToUI(const User & I)3070 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3071   // FPToUI is never a no-op cast, no need to check
3072   SDValue N = getValue(I.getOperand(0));
3073   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3074                                                         I.getType());
3075   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3076 }
3077 
visitFPToSI(const User & I)3078 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3079   // FPToSI is never a no-op cast, no need to check
3080   SDValue N = getValue(I.getOperand(0));
3081   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3082                                                         I.getType());
3083   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3084 }
3085 
visitUIToFP(const User & I)3086 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3087   // UIToFP is never a no-op cast, no need to check
3088   SDValue N = getValue(I.getOperand(0));
3089   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3090                                                         I.getType());
3091   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3092 }
3093 
visitSIToFP(const User & I)3094 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3095   // SIToFP is never a no-op cast, no need to check
3096   SDValue N = getValue(I.getOperand(0));
3097   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3098                                                         I.getType());
3099   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3100 }
3101 
visitPtrToInt(const User & I)3102 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3103   // What to do depends on the size of the integer and the size of the pointer.
3104   // We can either truncate, zero extend, or no-op, accordingly.
3105   SDValue N = getValue(I.getOperand(0));
3106   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3107                                                         I.getType());
3108   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3109 }
3110 
visitIntToPtr(const User & I)3111 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3112   // What to do depends on the size of the integer and the size of the pointer.
3113   // We can either truncate, zero extend, or no-op, accordingly.
3114   SDValue N = getValue(I.getOperand(0));
3115   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3116                                                         I.getType());
3117   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3118 }
3119 
visitBitCast(const User & I)3120 void SelectionDAGBuilder::visitBitCast(const User &I) {
3121   SDValue N = getValue(I.getOperand(0));
3122   SDLoc dl = getCurSDLoc();
3123   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3124                                                         I.getType());
3125 
3126   // BitCast assures us that source and destination are the same size so this is
3127   // either a BITCAST or a no-op.
3128   if (DestVT != N.getValueType())
3129     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3130                              DestVT, N)); // convert types.
3131   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3132   // might fold any kind of constant expression to an integer constant and that
3133   // is not what we are looking for. Only recognize a bitcast of a genuine
3134   // constant integer as an opaque constant.
3135   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3136     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3137                                  /*isOpaque*/true));
3138   else
3139     setValue(&I, N);            // noop cast.
3140 }
3141 
visitAddrSpaceCast(const User & I)3142 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3143   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3144   const Value *SV = I.getOperand(0);
3145   SDValue N = getValue(SV);
3146   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3147 
3148   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3149   unsigned DestAS = I.getType()->getPointerAddressSpace();
3150 
3151   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3152     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3153 
3154   setValue(&I, N);
3155 }
3156 
visitInsertElement(const User & I)3157 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3158   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3159   SDValue InVec = getValue(I.getOperand(0));
3160   SDValue InVal = getValue(I.getOperand(1));
3161   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3162                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3163   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3164                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3165                            InVec, InVal, InIdx));
3166 }
3167 
visitExtractElement(const User & I)3168 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3169   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3170   SDValue InVec = getValue(I.getOperand(0));
3171   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3172                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3173   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3174                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3175                            InVec, InIdx));
3176 }
3177 
visitShuffleVector(const User & I)3178 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3179   SDValue Src1 = getValue(I.getOperand(0));
3180   SDValue Src2 = getValue(I.getOperand(1));
3181   SDLoc DL = getCurSDLoc();
3182 
3183   SmallVector<int, 8> Mask;
3184   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3185   unsigned MaskNumElts = Mask.size();
3186 
3187   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3188   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3189   EVT SrcVT = Src1.getValueType();
3190   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3191 
3192   if (SrcNumElts == MaskNumElts) {
3193     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3194     return;
3195   }
3196 
3197   // Normalize the shuffle vector since mask and vector length don't match.
3198   if (SrcNumElts < MaskNumElts) {
3199     // Mask is longer than the source vectors. We can use concatenate vector to
3200     // make the mask and vectors lengths match.
3201 
3202     if (MaskNumElts % SrcNumElts == 0) {
3203       // Mask length is a multiple of the source vector length.
3204       // Check if the shuffle is some kind of concatenation of the input
3205       // vectors.
3206       unsigned NumConcat = MaskNumElts / SrcNumElts;
3207       bool IsConcat = true;
3208       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3209       for (unsigned i = 0; i != MaskNumElts; ++i) {
3210         int Idx = Mask[i];
3211         if (Idx < 0)
3212           continue;
3213         // Ensure the indices in each SrcVT sized piece are sequential and that
3214         // the same source is used for the whole piece.
3215         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3216             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3217              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3218           IsConcat = false;
3219           break;
3220         }
3221         // Remember which source this index came from.
3222         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3223       }
3224 
3225       // The shuffle is concatenating multiple vectors together. Just emit
3226       // a CONCAT_VECTORS operation.
3227       if (IsConcat) {
3228         SmallVector<SDValue, 8> ConcatOps;
3229         for (auto Src : ConcatSrcs) {
3230           if (Src < 0)
3231             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3232           else if (Src == 0)
3233             ConcatOps.push_back(Src1);
3234           else
3235             ConcatOps.push_back(Src2);
3236         }
3237         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3238         return;
3239       }
3240     }
3241 
3242     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3243     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3244     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3245                                     PaddedMaskNumElts);
3246 
3247     // Pad both vectors with undefs to make them the same length as the mask.
3248     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3249 
3250     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3251     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3252     MOps1[0] = Src1;
3253     MOps2[0] = Src2;
3254 
3255     Src1 = Src1.isUndef()
3256                ? DAG.getUNDEF(PaddedVT)
3257                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3258     Src2 = Src2.isUndef()
3259                ? DAG.getUNDEF(PaddedVT)
3260                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3261 
3262     // Readjust mask for new input vector length.
3263     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3264     for (unsigned i = 0; i != MaskNumElts; ++i) {
3265       int Idx = Mask[i];
3266       if (Idx >= (int)SrcNumElts)
3267         Idx -= SrcNumElts - PaddedMaskNumElts;
3268       MappedOps[i] = Idx;
3269     }
3270 
3271     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3272 
3273     // If the concatenated vector was padded, extract a subvector with the
3274     // correct number of elements.
3275     if (MaskNumElts != PaddedMaskNumElts)
3276       Result = DAG.getNode(
3277           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3278           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3279 
3280     setValue(&I, Result);
3281     return;
3282   }
3283 
3284   if (SrcNumElts > MaskNumElts) {
3285     // Analyze the access pattern of the vector to see if we can extract
3286     // two subvectors and do the shuffle.
3287     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3288     bool CanExtract = true;
3289     for (int Idx : Mask) {
3290       unsigned Input = 0;
3291       if (Idx < 0)
3292         continue;
3293 
3294       if (Idx >= (int)SrcNumElts) {
3295         Input = 1;
3296         Idx -= SrcNumElts;
3297       }
3298 
3299       // If all the indices come from the same MaskNumElts sized portion of
3300       // the sources we can use extract. Also make sure the extract wouldn't
3301       // extract past the end of the source.
3302       int NewStartIdx = alignDown(Idx, MaskNumElts);
3303       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3304           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3305         CanExtract = false;
3306       // Make sure we always update StartIdx as we use it to track if all
3307       // elements are undef.
3308       StartIdx[Input] = NewStartIdx;
3309     }
3310 
3311     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3312       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3313       return;
3314     }
3315     if (CanExtract) {
3316       // Extract appropriate subvector and generate a vector shuffle
3317       for (unsigned Input = 0; Input < 2; ++Input) {
3318         SDValue &Src = Input == 0 ? Src1 : Src2;
3319         if (StartIdx[Input] < 0)
3320           Src = DAG.getUNDEF(VT);
3321         else {
3322           Src = DAG.getNode(
3323               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3324               DAG.getConstant(StartIdx[Input], DL,
3325                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3326         }
3327       }
3328 
3329       // Calculate new mask.
3330       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3331       for (int &Idx : MappedOps) {
3332         if (Idx >= (int)SrcNumElts)
3333           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3334         else if (Idx >= 0)
3335           Idx -= StartIdx[0];
3336       }
3337 
3338       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3339       return;
3340     }
3341   }
3342 
3343   // We can't use either concat vectors or extract subvectors so fall back to
3344   // replacing the shuffle with extract and build vector.
3345   // to insert and build vector.
3346   EVT EltVT = VT.getVectorElementType();
3347   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3348   SmallVector<SDValue,8> Ops;
3349   for (int Idx : Mask) {
3350     SDValue Res;
3351 
3352     if (Idx < 0) {
3353       Res = DAG.getUNDEF(EltVT);
3354     } else {
3355       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3356       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3357 
3358       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3359                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3360     }
3361 
3362     Ops.push_back(Res);
3363   }
3364 
3365   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3366 }
3367 
visitInsertValue(const User & I)3368 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3369   ArrayRef<unsigned> Indices;
3370   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3371     Indices = IV->getIndices();
3372   else
3373     Indices = cast<ConstantExpr>(&I)->getIndices();
3374 
3375   const Value *Op0 = I.getOperand(0);
3376   const Value *Op1 = I.getOperand(1);
3377   Type *AggTy = I.getType();
3378   Type *ValTy = Op1->getType();
3379   bool IntoUndef = isa<UndefValue>(Op0);
3380   bool FromUndef = isa<UndefValue>(Op1);
3381 
3382   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3383 
3384   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3385   SmallVector<EVT, 4> AggValueVTs;
3386   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3387   SmallVector<EVT, 4> ValValueVTs;
3388   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3389 
3390   unsigned NumAggValues = AggValueVTs.size();
3391   unsigned NumValValues = ValValueVTs.size();
3392   SmallVector<SDValue, 4> Values(NumAggValues);
3393 
3394   // Ignore an insertvalue that produces an empty object
3395   if (!NumAggValues) {
3396     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3397     return;
3398   }
3399 
3400   SDValue Agg = getValue(Op0);
3401   unsigned i = 0;
3402   // Copy the beginning value(s) from the original aggregate.
3403   for (; i != LinearIndex; ++i)
3404     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3405                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3406   // Copy values from the inserted value(s).
3407   if (NumValValues) {
3408     SDValue Val = getValue(Op1);
3409     for (; i != LinearIndex + NumValValues; ++i)
3410       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3411                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3412   }
3413   // Copy remaining value(s) from the original aggregate.
3414   for (; i != NumAggValues; ++i)
3415     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3416                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3417 
3418   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3419                            DAG.getVTList(AggValueVTs), Values));
3420 }
3421 
visitExtractValue(const User & I)3422 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3423   ArrayRef<unsigned> Indices;
3424   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3425     Indices = EV->getIndices();
3426   else
3427     Indices = cast<ConstantExpr>(&I)->getIndices();
3428 
3429   const Value *Op0 = I.getOperand(0);
3430   Type *AggTy = Op0->getType();
3431   Type *ValTy = I.getType();
3432   bool OutOfUndef = isa<UndefValue>(Op0);
3433 
3434   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3435 
3436   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3437   SmallVector<EVT, 4> ValValueVTs;
3438   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3439 
3440   unsigned NumValValues = ValValueVTs.size();
3441 
3442   // Ignore a extractvalue that produces an empty object
3443   if (!NumValValues) {
3444     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3445     return;
3446   }
3447 
3448   SmallVector<SDValue, 4> Values(NumValValues);
3449 
3450   SDValue Agg = getValue(Op0);
3451   // Copy out the selected value(s).
3452   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3453     Values[i - LinearIndex] =
3454       OutOfUndef ?
3455         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3456         SDValue(Agg.getNode(), Agg.getResNo() + i);
3457 
3458   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3459                            DAG.getVTList(ValValueVTs), Values));
3460 }
3461 
visitGetElementPtr(const User & I)3462 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3463   Value *Op0 = I.getOperand(0);
3464   // Note that the pointer operand may be a vector of pointers. Take the scalar
3465   // element which holds a pointer.
3466   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3467   SDValue N = getValue(Op0);
3468   SDLoc dl = getCurSDLoc();
3469 
3470   // Normalize Vector GEP - all scalar operands should be converted to the
3471   // splat vector.
3472   unsigned VectorWidth = I.getType()->isVectorTy() ?
3473     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3474 
3475   if (VectorWidth && !N.getValueType().isVector()) {
3476     LLVMContext &Context = *DAG.getContext();
3477     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3478     N = DAG.getSplatBuildVector(VT, dl, N);
3479   }
3480 
3481   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3482        GTI != E; ++GTI) {
3483     const Value *Idx = GTI.getOperand();
3484     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3485       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3486       if (Field) {
3487         // N = N + Offset
3488         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3489 
3490         // In an inbounds GEP with an offset that is nonnegative even when
3491         // interpreted as signed, assume there is no unsigned overflow.
3492         SDNodeFlags Flags;
3493         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3494           Flags.setNoUnsignedWrap(true);
3495 
3496         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3497                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3498       }
3499     } else {
3500       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3501       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3502       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3503 
3504       // If this is a scalar constant or a splat vector of constants,
3505       // handle it quickly.
3506       const auto *CI = dyn_cast<ConstantInt>(Idx);
3507       if (!CI && isa<ConstantDataVector>(Idx) &&
3508           cast<ConstantDataVector>(Idx)->getSplatValue())
3509         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3510 
3511       if (CI) {
3512         if (CI->isZero())
3513           continue;
3514         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3515         LLVMContext &Context = *DAG.getContext();
3516         SDValue OffsVal = VectorWidth ?
3517           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3518           DAG.getConstant(Offs, dl, IdxTy);
3519 
3520         // In an inbouds GEP with an offset that is nonnegative even when
3521         // interpreted as signed, assume there is no unsigned overflow.
3522         SDNodeFlags Flags;
3523         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3524           Flags.setNoUnsignedWrap(true);
3525 
3526         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3527         continue;
3528       }
3529 
3530       // N = N + Idx * ElementSize;
3531       SDValue IdxN = getValue(Idx);
3532 
3533       if (!IdxN.getValueType().isVector() && VectorWidth) {
3534         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3535         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3536       }
3537 
3538       // If the index is smaller or larger than intptr_t, truncate or extend
3539       // it.
3540       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3541 
3542       // If this is a multiply by a power of two, turn it into a shl
3543       // immediately.  This is a very common case.
3544       if (ElementSize != 1) {
3545         if (ElementSize.isPowerOf2()) {
3546           unsigned Amt = ElementSize.logBase2();
3547           IdxN = DAG.getNode(ISD::SHL, dl,
3548                              N.getValueType(), IdxN,
3549                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3550         } else {
3551           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3552           IdxN = DAG.getNode(ISD::MUL, dl,
3553                              N.getValueType(), IdxN, Scale);
3554         }
3555       }
3556 
3557       N = DAG.getNode(ISD::ADD, dl,
3558                       N.getValueType(), N, IdxN);
3559     }
3560   }
3561 
3562   setValue(&I, N);
3563 }
3564 
visitAlloca(const AllocaInst & I)3565 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3566   // If this is a fixed sized alloca in the entry block of the function,
3567   // allocate it statically on the stack.
3568   if (FuncInfo.StaticAllocaMap.count(&I))
3569     return;   // getValue will auto-populate this.
3570 
3571   SDLoc dl = getCurSDLoc();
3572   Type *Ty = I.getAllocatedType();
3573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3574   auto &DL = DAG.getDataLayout();
3575   uint64_t TySize = DL.getTypeAllocSize(Ty);
3576   unsigned Align =
3577       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3578 
3579   SDValue AllocSize = getValue(I.getArraySize());
3580 
3581   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3582   if (AllocSize.getValueType() != IntPtr)
3583     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3584 
3585   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3586                           AllocSize,
3587                           DAG.getConstant(TySize, dl, IntPtr));
3588 
3589   // Handle alignment.  If the requested alignment is less than or equal to
3590   // the stack alignment, ignore it.  If the size is greater than or equal to
3591   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3592   unsigned StackAlign =
3593       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3594   if (Align <= StackAlign)
3595     Align = 0;
3596 
3597   // Round the size of the allocation up to the stack alignment size
3598   // by add SA-1 to the size. This doesn't overflow because we're computing
3599   // an address inside an alloca.
3600   SDNodeFlags Flags;
3601   Flags.setNoUnsignedWrap(true);
3602   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3603                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3604 
3605   // Mask out the low bits for alignment purposes.
3606   AllocSize =
3607       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3608                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3609 
3610   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3611   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3612   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3613   setValue(&I, DSA);
3614   DAG.setRoot(DSA.getValue(1));
3615 
3616   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3617 }
3618 
visitLoad(const LoadInst & I)3619 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3620   if (I.isAtomic())
3621     return visitAtomicLoad(I);
3622 
3623   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3624   const Value *SV = I.getOperand(0);
3625   if (TLI.supportSwiftError()) {
3626     // Swifterror values can come from either a function parameter with
3627     // swifterror attribute or an alloca with swifterror attribute.
3628     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3629       if (Arg->hasSwiftErrorAttr())
3630         return visitLoadFromSwiftError(I);
3631     }
3632 
3633     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3634       if (Alloca->isSwiftError())
3635         return visitLoadFromSwiftError(I);
3636     }
3637   }
3638 
3639   SDValue Ptr = getValue(SV);
3640 
3641   Type *Ty = I.getType();
3642 
3643   bool isVolatile = I.isVolatile();
3644   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3645   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3646   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3647   unsigned Alignment = I.getAlignment();
3648 
3649   AAMDNodes AAInfo;
3650   I.getAAMetadata(AAInfo);
3651   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3652 
3653   SmallVector<EVT, 4> ValueVTs;
3654   SmallVector<uint64_t, 4> Offsets;
3655   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3656   unsigned NumValues = ValueVTs.size();
3657   if (NumValues == 0)
3658     return;
3659 
3660   SDValue Root;
3661   bool ConstantMemory = false;
3662   if (isVolatile || NumValues > MaxParallelChains)
3663     // Serialize volatile loads with other side effects.
3664     Root = getRoot();
3665   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3666                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3667     // Do not serialize (non-volatile) loads of constant memory with anything.
3668     Root = DAG.getEntryNode();
3669     ConstantMemory = true;
3670   } else {
3671     // Do not serialize non-volatile loads against each other.
3672     Root = DAG.getRoot();
3673   }
3674 
3675   SDLoc dl = getCurSDLoc();
3676 
3677   if (isVolatile)
3678     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3679 
3680   // An aggregate load cannot wrap around the address space, so offsets to its
3681   // parts don't wrap either.
3682   SDNodeFlags Flags;
3683   Flags.setNoUnsignedWrap(true);
3684 
3685   SmallVector<SDValue, 4> Values(NumValues);
3686   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3687   EVT PtrVT = Ptr.getValueType();
3688   unsigned ChainI = 0;
3689   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3690     // Serializing loads here may result in excessive register pressure, and
3691     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3692     // could recover a bit by hoisting nodes upward in the chain by recognizing
3693     // they are side-effect free or do not alias. The optimizer should really
3694     // avoid this case by converting large object/array copies to llvm.memcpy
3695     // (MaxParallelChains should always remain as failsafe).
3696     if (ChainI == MaxParallelChains) {
3697       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3698       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3699                                   makeArrayRef(Chains.data(), ChainI));
3700       Root = Chain;
3701       ChainI = 0;
3702     }
3703     SDValue A = DAG.getNode(ISD::ADD, dl,
3704                             PtrVT, Ptr,
3705                             DAG.getConstant(Offsets[i], dl, PtrVT),
3706                             Flags);
3707     auto MMOFlags = MachineMemOperand::MONone;
3708     if (isVolatile)
3709       MMOFlags |= MachineMemOperand::MOVolatile;
3710     if (isNonTemporal)
3711       MMOFlags |= MachineMemOperand::MONonTemporal;
3712     if (isInvariant)
3713       MMOFlags |= MachineMemOperand::MOInvariant;
3714     if (isDereferenceable)
3715       MMOFlags |= MachineMemOperand::MODereferenceable;
3716     MMOFlags |= TLI.getMMOFlags(I);
3717 
3718     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3719                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3720                             MMOFlags, AAInfo, Ranges);
3721 
3722     Values[i] = L;
3723     Chains[ChainI] = L.getValue(1);
3724   }
3725 
3726   if (!ConstantMemory) {
3727     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3728                                 makeArrayRef(Chains.data(), ChainI));
3729     if (isVolatile)
3730       DAG.setRoot(Chain);
3731     else
3732       PendingLoads.push_back(Chain);
3733   }
3734 
3735   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3736                            DAG.getVTList(ValueVTs), Values));
3737 }
3738 
visitStoreToSwiftError(const StoreInst & I)3739 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3740   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3741          "call visitStoreToSwiftError when backend supports swifterror");
3742 
3743   SmallVector<EVT, 4> ValueVTs;
3744   SmallVector<uint64_t, 4> Offsets;
3745   const Value *SrcV = I.getOperand(0);
3746   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3747                   SrcV->getType(), ValueVTs, &Offsets);
3748   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3749          "expect a single EVT for swifterror");
3750 
3751   SDValue Src = getValue(SrcV);
3752   // Create a virtual register, then update the virtual register.
3753   unsigned VReg; bool CreatedVReg;
3754   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3755   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3756   // Chain can be getRoot or getControlRoot.
3757   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3758                                       SDValue(Src.getNode(), Src.getResNo()));
3759   DAG.setRoot(CopyNode);
3760   if (CreatedVReg)
3761     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3762 }
3763 
visitLoadFromSwiftError(const LoadInst & I)3764 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3765   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3766          "call visitLoadFromSwiftError when backend supports swifterror");
3767 
3768   assert(!I.isVolatile() &&
3769          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3770          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3771          "Support volatile, non temporal, invariant for load_from_swift_error");
3772 
3773   const Value *SV = I.getOperand(0);
3774   Type *Ty = I.getType();
3775   AAMDNodes AAInfo;
3776   I.getAAMetadata(AAInfo);
3777   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3778              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3779          "load_from_swift_error should not be constant memory");
3780 
3781   SmallVector<EVT, 4> ValueVTs;
3782   SmallVector<uint64_t, 4> Offsets;
3783   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3784                   ValueVTs, &Offsets);
3785   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3786          "expect a single EVT for swifterror");
3787 
3788   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3789   SDValue L = DAG.getCopyFromReg(
3790       getRoot(), getCurSDLoc(),
3791       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3792       ValueVTs[0]);
3793 
3794   setValue(&I, L);
3795 }
3796 
visitStore(const StoreInst & I)3797 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3798   if (I.isAtomic())
3799     return visitAtomicStore(I);
3800 
3801   const Value *SrcV = I.getOperand(0);
3802   const Value *PtrV = I.getOperand(1);
3803 
3804   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3805   if (TLI.supportSwiftError()) {
3806     // Swifterror values can come from either a function parameter with
3807     // swifterror attribute or an alloca with swifterror attribute.
3808     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3809       if (Arg->hasSwiftErrorAttr())
3810         return visitStoreToSwiftError(I);
3811     }
3812 
3813     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3814       if (Alloca->isSwiftError())
3815         return visitStoreToSwiftError(I);
3816     }
3817   }
3818 
3819   SmallVector<EVT, 4> ValueVTs;
3820   SmallVector<uint64_t, 4> Offsets;
3821   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3822                   SrcV->getType(), ValueVTs, &Offsets);
3823   unsigned NumValues = ValueVTs.size();
3824   if (NumValues == 0)
3825     return;
3826 
3827   // Get the lowered operands. Note that we do this after
3828   // checking if NumResults is zero, because with zero results
3829   // the operands won't have values in the map.
3830   SDValue Src = getValue(SrcV);
3831   SDValue Ptr = getValue(PtrV);
3832 
3833   SDValue Root = getRoot();
3834   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3835   SDLoc dl = getCurSDLoc();
3836   EVT PtrVT = Ptr.getValueType();
3837   unsigned Alignment = I.getAlignment();
3838   AAMDNodes AAInfo;
3839   I.getAAMetadata(AAInfo);
3840 
3841   auto MMOFlags = MachineMemOperand::MONone;
3842   if (I.isVolatile())
3843     MMOFlags |= MachineMemOperand::MOVolatile;
3844   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3845     MMOFlags |= MachineMemOperand::MONonTemporal;
3846   MMOFlags |= TLI.getMMOFlags(I);
3847 
3848   // An aggregate load cannot wrap around the address space, so offsets to its
3849   // parts don't wrap either.
3850   SDNodeFlags Flags;
3851   Flags.setNoUnsignedWrap(true);
3852 
3853   unsigned ChainI = 0;
3854   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3855     // See visitLoad comments.
3856     if (ChainI == MaxParallelChains) {
3857       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3858                                   makeArrayRef(Chains.data(), ChainI));
3859       Root = Chain;
3860       ChainI = 0;
3861     }
3862     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3863                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3864     SDValue St = DAG.getStore(
3865         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3866         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3867     Chains[ChainI] = St;
3868   }
3869 
3870   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3871                                   makeArrayRef(Chains.data(), ChainI));
3872   DAG.setRoot(StoreNode);
3873 }
3874 
visitMaskedStore(const CallInst & I,bool IsCompressing)3875 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3876                                            bool IsCompressing) {
3877   SDLoc sdl = getCurSDLoc();
3878 
3879   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3880                            unsigned& Alignment) {
3881     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3882     Src0 = I.getArgOperand(0);
3883     Ptr = I.getArgOperand(1);
3884     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3885     Mask = I.getArgOperand(3);
3886   };
3887   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3888                            unsigned& Alignment) {
3889     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3890     Src0 = I.getArgOperand(0);
3891     Ptr = I.getArgOperand(1);
3892     Mask = I.getArgOperand(2);
3893     Alignment = 0;
3894   };
3895 
3896   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3897   unsigned Alignment;
3898   if (IsCompressing)
3899     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3900   else
3901     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3902 
3903   SDValue Ptr = getValue(PtrOperand);
3904   SDValue Src0 = getValue(Src0Operand);
3905   SDValue Mask = getValue(MaskOperand);
3906 
3907   EVT VT = Src0.getValueType();
3908   if (!Alignment)
3909     Alignment = DAG.getEVTAlignment(VT);
3910 
3911   AAMDNodes AAInfo;
3912   I.getAAMetadata(AAInfo);
3913 
3914   MachineMemOperand *MMO =
3915     DAG.getMachineFunction().
3916     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3917                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3918                           Alignment, AAInfo);
3919   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3920                                          MMO, false /* Truncating */,
3921                                          IsCompressing);
3922   DAG.setRoot(StoreNode);
3923   setValue(&I, StoreNode);
3924 }
3925 
3926 // Get a uniform base for the Gather/Scatter intrinsic.
3927 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3928 // We try to represent it as a base pointer + vector of indices.
3929 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3930 // The first operand of the GEP may be a single pointer or a vector of pointers
3931 // Example:
3932 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3933 //  or
3934 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3935 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3936 //
3937 // When the first GEP operand is a single pointer - it is the uniform base we
3938 // are looking for. If first operand of the GEP is a splat vector - we
3939 // extract the splat value and use it as a uniform base.
3940 // In all other cases the function returns 'false'.
getUniformBase(const Value * & Ptr,SDValue & Base,SDValue & Index,SDValue & Scale,SelectionDAGBuilder * SDB)3941 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3942                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3943   SelectionDAG& DAG = SDB->DAG;
3944   LLVMContext &Context = *DAG.getContext();
3945 
3946   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3947   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3948   if (!GEP)
3949     return false;
3950 
3951   const Value *GEPPtr = GEP->getPointerOperand();
3952   if (!GEPPtr->getType()->isVectorTy())
3953     Ptr = GEPPtr;
3954   else if (!(Ptr = getSplatValue(GEPPtr)))
3955     return false;
3956 
3957   unsigned FinalIndex = GEP->getNumOperands() - 1;
3958   Value *IndexVal = GEP->getOperand(FinalIndex);
3959 
3960   // Ensure all the other indices are 0.
3961   for (unsigned i = 1; i < FinalIndex; ++i) {
3962     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3963     if (!C || !C->isZero())
3964       return false;
3965   }
3966 
3967   // The operands of the GEP may be defined in another basic block.
3968   // In this case we'll not find nodes for the operands.
3969   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3970     return false;
3971 
3972   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3973   const DataLayout &DL = DAG.getDataLayout();
3974   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
3975                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
3976   Base = SDB->getValue(Ptr);
3977   Index = SDB->getValue(IndexVal);
3978 
3979   if (!Index.getValueType().isVector()) {
3980     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3981     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3982     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3983   }
3984   return true;
3985 }
3986 
visitMaskedScatter(const CallInst & I)3987 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3988   SDLoc sdl = getCurSDLoc();
3989 
3990   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3991   const Value *Ptr = I.getArgOperand(1);
3992   SDValue Src0 = getValue(I.getArgOperand(0));
3993   SDValue Mask = getValue(I.getArgOperand(3));
3994   EVT VT = Src0.getValueType();
3995   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3996   if (!Alignment)
3997     Alignment = DAG.getEVTAlignment(VT);
3998   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3999 
4000   AAMDNodes AAInfo;
4001   I.getAAMetadata(AAInfo);
4002 
4003   SDValue Base;
4004   SDValue Index;
4005   SDValue Scale;
4006   const Value *BasePtr = Ptr;
4007   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4008 
4009   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4010   MachineMemOperand *MMO = DAG.getMachineFunction().
4011     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4012                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4013                          Alignment, AAInfo);
4014   if (!UniformBase) {
4015     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4016     Index = getValue(Ptr);
4017     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4018   }
4019   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4020   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4021                                          Ops, MMO);
4022   DAG.setRoot(Scatter);
4023   setValue(&I, Scatter);
4024 }
4025 
visitMaskedLoad(const CallInst & I,bool IsExpanding)4026 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4027   SDLoc sdl = getCurSDLoc();
4028 
4029   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4030                            unsigned& Alignment) {
4031     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4032     Ptr = I.getArgOperand(0);
4033     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4034     Mask = I.getArgOperand(2);
4035     Src0 = I.getArgOperand(3);
4036   };
4037   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4038                            unsigned& Alignment) {
4039     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4040     Ptr = I.getArgOperand(0);
4041     Alignment = 0;
4042     Mask = I.getArgOperand(1);
4043     Src0 = I.getArgOperand(2);
4044   };
4045 
4046   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4047   unsigned Alignment;
4048   if (IsExpanding)
4049     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4050   else
4051     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4052 
4053   SDValue Ptr = getValue(PtrOperand);
4054   SDValue Src0 = getValue(Src0Operand);
4055   SDValue Mask = getValue(MaskOperand);
4056 
4057   EVT VT = Src0.getValueType();
4058   if (!Alignment)
4059     Alignment = DAG.getEVTAlignment(VT);
4060 
4061   AAMDNodes AAInfo;
4062   I.getAAMetadata(AAInfo);
4063   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4064 
4065   // Do not serialize masked loads of constant memory with anything.
4066   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
4067       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
4068   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4069 
4070   MachineMemOperand *MMO =
4071     DAG.getMachineFunction().
4072     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4073                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4074                           Alignment, AAInfo, Ranges);
4075 
4076   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4077                                    ISD::NON_EXTLOAD, IsExpanding);
4078   if (AddToChain)
4079     PendingLoads.push_back(Load.getValue(1));
4080   setValue(&I, Load);
4081 }
4082 
visitMaskedGather(const CallInst & I)4083 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4084   SDLoc sdl = getCurSDLoc();
4085 
4086   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4087   const Value *Ptr = I.getArgOperand(0);
4088   SDValue Src0 = getValue(I.getArgOperand(3));
4089   SDValue Mask = getValue(I.getArgOperand(2));
4090 
4091   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4092   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4093   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4094   if (!Alignment)
4095     Alignment = DAG.getEVTAlignment(VT);
4096 
4097   AAMDNodes AAInfo;
4098   I.getAAMetadata(AAInfo);
4099   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4100 
4101   SDValue Root = DAG.getRoot();
4102   SDValue Base;
4103   SDValue Index;
4104   SDValue Scale;
4105   const Value *BasePtr = Ptr;
4106   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4107   bool ConstantMemory = false;
4108   if (UniformBase &&
4109       AA && AA->pointsToConstantMemory(MemoryLocation(
4110           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4111           AAInfo))) {
4112     // Do not serialize (non-volatile) loads of constant memory with anything.
4113     Root = DAG.getEntryNode();
4114     ConstantMemory = true;
4115   }
4116 
4117   MachineMemOperand *MMO =
4118     DAG.getMachineFunction().
4119     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4120                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4121                          Alignment, AAInfo, Ranges);
4122 
4123   if (!UniformBase) {
4124     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4125     Index = getValue(Ptr);
4126     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4127   }
4128   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4129   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4130                                        Ops, MMO);
4131 
4132   SDValue OutChain = Gather.getValue(1);
4133   if (!ConstantMemory)
4134     PendingLoads.push_back(OutChain);
4135   setValue(&I, Gather);
4136 }
4137 
visitAtomicCmpXchg(const AtomicCmpXchgInst & I)4138 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4139   SDLoc dl = getCurSDLoc();
4140   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4141   AtomicOrdering FailureOrder = I.getFailureOrdering();
4142   SyncScope::ID SSID = I.getSyncScopeID();
4143 
4144   SDValue InChain = getRoot();
4145 
4146   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4147   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4148   SDValue L = DAG.getAtomicCmpSwap(
4149       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4150       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4151       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4152       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4153 
4154   SDValue OutChain = L.getValue(2);
4155 
4156   setValue(&I, L);
4157   DAG.setRoot(OutChain);
4158 }
4159 
visitAtomicRMW(const AtomicRMWInst & I)4160 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4161   SDLoc dl = getCurSDLoc();
4162   ISD::NodeType NT;
4163   switch (I.getOperation()) {
4164   default: llvm_unreachable("Unknown atomicrmw operation");
4165   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4166   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4167   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4168   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4169   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4170   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4171   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4172   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4173   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4174   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4175   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4176   }
4177   AtomicOrdering Order = I.getOrdering();
4178   SyncScope::ID SSID = I.getSyncScopeID();
4179 
4180   SDValue InChain = getRoot();
4181 
4182   SDValue L =
4183     DAG.getAtomic(NT, dl,
4184                   getValue(I.getValOperand()).getSimpleValueType(),
4185                   InChain,
4186                   getValue(I.getPointerOperand()),
4187                   getValue(I.getValOperand()),
4188                   I.getPointerOperand(),
4189                   /* Alignment=*/ 0, Order, SSID);
4190 
4191   SDValue OutChain = L.getValue(1);
4192 
4193   setValue(&I, L);
4194   DAG.setRoot(OutChain);
4195 }
4196 
visitFence(const FenceInst & I)4197 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4198   SDLoc dl = getCurSDLoc();
4199   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4200   SDValue Ops[3];
4201   Ops[0] = getRoot();
4202   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4203                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4204   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4205                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4206   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4207 }
4208 
visitAtomicLoad(const LoadInst & I)4209 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4210   SDLoc dl = getCurSDLoc();
4211   AtomicOrdering Order = I.getOrdering();
4212   SyncScope::ID SSID = I.getSyncScopeID();
4213 
4214   SDValue InChain = getRoot();
4215 
4216   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4217   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4218 
4219   if (!TLI.supportsUnalignedAtomics() &&
4220       I.getAlignment() < VT.getStoreSize())
4221     report_fatal_error("Cannot generate unaligned atomic load");
4222 
4223   MachineMemOperand *MMO =
4224       DAG.getMachineFunction().
4225       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4226                            MachineMemOperand::MOVolatile |
4227                            MachineMemOperand::MOLoad,
4228                            VT.getStoreSize(),
4229                            I.getAlignment() ? I.getAlignment() :
4230                                               DAG.getEVTAlignment(VT),
4231                            AAMDNodes(), nullptr, SSID, Order);
4232 
4233   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4234   SDValue L =
4235       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4236                     getValue(I.getPointerOperand()), MMO);
4237 
4238   SDValue OutChain = L.getValue(1);
4239 
4240   setValue(&I, L);
4241   DAG.setRoot(OutChain);
4242 }
4243 
visitAtomicStore(const StoreInst & I)4244 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4245   SDLoc dl = getCurSDLoc();
4246 
4247   AtomicOrdering Order = I.getOrdering();
4248   SyncScope::ID SSID = I.getSyncScopeID();
4249 
4250   SDValue InChain = getRoot();
4251 
4252   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4253   EVT VT =
4254       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4255 
4256   if (I.getAlignment() < VT.getStoreSize())
4257     report_fatal_error("Cannot generate unaligned atomic store");
4258 
4259   SDValue OutChain =
4260     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4261                   InChain,
4262                   getValue(I.getPointerOperand()),
4263                   getValue(I.getValueOperand()),
4264                   I.getPointerOperand(), I.getAlignment(),
4265                   Order, SSID);
4266 
4267   DAG.setRoot(OutChain);
4268 }
4269 
4270 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4271 /// node.
visitTargetIntrinsic(const CallInst & I,unsigned Intrinsic)4272 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4273                                                unsigned Intrinsic) {
4274   // Ignore the callsite's attributes. A specific call site may be marked with
4275   // readnone, but the lowering code will expect the chain based on the
4276   // definition.
4277   const Function *F = I.getCalledFunction();
4278   bool HasChain = !F->doesNotAccessMemory();
4279   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4280 
4281   // Build the operand list.
4282   SmallVector<SDValue, 8> Ops;
4283   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4284     if (OnlyLoad) {
4285       // We don't need to serialize loads against other loads.
4286       Ops.push_back(DAG.getRoot());
4287     } else {
4288       Ops.push_back(getRoot());
4289     }
4290   }
4291 
4292   // Info is set by getTgtMemInstrinsic
4293   TargetLowering::IntrinsicInfo Info;
4294   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4295   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4296                                                DAG.getMachineFunction(),
4297                                                Intrinsic);
4298 
4299   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4300   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4301       Info.opc == ISD::INTRINSIC_W_CHAIN)
4302     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4303                                         TLI.getPointerTy(DAG.getDataLayout())));
4304 
4305   // Add all operands of the call to the operand list.
4306   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4307     SDValue Op = getValue(I.getArgOperand(i));
4308     Ops.push_back(Op);
4309   }
4310 
4311   SmallVector<EVT, 4> ValueVTs;
4312   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4313 
4314   if (HasChain)
4315     ValueVTs.push_back(MVT::Other);
4316 
4317   SDVTList VTs = DAG.getVTList(ValueVTs);
4318 
4319   // Create the node.
4320   SDValue Result;
4321   if (IsTgtIntrinsic) {
4322     // This is target intrinsic that touches memory
4323     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4324       Ops, Info.memVT,
4325       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4326       Info.flags, Info.size);
4327   } else if (!HasChain) {
4328     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4329   } else if (!I.getType()->isVoidTy()) {
4330     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4331   } else {
4332     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4333   }
4334 
4335   if (HasChain) {
4336     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4337     if (OnlyLoad)
4338       PendingLoads.push_back(Chain);
4339     else
4340       DAG.setRoot(Chain);
4341   }
4342 
4343   if (!I.getType()->isVoidTy()) {
4344     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4345       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4346       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4347     } else
4348       Result = lowerRangeToAssertZExt(DAG, I, Result);
4349 
4350     setValue(&I, Result);
4351   }
4352 }
4353 
4354 /// GetSignificand - Get the significand and build it into a floating-point
4355 /// number with exponent of 1:
4356 ///
4357 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4358 ///
4359 /// where Op is the hexadecimal representation of floating point value.
GetSignificand(SelectionDAG & DAG,SDValue Op,const SDLoc & dl)4360 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4361   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4362                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4363   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4364                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4365   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4366 }
4367 
4368 /// GetExponent - Get the exponent:
4369 ///
4370 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4371 ///
4372 /// where Op is the hexadecimal representation of floating point value.
GetExponent(SelectionDAG & DAG,SDValue Op,const TargetLowering & TLI,const SDLoc & dl)4373 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4374                            const TargetLowering &TLI, const SDLoc &dl) {
4375   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4376                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4377   SDValue t1 = DAG.getNode(
4378       ISD::SRL, dl, MVT::i32, t0,
4379       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4380   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4381                            DAG.getConstant(127, dl, MVT::i32));
4382   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4383 }
4384 
4385 /// getF32Constant - Get 32-bit floating point constant.
getF32Constant(SelectionDAG & DAG,unsigned Flt,const SDLoc & dl)4386 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4387                               const SDLoc &dl) {
4388   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4389                            MVT::f32);
4390 }
4391 
getLimitedPrecisionExp2(SDValue t0,const SDLoc & dl,SelectionDAG & DAG)4392 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4393                                        SelectionDAG &DAG) {
4394   // TODO: What fast-math-flags should be set on the floating-point nodes?
4395 
4396   //   IntegerPartOfX = ((int32_t)(t0);
4397   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4398 
4399   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4400   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4401   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4402 
4403   //   IntegerPartOfX <<= 23;
4404   IntegerPartOfX = DAG.getNode(
4405       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4406       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4407                                   DAG.getDataLayout())));
4408 
4409   SDValue TwoToFractionalPartOfX;
4410   if (LimitFloatPrecision <= 6) {
4411     // For floating-point precision of 6:
4412     //
4413     //   TwoToFractionalPartOfX =
4414     //     0.997535578f +
4415     //       (0.735607626f + 0.252464424f * x) * x;
4416     //
4417     // error 0.0144103317, which is 6 bits
4418     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4419                              getF32Constant(DAG, 0x3e814304, dl));
4420     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4421                              getF32Constant(DAG, 0x3f3c50c8, dl));
4422     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4423     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4424                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4425   } else if (LimitFloatPrecision <= 12) {
4426     // For floating-point precision of 12:
4427     //
4428     //   TwoToFractionalPartOfX =
4429     //     0.999892986f +
4430     //       (0.696457318f +
4431     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4432     //
4433     // error 0.000107046256, which is 13 to 14 bits
4434     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4435                              getF32Constant(DAG, 0x3da235e3, dl));
4436     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4437                              getF32Constant(DAG, 0x3e65b8f3, dl));
4438     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4439     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4440                              getF32Constant(DAG, 0x3f324b07, dl));
4441     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4442     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4443                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4444   } else { // LimitFloatPrecision <= 18
4445     // For floating-point precision of 18:
4446     //
4447     //   TwoToFractionalPartOfX =
4448     //     0.999999982f +
4449     //       (0.693148872f +
4450     //         (0.240227044f +
4451     //           (0.554906021e-1f +
4452     //             (0.961591928e-2f +
4453     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4454     // error 2.47208000*10^(-7), which is better than 18 bits
4455     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4456                              getF32Constant(DAG, 0x3924b03e, dl));
4457     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4458                              getF32Constant(DAG, 0x3ab24b87, dl));
4459     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4460     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4461                              getF32Constant(DAG, 0x3c1d8c17, dl));
4462     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4463     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4464                              getF32Constant(DAG, 0x3d634a1d, dl));
4465     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4466     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4467                              getF32Constant(DAG, 0x3e75fe14, dl));
4468     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4469     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4470                               getF32Constant(DAG, 0x3f317234, dl));
4471     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4472     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4473                                          getF32Constant(DAG, 0x3f800000, dl));
4474   }
4475 
4476   // Add the exponent into the result in integer domain.
4477   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4478   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4479                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4480 }
4481 
4482 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4483 /// limited-precision mode.
expandExp(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4484 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4485                          const TargetLowering &TLI) {
4486   if (Op.getValueType() == MVT::f32 &&
4487       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4488 
4489     // Put the exponent in the right bit position for later addition to the
4490     // final result:
4491     //
4492     //   #define LOG2OFe 1.4426950f
4493     //   t0 = Op * LOG2OFe
4494 
4495     // TODO: What fast-math-flags should be set here?
4496     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4497                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4498     return getLimitedPrecisionExp2(t0, dl, DAG);
4499   }
4500 
4501   // No special expansion.
4502   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4503 }
4504 
4505 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4506 /// limited-precision mode.
expandLog(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4507 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4508                          const TargetLowering &TLI) {
4509   // TODO: What fast-math-flags should be set on the floating-point nodes?
4510 
4511   if (Op.getValueType() == MVT::f32 &&
4512       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4513     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4514 
4515     // Scale the exponent by log(2) [0.69314718f].
4516     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4517     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4518                                         getF32Constant(DAG, 0x3f317218, dl));
4519 
4520     // Get the significand and build it into a floating-point number with
4521     // exponent of 1.
4522     SDValue X = GetSignificand(DAG, Op1, dl);
4523 
4524     SDValue LogOfMantissa;
4525     if (LimitFloatPrecision <= 6) {
4526       // For floating-point precision of 6:
4527       //
4528       //   LogofMantissa =
4529       //     -1.1609546f +
4530       //       (1.4034025f - 0.23903021f * x) * x;
4531       //
4532       // error 0.0034276066, which is better than 8 bits
4533       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4534                                getF32Constant(DAG, 0xbe74c456, dl));
4535       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4536                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4537       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4538       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4539                                   getF32Constant(DAG, 0x3f949a29, dl));
4540     } else if (LimitFloatPrecision <= 12) {
4541       // For floating-point precision of 12:
4542       //
4543       //   LogOfMantissa =
4544       //     -1.7417939f +
4545       //       (2.8212026f +
4546       //         (-1.4699568f +
4547       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4548       //
4549       // error 0.000061011436, which is 14 bits
4550       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4551                                getF32Constant(DAG, 0xbd67b6d6, dl));
4552       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4553                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4554       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4555       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4556                                getF32Constant(DAG, 0x3fbc278b, dl));
4557       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4558       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4559                                getF32Constant(DAG, 0x40348e95, dl));
4560       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4561       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4562                                   getF32Constant(DAG, 0x3fdef31a, dl));
4563     } else { // LimitFloatPrecision <= 18
4564       // For floating-point precision of 18:
4565       //
4566       //   LogOfMantissa =
4567       //     -2.1072184f +
4568       //       (4.2372794f +
4569       //         (-3.7029485f +
4570       //           (2.2781945f +
4571       //             (-0.87823314f +
4572       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4573       //
4574       // error 0.0000023660568, which is better than 18 bits
4575       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4576                                getF32Constant(DAG, 0xbc91e5ac, dl));
4577       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4578                                getF32Constant(DAG, 0x3e4350aa, dl));
4579       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4580       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4581                                getF32Constant(DAG, 0x3f60d3e3, dl));
4582       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4583       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4584                                getF32Constant(DAG, 0x4011cdf0, dl));
4585       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4586       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4587                                getF32Constant(DAG, 0x406cfd1c, dl));
4588       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4589       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4590                                getF32Constant(DAG, 0x408797cb, dl));
4591       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4592       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4593                                   getF32Constant(DAG, 0x4006dcab, dl));
4594     }
4595 
4596     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4597   }
4598 
4599   // No special expansion.
4600   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4601 }
4602 
4603 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4604 /// limited-precision mode.
expandLog2(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4605 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4606                           const TargetLowering &TLI) {
4607   // TODO: What fast-math-flags should be set on the floating-point nodes?
4608 
4609   if (Op.getValueType() == MVT::f32 &&
4610       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4611     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4612 
4613     // Get the exponent.
4614     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4615 
4616     // Get the significand and build it into a floating-point number with
4617     // exponent of 1.
4618     SDValue X = GetSignificand(DAG, Op1, dl);
4619 
4620     // Different possible minimax approximations of significand in
4621     // floating-point for various degrees of accuracy over [1,2].
4622     SDValue Log2ofMantissa;
4623     if (LimitFloatPrecision <= 6) {
4624       // For floating-point precision of 6:
4625       //
4626       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4627       //
4628       // error 0.0049451742, which is more than 7 bits
4629       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4630                                getF32Constant(DAG, 0xbeb08fe0, dl));
4631       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4632                                getF32Constant(DAG, 0x40019463, dl));
4633       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4634       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4635                                    getF32Constant(DAG, 0x3fd6633d, dl));
4636     } else if (LimitFloatPrecision <= 12) {
4637       // For floating-point precision of 12:
4638       //
4639       //   Log2ofMantissa =
4640       //     -2.51285454f +
4641       //       (4.07009056f +
4642       //         (-2.12067489f +
4643       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4644       //
4645       // error 0.0000876136000, which is better than 13 bits
4646       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4647                                getF32Constant(DAG, 0xbda7262e, dl));
4648       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4649                                getF32Constant(DAG, 0x3f25280b, dl));
4650       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4651       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4652                                getF32Constant(DAG, 0x4007b923, dl));
4653       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4654       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4655                                getF32Constant(DAG, 0x40823e2f, dl));
4656       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4657       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4658                                    getF32Constant(DAG, 0x4020d29c, dl));
4659     } else { // LimitFloatPrecision <= 18
4660       // For floating-point precision of 18:
4661       //
4662       //   Log2ofMantissa =
4663       //     -3.0400495f +
4664       //       (6.1129976f +
4665       //         (-5.3420409f +
4666       //           (3.2865683f +
4667       //             (-1.2669343f +
4668       //               (0.27515199f -
4669       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4670       //
4671       // error 0.0000018516, which is better than 18 bits
4672       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4673                                getF32Constant(DAG, 0xbcd2769e, dl));
4674       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4675                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4676       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4677       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4678                                getF32Constant(DAG, 0x3fa22ae7, dl));
4679       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4680       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4681                                getF32Constant(DAG, 0x40525723, dl));
4682       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4683       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4684                                getF32Constant(DAG, 0x40aaf200, dl));
4685       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4686       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4687                                getF32Constant(DAG, 0x40c39dad, dl));
4688       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4689       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4690                                    getF32Constant(DAG, 0x4042902c, dl));
4691     }
4692 
4693     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4694   }
4695 
4696   // No special expansion.
4697   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4698 }
4699 
4700 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4701 /// limited-precision mode.
expandLog10(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4702 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4703                            const TargetLowering &TLI) {
4704   // TODO: What fast-math-flags should be set on the floating-point nodes?
4705 
4706   if (Op.getValueType() == MVT::f32 &&
4707       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4708     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4709 
4710     // Scale the exponent by log10(2) [0.30102999f].
4711     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4712     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4713                                         getF32Constant(DAG, 0x3e9a209a, dl));
4714 
4715     // Get the significand and build it into a floating-point number with
4716     // exponent of 1.
4717     SDValue X = GetSignificand(DAG, Op1, dl);
4718 
4719     SDValue Log10ofMantissa;
4720     if (LimitFloatPrecision <= 6) {
4721       // For floating-point precision of 6:
4722       //
4723       //   Log10ofMantissa =
4724       //     -0.50419619f +
4725       //       (0.60948995f - 0.10380950f * x) * x;
4726       //
4727       // error 0.0014886165, which is 6 bits
4728       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4729                                getF32Constant(DAG, 0xbdd49a13, dl));
4730       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4731                                getF32Constant(DAG, 0x3f1c0789, dl));
4732       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4733       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4734                                     getF32Constant(DAG, 0x3f011300, dl));
4735     } else if (LimitFloatPrecision <= 12) {
4736       // For floating-point precision of 12:
4737       //
4738       //   Log10ofMantissa =
4739       //     -0.64831180f +
4740       //       (0.91751397f +
4741       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4742       //
4743       // error 0.00019228036, which is better than 12 bits
4744       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4745                                getF32Constant(DAG, 0x3d431f31, dl));
4746       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4747                                getF32Constant(DAG, 0x3ea21fb2, dl));
4748       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4749       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4750                                getF32Constant(DAG, 0x3f6ae232, dl));
4751       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4752       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4753                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4754     } else { // LimitFloatPrecision <= 18
4755       // For floating-point precision of 18:
4756       //
4757       //   Log10ofMantissa =
4758       //     -0.84299375f +
4759       //       (1.5327582f +
4760       //         (-1.0688956f +
4761       //           (0.49102474f +
4762       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4763       //
4764       // error 0.0000037995730, which is better than 18 bits
4765       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4766                                getF32Constant(DAG, 0x3c5d51ce, dl));
4767       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4768                                getF32Constant(DAG, 0x3e00685a, dl));
4769       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4770       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4771                                getF32Constant(DAG, 0x3efb6798, dl));
4772       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4773       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4774                                getF32Constant(DAG, 0x3f88d192, dl));
4775       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4776       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4777                                getF32Constant(DAG, 0x3fc4316c, dl));
4778       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4779       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4780                                     getF32Constant(DAG, 0x3f57ce70, dl));
4781     }
4782 
4783     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4784   }
4785 
4786   // No special expansion.
4787   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4788 }
4789 
4790 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4791 /// limited-precision mode.
expandExp2(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4792 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4793                           const TargetLowering &TLI) {
4794   if (Op.getValueType() == MVT::f32 &&
4795       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4796     return getLimitedPrecisionExp2(Op, dl, DAG);
4797 
4798   // No special expansion.
4799   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4800 }
4801 
4802 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4803 /// limited-precision mode with x == 10.0f.
expandPow(const SDLoc & dl,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const TargetLowering & TLI)4804 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4805                          SelectionDAG &DAG, const TargetLowering &TLI) {
4806   bool IsExp10 = false;
4807   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4808       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4809     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4810       APFloat Ten(10.0f);
4811       IsExp10 = LHSC->isExactlyValue(Ten);
4812     }
4813   }
4814 
4815   // TODO: What fast-math-flags should be set on the FMUL node?
4816   if (IsExp10) {
4817     // Put the exponent in the right bit position for later addition to the
4818     // final result:
4819     //
4820     //   #define LOG2OF10 3.3219281f
4821     //   t0 = Op * LOG2OF10;
4822     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4823                              getF32Constant(DAG, 0x40549a78, dl));
4824     return getLimitedPrecisionExp2(t0, dl, DAG);
4825   }
4826 
4827   // No special expansion.
4828   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4829 }
4830 
4831 /// ExpandPowI - Expand a llvm.powi intrinsic.
ExpandPowI(const SDLoc & DL,SDValue LHS,SDValue RHS,SelectionDAG & DAG)4832 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4833                           SelectionDAG &DAG) {
4834   // If RHS is a constant, we can expand this out to a multiplication tree,
4835   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4836   // optimizing for size, we only want to do this if the expansion would produce
4837   // a small number of multiplies, otherwise we do the full expansion.
4838   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4839     // Get the exponent as a positive value.
4840     unsigned Val = RHSC->getSExtValue();
4841     if ((int)Val < 0) Val = -Val;
4842 
4843     // powi(x, 0) -> 1.0
4844     if (Val == 0)
4845       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4846 
4847     const Function &F = DAG.getMachineFunction().getFunction();
4848     if (!F.optForSize() ||
4849         // If optimizing for size, don't insert too many multiplies.
4850         // This inserts up to 5 multiplies.
4851         countPopulation(Val) + Log2_32(Val) < 7) {
4852       // We use the simple binary decomposition method to generate the multiply
4853       // sequence.  There are more optimal ways to do this (for example,
4854       // powi(x,15) generates one more multiply than it should), but this has
4855       // the benefit of being both really simple and much better than a libcall.
4856       SDValue Res;  // Logically starts equal to 1.0
4857       SDValue CurSquare = LHS;
4858       // TODO: Intrinsics should have fast-math-flags that propagate to these
4859       // nodes.
4860       while (Val) {
4861         if (Val & 1) {
4862           if (Res.getNode())
4863             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4864           else
4865             Res = CurSquare;  // 1.0*CurSquare.
4866         }
4867 
4868         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4869                                 CurSquare, CurSquare);
4870         Val >>= 1;
4871       }
4872 
4873       // If the original was negative, invert the result, producing 1/(x*x*x).
4874       if (RHSC->getSExtValue() < 0)
4875         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4876                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4877       return Res;
4878     }
4879   }
4880 
4881   // Otherwise, expand to a libcall.
4882   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4883 }
4884 
4885 // getUnderlyingArgReg - Find underlying register used for a truncated or
4886 // bitcasted argument.
getUnderlyingArgReg(const SDValue & N)4887 static unsigned getUnderlyingArgReg(const SDValue &N) {
4888   switch (N.getOpcode()) {
4889   case ISD::CopyFromReg:
4890     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4891   case ISD::BITCAST:
4892   case ISD::AssertZext:
4893   case ISD::AssertSext:
4894   case ISD::TRUNCATE:
4895     return getUnderlyingArgReg(N.getOperand(0));
4896   default:
4897     return 0;
4898   }
4899 }
4900 
4901 /// If the DbgValueInst is a dbg_value of a function argument, create the
4902 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4903 /// instruction selection, they will be inserted to the entry BB.
EmitFuncArgumentDbgValue(const Value * V,DILocalVariable * Variable,DIExpression * Expr,DILocation * DL,bool IsDbgDeclare,const SDValue & N)4904 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4905     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4906     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4907   const Argument *Arg = dyn_cast<Argument>(V);
4908   if (!Arg)
4909     return false;
4910 
4911   MachineFunction &MF = DAG.getMachineFunction();
4912   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4913 
4914   bool IsIndirect = false;
4915   Optional<MachineOperand> Op;
4916   // Some arguments' frame index is recorded during argument lowering.
4917   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4918   if (FI != std::numeric_limits<int>::max())
4919     Op = MachineOperand::CreateFI(FI);
4920 
4921   if (!Op && N.getNode()) {
4922     unsigned Reg = getUnderlyingArgReg(N);
4923     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4924       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4925       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4926       if (PR)
4927         Reg = PR;
4928     }
4929     if (Reg) {
4930       Op = MachineOperand::CreateReg(Reg, false);
4931       IsIndirect = IsDbgDeclare;
4932     }
4933   }
4934 
4935   if (!Op && N.getNode())
4936     // Check if frame index is available.
4937     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4938       if (FrameIndexSDNode *FINode =
4939           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4940         Op = MachineOperand::CreateFI(FINode->getIndex());
4941 
4942   if (!Op) {
4943     // Check if ValueMap has reg number.
4944     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4945     if (VMI != FuncInfo.ValueMap.end()) {
4946       const auto &TLI = DAG.getTargetLoweringInfo();
4947       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4948                        V->getType(), getABIRegCopyCC(V));
4949       if (RFV.occupiesMultipleRegs()) {
4950         unsigned Offset = 0;
4951         for (auto RegAndSize : RFV.getRegsAndSizes()) {
4952           Op = MachineOperand::CreateReg(RegAndSize.first, false);
4953           auto FragmentExpr = DIExpression::createFragmentExpression(
4954               Expr, Offset, RegAndSize.second);
4955           if (!FragmentExpr)
4956             continue;
4957           FuncInfo.ArgDbgValues.push_back(
4958               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4959                       Op->getReg(), Variable, *FragmentExpr));
4960           Offset += RegAndSize.second;
4961         }
4962         return true;
4963       }
4964       Op = MachineOperand::CreateReg(VMI->second, false);
4965       IsIndirect = IsDbgDeclare;
4966     }
4967   }
4968 
4969   if (!Op)
4970     return false;
4971 
4972   assert(Variable->isValidLocationForIntrinsic(DL) &&
4973          "Expected inlined-at fields to agree");
4974   IsIndirect = (Op->isReg()) ? IsIndirect : true;
4975   FuncInfo.ArgDbgValues.push_back(
4976       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4977               *Op, Variable, Expr));
4978 
4979   return true;
4980 }
4981 
4982 /// Return the appropriate SDDbgValue based on N.
getDbgValue(SDValue N,DILocalVariable * Variable,DIExpression * Expr,const DebugLoc & dl,unsigned DbgSDNodeOrder)4983 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4984                                              DILocalVariable *Variable,
4985                                              DIExpression *Expr,
4986                                              const DebugLoc &dl,
4987                                              unsigned DbgSDNodeOrder) {
4988   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4989     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4990     // stack slot locations.
4991     //
4992     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
4993     // debug values here after optimization:
4994     //
4995     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
4996     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
4997     //
4998     // Both describe the direct values of their associated variables.
4999     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5000                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5001   }
5002   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5003                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5004 }
5005 
5006 // VisualStudio defines setjmp as _setjmp
5007 #if defined(_MSC_VER) && defined(setjmp) && \
5008                          !defined(setjmp_undefined_for_msvc)
5009 #  pragma push_macro("setjmp")
5010 #  undef setjmp
5011 #  define setjmp_undefined_for_msvc
5012 #endif
5013 
5014 /// Lower the call to the specified intrinsic function. If we want to emit this
5015 /// as a call to a named external function, return the name. Otherwise, lower it
5016 /// and return null.
5017 const char *
visitIntrinsicCall(const CallInst & I,unsigned Intrinsic)5018 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5019   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5020   SDLoc sdl = getCurSDLoc();
5021   DebugLoc dl = getCurDebugLoc();
5022   SDValue Res;
5023 
5024   switch (Intrinsic) {
5025   default:
5026     // By default, turn this into a target intrinsic node.
5027     visitTargetIntrinsic(I, Intrinsic);
5028     return nullptr;
5029   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5030   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5031   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5032   case Intrinsic::returnaddress:
5033     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5034                              TLI.getPointerTy(DAG.getDataLayout()),
5035                              getValue(I.getArgOperand(0))));
5036     return nullptr;
5037   case Intrinsic::addressofreturnaddress:
5038     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5039                              TLI.getPointerTy(DAG.getDataLayout())));
5040     return nullptr;
5041   case Intrinsic::frameaddress:
5042     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5043                              TLI.getPointerTy(DAG.getDataLayout()),
5044                              getValue(I.getArgOperand(0))));
5045     return nullptr;
5046   case Intrinsic::read_register: {
5047     Value *Reg = I.getArgOperand(0);
5048     SDValue Chain = getRoot();
5049     SDValue RegName =
5050         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5051     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5052     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5053       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5054     setValue(&I, Res);
5055     DAG.setRoot(Res.getValue(1));
5056     return nullptr;
5057   }
5058   case Intrinsic::write_register: {
5059     Value *Reg = I.getArgOperand(0);
5060     Value *RegValue = I.getArgOperand(1);
5061     SDValue Chain = getRoot();
5062     SDValue RegName =
5063         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5064     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5065                             RegName, getValue(RegValue)));
5066     return nullptr;
5067   }
5068   case Intrinsic::setjmp:
5069     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5070   case Intrinsic::longjmp:
5071     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5072   case Intrinsic::memcpy: {
5073     const auto &MCI = cast<MemCpyInst>(I);
5074     SDValue Op1 = getValue(I.getArgOperand(0));
5075     SDValue Op2 = getValue(I.getArgOperand(1));
5076     SDValue Op3 = getValue(I.getArgOperand(2));
5077     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5078     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5079     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5080     unsigned Align = MinAlign(DstAlign, SrcAlign);
5081     bool isVol = MCI.isVolatile();
5082     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5083     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5084     // node.
5085     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5086                                false, isTC,
5087                                MachinePointerInfo(I.getArgOperand(0)),
5088                                MachinePointerInfo(I.getArgOperand(1)));
5089     updateDAGForMaybeTailCall(MC);
5090     return nullptr;
5091   }
5092   case Intrinsic::memset: {
5093     const auto &MSI = cast<MemSetInst>(I);
5094     SDValue Op1 = getValue(I.getArgOperand(0));
5095     SDValue Op2 = getValue(I.getArgOperand(1));
5096     SDValue Op3 = getValue(I.getArgOperand(2));
5097     // @llvm.memset defines 0 and 1 to both mean no alignment.
5098     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5099     bool isVol = MSI.isVolatile();
5100     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5101     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5102                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5103     updateDAGForMaybeTailCall(MS);
5104     return nullptr;
5105   }
5106   case Intrinsic::memmove: {
5107     const auto &MMI = cast<MemMoveInst>(I);
5108     SDValue Op1 = getValue(I.getArgOperand(0));
5109     SDValue Op2 = getValue(I.getArgOperand(1));
5110     SDValue Op3 = getValue(I.getArgOperand(2));
5111     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5112     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5113     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5114     unsigned Align = MinAlign(DstAlign, SrcAlign);
5115     bool isVol = MMI.isVolatile();
5116     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5117     // FIXME: Support passing different dest/src alignments to the memmove DAG
5118     // node.
5119     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5120                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5121                                 MachinePointerInfo(I.getArgOperand(1)));
5122     updateDAGForMaybeTailCall(MM);
5123     return nullptr;
5124   }
5125   case Intrinsic::memcpy_element_unordered_atomic: {
5126     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5127     SDValue Dst = getValue(MI.getRawDest());
5128     SDValue Src = getValue(MI.getRawSource());
5129     SDValue Length = getValue(MI.getLength());
5130 
5131     unsigned DstAlign = MI.getDestAlignment();
5132     unsigned SrcAlign = MI.getSourceAlignment();
5133     Type *LengthTy = MI.getLength()->getType();
5134     unsigned ElemSz = MI.getElementSizeInBytes();
5135     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5136     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5137                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5138                                      MachinePointerInfo(MI.getRawDest()),
5139                                      MachinePointerInfo(MI.getRawSource()));
5140     updateDAGForMaybeTailCall(MC);
5141     return nullptr;
5142   }
5143   case Intrinsic::memmove_element_unordered_atomic: {
5144     auto &MI = cast<AtomicMemMoveInst>(I);
5145     SDValue Dst = getValue(MI.getRawDest());
5146     SDValue Src = getValue(MI.getRawSource());
5147     SDValue Length = getValue(MI.getLength());
5148 
5149     unsigned DstAlign = MI.getDestAlignment();
5150     unsigned SrcAlign = MI.getSourceAlignment();
5151     Type *LengthTy = MI.getLength()->getType();
5152     unsigned ElemSz = MI.getElementSizeInBytes();
5153     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5154     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5155                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5156                                       MachinePointerInfo(MI.getRawDest()),
5157                                       MachinePointerInfo(MI.getRawSource()));
5158     updateDAGForMaybeTailCall(MC);
5159     return nullptr;
5160   }
5161   case Intrinsic::memset_element_unordered_atomic: {
5162     auto &MI = cast<AtomicMemSetInst>(I);
5163     SDValue Dst = getValue(MI.getRawDest());
5164     SDValue Val = getValue(MI.getValue());
5165     SDValue Length = getValue(MI.getLength());
5166 
5167     unsigned DstAlign = MI.getDestAlignment();
5168     Type *LengthTy = MI.getLength()->getType();
5169     unsigned ElemSz = MI.getElementSizeInBytes();
5170     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5171     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5172                                      LengthTy, ElemSz, isTC,
5173                                      MachinePointerInfo(MI.getRawDest()));
5174     updateDAGForMaybeTailCall(MC);
5175     return nullptr;
5176   }
5177   case Intrinsic::dbg_addr:
5178   case Intrinsic::dbg_declare: {
5179     const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I);
5180     DILocalVariable *Variable = DI.getVariable();
5181     DIExpression *Expression = DI.getExpression();
5182     dropDanglingDebugInfo(Variable, Expression);
5183     assert(Variable && "Missing variable");
5184 
5185     // Check if address has undef value.
5186     const Value *Address = DI.getVariableLocation();
5187     if (!Address || isa<UndefValue>(Address) ||
5188         (Address->use_empty() && !isa<Argument>(Address))) {
5189       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5190       return nullptr;
5191     }
5192 
5193     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5194 
5195     // Check if this variable can be described by a frame index, typically
5196     // either as a static alloca or a byval parameter.
5197     int FI = std::numeric_limits<int>::max();
5198     if (const auto *AI =
5199             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5200       if (AI->isStaticAlloca()) {
5201         auto I = FuncInfo.StaticAllocaMap.find(AI);
5202         if (I != FuncInfo.StaticAllocaMap.end())
5203           FI = I->second;
5204       }
5205     } else if (const auto *Arg = dyn_cast<Argument>(
5206                    Address->stripInBoundsConstantOffsets())) {
5207       FI = FuncInfo.getArgumentFrameIndex(Arg);
5208     }
5209 
5210     // llvm.dbg.addr is control dependent and always generates indirect
5211     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5212     // the MachineFunction variable table.
5213     if (FI != std::numeric_limits<int>::max()) {
5214       if (Intrinsic == Intrinsic::dbg_addr) {
5215         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5216             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5217         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5218       }
5219       return nullptr;
5220     }
5221 
5222     SDValue &N = NodeMap[Address];
5223     if (!N.getNode() && isa<Argument>(Address))
5224       // Check unused arguments map.
5225       N = UnusedArgNodeMap[Address];
5226     SDDbgValue *SDV;
5227     if (N.getNode()) {
5228       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5229         Address = BCI->getOperand(0);
5230       // Parameters are handled specially.
5231       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5232       if (isParameter && FINode) {
5233         // Byval parameter. We have a frame index at this point.
5234         SDV =
5235             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5236                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5237       } else if (isa<Argument>(Address)) {
5238         // Address is an argument, so try to emit its dbg value using
5239         // virtual register info from the FuncInfo.ValueMap.
5240         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5241         return nullptr;
5242       } else {
5243         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5244                               true, dl, SDNodeOrder);
5245       }
5246       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5247     } else {
5248       // If Address is an argument then try to emit its dbg value using
5249       // virtual register info from the FuncInfo.ValueMap.
5250       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5251                                     N)) {
5252         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5253       }
5254     }
5255     return nullptr;
5256   }
5257   case Intrinsic::dbg_label: {
5258     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5259     DILabel *Label = DI.getLabel();
5260     assert(Label && "Missing label");
5261 
5262     SDDbgLabel *SDV;
5263     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5264     DAG.AddDbgLabel(SDV);
5265     return nullptr;
5266   }
5267   case Intrinsic::dbg_value: {
5268     const DbgValueInst &DI = cast<DbgValueInst>(I);
5269     assert(DI.getVariable() && "Missing variable");
5270 
5271     DILocalVariable *Variable = DI.getVariable();
5272     DIExpression *Expression = DI.getExpression();
5273     dropDanglingDebugInfo(Variable, Expression);
5274     const Value *V = DI.getValue();
5275     if (!V)
5276       return nullptr;
5277 
5278     SDDbgValue *SDV;
5279     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5280       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5281       DAG.AddDbgValue(SDV, nullptr, false);
5282       return nullptr;
5283     }
5284 
5285     // Do not use getValue() in here; we don't want to generate code at
5286     // this point if it hasn't been done yet.
5287     SDValue N = NodeMap[V];
5288     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5289       N = UnusedArgNodeMap[V];
5290     if (N.getNode()) {
5291       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5292         return nullptr;
5293       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5294       DAG.AddDbgValue(SDV, N.getNode(), false);
5295       return nullptr;
5296     }
5297 
5298     // PHI nodes have already been selected, so we should know which VReg that
5299     // is assigns to already.
5300     if (isa<PHINode>(V)) {
5301       auto VMI = FuncInfo.ValueMap.find(V);
5302       if (VMI != FuncInfo.ValueMap.end()) {
5303         unsigned Reg = VMI->second;
5304         // The PHI node may be split up into several MI PHI nodes (in
5305         // FunctionLoweringInfo::set).
5306         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5307                          V->getType(), None);
5308         if (RFV.occupiesMultipleRegs()) {
5309           unsigned Offset = 0;
5310           unsigned BitsToDescribe = 0;
5311           if (auto VarSize = Variable->getSizeInBits())
5312             BitsToDescribe = *VarSize;
5313           if (auto Fragment = Expression->getFragmentInfo())
5314             BitsToDescribe = Fragment->SizeInBits;
5315           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5316             unsigned RegisterSize = RegAndSize.second;
5317             // Bail out if all bits are described already.
5318             if (Offset >= BitsToDescribe)
5319               break;
5320             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5321                 ? BitsToDescribe - Offset
5322                 : RegisterSize;
5323             auto FragmentExpr = DIExpression::createFragmentExpression(
5324                 Expression, Offset, FragmentSize);
5325             if (!FragmentExpr)
5326                 continue;
5327             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5328                                       false, dl, SDNodeOrder);
5329             DAG.AddDbgValue(SDV, nullptr, false);
5330             Offset += RegisterSize;
5331           }
5332         } else {
5333           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5334                                     SDNodeOrder);
5335           DAG.AddDbgValue(SDV, nullptr, false);
5336         }
5337         return nullptr;
5338       }
5339     }
5340 
5341     // TODO: When we get here we will either drop the dbg.value completely, or
5342     // we try to move it forward by letting it dangle for awhile. So we should
5343     // probably add an extra DbgValue to the DAG here, with a reference to
5344     // "noreg", to indicate that we have lost the debug location for the
5345     // variable.
5346 
5347     if (!V->use_empty() ) {
5348       // Do not call getValue(V) yet, as we don't want to generate code.
5349       // Remember it for later.
5350       DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5351       return nullptr;
5352     }
5353 
5354     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5355     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5356     return nullptr;
5357   }
5358 
5359   case Intrinsic::eh_typeid_for: {
5360     // Find the type id for the given typeinfo.
5361     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5362     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5363     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5364     setValue(&I, Res);
5365     return nullptr;
5366   }
5367 
5368   case Intrinsic::eh_return_i32:
5369   case Intrinsic::eh_return_i64:
5370     DAG.getMachineFunction().setCallsEHReturn(true);
5371     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5372                             MVT::Other,
5373                             getControlRoot(),
5374                             getValue(I.getArgOperand(0)),
5375                             getValue(I.getArgOperand(1))));
5376     return nullptr;
5377   case Intrinsic::eh_unwind_init:
5378     DAG.getMachineFunction().setCallsUnwindInit(true);
5379     return nullptr;
5380   case Intrinsic::eh_dwarf_cfa:
5381     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5382                              TLI.getPointerTy(DAG.getDataLayout()),
5383                              getValue(I.getArgOperand(0))));
5384     return nullptr;
5385   case Intrinsic::eh_sjlj_callsite: {
5386     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5387     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5388     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5389     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5390 
5391     MMI.setCurrentCallSite(CI->getZExtValue());
5392     return nullptr;
5393   }
5394   case Intrinsic::eh_sjlj_functioncontext: {
5395     // Get and store the index of the function context.
5396     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5397     AllocaInst *FnCtx =
5398       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5399     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5400     MFI.setFunctionContextIndex(FI);
5401     return nullptr;
5402   }
5403   case Intrinsic::eh_sjlj_setjmp: {
5404     SDValue Ops[2];
5405     Ops[0] = getRoot();
5406     Ops[1] = getValue(I.getArgOperand(0));
5407     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5408                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5409     setValue(&I, Op.getValue(0));
5410     DAG.setRoot(Op.getValue(1));
5411     return nullptr;
5412   }
5413   case Intrinsic::eh_sjlj_longjmp:
5414     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5415                             getRoot(), getValue(I.getArgOperand(0))));
5416     return nullptr;
5417   case Intrinsic::eh_sjlj_setup_dispatch:
5418     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5419                             getRoot()));
5420     return nullptr;
5421   case Intrinsic::masked_gather:
5422     visitMaskedGather(I);
5423     return nullptr;
5424   case Intrinsic::masked_load:
5425     visitMaskedLoad(I);
5426     return nullptr;
5427   case Intrinsic::masked_scatter:
5428     visitMaskedScatter(I);
5429     return nullptr;
5430   case Intrinsic::masked_store:
5431     visitMaskedStore(I);
5432     return nullptr;
5433   case Intrinsic::masked_expandload:
5434     visitMaskedLoad(I, true /* IsExpanding */);
5435     return nullptr;
5436   case Intrinsic::masked_compressstore:
5437     visitMaskedStore(I, true /* IsCompressing */);
5438     return nullptr;
5439   case Intrinsic::x86_mmx_pslli_w:
5440   case Intrinsic::x86_mmx_pslli_d:
5441   case Intrinsic::x86_mmx_pslli_q:
5442   case Intrinsic::x86_mmx_psrli_w:
5443   case Intrinsic::x86_mmx_psrli_d:
5444   case Intrinsic::x86_mmx_psrli_q:
5445   case Intrinsic::x86_mmx_psrai_w:
5446   case Intrinsic::x86_mmx_psrai_d: {
5447     SDValue ShAmt = getValue(I.getArgOperand(1));
5448     if (isa<ConstantSDNode>(ShAmt)) {
5449       visitTargetIntrinsic(I, Intrinsic);
5450       return nullptr;
5451     }
5452     unsigned NewIntrinsic = 0;
5453     EVT ShAmtVT = MVT::v2i32;
5454     switch (Intrinsic) {
5455     case Intrinsic::x86_mmx_pslli_w:
5456       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5457       break;
5458     case Intrinsic::x86_mmx_pslli_d:
5459       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5460       break;
5461     case Intrinsic::x86_mmx_pslli_q:
5462       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5463       break;
5464     case Intrinsic::x86_mmx_psrli_w:
5465       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5466       break;
5467     case Intrinsic::x86_mmx_psrli_d:
5468       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5469       break;
5470     case Intrinsic::x86_mmx_psrli_q:
5471       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5472       break;
5473     case Intrinsic::x86_mmx_psrai_w:
5474       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5475       break;
5476     case Intrinsic::x86_mmx_psrai_d:
5477       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5478       break;
5479     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5480     }
5481 
5482     // The vector shift intrinsics with scalars uses 32b shift amounts but
5483     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5484     // to be zero.
5485     // We must do this early because v2i32 is not a legal type.
5486     SDValue ShOps[2];
5487     ShOps[0] = ShAmt;
5488     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5489     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5490     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5491     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5492     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5493                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5494                        getValue(I.getArgOperand(0)), ShAmt);
5495     setValue(&I, Res);
5496     return nullptr;
5497   }
5498   case Intrinsic::powi:
5499     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5500                             getValue(I.getArgOperand(1)), DAG));
5501     return nullptr;
5502   case Intrinsic::log:
5503     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5504     return nullptr;
5505   case Intrinsic::log2:
5506     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5507     return nullptr;
5508   case Intrinsic::log10:
5509     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5510     return nullptr;
5511   case Intrinsic::exp:
5512     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5513     return nullptr;
5514   case Intrinsic::exp2:
5515     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5516     return nullptr;
5517   case Intrinsic::pow:
5518     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5519                            getValue(I.getArgOperand(1)), DAG, TLI));
5520     return nullptr;
5521   case Intrinsic::sqrt:
5522   case Intrinsic::fabs:
5523   case Intrinsic::sin:
5524   case Intrinsic::cos:
5525   case Intrinsic::floor:
5526   case Intrinsic::ceil:
5527   case Intrinsic::trunc:
5528   case Intrinsic::rint:
5529   case Intrinsic::nearbyint:
5530   case Intrinsic::round:
5531   case Intrinsic::canonicalize: {
5532     unsigned Opcode;
5533     switch (Intrinsic) {
5534     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5535     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5536     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5537     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5538     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5539     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5540     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5541     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5542     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5543     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5544     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5545     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5546     }
5547 
5548     setValue(&I, DAG.getNode(Opcode, sdl,
5549                              getValue(I.getArgOperand(0)).getValueType(),
5550                              getValue(I.getArgOperand(0))));
5551     return nullptr;
5552   }
5553   case Intrinsic::minnum: {
5554     auto VT = getValue(I.getArgOperand(0)).getValueType();
5555     unsigned Opc =
5556         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5557             ? ISD::FMINNAN
5558             : ISD::FMINNUM;
5559     setValue(&I, DAG.getNode(Opc, sdl, VT,
5560                              getValue(I.getArgOperand(0)),
5561                              getValue(I.getArgOperand(1))));
5562     return nullptr;
5563   }
5564   case Intrinsic::maxnum: {
5565     auto VT = getValue(I.getArgOperand(0)).getValueType();
5566     unsigned Opc =
5567         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5568             ? ISD::FMAXNAN
5569             : ISD::FMAXNUM;
5570     setValue(&I, DAG.getNode(Opc, sdl, VT,
5571                              getValue(I.getArgOperand(0)),
5572                              getValue(I.getArgOperand(1))));
5573     return nullptr;
5574   }
5575   case Intrinsic::copysign:
5576     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5577                              getValue(I.getArgOperand(0)).getValueType(),
5578                              getValue(I.getArgOperand(0)),
5579                              getValue(I.getArgOperand(1))));
5580     return nullptr;
5581   case Intrinsic::fma:
5582     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5583                              getValue(I.getArgOperand(0)).getValueType(),
5584                              getValue(I.getArgOperand(0)),
5585                              getValue(I.getArgOperand(1)),
5586                              getValue(I.getArgOperand(2))));
5587     return nullptr;
5588   case Intrinsic::experimental_constrained_fadd:
5589   case Intrinsic::experimental_constrained_fsub:
5590   case Intrinsic::experimental_constrained_fmul:
5591   case Intrinsic::experimental_constrained_fdiv:
5592   case Intrinsic::experimental_constrained_frem:
5593   case Intrinsic::experimental_constrained_fma:
5594   case Intrinsic::experimental_constrained_sqrt:
5595   case Intrinsic::experimental_constrained_pow:
5596   case Intrinsic::experimental_constrained_powi:
5597   case Intrinsic::experimental_constrained_sin:
5598   case Intrinsic::experimental_constrained_cos:
5599   case Intrinsic::experimental_constrained_exp:
5600   case Intrinsic::experimental_constrained_exp2:
5601   case Intrinsic::experimental_constrained_log:
5602   case Intrinsic::experimental_constrained_log10:
5603   case Intrinsic::experimental_constrained_log2:
5604   case Intrinsic::experimental_constrained_rint:
5605   case Intrinsic::experimental_constrained_nearbyint:
5606     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5607     return nullptr;
5608   case Intrinsic::fmuladd: {
5609     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5610     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5611         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5612       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5613                                getValue(I.getArgOperand(0)).getValueType(),
5614                                getValue(I.getArgOperand(0)),
5615                                getValue(I.getArgOperand(1)),
5616                                getValue(I.getArgOperand(2))));
5617     } else {
5618       // TODO: Intrinsic calls should have fast-math-flags.
5619       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5620                                 getValue(I.getArgOperand(0)).getValueType(),
5621                                 getValue(I.getArgOperand(0)),
5622                                 getValue(I.getArgOperand(1)));
5623       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5624                                 getValue(I.getArgOperand(0)).getValueType(),
5625                                 Mul,
5626                                 getValue(I.getArgOperand(2)));
5627       setValue(&I, Add);
5628     }
5629     return nullptr;
5630   }
5631   case Intrinsic::convert_to_fp16:
5632     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5633                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5634                                          getValue(I.getArgOperand(0)),
5635                                          DAG.getTargetConstant(0, sdl,
5636                                                                MVT::i32))));
5637     return nullptr;
5638   case Intrinsic::convert_from_fp16:
5639     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5640                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5641                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5642                                          getValue(I.getArgOperand(0)))));
5643     return nullptr;
5644   case Intrinsic::pcmarker: {
5645     SDValue Tmp = getValue(I.getArgOperand(0));
5646     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5647     return nullptr;
5648   }
5649   case Intrinsic::readcyclecounter: {
5650     SDValue Op = getRoot();
5651     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5652                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5653     setValue(&I, Res);
5654     DAG.setRoot(Res.getValue(1));
5655     return nullptr;
5656   }
5657   case Intrinsic::bitreverse:
5658     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5659                              getValue(I.getArgOperand(0)).getValueType(),
5660                              getValue(I.getArgOperand(0))));
5661     return nullptr;
5662   case Intrinsic::bswap:
5663     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5664                              getValue(I.getArgOperand(0)).getValueType(),
5665                              getValue(I.getArgOperand(0))));
5666     return nullptr;
5667   case Intrinsic::cttz: {
5668     SDValue Arg = getValue(I.getArgOperand(0));
5669     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5670     EVT Ty = Arg.getValueType();
5671     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5672                              sdl, Ty, Arg));
5673     return nullptr;
5674   }
5675   case Intrinsic::ctlz: {
5676     SDValue Arg = getValue(I.getArgOperand(0));
5677     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5678     EVT Ty = Arg.getValueType();
5679     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5680                              sdl, Ty, Arg));
5681     return nullptr;
5682   }
5683   case Intrinsic::ctpop: {
5684     SDValue Arg = getValue(I.getArgOperand(0));
5685     EVT Ty = Arg.getValueType();
5686     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5687     return nullptr;
5688   }
5689   case Intrinsic::fshl:
5690   case Intrinsic::fshr: {
5691     bool IsFSHL = Intrinsic == Intrinsic::fshl;
5692     SDValue X = getValue(I.getArgOperand(0));
5693     SDValue Y = getValue(I.getArgOperand(1));
5694     SDValue Z = getValue(I.getArgOperand(2));
5695     EVT VT = X.getValueType();
5696 
5697     // When X == Y, this is rotate. Create the node directly if legal.
5698     // TODO: This should also be done if the operation is custom, but we have
5699     // to make sure targets are handling the modulo shift amount as expected.
5700     // TODO: If the rotate direction (left or right) corresponding to the shift
5701     // is not available, adjust the shift value and invert the direction.
5702     auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
5703     if (X == Y && TLI.isOperationLegal(RotateOpcode, VT)) {
5704       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
5705       return nullptr;
5706     }
5707 
5708     // Get the shift amount and inverse shift amount, modulo the bit-width.
5709     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
5710     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
5711     SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, Z);
5712     SDValue InvShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
5713 
5714     // fshl: (X << (Z % BW)) | (Y >> ((BW - Z) % BW))
5715     // fshr: (X << ((BW - Z) % BW)) | (Y >> (Z % BW))
5716     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
5717     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5718     SDValue Res = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
5719 
5720     // If (Z % BW == 0), then (BW - Z) % BW is also zero, so the result would
5721     // be X | Y. If X == Y (rotate), that's fine. If not, we have to select.
5722     if (X != Y) {
5723       SDValue Zero = DAG.getConstant(0, sdl, VT);
5724       EVT CCVT = MVT::i1;
5725       if (VT.isVector())
5726         CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
5727       // For fshl, 0 shift returns the 1st arg (X).
5728       // For fshr, 0 shift returns the 2nd arg (Y).
5729       SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
5730       Res = DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Res);
5731     }
5732     setValue(&I, Res);
5733     return nullptr;
5734   }
5735   case Intrinsic::stacksave: {
5736     SDValue Op = getRoot();
5737     Res = DAG.getNode(
5738         ISD::STACKSAVE, sdl,
5739         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5740     setValue(&I, Res);
5741     DAG.setRoot(Res.getValue(1));
5742     return nullptr;
5743   }
5744   case Intrinsic::stackrestore:
5745     Res = getValue(I.getArgOperand(0));
5746     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5747     return nullptr;
5748   case Intrinsic::get_dynamic_area_offset: {
5749     SDValue Op = getRoot();
5750     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5751     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5752     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5753     // target.
5754     if (PtrTy != ResTy)
5755       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5756                          " intrinsic!");
5757     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5758                       Op);
5759     DAG.setRoot(Op);
5760     setValue(&I, Res);
5761     return nullptr;
5762   }
5763   case Intrinsic::stackguard: {
5764     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5765     MachineFunction &MF = DAG.getMachineFunction();
5766     const Module &M = *MF.getFunction().getParent();
5767     SDValue Chain = getRoot();
5768     if (TLI.useLoadStackGuardNode()) {
5769       Res = getLoadStackGuard(DAG, sdl, Chain);
5770     } else {
5771       const Value *Global = TLI.getSDagStackGuard(M);
5772       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5773       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5774                         MachinePointerInfo(Global, 0), Align,
5775                         MachineMemOperand::MOVolatile);
5776     }
5777     if (TLI.useStackGuardXorFP())
5778       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5779     DAG.setRoot(Chain);
5780     setValue(&I, Res);
5781     return nullptr;
5782   }
5783   case Intrinsic::stackprotector: {
5784     // Emit code into the DAG to store the stack guard onto the stack.
5785     MachineFunction &MF = DAG.getMachineFunction();
5786     MachineFrameInfo &MFI = MF.getFrameInfo();
5787     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5788     SDValue Src, Chain = getRoot();
5789 
5790     if (TLI.useLoadStackGuardNode())
5791       Src = getLoadStackGuard(DAG, sdl, Chain);
5792     else
5793       Src = getValue(I.getArgOperand(0));   // The guard's value.
5794 
5795     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5796 
5797     int FI = FuncInfo.StaticAllocaMap[Slot];
5798     MFI.setStackProtectorIndex(FI);
5799 
5800     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5801 
5802     // Store the stack protector onto the stack.
5803     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5804                                                  DAG.getMachineFunction(), FI),
5805                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5806     setValue(&I, Res);
5807     DAG.setRoot(Res);
5808     return nullptr;
5809   }
5810   case Intrinsic::objectsize: {
5811     // If we don't know by now, we're never going to know.
5812     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5813 
5814     assert(CI && "Non-constant type in __builtin_object_size?");
5815 
5816     SDValue Arg = getValue(I.getCalledValue());
5817     EVT Ty = Arg.getValueType();
5818 
5819     if (CI->isZero())
5820       Res = DAG.getConstant(-1ULL, sdl, Ty);
5821     else
5822       Res = DAG.getConstant(0, sdl, Ty);
5823 
5824     setValue(&I, Res);
5825     return nullptr;
5826   }
5827   case Intrinsic::annotation:
5828   case Intrinsic::ptr_annotation:
5829   case Intrinsic::launder_invariant_group:
5830   case Intrinsic::strip_invariant_group:
5831     // Drop the intrinsic, but forward the value
5832     setValue(&I, getValue(I.getOperand(0)));
5833     return nullptr;
5834   case Intrinsic::assume:
5835   case Intrinsic::var_annotation:
5836   case Intrinsic::sideeffect:
5837     // Discard annotate attributes, assumptions, and artificial side-effects.
5838     return nullptr;
5839 
5840   case Intrinsic::codeview_annotation: {
5841     // Emit a label associated with this metadata.
5842     MachineFunction &MF = DAG.getMachineFunction();
5843     MCSymbol *Label =
5844         MF.getMMI().getContext().createTempSymbol("annotation", true);
5845     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5846     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5847     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5848     DAG.setRoot(Res);
5849     return nullptr;
5850   }
5851 
5852   case Intrinsic::init_trampoline: {
5853     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5854 
5855     SDValue Ops[6];
5856     Ops[0] = getRoot();
5857     Ops[1] = getValue(I.getArgOperand(0));
5858     Ops[2] = getValue(I.getArgOperand(1));
5859     Ops[3] = getValue(I.getArgOperand(2));
5860     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5861     Ops[5] = DAG.getSrcValue(F);
5862 
5863     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5864 
5865     DAG.setRoot(Res);
5866     return nullptr;
5867   }
5868   case Intrinsic::adjust_trampoline:
5869     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5870                              TLI.getPointerTy(DAG.getDataLayout()),
5871                              getValue(I.getArgOperand(0))));
5872     return nullptr;
5873   case Intrinsic::gcroot: {
5874     assert(DAG.getMachineFunction().getFunction().hasGC() &&
5875            "only valid in functions with gc specified, enforced by Verifier");
5876     assert(GFI && "implied by previous");
5877     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5878     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5879 
5880     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5881     GFI->addStackRoot(FI->getIndex(), TypeMap);
5882     return nullptr;
5883   }
5884   case Intrinsic::gcread:
5885   case Intrinsic::gcwrite:
5886     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5887   case Intrinsic::flt_rounds:
5888     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5889     return nullptr;
5890 
5891   case Intrinsic::expect:
5892     // Just replace __builtin_expect(exp, c) with EXP.
5893     setValue(&I, getValue(I.getArgOperand(0)));
5894     return nullptr;
5895 
5896   case Intrinsic::debugtrap:
5897   case Intrinsic::trap: {
5898     StringRef TrapFuncName =
5899         I.getAttributes()
5900             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5901             .getValueAsString();
5902     if (TrapFuncName.empty()) {
5903       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5904         ISD::TRAP : ISD::DEBUGTRAP;
5905       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5906       return nullptr;
5907     }
5908     TargetLowering::ArgListTy Args;
5909 
5910     TargetLowering::CallLoweringInfo CLI(DAG);
5911     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5912         CallingConv::C, I.getType(),
5913         DAG.getExternalSymbol(TrapFuncName.data(),
5914                               TLI.getPointerTy(DAG.getDataLayout())),
5915         std::move(Args));
5916 
5917     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5918     DAG.setRoot(Result.second);
5919     return nullptr;
5920   }
5921 
5922   case Intrinsic::uadd_with_overflow:
5923   case Intrinsic::sadd_with_overflow:
5924   case Intrinsic::usub_with_overflow:
5925   case Intrinsic::ssub_with_overflow:
5926   case Intrinsic::umul_with_overflow:
5927   case Intrinsic::smul_with_overflow: {
5928     ISD::NodeType Op;
5929     switch (Intrinsic) {
5930     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5931     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5932     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5933     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5934     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5935     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5936     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5937     }
5938     SDValue Op1 = getValue(I.getArgOperand(0));
5939     SDValue Op2 = getValue(I.getArgOperand(1));
5940 
5941     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5942     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5943     return nullptr;
5944   }
5945   case Intrinsic::prefetch: {
5946     SDValue Ops[5];
5947     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5948     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
5949     Ops[0] = DAG.getRoot();
5950     Ops[1] = getValue(I.getArgOperand(0));
5951     Ops[2] = getValue(I.getArgOperand(1));
5952     Ops[3] = getValue(I.getArgOperand(2));
5953     Ops[4] = getValue(I.getArgOperand(3));
5954     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5955                                              DAG.getVTList(MVT::Other), Ops,
5956                                              EVT::getIntegerVT(*Context, 8),
5957                                              MachinePointerInfo(I.getArgOperand(0)),
5958                                              0, /* align */
5959                                              Flags);
5960 
5961     // Chain the prefetch in parallell with any pending loads, to stay out of
5962     // the way of later optimizations.
5963     PendingLoads.push_back(Result);
5964     Result = getRoot();
5965     DAG.setRoot(Result);
5966     return nullptr;
5967   }
5968   case Intrinsic::lifetime_start:
5969   case Intrinsic::lifetime_end: {
5970     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5971     // Stack coloring is not enabled in O0, discard region information.
5972     if (TM.getOptLevel() == CodeGenOpt::None)
5973       return nullptr;
5974 
5975     SmallVector<Value *, 4> Allocas;
5976     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5977 
5978     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5979            E = Allocas.end(); Object != E; ++Object) {
5980       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5981 
5982       // Could not find an Alloca.
5983       if (!LifetimeObject)
5984         continue;
5985 
5986       // First check that the Alloca is static, otherwise it won't have a
5987       // valid frame index.
5988       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5989       if (SI == FuncInfo.StaticAllocaMap.end())
5990         return nullptr;
5991 
5992       int FI = SI->second;
5993 
5994       SDValue Ops[2];
5995       Ops[0] = getRoot();
5996       Ops[1] =
5997           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5998       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5999 
6000       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
6001       DAG.setRoot(Res);
6002     }
6003     return nullptr;
6004   }
6005   case Intrinsic::invariant_start:
6006     // Discard region information.
6007     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6008     return nullptr;
6009   case Intrinsic::invariant_end:
6010     // Discard region information.
6011     return nullptr;
6012   case Intrinsic::clear_cache:
6013     return TLI.getClearCacheBuiltinName();
6014   case Intrinsic::donothing:
6015     // ignore
6016     return nullptr;
6017   case Intrinsic::experimental_stackmap:
6018     visitStackmap(I);
6019     return nullptr;
6020   case Intrinsic::experimental_patchpoint_void:
6021   case Intrinsic::experimental_patchpoint_i64:
6022     visitPatchpoint(&I);
6023     return nullptr;
6024   case Intrinsic::experimental_gc_statepoint:
6025     LowerStatepoint(ImmutableStatepoint(&I));
6026     return nullptr;
6027   case Intrinsic::experimental_gc_result:
6028     visitGCResult(cast<GCResultInst>(I));
6029     return nullptr;
6030   case Intrinsic::experimental_gc_relocate:
6031     visitGCRelocate(cast<GCRelocateInst>(I));
6032     return nullptr;
6033   case Intrinsic::instrprof_increment:
6034     llvm_unreachable("instrprof failed to lower an increment");
6035   case Intrinsic::instrprof_value_profile:
6036     llvm_unreachable("instrprof failed to lower a value profiling call");
6037   case Intrinsic::localescape: {
6038     MachineFunction &MF = DAG.getMachineFunction();
6039     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6040 
6041     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6042     // is the same on all targets.
6043     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6044       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6045       if (isa<ConstantPointerNull>(Arg))
6046         continue; // Skip null pointers. They represent a hole in index space.
6047       AllocaInst *Slot = cast<AllocaInst>(Arg);
6048       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6049              "can only escape static allocas");
6050       int FI = FuncInfo.StaticAllocaMap[Slot];
6051       MCSymbol *FrameAllocSym =
6052           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6053               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6054       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6055               TII->get(TargetOpcode::LOCAL_ESCAPE))
6056           .addSym(FrameAllocSym)
6057           .addFrameIndex(FI);
6058     }
6059 
6060     return nullptr;
6061   }
6062 
6063   case Intrinsic::localrecover: {
6064     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6065     MachineFunction &MF = DAG.getMachineFunction();
6066     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6067 
6068     // Get the symbol that defines the frame offset.
6069     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6070     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6071     unsigned IdxVal =
6072         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6073     MCSymbol *FrameAllocSym =
6074         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6075             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6076 
6077     // Create a MCSymbol for the label to avoid any target lowering
6078     // that would make this PC relative.
6079     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6080     SDValue OffsetVal =
6081         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6082 
6083     // Add the offset to the FP.
6084     Value *FP = I.getArgOperand(1);
6085     SDValue FPVal = getValue(FP);
6086     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6087     setValue(&I, Add);
6088 
6089     return nullptr;
6090   }
6091 
6092   case Intrinsic::eh_exceptionpointer:
6093   case Intrinsic::eh_exceptioncode: {
6094     // Get the exception pointer vreg, copy from it, and resize it to fit.
6095     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6096     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6097     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6098     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6099     SDValue N =
6100         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6101     if (Intrinsic == Intrinsic::eh_exceptioncode)
6102       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6103     setValue(&I, N);
6104     return nullptr;
6105   }
6106   case Intrinsic::xray_customevent: {
6107     // Here we want to make sure that the intrinsic behaves as if it has a
6108     // specific calling convention, and only for x86_64.
6109     // FIXME: Support other platforms later.
6110     const auto &Triple = DAG.getTarget().getTargetTriple();
6111     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6112       return nullptr;
6113 
6114     SDLoc DL = getCurSDLoc();
6115     SmallVector<SDValue, 8> Ops;
6116 
6117     // We want to say that we always want the arguments in registers.
6118     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6119     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6120     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6121     SDValue Chain = getRoot();
6122     Ops.push_back(LogEntryVal);
6123     Ops.push_back(StrSizeVal);
6124     Ops.push_back(Chain);
6125 
6126     // We need to enforce the calling convention for the callsite, so that
6127     // argument ordering is enforced correctly, and that register allocation can
6128     // see that some registers may be assumed clobbered and have to preserve
6129     // them across calls to the intrinsic.
6130     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6131                                            DL, NodeTys, Ops);
6132     SDValue patchableNode = SDValue(MN, 0);
6133     DAG.setRoot(patchableNode);
6134     setValue(&I, patchableNode);
6135     return nullptr;
6136   }
6137   case Intrinsic::xray_typedevent: {
6138     // Here we want to make sure that the intrinsic behaves as if it has a
6139     // specific calling convention, and only for x86_64.
6140     // FIXME: Support other platforms later.
6141     const auto &Triple = DAG.getTarget().getTargetTriple();
6142     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6143       return nullptr;
6144 
6145     SDLoc DL = getCurSDLoc();
6146     SmallVector<SDValue, 8> Ops;
6147 
6148     // We want to say that we always want the arguments in registers.
6149     // It's unclear to me how manipulating the selection DAG here forces callers
6150     // to provide arguments in registers instead of on the stack.
6151     SDValue LogTypeId = getValue(I.getArgOperand(0));
6152     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6153     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6154     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6155     SDValue Chain = getRoot();
6156     Ops.push_back(LogTypeId);
6157     Ops.push_back(LogEntryVal);
6158     Ops.push_back(StrSizeVal);
6159     Ops.push_back(Chain);
6160 
6161     // We need to enforce the calling convention for the callsite, so that
6162     // argument ordering is enforced correctly, and that register allocation can
6163     // see that some registers may be assumed clobbered and have to preserve
6164     // them across calls to the intrinsic.
6165     MachineSDNode *MN = DAG.getMachineNode(
6166         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6167     SDValue patchableNode = SDValue(MN, 0);
6168     DAG.setRoot(patchableNode);
6169     setValue(&I, patchableNode);
6170     return nullptr;
6171   }
6172   case Intrinsic::experimental_deoptimize:
6173     LowerDeoptimizeCall(&I);
6174     return nullptr;
6175 
6176   case Intrinsic::experimental_vector_reduce_fadd:
6177   case Intrinsic::experimental_vector_reduce_fmul:
6178   case Intrinsic::experimental_vector_reduce_add:
6179   case Intrinsic::experimental_vector_reduce_mul:
6180   case Intrinsic::experimental_vector_reduce_and:
6181   case Intrinsic::experimental_vector_reduce_or:
6182   case Intrinsic::experimental_vector_reduce_xor:
6183   case Intrinsic::experimental_vector_reduce_smax:
6184   case Intrinsic::experimental_vector_reduce_smin:
6185   case Intrinsic::experimental_vector_reduce_umax:
6186   case Intrinsic::experimental_vector_reduce_umin:
6187   case Intrinsic::experimental_vector_reduce_fmax:
6188   case Intrinsic::experimental_vector_reduce_fmin:
6189     visitVectorReduce(I, Intrinsic);
6190     return nullptr;
6191 
6192   case Intrinsic::icall_branch_funnel: {
6193     SmallVector<SDValue, 16> Ops;
6194     Ops.push_back(DAG.getRoot());
6195     Ops.push_back(getValue(I.getArgOperand(0)));
6196 
6197     int64_t Offset;
6198     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6199         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6200     if (!Base)
6201       report_fatal_error(
6202           "llvm.icall.branch.funnel operand must be a GlobalValue");
6203     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6204 
6205     struct BranchFunnelTarget {
6206       int64_t Offset;
6207       SDValue Target;
6208     };
6209     SmallVector<BranchFunnelTarget, 8> Targets;
6210 
6211     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6212       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6213           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6214       if (ElemBase != Base)
6215         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6216                            "to the same GlobalValue");
6217 
6218       SDValue Val = getValue(I.getArgOperand(Op + 1));
6219       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6220       if (!GA)
6221         report_fatal_error(
6222             "llvm.icall.branch.funnel operand must be a GlobalValue");
6223       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6224                                      GA->getGlobal(), getCurSDLoc(),
6225                                      Val.getValueType(), GA->getOffset())});
6226     }
6227     llvm::sort(Targets.begin(), Targets.end(),
6228                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6229                  return T1.Offset < T2.Offset;
6230                });
6231 
6232     for (auto &T : Targets) {
6233       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6234       Ops.push_back(T.Target);
6235     }
6236 
6237     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6238                                  getCurSDLoc(), MVT::Other, Ops),
6239               0);
6240     DAG.setRoot(N);
6241     setValue(&I, N);
6242     HasTailCall = true;
6243     return nullptr;
6244   }
6245 
6246   case Intrinsic::wasm_landingpad_index: {
6247     // TODO store landing pad index in a map, which will be used when generating
6248     // LSDA information
6249     return nullptr;
6250   }
6251   }
6252 }
6253 
visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic & FPI)6254 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6255     const ConstrainedFPIntrinsic &FPI) {
6256   SDLoc sdl = getCurSDLoc();
6257   unsigned Opcode;
6258   switch (FPI.getIntrinsicID()) {
6259   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6260   case Intrinsic::experimental_constrained_fadd:
6261     Opcode = ISD::STRICT_FADD;
6262     break;
6263   case Intrinsic::experimental_constrained_fsub:
6264     Opcode = ISD::STRICT_FSUB;
6265     break;
6266   case Intrinsic::experimental_constrained_fmul:
6267     Opcode = ISD::STRICT_FMUL;
6268     break;
6269   case Intrinsic::experimental_constrained_fdiv:
6270     Opcode = ISD::STRICT_FDIV;
6271     break;
6272   case Intrinsic::experimental_constrained_frem:
6273     Opcode = ISD::STRICT_FREM;
6274     break;
6275   case Intrinsic::experimental_constrained_fma:
6276     Opcode = ISD::STRICT_FMA;
6277     break;
6278   case Intrinsic::experimental_constrained_sqrt:
6279     Opcode = ISD::STRICT_FSQRT;
6280     break;
6281   case Intrinsic::experimental_constrained_pow:
6282     Opcode = ISD::STRICT_FPOW;
6283     break;
6284   case Intrinsic::experimental_constrained_powi:
6285     Opcode = ISD::STRICT_FPOWI;
6286     break;
6287   case Intrinsic::experimental_constrained_sin:
6288     Opcode = ISD::STRICT_FSIN;
6289     break;
6290   case Intrinsic::experimental_constrained_cos:
6291     Opcode = ISD::STRICT_FCOS;
6292     break;
6293   case Intrinsic::experimental_constrained_exp:
6294     Opcode = ISD::STRICT_FEXP;
6295     break;
6296   case Intrinsic::experimental_constrained_exp2:
6297     Opcode = ISD::STRICT_FEXP2;
6298     break;
6299   case Intrinsic::experimental_constrained_log:
6300     Opcode = ISD::STRICT_FLOG;
6301     break;
6302   case Intrinsic::experimental_constrained_log10:
6303     Opcode = ISD::STRICT_FLOG10;
6304     break;
6305   case Intrinsic::experimental_constrained_log2:
6306     Opcode = ISD::STRICT_FLOG2;
6307     break;
6308   case Intrinsic::experimental_constrained_rint:
6309     Opcode = ISD::STRICT_FRINT;
6310     break;
6311   case Intrinsic::experimental_constrained_nearbyint:
6312     Opcode = ISD::STRICT_FNEARBYINT;
6313     break;
6314   }
6315   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6316   SDValue Chain = getRoot();
6317   SmallVector<EVT, 4> ValueVTs;
6318   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6319   ValueVTs.push_back(MVT::Other); // Out chain
6320 
6321   SDVTList VTs = DAG.getVTList(ValueVTs);
6322   SDValue Result;
6323   if (FPI.isUnaryOp())
6324     Result = DAG.getNode(Opcode, sdl, VTs,
6325                          { Chain, getValue(FPI.getArgOperand(0)) });
6326   else if (FPI.isTernaryOp())
6327     Result = DAG.getNode(Opcode, sdl, VTs,
6328                          { Chain, getValue(FPI.getArgOperand(0)),
6329                                   getValue(FPI.getArgOperand(1)),
6330                                   getValue(FPI.getArgOperand(2)) });
6331   else
6332     Result = DAG.getNode(Opcode, sdl, VTs,
6333                          { Chain, getValue(FPI.getArgOperand(0)),
6334                            getValue(FPI.getArgOperand(1))  });
6335 
6336   assert(Result.getNode()->getNumValues() == 2);
6337   SDValue OutChain = Result.getValue(1);
6338   DAG.setRoot(OutChain);
6339   SDValue FPResult = Result.getValue(0);
6340   setValue(&FPI, FPResult);
6341 }
6342 
6343 std::pair<SDValue, SDValue>
lowerInvokable(TargetLowering::CallLoweringInfo & CLI,const BasicBlock * EHPadBB)6344 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6345                                     const BasicBlock *EHPadBB) {
6346   MachineFunction &MF = DAG.getMachineFunction();
6347   MachineModuleInfo &MMI = MF.getMMI();
6348   MCSymbol *BeginLabel = nullptr;
6349 
6350   if (EHPadBB) {
6351     // Insert a label before the invoke call to mark the try range.  This can be
6352     // used to detect deletion of the invoke via the MachineModuleInfo.
6353     BeginLabel = MMI.getContext().createTempSymbol();
6354 
6355     // For SjLj, keep track of which landing pads go with which invokes
6356     // so as to maintain the ordering of pads in the LSDA.
6357     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6358     if (CallSiteIndex) {
6359       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6360       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6361 
6362       // Now that the call site is handled, stop tracking it.
6363       MMI.setCurrentCallSite(0);
6364     }
6365 
6366     // Both PendingLoads and PendingExports must be flushed here;
6367     // this call might not return.
6368     (void)getRoot();
6369     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6370 
6371     CLI.setChain(getRoot());
6372   }
6373   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6374   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6375 
6376   assert((CLI.IsTailCall || Result.second.getNode()) &&
6377          "Non-null chain expected with non-tail call!");
6378   assert((Result.second.getNode() || !Result.first.getNode()) &&
6379          "Null value expected with tail call!");
6380 
6381   if (!Result.second.getNode()) {
6382     // As a special case, a null chain means that a tail call has been emitted
6383     // and the DAG root is already updated.
6384     HasTailCall = true;
6385 
6386     // Since there's no actual continuation from this block, nothing can be
6387     // relying on us setting vregs for them.
6388     PendingExports.clear();
6389   } else {
6390     DAG.setRoot(Result.second);
6391   }
6392 
6393   if (EHPadBB) {
6394     // Insert a label at the end of the invoke call to mark the try range.  This
6395     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6396     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6397     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6398 
6399     // Inform MachineModuleInfo of range.
6400     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6401     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6402     // actually use outlined funclets and their LSDA info style.
6403     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6404       assert(CLI.CS);
6405       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6406       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6407                                 BeginLabel, EndLabel);
6408     } else {
6409       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6410     }
6411   }
6412 
6413   return Result;
6414 }
6415 
LowerCallTo(ImmutableCallSite CS,SDValue Callee,bool isTailCall,const BasicBlock * EHPadBB)6416 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6417                                       bool isTailCall,
6418                                       const BasicBlock *EHPadBB) {
6419   auto &DL = DAG.getDataLayout();
6420   FunctionType *FTy = CS.getFunctionType();
6421   Type *RetTy = CS.getType();
6422 
6423   TargetLowering::ArgListTy Args;
6424   Args.reserve(CS.arg_size());
6425 
6426   const Value *SwiftErrorVal = nullptr;
6427   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6428 
6429   // We can't tail call inside a function with a swifterror argument. Lowering
6430   // does not support this yet. It would have to move into the swifterror
6431   // register before the call.
6432   auto *Caller = CS.getInstruction()->getParent()->getParent();
6433   if (TLI.supportSwiftError() &&
6434       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6435     isTailCall = false;
6436 
6437   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6438        i != e; ++i) {
6439     TargetLowering::ArgListEntry Entry;
6440     const Value *V = *i;
6441 
6442     // Skip empty types
6443     if (V->getType()->isEmptyTy())
6444       continue;
6445 
6446     SDValue ArgNode = getValue(V);
6447     Entry.Node = ArgNode; Entry.Ty = V->getType();
6448 
6449     Entry.setAttributes(&CS, i - CS.arg_begin());
6450 
6451     // Use swifterror virtual register as input to the call.
6452     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6453       SwiftErrorVal = V;
6454       // We find the virtual register for the actual swifterror argument.
6455       // Instead of using the Value, we use the virtual register instead.
6456       Entry.Node = DAG.getRegister(FuncInfo
6457                                        .getOrCreateSwiftErrorVRegUseAt(
6458                                            CS.getInstruction(), FuncInfo.MBB, V)
6459                                        .first,
6460                                    EVT(TLI.getPointerTy(DL)));
6461     }
6462 
6463     Args.push_back(Entry);
6464 
6465     // If we have an explicit sret argument that is an Instruction, (i.e., it
6466     // might point to function-local memory), we can't meaningfully tail-call.
6467     if (Entry.IsSRet && isa<Instruction>(V))
6468       isTailCall = false;
6469   }
6470 
6471   // Check if target-independent constraints permit a tail call here.
6472   // Target-dependent constraints are checked within TLI->LowerCallTo.
6473   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6474     isTailCall = false;
6475 
6476   // Disable tail calls if there is an swifterror argument. Targets have not
6477   // been updated to support tail calls.
6478   if (TLI.supportSwiftError() && SwiftErrorVal)
6479     isTailCall = false;
6480 
6481   TargetLowering::CallLoweringInfo CLI(DAG);
6482   CLI.setDebugLoc(getCurSDLoc())
6483       .setChain(getRoot())
6484       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6485       .setTailCall(isTailCall)
6486       .setConvergent(CS.isConvergent());
6487   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6488 
6489   if (Result.first.getNode()) {
6490     const Instruction *Inst = CS.getInstruction();
6491     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6492     setValue(Inst, Result.first);
6493   }
6494 
6495   // The last element of CLI.InVals has the SDValue for swifterror return.
6496   // Here we copy it to a virtual register and update SwiftErrorMap for
6497   // book-keeping.
6498   if (SwiftErrorVal && TLI.supportSwiftError()) {
6499     // Get the last element of InVals.
6500     SDValue Src = CLI.InVals.back();
6501     unsigned VReg; bool CreatedVReg;
6502     std::tie(VReg, CreatedVReg) =
6503         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6504     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6505     // We update the virtual register for the actual swifterror argument.
6506     if (CreatedVReg)
6507       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6508     DAG.setRoot(CopyNode);
6509   }
6510 }
6511 
getMemCmpLoad(const Value * PtrVal,MVT LoadVT,SelectionDAGBuilder & Builder)6512 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6513                              SelectionDAGBuilder &Builder) {
6514   // Check to see if this load can be trivially constant folded, e.g. if the
6515   // input is from a string literal.
6516   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6517     // Cast pointer to the type we really want to load.
6518     Type *LoadTy =
6519         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6520     if (LoadVT.isVector())
6521       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6522 
6523     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6524                                          PointerType::getUnqual(LoadTy));
6525 
6526     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6527             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6528       return Builder.getValue(LoadCst);
6529   }
6530 
6531   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6532   // still constant memory, the input chain can be the entry node.
6533   SDValue Root;
6534   bool ConstantMemory = false;
6535 
6536   // Do not serialize (non-volatile) loads of constant memory with anything.
6537   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6538     Root = Builder.DAG.getEntryNode();
6539     ConstantMemory = true;
6540   } else {
6541     // Do not serialize non-volatile loads against each other.
6542     Root = Builder.DAG.getRoot();
6543   }
6544 
6545   SDValue Ptr = Builder.getValue(PtrVal);
6546   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6547                                         Ptr, MachinePointerInfo(PtrVal),
6548                                         /* Alignment = */ 1);
6549 
6550   if (!ConstantMemory)
6551     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6552   return LoadVal;
6553 }
6554 
6555 /// Record the value for an instruction that produces an integer result,
6556 /// converting the type where necessary.
processIntegerCallValue(const Instruction & I,SDValue Value,bool IsSigned)6557 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6558                                                   SDValue Value,
6559                                                   bool IsSigned) {
6560   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6561                                                     I.getType(), true);
6562   if (IsSigned)
6563     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6564   else
6565     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6566   setValue(&I, Value);
6567 }
6568 
6569 /// See if we can lower a memcmp call into an optimized form. If so, return
6570 /// true and lower it. Otherwise return false, and it will be lowered like a
6571 /// normal call.
6572 /// The caller already checked that \p I calls the appropriate LibFunc with a
6573 /// correct prototype.
visitMemCmpCall(const CallInst & I)6574 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6575   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6576   const Value *Size = I.getArgOperand(2);
6577   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6578   if (CSize && CSize->getZExtValue() == 0) {
6579     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6580                                                           I.getType(), true);
6581     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6582     return true;
6583   }
6584 
6585   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6586   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6587       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6588       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6589   if (Res.first.getNode()) {
6590     processIntegerCallValue(I, Res.first, true);
6591     PendingLoads.push_back(Res.second);
6592     return true;
6593   }
6594 
6595   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6596   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6597   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6598     return false;
6599 
6600   // If the target has a fast compare for the given size, it will return a
6601   // preferred load type for that size. Require that the load VT is legal and
6602   // that the target supports unaligned loads of that type. Otherwise, return
6603   // INVALID.
6604   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6605     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6606     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6607     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6608       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6609       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6610       // TODO: Check alignment of src and dest ptrs.
6611       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6612       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6613       if (!TLI.isTypeLegal(LVT) ||
6614           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6615           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6616         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6617     }
6618 
6619     return LVT;
6620   };
6621 
6622   // This turns into unaligned loads. We only do this if the target natively
6623   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6624   // we'll only produce a small number of byte loads.
6625   MVT LoadVT;
6626   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6627   switch (NumBitsToCompare) {
6628   default:
6629     return false;
6630   case 16:
6631     LoadVT = MVT::i16;
6632     break;
6633   case 32:
6634     LoadVT = MVT::i32;
6635     break;
6636   case 64:
6637   case 128:
6638   case 256:
6639     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6640     break;
6641   }
6642 
6643   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6644     return false;
6645 
6646   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6647   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6648 
6649   // Bitcast to a wide integer type if the loads are vectors.
6650   if (LoadVT.isVector()) {
6651     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6652     LoadL = DAG.getBitcast(CmpVT, LoadL);
6653     LoadR = DAG.getBitcast(CmpVT, LoadR);
6654   }
6655 
6656   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6657   processIntegerCallValue(I, Cmp, false);
6658   return true;
6659 }
6660 
6661 /// See if we can lower a memchr call into an optimized form. If so, return
6662 /// true and lower it. Otherwise return false, and it will be lowered like a
6663 /// normal call.
6664 /// The caller already checked that \p I calls the appropriate LibFunc with a
6665 /// correct prototype.
visitMemChrCall(const CallInst & I)6666 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6667   const Value *Src = I.getArgOperand(0);
6668   const Value *Char = I.getArgOperand(1);
6669   const Value *Length = I.getArgOperand(2);
6670 
6671   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6672   std::pair<SDValue, SDValue> Res =
6673     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6674                                 getValue(Src), getValue(Char), getValue(Length),
6675                                 MachinePointerInfo(Src));
6676   if (Res.first.getNode()) {
6677     setValue(&I, Res.first);
6678     PendingLoads.push_back(Res.second);
6679     return true;
6680   }
6681 
6682   return false;
6683 }
6684 
6685 /// See if we can lower a mempcpy call into an optimized form. If so, return
6686 /// true and lower it. Otherwise return false, and it will be lowered like a
6687 /// normal call.
6688 /// The caller already checked that \p I calls the appropriate LibFunc with a
6689 /// correct prototype.
visitMemPCpyCall(const CallInst & I)6690 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6691   SDValue Dst = getValue(I.getArgOperand(0));
6692   SDValue Src = getValue(I.getArgOperand(1));
6693   SDValue Size = getValue(I.getArgOperand(2));
6694 
6695   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6696   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6697   unsigned Align = std::min(DstAlign, SrcAlign);
6698   if (Align == 0) // Alignment of one or both could not be inferred.
6699     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6700 
6701   bool isVol = false;
6702   SDLoc sdl = getCurSDLoc();
6703 
6704   // In the mempcpy context we need to pass in a false value for isTailCall
6705   // because the return pointer needs to be adjusted by the size of
6706   // the copied memory.
6707   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6708                              false, /*isTailCall=*/false,
6709                              MachinePointerInfo(I.getArgOperand(0)),
6710                              MachinePointerInfo(I.getArgOperand(1)));
6711   assert(MC.getNode() != nullptr &&
6712          "** memcpy should not be lowered as TailCall in mempcpy context **");
6713   DAG.setRoot(MC);
6714 
6715   // Check if Size needs to be truncated or extended.
6716   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6717 
6718   // Adjust return pointer to point just past the last dst byte.
6719   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6720                                     Dst, Size);
6721   setValue(&I, DstPlusSize);
6722   return true;
6723 }
6724 
6725 /// See if we can lower a strcpy call into an optimized form.  If so, return
6726 /// true and lower it, otherwise return false and it will be lowered like a
6727 /// normal call.
6728 /// The caller already checked that \p I calls the appropriate LibFunc with a
6729 /// correct prototype.
visitStrCpyCall(const CallInst & I,bool isStpcpy)6730 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6731   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6732 
6733   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6734   std::pair<SDValue, SDValue> Res =
6735     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6736                                 getValue(Arg0), getValue(Arg1),
6737                                 MachinePointerInfo(Arg0),
6738                                 MachinePointerInfo(Arg1), isStpcpy);
6739   if (Res.first.getNode()) {
6740     setValue(&I, Res.first);
6741     DAG.setRoot(Res.second);
6742     return true;
6743   }
6744 
6745   return false;
6746 }
6747 
6748 /// See if we can lower a strcmp call into an optimized form.  If so, return
6749 /// true and lower it, otherwise return false and it will be lowered like a
6750 /// normal call.
6751 /// The caller already checked that \p I calls the appropriate LibFunc with a
6752 /// correct prototype.
visitStrCmpCall(const CallInst & I)6753 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6754   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6755 
6756   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6757   std::pair<SDValue, SDValue> Res =
6758     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6759                                 getValue(Arg0), getValue(Arg1),
6760                                 MachinePointerInfo(Arg0),
6761                                 MachinePointerInfo(Arg1));
6762   if (Res.first.getNode()) {
6763     processIntegerCallValue(I, Res.first, true);
6764     PendingLoads.push_back(Res.second);
6765     return true;
6766   }
6767 
6768   return false;
6769 }
6770 
6771 /// See if we can lower a strlen call into an optimized form.  If so, return
6772 /// true and lower it, otherwise return false and it will be lowered like a
6773 /// normal call.
6774 /// The caller already checked that \p I calls the appropriate LibFunc with a
6775 /// correct prototype.
visitStrLenCall(const CallInst & I)6776 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6777   const Value *Arg0 = I.getArgOperand(0);
6778 
6779   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6780   std::pair<SDValue, SDValue> Res =
6781     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6782                                 getValue(Arg0), MachinePointerInfo(Arg0));
6783   if (Res.first.getNode()) {
6784     processIntegerCallValue(I, Res.first, false);
6785     PendingLoads.push_back(Res.second);
6786     return true;
6787   }
6788 
6789   return false;
6790 }
6791 
6792 /// See if we can lower a strnlen call into an optimized form.  If so, return
6793 /// true and lower it, otherwise return false and it will be lowered like a
6794 /// normal call.
6795 /// The caller already checked that \p I calls the appropriate LibFunc with a
6796 /// correct prototype.
visitStrNLenCall(const CallInst & I)6797 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6798   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6799 
6800   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6801   std::pair<SDValue, SDValue> Res =
6802     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6803                                  getValue(Arg0), getValue(Arg1),
6804                                  MachinePointerInfo(Arg0));
6805   if (Res.first.getNode()) {
6806     processIntegerCallValue(I, Res.first, false);
6807     PendingLoads.push_back(Res.second);
6808     return true;
6809   }
6810 
6811   return false;
6812 }
6813 
6814 /// See if we can lower a unary floating-point operation into an SDNode with
6815 /// the specified Opcode.  If so, return true and lower it, otherwise return
6816 /// false and it will be lowered like a normal call.
6817 /// The caller already checked that \p I calls the appropriate LibFunc with a
6818 /// correct prototype.
visitUnaryFloatCall(const CallInst & I,unsigned Opcode)6819 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6820                                               unsigned Opcode) {
6821   // We already checked this call's prototype; verify it doesn't modify errno.
6822   if (!I.onlyReadsMemory())
6823     return false;
6824 
6825   SDValue Tmp = getValue(I.getArgOperand(0));
6826   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6827   return true;
6828 }
6829 
6830 /// See if we can lower a binary floating-point operation into an SDNode with
6831 /// the specified Opcode. If so, return true and lower it. Otherwise return
6832 /// false, and it will be lowered like a normal call.
6833 /// The caller already checked that \p I calls the appropriate LibFunc with a
6834 /// correct prototype.
visitBinaryFloatCall(const CallInst & I,unsigned Opcode)6835 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6836                                                unsigned Opcode) {
6837   // We already checked this call's prototype; verify it doesn't modify errno.
6838   if (!I.onlyReadsMemory())
6839     return false;
6840 
6841   SDValue Tmp0 = getValue(I.getArgOperand(0));
6842   SDValue Tmp1 = getValue(I.getArgOperand(1));
6843   EVT VT = Tmp0.getValueType();
6844   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6845   return true;
6846 }
6847 
visitCall(const CallInst & I)6848 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6849   // Handle inline assembly differently.
6850   if (isa<InlineAsm>(I.getCalledValue())) {
6851     visitInlineAsm(&I);
6852     return;
6853   }
6854 
6855   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6856   computeUsesVAFloatArgument(I, MMI);
6857 
6858   const char *RenameFn = nullptr;
6859   if (Function *F = I.getCalledFunction()) {
6860     if (F->isDeclaration()) {
6861       // Is this an LLVM intrinsic or a target-specific intrinsic?
6862       unsigned IID = F->getIntrinsicID();
6863       if (!IID)
6864         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
6865           IID = II->getIntrinsicID(F);
6866 
6867       if (IID) {
6868         RenameFn = visitIntrinsicCall(I, IID);
6869         if (!RenameFn)
6870           return;
6871       }
6872     }
6873 
6874     // Check for well-known libc/libm calls.  If the function is internal, it
6875     // can't be a library call.  Don't do the check if marked as nobuiltin for
6876     // some reason or the call site requires strict floating point semantics.
6877     LibFunc Func;
6878     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6879         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6880         LibInfo->hasOptimizedCodeGen(Func)) {
6881       switch (Func) {
6882       default: break;
6883       case LibFunc_copysign:
6884       case LibFunc_copysignf:
6885       case LibFunc_copysignl:
6886         // We already checked this call's prototype; verify it doesn't modify
6887         // errno.
6888         if (I.onlyReadsMemory()) {
6889           SDValue LHS = getValue(I.getArgOperand(0));
6890           SDValue RHS = getValue(I.getArgOperand(1));
6891           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6892                                    LHS.getValueType(), LHS, RHS));
6893           return;
6894         }
6895         break;
6896       case LibFunc_fabs:
6897       case LibFunc_fabsf:
6898       case LibFunc_fabsl:
6899         if (visitUnaryFloatCall(I, ISD::FABS))
6900           return;
6901         break;
6902       case LibFunc_fmin:
6903       case LibFunc_fminf:
6904       case LibFunc_fminl:
6905         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6906           return;
6907         break;
6908       case LibFunc_fmax:
6909       case LibFunc_fmaxf:
6910       case LibFunc_fmaxl:
6911         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6912           return;
6913         break;
6914       case LibFunc_sin:
6915       case LibFunc_sinf:
6916       case LibFunc_sinl:
6917         if (visitUnaryFloatCall(I, ISD::FSIN))
6918           return;
6919         break;
6920       case LibFunc_cos:
6921       case LibFunc_cosf:
6922       case LibFunc_cosl:
6923         if (visitUnaryFloatCall(I, ISD::FCOS))
6924           return;
6925         break;
6926       case LibFunc_sqrt:
6927       case LibFunc_sqrtf:
6928       case LibFunc_sqrtl:
6929       case LibFunc_sqrt_finite:
6930       case LibFunc_sqrtf_finite:
6931       case LibFunc_sqrtl_finite:
6932         if (visitUnaryFloatCall(I, ISD::FSQRT))
6933           return;
6934         break;
6935       case LibFunc_floor:
6936       case LibFunc_floorf:
6937       case LibFunc_floorl:
6938         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6939           return;
6940         break;
6941       case LibFunc_nearbyint:
6942       case LibFunc_nearbyintf:
6943       case LibFunc_nearbyintl:
6944         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6945           return;
6946         break;
6947       case LibFunc_ceil:
6948       case LibFunc_ceilf:
6949       case LibFunc_ceill:
6950         if (visitUnaryFloatCall(I, ISD::FCEIL))
6951           return;
6952         break;
6953       case LibFunc_rint:
6954       case LibFunc_rintf:
6955       case LibFunc_rintl:
6956         if (visitUnaryFloatCall(I, ISD::FRINT))
6957           return;
6958         break;
6959       case LibFunc_round:
6960       case LibFunc_roundf:
6961       case LibFunc_roundl:
6962         if (visitUnaryFloatCall(I, ISD::FROUND))
6963           return;
6964         break;
6965       case LibFunc_trunc:
6966       case LibFunc_truncf:
6967       case LibFunc_truncl:
6968         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6969           return;
6970         break;
6971       case LibFunc_log2:
6972       case LibFunc_log2f:
6973       case LibFunc_log2l:
6974         if (visitUnaryFloatCall(I, ISD::FLOG2))
6975           return;
6976         break;
6977       case LibFunc_exp2:
6978       case LibFunc_exp2f:
6979       case LibFunc_exp2l:
6980         if (visitUnaryFloatCall(I, ISD::FEXP2))
6981           return;
6982         break;
6983       case LibFunc_memcmp:
6984         if (visitMemCmpCall(I))
6985           return;
6986         break;
6987       case LibFunc_mempcpy:
6988         if (visitMemPCpyCall(I))
6989           return;
6990         break;
6991       case LibFunc_memchr:
6992         if (visitMemChrCall(I))
6993           return;
6994         break;
6995       case LibFunc_strcpy:
6996         if (visitStrCpyCall(I, false))
6997           return;
6998         break;
6999       case LibFunc_stpcpy:
7000         if (visitStrCpyCall(I, true))
7001           return;
7002         break;
7003       case LibFunc_strcmp:
7004         if (visitStrCmpCall(I))
7005           return;
7006         break;
7007       case LibFunc_strlen:
7008         if (visitStrLenCall(I))
7009           return;
7010         break;
7011       case LibFunc_strnlen:
7012         if (visitStrNLenCall(I))
7013           return;
7014         break;
7015       }
7016     }
7017   }
7018 
7019   SDValue Callee;
7020   if (!RenameFn)
7021     Callee = getValue(I.getCalledValue());
7022   else
7023     Callee = DAG.getExternalSymbol(
7024         RenameFn,
7025         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7026 
7027   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7028   // have to do anything here to lower funclet bundles.
7029   assert(!I.hasOperandBundlesOtherThan(
7030              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7031          "Cannot lower calls with arbitrary operand bundles!");
7032 
7033   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7034     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7035   else
7036     // Check if we can potentially perform a tail call. More detailed checking
7037     // is be done within LowerCallTo, after more information about the call is
7038     // known.
7039     LowerCallTo(&I, Callee, I.isTailCall());
7040 }
7041 
7042 namespace {
7043 
7044 /// AsmOperandInfo - This contains information for each constraint that we are
7045 /// lowering.
7046 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7047 public:
7048   /// CallOperand - If this is the result output operand or a clobber
7049   /// this is null, otherwise it is the incoming operand to the CallInst.
7050   /// This gets modified as the asm is processed.
7051   SDValue CallOperand;
7052 
7053   /// AssignedRegs - If this is a register or register class operand, this
7054   /// contains the set of register corresponding to the operand.
7055   RegsForValue AssignedRegs;
7056 
SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo & info)7057   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7058     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7059   }
7060 
7061   /// Whether or not this operand accesses memory
hasMemory(const TargetLowering & TLI) const7062   bool hasMemory(const TargetLowering &TLI) const {
7063     // Indirect operand accesses access memory.
7064     if (isIndirect)
7065       return true;
7066 
7067     for (const auto &Code : Codes)
7068       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7069         return true;
7070 
7071     return false;
7072   }
7073 
7074   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7075   /// corresponds to.  If there is no Value* for this operand, it returns
7076   /// MVT::Other.
getCallOperandValEVT(LLVMContext & Context,const TargetLowering & TLI,const DataLayout & DL) const7077   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7078                            const DataLayout &DL) const {
7079     if (!CallOperandVal) return MVT::Other;
7080 
7081     if (isa<BasicBlock>(CallOperandVal))
7082       return TLI.getPointerTy(DL);
7083 
7084     llvm::Type *OpTy = CallOperandVal->getType();
7085 
7086     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7087     // If this is an indirect operand, the operand is a pointer to the
7088     // accessed type.
7089     if (isIndirect) {
7090       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7091       if (!PtrTy)
7092         report_fatal_error("Indirect operand for inline asm not a pointer!");
7093       OpTy = PtrTy->getElementType();
7094     }
7095 
7096     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7097     if (StructType *STy = dyn_cast<StructType>(OpTy))
7098       if (STy->getNumElements() == 1)
7099         OpTy = STy->getElementType(0);
7100 
7101     // If OpTy is not a single value, it may be a struct/union that we
7102     // can tile with integers.
7103     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7104       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7105       switch (BitSize) {
7106       default: break;
7107       case 1:
7108       case 8:
7109       case 16:
7110       case 32:
7111       case 64:
7112       case 128:
7113         OpTy = IntegerType::get(Context, BitSize);
7114         break;
7115       }
7116     }
7117 
7118     return TLI.getValueType(DL, OpTy, true);
7119   }
7120 };
7121 
7122 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7123 
7124 } // end anonymous namespace
7125 
7126 /// Make sure that the output operand \p OpInfo and its corresponding input
7127 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7128 /// out).
patchMatchingInput(const SDISelAsmOperandInfo & OpInfo,SDISelAsmOperandInfo & MatchingOpInfo,SelectionDAG & DAG)7129 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7130                                SDISelAsmOperandInfo &MatchingOpInfo,
7131                                SelectionDAG &DAG) {
7132   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7133     return;
7134 
7135   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7136   const auto &TLI = DAG.getTargetLoweringInfo();
7137 
7138   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7139       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7140                                        OpInfo.ConstraintVT);
7141   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7142       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7143                                        MatchingOpInfo.ConstraintVT);
7144   if ((OpInfo.ConstraintVT.isInteger() !=
7145        MatchingOpInfo.ConstraintVT.isInteger()) ||
7146       (MatchRC.second != InputRC.second)) {
7147     // FIXME: error out in a more elegant fashion
7148     report_fatal_error("Unsupported asm: input constraint"
7149                        " with a matching output constraint of"
7150                        " incompatible type!");
7151   }
7152   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7153 }
7154 
7155 /// Get a direct memory input to behave well as an indirect operand.
7156 /// This may introduce stores, hence the need for a \p Chain.
7157 /// \return The (possibly updated) chain.
getAddressForMemoryInput(SDValue Chain,const SDLoc & Location,SDISelAsmOperandInfo & OpInfo,SelectionDAG & DAG)7158 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7159                                         SDISelAsmOperandInfo &OpInfo,
7160                                         SelectionDAG &DAG) {
7161   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7162 
7163   // If we don't have an indirect input, put it in the constpool if we can,
7164   // otherwise spill it to a stack slot.
7165   // TODO: This isn't quite right. We need to handle these according to
7166   // the addressing mode that the constraint wants. Also, this may take
7167   // an additional register for the computation and we don't want that
7168   // either.
7169 
7170   // If the operand is a float, integer, or vector constant, spill to a
7171   // constant pool entry to get its address.
7172   const Value *OpVal = OpInfo.CallOperandVal;
7173   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7174       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7175     OpInfo.CallOperand = DAG.getConstantPool(
7176         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7177     return Chain;
7178   }
7179 
7180   // Otherwise, create a stack slot and emit a store to it before the asm.
7181   Type *Ty = OpVal->getType();
7182   auto &DL = DAG.getDataLayout();
7183   uint64_t TySize = DL.getTypeAllocSize(Ty);
7184   unsigned Align = DL.getPrefTypeAlignment(Ty);
7185   MachineFunction &MF = DAG.getMachineFunction();
7186   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7187   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7188   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7189                        MachinePointerInfo::getFixedStack(MF, SSFI));
7190   OpInfo.CallOperand = StackSlot;
7191 
7192   return Chain;
7193 }
7194 
7195 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7196 /// specified operand.  We prefer to assign virtual registers, to allow the
7197 /// register allocator to handle the assignment process.  However, if the asm
7198 /// uses features that we can't model on machineinstrs, we have SDISel do the
7199 /// allocation.  This produces generally horrible, but correct, code.
7200 ///
7201 ///   OpInfo describes the operand
7202 ///   RefOpInfo describes the matching operand if any, the operand otherwise
GetRegistersForValue(SelectionDAG & DAG,const TargetLowering & TLI,const SDLoc & DL,SDISelAsmOperandInfo & OpInfo,SDISelAsmOperandInfo & RefOpInfo)7203 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7204                                  const SDLoc &DL, SDISelAsmOperandInfo &OpInfo,
7205                                  SDISelAsmOperandInfo &RefOpInfo) {
7206   LLVMContext &Context = *DAG.getContext();
7207 
7208   MachineFunction &MF = DAG.getMachineFunction();
7209   SmallVector<unsigned, 4> Regs;
7210   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7211 
7212   // If this is a constraint for a single physreg, or a constraint for a
7213   // register class, find it.
7214   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7215       TLI.getRegForInlineAsmConstraint(&TRI, RefOpInfo.ConstraintCode,
7216                                        RefOpInfo.ConstraintVT);
7217 
7218   unsigned NumRegs = 1;
7219   if (OpInfo.ConstraintVT != MVT::Other) {
7220     // If this is a FP operand in an integer register (or visa versa), or more
7221     // generally if the operand value disagrees with the register class we plan
7222     // to stick it in, fix the operand type.
7223     //
7224     // If this is an input value, the bitcast to the new type is done now.
7225     // Bitcast for output value is done at the end of visitInlineAsm().
7226     if ((OpInfo.Type == InlineAsm::isOutput ||
7227          OpInfo.Type == InlineAsm::isInput) &&
7228         PhysReg.second &&
7229         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7230       // Try to convert to the first EVT that the reg class contains.  If the
7231       // types are identical size, use a bitcast to convert (e.g. two differing
7232       // vector types).  Note: output bitcast is done at the end of
7233       // visitInlineAsm().
7234       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7235       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7236         // Exclude indirect inputs while they are unsupported because the code
7237         // to perform the load is missing and thus OpInfo.CallOperand still
7238         // refer to the input address rather than the pointed-to value.
7239         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7240           OpInfo.CallOperand =
7241               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7242         OpInfo.ConstraintVT = RegVT;
7243         // If the operand is a FP value and we want it in integer registers,
7244         // use the corresponding integer type. This turns an f64 value into
7245         // i64, which can be passed with two i32 values on a 32-bit machine.
7246       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7247         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7248         if (OpInfo.Type == InlineAsm::isInput)
7249           OpInfo.CallOperand =
7250               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7251         OpInfo.ConstraintVT = RegVT;
7252       }
7253     }
7254 
7255     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7256   }
7257 
7258   // No need to allocate a matching input constraint since the constraint it's
7259   // matching to has already been allocated.
7260   if (OpInfo.isMatchingInputConstraint())
7261     return;
7262 
7263   MVT RegVT;
7264   EVT ValueVT = OpInfo.ConstraintVT;
7265 
7266   // If this is a constraint for a specific physical register, like {r17},
7267   // assign it now.
7268   if (unsigned AssignedReg = PhysReg.first) {
7269     const TargetRegisterClass *RC = PhysReg.second;
7270     if (OpInfo.ConstraintVT == MVT::Other)
7271       ValueVT = *TRI.legalclasstypes_begin(*RC);
7272 
7273     // Get the actual register value type.  This is important, because the user
7274     // may have asked for (e.g.) the AX register in i32 type.  We need to
7275     // remember that AX is actually i16 to get the right extension.
7276     RegVT = *TRI.legalclasstypes_begin(*RC);
7277 
7278     // This is a explicit reference to a physical register.
7279     Regs.push_back(AssignedReg);
7280 
7281     // If this is an expanded reference, add the rest of the regs to Regs.
7282     if (NumRegs != 1) {
7283       TargetRegisterClass::iterator I = RC->begin();
7284       for (; *I != AssignedReg; ++I)
7285         assert(I != RC->end() && "Didn't find reg!");
7286 
7287       // Already added the first reg.
7288       --NumRegs; ++I;
7289       for (; NumRegs; --NumRegs, ++I) {
7290         assert(I != RC->end() && "Ran out of registers to allocate!");
7291         Regs.push_back(*I);
7292       }
7293     }
7294 
7295     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7296     return;
7297   }
7298 
7299   // Otherwise, if this was a reference to an LLVM register class, create vregs
7300   // for this reference.
7301   if (const TargetRegisterClass *RC = PhysReg.second) {
7302     RegVT = *TRI.legalclasstypes_begin(*RC);
7303     if (OpInfo.ConstraintVT == MVT::Other)
7304       ValueVT = RegVT;
7305 
7306     // Create the appropriate number of virtual registers.
7307     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7308     for (; NumRegs; --NumRegs)
7309       Regs.push_back(RegInfo.createVirtualRegister(RC));
7310 
7311     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7312     return;
7313   }
7314 
7315   // Otherwise, we couldn't allocate enough registers for this.
7316 }
7317 
7318 static unsigned
findMatchingInlineAsmOperand(unsigned OperandNo,const std::vector<SDValue> & AsmNodeOperands)7319 findMatchingInlineAsmOperand(unsigned OperandNo,
7320                              const std::vector<SDValue> &AsmNodeOperands) {
7321   // Scan until we find the definition we already emitted of this operand.
7322   unsigned CurOp = InlineAsm::Op_FirstOperand;
7323   for (; OperandNo; --OperandNo) {
7324     // Advance to the next operand.
7325     unsigned OpFlag =
7326         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7327     assert((InlineAsm::isRegDefKind(OpFlag) ||
7328             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7329             InlineAsm::isMemKind(OpFlag)) &&
7330            "Skipped past definitions?");
7331     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7332   }
7333   return CurOp;
7334 }
7335 
7336 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7337 /// \return true if it has succeeded, false otherwise
createVirtualRegs(SmallVector<unsigned,4> & Regs,unsigned NumRegs,MVT RegVT,SelectionDAG & DAG)7338 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7339                               MVT RegVT, SelectionDAG &DAG) {
7340   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7341   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7342   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7343     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7344       Regs.push_back(RegInfo.createVirtualRegister(RC));
7345     else
7346       return false;
7347   }
7348   return true;
7349 }
7350 
7351 namespace {
7352 
7353 class ExtraFlags {
7354   unsigned Flags = 0;
7355 
7356 public:
ExtraFlags(ImmutableCallSite CS)7357   explicit ExtraFlags(ImmutableCallSite CS) {
7358     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7359     if (IA->hasSideEffects())
7360       Flags |= InlineAsm::Extra_HasSideEffects;
7361     if (IA->isAlignStack())
7362       Flags |= InlineAsm::Extra_IsAlignStack;
7363     if (CS.isConvergent())
7364       Flags |= InlineAsm::Extra_IsConvergent;
7365     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7366   }
7367 
update(const TargetLowering::AsmOperandInfo & OpInfo)7368   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7369     // Ideally, we would only check against memory constraints.  However, the
7370     // meaning of an Other constraint can be target-specific and we can't easily
7371     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7372     // for Other constraints as well.
7373     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7374         OpInfo.ConstraintType == TargetLowering::C_Other) {
7375       if (OpInfo.Type == InlineAsm::isInput)
7376         Flags |= InlineAsm::Extra_MayLoad;
7377       else if (OpInfo.Type == InlineAsm::isOutput)
7378         Flags |= InlineAsm::Extra_MayStore;
7379       else if (OpInfo.Type == InlineAsm::isClobber)
7380         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7381     }
7382   }
7383 
get() const7384   unsigned get() const { return Flags; }
7385 };
7386 
7387 } // end anonymous namespace
7388 
7389 /// visitInlineAsm - Handle a call to an InlineAsm object.
visitInlineAsm(ImmutableCallSite CS)7390 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7391   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7392 
7393   /// ConstraintOperands - Information about all of the constraints.
7394   SDISelAsmOperandInfoVector ConstraintOperands;
7395 
7396   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7397   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7398       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7399 
7400   bool hasMemory = false;
7401 
7402   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7403   ExtraFlags ExtraInfo(CS);
7404 
7405   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7406   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7407   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7408     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7409     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7410 
7411     MVT OpVT = MVT::Other;
7412 
7413     // Compute the value type for each operand.
7414     if (OpInfo.Type == InlineAsm::isInput ||
7415         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7416       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7417 
7418       // Process the call argument. BasicBlocks are labels, currently appearing
7419       // only in asm's.
7420       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7421         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7422       } else {
7423         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7424       }
7425 
7426       OpVT =
7427           OpInfo
7428               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7429               .getSimpleVT();
7430     }
7431 
7432     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7433       // The return value of the call is this value.  As such, there is no
7434       // corresponding argument.
7435       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7436       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7437         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7438                                       STy->getElementType(ResNo));
7439       } else {
7440         assert(ResNo == 0 && "Asm only has one result!");
7441         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7442       }
7443       ++ResNo;
7444     }
7445 
7446     OpInfo.ConstraintVT = OpVT;
7447 
7448     if (!hasMemory)
7449       hasMemory = OpInfo.hasMemory(TLI);
7450 
7451     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7452     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7453     auto TargetConstraint = TargetConstraints[i];
7454 
7455     // Compute the constraint code and ConstraintType to use.
7456     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7457 
7458     ExtraInfo.update(TargetConstraint);
7459   }
7460 
7461   SDValue Chain, Flag;
7462 
7463   // We won't need to flush pending loads if this asm doesn't touch
7464   // memory and is nonvolatile.
7465   if (hasMemory || IA->hasSideEffects())
7466     Chain = getRoot();
7467   else
7468     Chain = DAG.getRoot();
7469 
7470   // Second pass over the constraints: compute which constraint option to use
7471   // and assign registers to constraints that want a specific physreg.
7472   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7473     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7474 
7475     // If this is an output operand with a matching input operand, look up the
7476     // matching input. If their types mismatch, e.g. one is an integer, the
7477     // other is floating point, or their sizes are different, flag it as an
7478     // error.
7479     if (OpInfo.hasMatchingInput()) {
7480       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7481       patchMatchingInput(OpInfo, Input, DAG);
7482     }
7483 
7484     // Compute the constraint code and ConstraintType to use.
7485     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7486 
7487     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7488         OpInfo.Type == InlineAsm::isClobber)
7489       continue;
7490 
7491     // If this is a memory input, and if the operand is not indirect, do what we
7492     // need to provide an address for the memory input.
7493     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7494         !OpInfo.isIndirect) {
7495       assert((OpInfo.isMultipleAlternative ||
7496               (OpInfo.Type == InlineAsm::isInput)) &&
7497              "Can only indirectify direct input operands!");
7498 
7499       // Memory operands really want the address of the value.
7500       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7501 
7502       // There is no longer a Value* corresponding to this operand.
7503       OpInfo.CallOperandVal = nullptr;
7504 
7505       // It is now an indirect operand.
7506       OpInfo.isIndirect = true;
7507     }
7508 
7509     // If this constraint is for a specific register, allocate it before
7510     // anything else.
7511     SDISelAsmOperandInfo &RefOpInfo =
7512         OpInfo.isMatchingInputConstraint()
7513             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7514             : ConstraintOperands[i];
7515     if (RefOpInfo.ConstraintType == TargetLowering::C_Register)
7516       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7517   }
7518 
7519   // Third pass - Loop over all of the operands, assigning virtual or physregs
7520   // to register class operands.
7521   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7522     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7523     SDISelAsmOperandInfo &RefOpInfo =
7524         OpInfo.isMatchingInputConstraint()
7525             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7526             : ConstraintOperands[i];
7527 
7528     // C_Register operands have already been allocated, Other/Memory don't need
7529     // to be.
7530     if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7531       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7532   }
7533 
7534   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7535   std::vector<SDValue> AsmNodeOperands;
7536   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7537   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7538       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7539 
7540   // If we have a !srcloc metadata node associated with it, we want to attach
7541   // this to the ultimately generated inline asm machineinstr.  To do this, we
7542   // pass in the third operand as this (potentially null) inline asm MDNode.
7543   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7544   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7545 
7546   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7547   // bits as operand 3.
7548   AsmNodeOperands.push_back(DAG.getTargetConstant(
7549       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7550 
7551   // Loop over all of the inputs, copying the operand values into the
7552   // appropriate registers and processing the output regs.
7553   RegsForValue RetValRegs;
7554 
7555   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7556   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7557 
7558   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7559     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7560 
7561     switch (OpInfo.Type) {
7562     case InlineAsm::isOutput:
7563       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7564           OpInfo.ConstraintType != TargetLowering::C_Register) {
7565         // Memory output, or 'other' output (e.g. 'X' constraint).
7566         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7567 
7568         unsigned ConstraintID =
7569             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7570         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7571                "Failed to convert memory constraint code to constraint id.");
7572 
7573         // Add information to the INLINEASM node to know about this output.
7574         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7575         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7576         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7577                                                         MVT::i32));
7578         AsmNodeOperands.push_back(OpInfo.CallOperand);
7579         break;
7580       }
7581 
7582       // Otherwise, this is a register or register class output.
7583 
7584       // Copy the output from the appropriate register.  Find a register that
7585       // we can use.
7586       if (OpInfo.AssignedRegs.Regs.empty()) {
7587         emitInlineAsmError(
7588             CS, "couldn't allocate output register for constraint '" +
7589                     Twine(OpInfo.ConstraintCode) + "'");
7590         return;
7591       }
7592 
7593       // If this is an indirect operand, store through the pointer after the
7594       // asm.
7595       if (OpInfo.isIndirect) {
7596         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7597                                                       OpInfo.CallOperandVal));
7598       } else {
7599         // This is the result value of the call.
7600         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7601         // Concatenate this output onto the outputs list.
7602         RetValRegs.append(OpInfo.AssignedRegs);
7603       }
7604 
7605       // Add information to the INLINEASM node to know that this register is
7606       // set.
7607       OpInfo.AssignedRegs
7608           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7609                                     ? InlineAsm::Kind_RegDefEarlyClobber
7610                                     : InlineAsm::Kind_RegDef,
7611                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7612       break;
7613 
7614     case InlineAsm::isInput: {
7615       SDValue InOperandVal = OpInfo.CallOperand;
7616 
7617       if (OpInfo.isMatchingInputConstraint()) {
7618         // If this is required to match an output register we have already set,
7619         // just use its register.
7620         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7621                                                   AsmNodeOperands);
7622         unsigned OpFlag =
7623           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7624         if (InlineAsm::isRegDefKind(OpFlag) ||
7625             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7626           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7627           if (OpInfo.isIndirect) {
7628             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7629             emitInlineAsmError(CS, "inline asm not supported yet:"
7630                                    " don't know how to handle tied "
7631                                    "indirect register inputs");
7632             return;
7633           }
7634 
7635           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7636           SmallVector<unsigned, 4> Regs;
7637 
7638           if (!createVirtualRegs(Regs,
7639                                  InlineAsm::getNumOperandRegisters(OpFlag),
7640                                  RegVT, DAG)) {
7641             emitInlineAsmError(CS, "inline asm error: This value type register "
7642                                    "class is not natively supported!");
7643             return;
7644           }
7645 
7646           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7647 
7648           SDLoc dl = getCurSDLoc();
7649           // Use the produced MatchedRegs object to
7650           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7651                                     CS.getInstruction());
7652           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7653                                            true, OpInfo.getMatchedOperand(), dl,
7654                                            DAG, AsmNodeOperands);
7655           break;
7656         }
7657 
7658         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7659         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7660                "Unexpected number of operands");
7661         // Add information to the INLINEASM node to know about this input.
7662         // See InlineAsm.h isUseOperandTiedToDef.
7663         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7664         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7665                                                     OpInfo.getMatchedOperand());
7666         AsmNodeOperands.push_back(DAG.getTargetConstant(
7667             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7668         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7669         break;
7670       }
7671 
7672       // Treat indirect 'X' constraint as memory.
7673       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7674           OpInfo.isIndirect)
7675         OpInfo.ConstraintType = TargetLowering::C_Memory;
7676 
7677       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7678         std::vector<SDValue> Ops;
7679         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7680                                           Ops, DAG);
7681         if (Ops.empty()) {
7682           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7683                                      Twine(OpInfo.ConstraintCode) + "'");
7684           return;
7685         }
7686 
7687         // Add information to the INLINEASM node to know about this input.
7688         unsigned ResOpType =
7689           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7690         AsmNodeOperands.push_back(DAG.getTargetConstant(
7691             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7692         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7693         break;
7694       }
7695 
7696       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7697         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7698         assert(InOperandVal.getValueType() ==
7699                    TLI.getPointerTy(DAG.getDataLayout()) &&
7700                "Memory operands expect pointer values");
7701 
7702         unsigned ConstraintID =
7703             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7704         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7705                "Failed to convert memory constraint code to constraint id.");
7706 
7707         // Add information to the INLINEASM node to know about this input.
7708         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7709         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7710         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7711                                                         getCurSDLoc(),
7712                                                         MVT::i32));
7713         AsmNodeOperands.push_back(InOperandVal);
7714         break;
7715       }
7716 
7717       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7718               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7719              "Unknown constraint type!");
7720 
7721       // TODO: Support this.
7722       if (OpInfo.isIndirect) {
7723         emitInlineAsmError(
7724             CS, "Don't know how to handle indirect register inputs yet "
7725                 "for constraint '" +
7726                     Twine(OpInfo.ConstraintCode) + "'");
7727         return;
7728       }
7729 
7730       // Copy the input into the appropriate registers.
7731       if (OpInfo.AssignedRegs.Regs.empty()) {
7732         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7733                                    Twine(OpInfo.ConstraintCode) + "'");
7734         return;
7735       }
7736 
7737       SDLoc dl = getCurSDLoc();
7738 
7739       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7740                                         Chain, &Flag, CS.getInstruction());
7741 
7742       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7743                                                dl, DAG, AsmNodeOperands);
7744       break;
7745     }
7746     case InlineAsm::isClobber:
7747       // Add the clobbered value to the operand list, so that the register
7748       // allocator is aware that the physreg got clobbered.
7749       if (!OpInfo.AssignedRegs.Regs.empty())
7750         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7751                                                  false, 0, getCurSDLoc(), DAG,
7752                                                  AsmNodeOperands);
7753       break;
7754     }
7755   }
7756 
7757   // Finish up input operands.  Set the input chain and add the flag last.
7758   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7759   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7760 
7761   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7762                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7763   Flag = Chain.getValue(1);
7764 
7765   // If this asm returns a register value, copy the result from that register
7766   // and set it as the value of the call.
7767   if (!RetValRegs.Regs.empty()) {
7768     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7769                                              Chain, &Flag, CS.getInstruction());
7770 
7771     llvm::Type *CSResultType = CS.getType();
7772     unsigned numRet;
7773     ArrayRef<Type *> ResultTypes;
7774     SmallVector<SDValue, 1> ResultValues(1);
7775     if (CSResultType->isSingleValueType()) {
7776       numRet = 1;
7777       ResultValues[0] = Val;
7778       ResultTypes = makeArrayRef(CSResultType);
7779     } else {
7780       numRet = CSResultType->getNumContainedTypes();
7781       assert(Val->getNumOperands() == numRet &&
7782              "Mismatch in number of output operands in asm result");
7783       ResultTypes = CSResultType->subtypes();
7784       ArrayRef<SDUse> ValueUses = Val->ops();
7785       ResultValues.resize(numRet);
7786       std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(),
7787                      [](const SDUse &u) -> SDValue { return u.get(); });
7788     }
7789     SmallVector<EVT, 1> ResultVTs(numRet);
7790     for (unsigned i = 0; i < numRet; i++) {
7791       EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]);
7792       SDValue Val = ResultValues[i];
7793       assert(ResultTypes[i]->isSized() && "Unexpected unsized type");
7794       // If the type of the inline asm call site return value is different but
7795       // has same size as the type of the asm output bitcast it.  One example
7796       // of this is for vectors with different width / number of elements.
7797       // This can happen for register classes that can contain multiple
7798       // different value types.  The preg or vreg allocated may not have the
7799       // same VT as was expected.
7800       //
7801       // This can also happen for a return value that disagrees with the
7802       // register class it is put in, eg. a double in a general-purpose
7803       // register on a 32-bit machine.
7804       if (ResultVT != Val.getValueType() &&
7805           ResultVT.getSizeInBits() == Val.getValueSizeInBits())
7806         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val);
7807       else if (ResultVT != Val.getValueType() && ResultVT.isInteger() &&
7808                Val.getValueType().isInteger()) {
7809         // If a result value was tied to an input value, the computed result
7810         // may have a wider width than the expected result.  Extract the
7811         // relevant portion.
7812         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val);
7813       }
7814 
7815       assert(ResultVT == Val.getValueType() && "Asm result value mismatch!");
7816       ResultVTs[i] = ResultVT;
7817       ResultValues[i] = Val;
7818     }
7819 
7820     Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
7821                       DAG.getVTList(ResultVTs), ResultValues);
7822     setValue(CS.getInstruction(), Val);
7823     // Don't need to use this as a chain in this case.
7824     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7825       return;
7826   }
7827 
7828   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7829 
7830   // Process indirect outputs, first output all of the flagged copies out of
7831   // physregs.
7832   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7833     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7834     const Value *Ptr = IndirectStoresToEmit[i].second;
7835     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7836                                              Chain, &Flag, IA);
7837     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7838   }
7839 
7840   // Emit the non-flagged stores from the physregs.
7841   SmallVector<SDValue, 8> OutChains;
7842   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7843     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7844                                getValue(StoresToEmit[i].second),
7845                                MachinePointerInfo(StoresToEmit[i].second));
7846     OutChains.push_back(Val);
7847   }
7848 
7849   if (!OutChains.empty())
7850     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7851 
7852   DAG.setRoot(Chain);
7853 }
7854 
emitInlineAsmError(ImmutableCallSite CS,const Twine & Message)7855 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7856                                              const Twine &Message) {
7857   LLVMContext &Ctx = *DAG.getContext();
7858   Ctx.emitError(CS.getInstruction(), Message);
7859 
7860   // Make sure we leave the DAG in a valid state
7861   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7862   SmallVector<EVT, 1> ValueVTs;
7863   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7864 
7865   if (ValueVTs.empty())
7866     return;
7867 
7868   SmallVector<SDValue, 1> Ops;
7869   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
7870     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
7871 
7872   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
7873 }
7874 
visitVAStart(const CallInst & I)7875 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7876   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7877                           MVT::Other, getRoot(),
7878                           getValue(I.getArgOperand(0)),
7879                           DAG.getSrcValue(I.getArgOperand(0))));
7880 }
7881 
visitVAArg(const VAArgInst & I)7882 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7883   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7884   const DataLayout &DL = DAG.getDataLayout();
7885   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7886                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7887                            DAG.getSrcValue(I.getOperand(0)),
7888                            DL.getABITypeAlignment(I.getType()));
7889   setValue(&I, V);
7890   DAG.setRoot(V.getValue(1));
7891 }
7892 
visitVAEnd(const CallInst & I)7893 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7894   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7895                           MVT::Other, getRoot(),
7896                           getValue(I.getArgOperand(0)),
7897                           DAG.getSrcValue(I.getArgOperand(0))));
7898 }
7899 
visitVACopy(const CallInst & I)7900 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7901   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7902                           MVT::Other, getRoot(),
7903                           getValue(I.getArgOperand(0)),
7904                           getValue(I.getArgOperand(1)),
7905                           DAG.getSrcValue(I.getArgOperand(0)),
7906                           DAG.getSrcValue(I.getArgOperand(1))));
7907 }
7908 
lowerRangeToAssertZExt(SelectionDAG & DAG,const Instruction & I,SDValue Op)7909 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7910                                                     const Instruction &I,
7911                                                     SDValue Op) {
7912   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7913   if (!Range)
7914     return Op;
7915 
7916   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7917   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7918     return Op;
7919 
7920   APInt Lo = CR.getUnsignedMin();
7921   if (!Lo.isMinValue())
7922     return Op;
7923 
7924   APInt Hi = CR.getUnsignedMax();
7925   unsigned Bits = Hi.getActiveBits();
7926 
7927   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7928 
7929   SDLoc SL = getCurSDLoc();
7930 
7931   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7932                              DAG.getValueType(SmallVT));
7933   unsigned NumVals = Op.getNode()->getNumValues();
7934   if (NumVals == 1)
7935     return ZExt;
7936 
7937   SmallVector<SDValue, 4> Ops;
7938 
7939   Ops.push_back(ZExt);
7940   for (unsigned I = 1; I != NumVals; ++I)
7941     Ops.push_back(Op.getValue(I));
7942 
7943   return DAG.getMergeValues(Ops, SL);
7944 }
7945 
7946 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
7947 /// the call being lowered.
7948 ///
7949 /// This is a helper for lowering intrinsics that follow a target calling
7950 /// convention or require stack pointer adjustment. Only a subset of the
7951 /// intrinsic's operands need to participate in the calling convention.
populateCallLoweringInfo(TargetLowering::CallLoweringInfo & CLI,ImmutableCallSite CS,unsigned ArgIdx,unsigned NumArgs,SDValue Callee,Type * ReturnTy,bool IsPatchPoint)7952 void SelectionDAGBuilder::populateCallLoweringInfo(
7953     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7954     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7955     bool IsPatchPoint) {
7956   TargetLowering::ArgListTy Args;
7957   Args.reserve(NumArgs);
7958 
7959   // Populate the argument list.
7960   // Attributes for args start at offset 1, after the return attribute.
7961   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7962        ArgI != ArgE; ++ArgI) {
7963     const Value *V = CS->getOperand(ArgI);
7964 
7965     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7966 
7967     TargetLowering::ArgListEntry Entry;
7968     Entry.Node = getValue(V);
7969     Entry.Ty = V->getType();
7970     Entry.setAttributes(&CS, ArgI);
7971     Args.push_back(Entry);
7972   }
7973 
7974   CLI.setDebugLoc(getCurSDLoc())
7975       .setChain(getRoot())
7976       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7977       .setDiscardResult(CS->use_empty())
7978       .setIsPatchPoint(IsPatchPoint);
7979 }
7980 
7981 /// Add a stack map intrinsic call's live variable operands to a stackmap
7982 /// or patchpoint target node's operand list.
7983 ///
7984 /// Constants are converted to TargetConstants purely as an optimization to
7985 /// avoid constant materialization and register allocation.
7986 ///
7987 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7988 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7989 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7990 /// address materialization and register allocation, but may also be required
7991 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7992 /// alloca in the entry block, then the runtime may assume that the alloca's
7993 /// StackMap location can be read immediately after compilation and that the
7994 /// location is valid at any point during execution (this is similar to the
7995 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7996 /// only available in a register, then the runtime would need to trap when
7997 /// execution reaches the StackMap in order to read the alloca's location.
addStackMapLiveVars(ImmutableCallSite CS,unsigned StartIdx,const SDLoc & DL,SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder)7998 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7999                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8000                                 SelectionDAGBuilder &Builder) {
8001   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8002     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8003     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8004       Ops.push_back(
8005         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8006       Ops.push_back(
8007         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8008     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8009       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8010       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8011           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8012     } else
8013       Ops.push_back(OpVal);
8014   }
8015 }
8016 
8017 /// Lower llvm.experimental.stackmap directly to its target opcode.
visitStackmap(const CallInst & CI)8018 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8019   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8020   //                                  [live variables...])
8021 
8022   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8023 
8024   SDValue Chain, InFlag, Callee, NullPtr;
8025   SmallVector<SDValue, 32> Ops;
8026 
8027   SDLoc DL = getCurSDLoc();
8028   Callee = getValue(CI.getCalledValue());
8029   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8030 
8031   // The stackmap intrinsic only records the live variables (the arguemnts
8032   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8033   // intrinsic, this won't be lowered to a function call. This means we don't
8034   // have to worry about calling conventions and target specific lowering code.
8035   // Instead we perform the call lowering right here.
8036   //
8037   // chain, flag = CALLSEQ_START(chain, 0, 0)
8038   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8039   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8040   //
8041   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8042   InFlag = Chain.getValue(1);
8043 
8044   // Add the <id> and <numBytes> constants.
8045   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8046   Ops.push_back(DAG.getTargetConstant(
8047                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8048   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8049   Ops.push_back(DAG.getTargetConstant(
8050                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8051                   MVT::i32));
8052 
8053   // Push live variables for the stack map.
8054   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8055 
8056   // We are not pushing any register mask info here on the operands list,
8057   // because the stackmap doesn't clobber anything.
8058 
8059   // Push the chain and the glue flag.
8060   Ops.push_back(Chain);
8061   Ops.push_back(InFlag);
8062 
8063   // Create the STACKMAP node.
8064   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8065   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8066   Chain = SDValue(SM, 0);
8067   InFlag = Chain.getValue(1);
8068 
8069   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8070 
8071   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8072 
8073   // Set the root to the target-lowered call chain.
8074   DAG.setRoot(Chain);
8075 
8076   // Inform the Frame Information that we have a stackmap in this function.
8077   FuncInfo.MF->getFrameInfo().setHasStackMap();
8078 }
8079 
8080 /// Lower llvm.experimental.patchpoint directly to its target opcode.
visitPatchpoint(ImmutableCallSite CS,const BasicBlock * EHPadBB)8081 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8082                                           const BasicBlock *EHPadBB) {
8083   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8084   //                                                 i32 <numBytes>,
8085   //                                                 i8* <target>,
8086   //                                                 i32 <numArgs>,
8087   //                                                 [Args...],
8088   //                                                 [live variables...])
8089 
8090   CallingConv::ID CC = CS.getCallingConv();
8091   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8092   bool HasDef = !CS->getType()->isVoidTy();
8093   SDLoc dl = getCurSDLoc();
8094   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8095 
8096   // Handle immediate and symbolic callees.
8097   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8098     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8099                                    /*isTarget=*/true);
8100   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8101     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8102                                          SDLoc(SymbolicCallee),
8103                                          SymbolicCallee->getValueType(0));
8104 
8105   // Get the real number of arguments participating in the call <numArgs>
8106   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8107   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8108 
8109   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8110   // Intrinsics include all meta-operands up to but not including CC.
8111   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8112   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8113          "Not enough arguments provided to the patchpoint intrinsic");
8114 
8115   // For AnyRegCC the arguments are lowered later on manually.
8116   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8117   Type *ReturnTy =
8118     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8119 
8120   TargetLowering::CallLoweringInfo CLI(DAG);
8121   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
8122                            true);
8123   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8124 
8125   SDNode *CallEnd = Result.second.getNode();
8126   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8127     CallEnd = CallEnd->getOperand(0).getNode();
8128 
8129   /// Get a call instruction from the call sequence chain.
8130   /// Tail calls are not allowed.
8131   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8132          "Expected a callseq node.");
8133   SDNode *Call = CallEnd->getOperand(0).getNode();
8134   bool HasGlue = Call->getGluedNode();
8135 
8136   // Replace the target specific call node with the patchable intrinsic.
8137   SmallVector<SDValue, 8> Ops;
8138 
8139   // Add the <id> and <numBytes> constants.
8140   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8141   Ops.push_back(DAG.getTargetConstant(
8142                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8143   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8144   Ops.push_back(DAG.getTargetConstant(
8145                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8146                   MVT::i32));
8147 
8148   // Add the callee.
8149   Ops.push_back(Callee);
8150 
8151   // Adjust <numArgs> to account for any arguments that have been passed on the
8152   // stack instead.
8153   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8154   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8155   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8156   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8157 
8158   // Add the calling convention
8159   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8160 
8161   // Add the arguments we omitted previously. The register allocator should
8162   // place these in any free register.
8163   if (IsAnyRegCC)
8164     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8165       Ops.push_back(getValue(CS.getArgument(i)));
8166 
8167   // Push the arguments from the call instruction up to the register mask.
8168   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8169   Ops.append(Call->op_begin() + 2, e);
8170 
8171   // Push live variables for the stack map.
8172   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8173 
8174   // Push the register mask info.
8175   if (HasGlue)
8176     Ops.push_back(*(Call->op_end()-2));
8177   else
8178     Ops.push_back(*(Call->op_end()-1));
8179 
8180   // Push the chain (this is originally the first operand of the call, but
8181   // becomes now the last or second to last operand).
8182   Ops.push_back(*(Call->op_begin()));
8183 
8184   // Push the glue flag (last operand).
8185   if (HasGlue)
8186     Ops.push_back(*(Call->op_end()-1));
8187 
8188   SDVTList NodeTys;
8189   if (IsAnyRegCC && HasDef) {
8190     // Create the return types based on the intrinsic definition
8191     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8192     SmallVector<EVT, 3> ValueVTs;
8193     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8194     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8195 
8196     // There is always a chain and a glue type at the end
8197     ValueVTs.push_back(MVT::Other);
8198     ValueVTs.push_back(MVT::Glue);
8199     NodeTys = DAG.getVTList(ValueVTs);
8200   } else
8201     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8202 
8203   // Replace the target specific call node with a PATCHPOINT node.
8204   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8205                                          dl, NodeTys, Ops);
8206 
8207   // Update the NodeMap.
8208   if (HasDef) {
8209     if (IsAnyRegCC)
8210       setValue(CS.getInstruction(), SDValue(MN, 0));
8211     else
8212       setValue(CS.getInstruction(), Result.first);
8213   }
8214 
8215   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8216   // call sequence. Furthermore the location of the chain and glue can change
8217   // when the AnyReg calling convention is used and the intrinsic returns a
8218   // value.
8219   if (IsAnyRegCC && HasDef) {
8220     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8221     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8222     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8223   } else
8224     DAG.ReplaceAllUsesWith(Call, MN);
8225   DAG.DeleteNode(Call);
8226 
8227   // Inform the Frame Information that we have a patchpoint in this function.
8228   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8229 }
8230 
visitVectorReduce(const CallInst & I,unsigned Intrinsic)8231 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8232                                             unsigned Intrinsic) {
8233   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8234   SDValue Op1 = getValue(I.getArgOperand(0));
8235   SDValue Op2;
8236   if (I.getNumArgOperands() > 1)
8237     Op2 = getValue(I.getArgOperand(1));
8238   SDLoc dl = getCurSDLoc();
8239   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8240   SDValue Res;
8241   FastMathFlags FMF;
8242   if (isa<FPMathOperator>(I))
8243     FMF = I.getFastMathFlags();
8244 
8245   switch (Intrinsic) {
8246   case Intrinsic::experimental_vector_reduce_fadd:
8247     if (FMF.isFast())
8248       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8249     else
8250       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8251     break;
8252   case Intrinsic::experimental_vector_reduce_fmul:
8253     if (FMF.isFast())
8254       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8255     else
8256       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8257     break;
8258   case Intrinsic::experimental_vector_reduce_add:
8259     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8260     break;
8261   case Intrinsic::experimental_vector_reduce_mul:
8262     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8263     break;
8264   case Intrinsic::experimental_vector_reduce_and:
8265     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8266     break;
8267   case Intrinsic::experimental_vector_reduce_or:
8268     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8269     break;
8270   case Intrinsic::experimental_vector_reduce_xor:
8271     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8272     break;
8273   case Intrinsic::experimental_vector_reduce_smax:
8274     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8275     break;
8276   case Intrinsic::experimental_vector_reduce_smin:
8277     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8278     break;
8279   case Intrinsic::experimental_vector_reduce_umax:
8280     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8281     break;
8282   case Intrinsic::experimental_vector_reduce_umin:
8283     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8284     break;
8285   case Intrinsic::experimental_vector_reduce_fmax:
8286     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8287     break;
8288   case Intrinsic::experimental_vector_reduce_fmin:
8289     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8290     break;
8291   default:
8292     llvm_unreachable("Unhandled vector reduce intrinsic");
8293   }
8294   setValue(&I, Res);
8295 }
8296 
8297 /// Returns an AttributeList representing the attributes applied to the return
8298 /// value of the given call.
getReturnAttrs(TargetLowering::CallLoweringInfo & CLI)8299 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8300   SmallVector<Attribute::AttrKind, 2> Attrs;
8301   if (CLI.RetSExt)
8302     Attrs.push_back(Attribute::SExt);
8303   if (CLI.RetZExt)
8304     Attrs.push_back(Attribute::ZExt);
8305   if (CLI.IsInReg)
8306     Attrs.push_back(Attribute::InReg);
8307 
8308   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8309                             Attrs);
8310 }
8311 
8312 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8313 /// implementation, which just calls LowerCall.
8314 /// FIXME: When all targets are
8315 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8316 std::pair<SDValue, SDValue>
LowerCallTo(TargetLowering::CallLoweringInfo & CLI) const8317 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8318   // Handle the incoming return values from the call.
8319   CLI.Ins.clear();
8320   Type *OrigRetTy = CLI.RetTy;
8321   SmallVector<EVT, 4> RetTys;
8322   SmallVector<uint64_t, 4> Offsets;
8323   auto &DL = CLI.DAG.getDataLayout();
8324   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8325 
8326   if (CLI.IsPostTypeLegalization) {
8327     // If we are lowering a libcall after legalization, split the return type.
8328     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8329     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8330     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8331       EVT RetVT = OldRetTys[i];
8332       uint64_t Offset = OldOffsets[i];
8333       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8334       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8335       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8336       RetTys.append(NumRegs, RegisterVT);
8337       for (unsigned j = 0; j != NumRegs; ++j)
8338         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8339     }
8340   }
8341 
8342   SmallVector<ISD::OutputArg, 4> Outs;
8343   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8344 
8345   bool CanLowerReturn =
8346       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8347                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8348 
8349   SDValue DemoteStackSlot;
8350   int DemoteStackIdx = -100;
8351   if (!CanLowerReturn) {
8352     // FIXME: equivalent assert?
8353     // assert(!CS.hasInAllocaArgument() &&
8354     //        "sret demotion is incompatible with inalloca");
8355     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8356     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8357     MachineFunction &MF = CLI.DAG.getMachineFunction();
8358     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8359     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8360                                               DL.getAllocaAddrSpace());
8361 
8362     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8363     ArgListEntry Entry;
8364     Entry.Node = DemoteStackSlot;
8365     Entry.Ty = StackSlotPtrType;
8366     Entry.IsSExt = false;
8367     Entry.IsZExt = false;
8368     Entry.IsInReg = false;
8369     Entry.IsSRet = true;
8370     Entry.IsNest = false;
8371     Entry.IsByVal = false;
8372     Entry.IsReturned = false;
8373     Entry.IsSwiftSelf = false;
8374     Entry.IsSwiftError = false;
8375     Entry.Alignment = Align;
8376     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8377     CLI.NumFixedArgs += 1;
8378     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8379 
8380     // sret demotion isn't compatible with tail-calls, since the sret argument
8381     // points into the callers stack frame.
8382     CLI.IsTailCall = false;
8383   } else {
8384     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8385       EVT VT = RetTys[I];
8386       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8387                                                      CLI.CallConv, VT);
8388       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8389                                                        CLI.CallConv, VT);
8390       for (unsigned i = 0; i != NumRegs; ++i) {
8391         ISD::InputArg MyFlags;
8392         MyFlags.VT = RegisterVT;
8393         MyFlags.ArgVT = VT;
8394         MyFlags.Used = CLI.IsReturnValueUsed;
8395         if (CLI.RetSExt)
8396           MyFlags.Flags.setSExt();
8397         if (CLI.RetZExt)
8398           MyFlags.Flags.setZExt();
8399         if (CLI.IsInReg)
8400           MyFlags.Flags.setInReg();
8401         CLI.Ins.push_back(MyFlags);
8402       }
8403     }
8404   }
8405 
8406   // We push in swifterror return as the last element of CLI.Ins.
8407   ArgListTy &Args = CLI.getArgs();
8408   if (supportSwiftError()) {
8409     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8410       if (Args[i].IsSwiftError) {
8411         ISD::InputArg MyFlags;
8412         MyFlags.VT = getPointerTy(DL);
8413         MyFlags.ArgVT = EVT(getPointerTy(DL));
8414         MyFlags.Flags.setSwiftError();
8415         CLI.Ins.push_back(MyFlags);
8416       }
8417     }
8418   }
8419 
8420   // Handle all of the outgoing arguments.
8421   CLI.Outs.clear();
8422   CLI.OutVals.clear();
8423   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8424     SmallVector<EVT, 4> ValueVTs;
8425     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8426     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8427     Type *FinalType = Args[i].Ty;
8428     if (Args[i].IsByVal)
8429       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8430     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8431         FinalType, CLI.CallConv, CLI.IsVarArg);
8432     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8433          ++Value) {
8434       EVT VT = ValueVTs[Value];
8435       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8436       SDValue Op = SDValue(Args[i].Node.getNode(),
8437                            Args[i].Node.getResNo() + Value);
8438       ISD::ArgFlagsTy Flags;
8439 
8440       // Certain targets (such as MIPS), may have a different ABI alignment
8441       // for a type depending on the context. Give the target a chance to
8442       // specify the alignment it wants.
8443       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8444 
8445       if (Args[i].IsZExt)
8446         Flags.setZExt();
8447       if (Args[i].IsSExt)
8448         Flags.setSExt();
8449       if (Args[i].IsInReg) {
8450         // If we are using vectorcall calling convention, a structure that is
8451         // passed InReg - is surely an HVA
8452         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8453             isa<StructType>(FinalType)) {
8454           // The first value of a structure is marked
8455           if (0 == Value)
8456             Flags.setHvaStart();
8457           Flags.setHva();
8458         }
8459         // Set InReg Flag
8460         Flags.setInReg();
8461       }
8462       if (Args[i].IsSRet)
8463         Flags.setSRet();
8464       if (Args[i].IsSwiftSelf)
8465         Flags.setSwiftSelf();
8466       if (Args[i].IsSwiftError)
8467         Flags.setSwiftError();
8468       if (Args[i].IsByVal)
8469         Flags.setByVal();
8470       if (Args[i].IsInAlloca) {
8471         Flags.setInAlloca();
8472         // Set the byval flag for CCAssignFn callbacks that don't know about
8473         // inalloca.  This way we can know how many bytes we should've allocated
8474         // and how many bytes a callee cleanup function will pop.  If we port
8475         // inalloca to more targets, we'll have to add custom inalloca handling
8476         // in the various CC lowering callbacks.
8477         Flags.setByVal();
8478       }
8479       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8480         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8481         Type *ElementTy = Ty->getElementType();
8482         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8483         // For ByVal, alignment should come from FE.  BE will guess if this
8484         // info is not there but there are cases it cannot get right.
8485         unsigned FrameAlign;
8486         if (Args[i].Alignment)
8487           FrameAlign = Args[i].Alignment;
8488         else
8489           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8490         Flags.setByValAlign(FrameAlign);
8491       }
8492       if (Args[i].IsNest)
8493         Flags.setNest();
8494       if (NeedsRegBlock)
8495         Flags.setInConsecutiveRegs();
8496       Flags.setOrigAlign(OriginalAlignment);
8497 
8498       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8499                                                  CLI.CallConv, VT);
8500       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8501                                                         CLI.CallConv, VT);
8502       SmallVector<SDValue, 4> Parts(NumParts);
8503       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8504 
8505       if (Args[i].IsSExt)
8506         ExtendKind = ISD::SIGN_EXTEND;
8507       else if (Args[i].IsZExt)
8508         ExtendKind = ISD::ZERO_EXTEND;
8509 
8510       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8511       // for now.
8512       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8513           CanLowerReturn) {
8514         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8515                "unexpected use of 'returned'");
8516         // Before passing 'returned' to the target lowering code, ensure that
8517         // either the register MVT and the actual EVT are the same size or that
8518         // the return value and argument are extended in the same way; in these
8519         // cases it's safe to pass the argument register value unchanged as the
8520         // return register value (although it's at the target's option whether
8521         // to do so)
8522         // TODO: allow code generation to take advantage of partially preserved
8523         // registers rather than clobbering the entire register when the
8524         // parameter extension method is not compatible with the return
8525         // extension method
8526         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8527             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8528              CLI.RetZExt == Args[i].IsZExt))
8529           Flags.setReturned();
8530       }
8531 
8532       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8533                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8534 
8535       for (unsigned j = 0; j != NumParts; ++j) {
8536         // if it isn't first piece, alignment must be 1
8537         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8538                                i < CLI.NumFixedArgs,
8539                                i, j*Parts[j].getValueType().getStoreSize());
8540         if (NumParts > 1 && j == 0)
8541           MyFlags.Flags.setSplit();
8542         else if (j != 0) {
8543           MyFlags.Flags.setOrigAlign(1);
8544           if (j == NumParts - 1)
8545             MyFlags.Flags.setSplitEnd();
8546         }
8547 
8548         CLI.Outs.push_back(MyFlags);
8549         CLI.OutVals.push_back(Parts[j]);
8550       }
8551 
8552       if (NeedsRegBlock && Value == NumValues - 1)
8553         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8554     }
8555   }
8556 
8557   SmallVector<SDValue, 4> InVals;
8558   CLI.Chain = LowerCall(CLI, InVals);
8559 
8560   // Update CLI.InVals to use outside of this function.
8561   CLI.InVals = InVals;
8562 
8563   // Verify that the target's LowerCall behaved as expected.
8564   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8565          "LowerCall didn't return a valid chain!");
8566   assert((!CLI.IsTailCall || InVals.empty()) &&
8567          "LowerCall emitted a return value for a tail call!");
8568   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8569          "LowerCall didn't emit the correct number of values!");
8570 
8571   // For a tail call, the return value is merely live-out and there aren't
8572   // any nodes in the DAG representing it. Return a special value to
8573   // indicate that a tail call has been emitted and no more Instructions
8574   // should be processed in the current block.
8575   if (CLI.IsTailCall) {
8576     CLI.DAG.setRoot(CLI.Chain);
8577     return std::make_pair(SDValue(), SDValue());
8578   }
8579 
8580 #ifndef NDEBUG
8581   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8582     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8583     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8584            "LowerCall emitted a value with the wrong type!");
8585   }
8586 #endif
8587 
8588   SmallVector<SDValue, 4> ReturnValues;
8589   if (!CanLowerReturn) {
8590     // The instruction result is the result of loading from the
8591     // hidden sret parameter.
8592     SmallVector<EVT, 1> PVTs;
8593     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8594 
8595     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8596     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8597     EVT PtrVT = PVTs[0];
8598 
8599     unsigned NumValues = RetTys.size();
8600     ReturnValues.resize(NumValues);
8601     SmallVector<SDValue, 4> Chains(NumValues);
8602 
8603     // An aggregate return value cannot wrap around the address space, so
8604     // offsets to its parts don't wrap either.
8605     SDNodeFlags Flags;
8606     Flags.setNoUnsignedWrap(true);
8607 
8608     for (unsigned i = 0; i < NumValues; ++i) {
8609       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8610                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8611                                                         PtrVT), Flags);
8612       SDValue L = CLI.DAG.getLoad(
8613           RetTys[i], CLI.DL, CLI.Chain, Add,
8614           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8615                                             DemoteStackIdx, Offsets[i]),
8616           /* Alignment = */ 1);
8617       ReturnValues[i] = L;
8618       Chains[i] = L.getValue(1);
8619     }
8620 
8621     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8622   } else {
8623     // Collect the legal value parts into potentially illegal values
8624     // that correspond to the original function's return values.
8625     Optional<ISD::NodeType> AssertOp;
8626     if (CLI.RetSExt)
8627       AssertOp = ISD::AssertSext;
8628     else if (CLI.RetZExt)
8629       AssertOp = ISD::AssertZext;
8630     unsigned CurReg = 0;
8631     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8632       EVT VT = RetTys[I];
8633       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8634                                                      CLI.CallConv, VT);
8635       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8636                                                        CLI.CallConv, VT);
8637 
8638       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8639                                               NumRegs, RegisterVT, VT, nullptr,
8640                                               CLI.CallConv, AssertOp));
8641       CurReg += NumRegs;
8642     }
8643 
8644     // For a function returning void, there is no return value. We can't create
8645     // such a node, so we just return a null return value in that case. In
8646     // that case, nothing will actually look at the value.
8647     if (ReturnValues.empty())
8648       return std::make_pair(SDValue(), CLI.Chain);
8649   }
8650 
8651   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8652                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8653   return std::make_pair(Res, CLI.Chain);
8654 }
8655 
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const8656 void TargetLowering::LowerOperationWrapper(SDNode *N,
8657                                            SmallVectorImpl<SDValue> &Results,
8658                                            SelectionDAG &DAG) const {
8659   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8660     Results.push_back(Res);
8661 }
8662 
LowerOperation(SDValue Op,SelectionDAG & DAG) const8663 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8664   llvm_unreachable("LowerOperation not implemented for this target!");
8665 }
8666 
8667 void
CopyValueToVirtualRegister(const Value * V,unsigned Reg)8668 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8669   SDValue Op = getNonRegisterValue(V);
8670   assert((Op.getOpcode() != ISD::CopyFromReg ||
8671           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8672          "Copy from a reg to the same reg!");
8673   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8674 
8675   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8676   // If this is an InlineAsm we have to match the registers required, not the
8677   // notional registers required by the type.
8678 
8679   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
8680                    getABIRegCopyCC(V));
8681   SDValue Chain = DAG.getEntryNode();
8682 
8683   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8684                               FuncInfo.PreferredExtendType.end())
8685                                  ? ISD::ANY_EXTEND
8686                                  : FuncInfo.PreferredExtendType[V];
8687   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8688   PendingExports.push_back(Chain);
8689 }
8690 
8691 #include "llvm/CodeGen/SelectionDAGISel.h"
8692 
8693 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8694 /// entry block, return true.  This includes arguments used by switches, since
8695 /// the switch may expand into multiple basic blocks.
isOnlyUsedInEntryBlock(const Argument * A,bool FastISel)8696 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8697   // With FastISel active, we may be splitting blocks, so force creation
8698   // of virtual registers for all non-dead arguments.
8699   if (FastISel)
8700     return A->use_empty();
8701 
8702   const BasicBlock &Entry = A->getParent()->front();
8703   for (const User *U : A->users())
8704     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8705       return false;  // Use not in entry block.
8706 
8707   return true;
8708 }
8709 
8710 using ArgCopyElisionMapTy =
8711     DenseMap<const Argument *,
8712              std::pair<const AllocaInst *, const StoreInst *>>;
8713 
8714 /// Scan the entry block of the function in FuncInfo for arguments that look
8715 /// like copies into a local alloca. Record any copied arguments in
8716 /// ArgCopyElisionCandidates.
8717 static void
findArgumentCopyElisionCandidates(const DataLayout & DL,FunctionLoweringInfo * FuncInfo,ArgCopyElisionMapTy & ArgCopyElisionCandidates)8718 findArgumentCopyElisionCandidates(const DataLayout &DL,
8719                                   FunctionLoweringInfo *FuncInfo,
8720                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8721   // Record the state of every static alloca used in the entry block. Argument
8722   // allocas are all used in the entry block, so we need approximately as many
8723   // entries as we have arguments.
8724   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8725   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8726   unsigned NumArgs = FuncInfo->Fn->arg_size();
8727   StaticAllocas.reserve(NumArgs * 2);
8728 
8729   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8730     if (!V)
8731       return nullptr;
8732     V = V->stripPointerCasts();
8733     const auto *AI = dyn_cast<AllocaInst>(V);
8734     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8735       return nullptr;
8736     auto Iter = StaticAllocas.insert({AI, Unknown});
8737     return &Iter.first->second;
8738   };
8739 
8740   // Look for stores of arguments to static allocas. Look through bitcasts and
8741   // GEPs to handle type coercions, as long as the alloca is fully initialized
8742   // by the store. Any non-store use of an alloca escapes it and any subsequent
8743   // unanalyzed store might write it.
8744   // FIXME: Handle structs initialized with multiple stores.
8745   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8746     // Look for stores, and handle non-store uses conservatively.
8747     const auto *SI = dyn_cast<StoreInst>(&I);
8748     if (!SI) {
8749       // We will look through cast uses, so ignore them completely.
8750       if (I.isCast())
8751         continue;
8752       // Ignore debug info intrinsics, they don't escape or store to allocas.
8753       if (isa<DbgInfoIntrinsic>(I))
8754         continue;
8755       // This is an unknown instruction. Assume it escapes or writes to all
8756       // static alloca operands.
8757       for (const Use &U : I.operands()) {
8758         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8759           *Info = StaticAllocaInfo::Clobbered;
8760       }
8761       continue;
8762     }
8763 
8764     // If the stored value is a static alloca, mark it as escaped.
8765     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8766       *Info = StaticAllocaInfo::Clobbered;
8767 
8768     // Check if the destination is a static alloca.
8769     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8770     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8771     if (!Info)
8772       continue;
8773     const AllocaInst *AI = cast<AllocaInst>(Dst);
8774 
8775     // Skip allocas that have been initialized or clobbered.
8776     if (*Info != StaticAllocaInfo::Unknown)
8777       continue;
8778 
8779     // Check if the stored value is an argument, and that this store fully
8780     // initializes the alloca. Don't elide copies from the same argument twice.
8781     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8782     const auto *Arg = dyn_cast<Argument>(Val);
8783     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8784         Arg->getType()->isEmptyTy() ||
8785         DL.getTypeStoreSize(Arg->getType()) !=
8786             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8787         ArgCopyElisionCandidates.count(Arg)) {
8788       *Info = StaticAllocaInfo::Clobbered;
8789       continue;
8790     }
8791 
8792     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8793                       << '\n');
8794 
8795     // Mark this alloca and store for argument copy elision.
8796     *Info = StaticAllocaInfo::Elidable;
8797     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8798 
8799     // Stop scanning if we've seen all arguments. This will happen early in -O0
8800     // builds, which is useful, because -O0 builds have large entry blocks and
8801     // many allocas.
8802     if (ArgCopyElisionCandidates.size() == NumArgs)
8803       break;
8804   }
8805 }
8806 
8807 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8808 /// ArgVal is a load from a suitable fixed stack object.
tryToElideArgumentCopy(FunctionLoweringInfo * FuncInfo,SmallVectorImpl<SDValue> & Chains,DenseMap<int,int> & ArgCopyElisionFrameIndexMap,SmallPtrSetImpl<const Instruction * > & ElidedArgCopyInstrs,ArgCopyElisionMapTy & ArgCopyElisionCandidates,const Argument & Arg,SDValue ArgVal,bool & ArgHasUses)8809 static void tryToElideArgumentCopy(
8810     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8811     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8812     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8813     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8814     SDValue ArgVal, bool &ArgHasUses) {
8815   // Check if this is a load from a fixed stack object.
8816   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8817   if (!LNode)
8818     return;
8819   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8820   if (!FINode)
8821     return;
8822 
8823   // Check that the fixed stack object is the right size and alignment.
8824   // Look at the alignment that the user wrote on the alloca instead of looking
8825   // at the stack object.
8826   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8827   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8828   const AllocaInst *AI = ArgCopyIter->second.first;
8829   int FixedIndex = FINode->getIndex();
8830   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8831   int OldIndex = AllocaIndex;
8832   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8833   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8834     LLVM_DEBUG(
8835         dbgs() << "  argument copy elision failed due to bad fixed stack "
8836                   "object size\n");
8837     return;
8838   }
8839   unsigned RequiredAlignment = AI->getAlignment();
8840   if (!RequiredAlignment) {
8841     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8842         AI->getAllocatedType());
8843   }
8844   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8845     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8846                          "greater than stack argument alignment ("
8847                       << RequiredAlignment << " vs "
8848                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
8849     return;
8850   }
8851 
8852   // Perform the elision. Delete the old stack object and replace its only use
8853   // in the variable info map. Mark the stack object as mutable.
8854   LLVM_DEBUG({
8855     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8856            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8857            << '\n';
8858   });
8859   MFI.RemoveStackObject(OldIndex);
8860   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8861   AllocaIndex = FixedIndex;
8862   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8863   Chains.push_back(ArgVal.getValue(1));
8864 
8865   // Avoid emitting code for the store implementing the copy.
8866   const StoreInst *SI = ArgCopyIter->second.second;
8867   ElidedArgCopyInstrs.insert(SI);
8868 
8869   // Check for uses of the argument again so that we can avoid exporting ArgVal
8870   // if it is't used by anything other than the store.
8871   for (const Value *U : Arg.users()) {
8872     if (U != SI) {
8873       ArgHasUses = true;
8874       break;
8875     }
8876   }
8877 }
8878 
LowerArguments(const Function & F)8879 void SelectionDAGISel::LowerArguments(const Function &F) {
8880   SelectionDAG &DAG = SDB->DAG;
8881   SDLoc dl = SDB->getCurSDLoc();
8882   const DataLayout &DL = DAG.getDataLayout();
8883   SmallVector<ISD::InputArg, 16> Ins;
8884 
8885   if (!FuncInfo->CanLowerReturn) {
8886     // Put in an sret pointer parameter before all the other parameters.
8887     SmallVector<EVT, 1> ValueVTs;
8888     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8889                     F.getReturnType()->getPointerTo(
8890                         DAG.getDataLayout().getAllocaAddrSpace()),
8891                     ValueVTs);
8892 
8893     // NOTE: Assuming that a pointer will never break down to more than one VT
8894     // or one register.
8895     ISD::ArgFlagsTy Flags;
8896     Flags.setSRet();
8897     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8898     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8899                          ISD::InputArg::NoArgIndex, 0);
8900     Ins.push_back(RetArg);
8901   }
8902 
8903   // Look for stores of arguments to static allocas. Mark such arguments with a
8904   // flag to ask the target to give us the memory location of that argument if
8905   // available.
8906   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8907   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8908 
8909   // Set up the incoming argument description vector.
8910   for (const Argument &Arg : F.args()) {
8911     unsigned ArgNo = Arg.getArgNo();
8912     SmallVector<EVT, 4> ValueVTs;
8913     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8914     bool isArgValueUsed = !Arg.use_empty();
8915     unsigned PartBase = 0;
8916     Type *FinalType = Arg.getType();
8917     if (Arg.hasAttribute(Attribute::ByVal))
8918       FinalType = cast<PointerType>(FinalType)->getElementType();
8919     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8920         FinalType, F.getCallingConv(), F.isVarArg());
8921     for (unsigned Value = 0, NumValues = ValueVTs.size();
8922          Value != NumValues; ++Value) {
8923       EVT VT = ValueVTs[Value];
8924       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8925       ISD::ArgFlagsTy Flags;
8926 
8927       // Certain targets (such as MIPS), may have a different ABI alignment
8928       // for a type depending on the context. Give the target a chance to
8929       // specify the alignment it wants.
8930       unsigned OriginalAlignment =
8931           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8932 
8933       if (Arg.hasAttribute(Attribute::ZExt))
8934         Flags.setZExt();
8935       if (Arg.hasAttribute(Attribute::SExt))
8936         Flags.setSExt();
8937       if (Arg.hasAttribute(Attribute::InReg)) {
8938         // If we are using vectorcall calling convention, a structure that is
8939         // passed InReg - is surely an HVA
8940         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8941             isa<StructType>(Arg.getType())) {
8942           // The first value of a structure is marked
8943           if (0 == Value)
8944             Flags.setHvaStart();
8945           Flags.setHva();
8946         }
8947         // Set InReg Flag
8948         Flags.setInReg();
8949       }
8950       if (Arg.hasAttribute(Attribute::StructRet))
8951         Flags.setSRet();
8952       if (Arg.hasAttribute(Attribute::SwiftSelf))
8953         Flags.setSwiftSelf();
8954       if (Arg.hasAttribute(Attribute::SwiftError))
8955         Flags.setSwiftError();
8956       if (Arg.hasAttribute(Attribute::ByVal))
8957         Flags.setByVal();
8958       if (Arg.hasAttribute(Attribute::InAlloca)) {
8959         Flags.setInAlloca();
8960         // Set the byval flag for CCAssignFn callbacks that don't know about
8961         // inalloca.  This way we can know how many bytes we should've allocated
8962         // and how many bytes a callee cleanup function will pop.  If we port
8963         // inalloca to more targets, we'll have to add custom inalloca handling
8964         // in the various CC lowering callbacks.
8965         Flags.setByVal();
8966       }
8967       if (F.getCallingConv() == CallingConv::X86_INTR) {
8968         // IA Interrupt passes frame (1st parameter) by value in the stack.
8969         if (ArgNo == 0)
8970           Flags.setByVal();
8971       }
8972       if (Flags.isByVal() || Flags.isInAlloca()) {
8973         PointerType *Ty = cast<PointerType>(Arg.getType());
8974         Type *ElementTy = Ty->getElementType();
8975         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8976         // For ByVal, alignment should be passed from FE.  BE will guess if
8977         // this info is not there but there are cases it cannot get right.
8978         unsigned FrameAlign;
8979         if (Arg.getParamAlignment())
8980           FrameAlign = Arg.getParamAlignment();
8981         else
8982           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8983         Flags.setByValAlign(FrameAlign);
8984       }
8985       if (Arg.hasAttribute(Attribute::Nest))
8986         Flags.setNest();
8987       if (NeedsRegBlock)
8988         Flags.setInConsecutiveRegs();
8989       Flags.setOrigAlign(OriginalAlignment);
8990       if (ArgCopyElisionCandidates.count(&Arg))
8991         Flags.setCopyElisionCandidate();
8992 
8993       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
8994           *CurDAG->getContext(), F.getCallingConv(), VT);
8995       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
8996           *CurDAG->getContext(), F.getCallingConv(), VT);
8997       for (unsigned i = 0; i != NumRegs; ++i) {
8998         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8999                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9000         if (NumRegs > 1 && i == 0)
9001           MyFlags.Flags.setSplit();
9002         // if it isn't first piece, alignment must be 1
9003         else if (i > 0) {
9004           MyFlags.Flags.setOrigAlign(1);
9005           if (i == NumRegs - 1)
9006             MyFlags.Flags.setSplitEnd();
9007         }
9008         Ins.push_back(MyFlags);
9009       }
9010       if (NeedsRegBlock && Value == NumValues - 1)
9011         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9012       PartBase += VT.getStoreSize();
9013     }
9014   }
9015 
9016   // Call the target to set up the argument values.
9017   SmallVector<SDValue, 8> InVals;
9018   SDValue NewRoot = TLI->LowerFormalArguments(
9019       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9020 
9021   // Verify that the target's LowerFormalArguments behaved as expected.
9022   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9023          "LowerFormalArguments didn't return a valid chain!");
9024   assert(InVals.size() == Ins.size() &&
9025          "LowerFormalArguments didn't emit the correct number of values!");
9026   LLVM_DEBUG({
9027     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9028       assert(InVals[i].getNode() &&
9029              "LowerFormalArguments emitted a null value!");
9030       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9031              "LowerFormalArguments emitted a value with the wrong type!");
9032     }
9033   });
9034 
9035   // Update the DAG with the new chain value resulting from argument lowering.
9036   DAG.setRoot(NewRoot);
9037 
9038   // Set up the argument values.
9039   unsigned i = 0;
9040   if (!FuncInfo->CanLowerReturn) {
9041     // Create a virtual register for the sret pointer, and put in a copy
9042     // from the sret argument into it.
9043     SmallVector<EVT, 1> ValueVTs;
9044     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9045                     F.getReturnType()->getPointerTo(
9046                         DAG.getDataLayout().getAllocaAddrSpace()),
9047                     ValueVTs);
9048     MVT VT = ValueVTs[0].getSimpleVT();
9049     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9050     Optional<ISD::NodeType> AssertOp = None;
9051     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9052                                         nullptr, F.getCallingConv(), AssertOp);
9053 
9054     MachineFunction& MF = SDB->DAG.getMachineFunction();
9055     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9056     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9057     FuncInfo->DemoteRegister = SRetReg;
9058     NewRoot =
9059         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9060     DAG.setRoot(NewRoot);
9061 
9062     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9063     ++i;
9064   }
9065 
9066   SmallVector<SDValue, 4> Chains;
9067   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9068   for (const Argument &Arg : F.args()) {
9069     SmallVector<SDValue, 4> ArgValues;
9070     SmallVector<EVT, 4> ValueVTs;
9071     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9072     unsigned NumValues = ValueVTs.size();
9073     if (NumValues == 0)
9074       continue;
9075 
9076     bool ArgHasUses = !Arg.use_empty();
9077 
9078     // Elide the copying store if the target loaded this argument from a
9079     // suitable fixed stack object.
9080     if (Ins[i].Flags.isCopyElisionCandidate()) {
9081       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9082                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9083                              InVals[i], ArgHasUses);
9084     }
9085 
9086     // If this argument is unused then remember its value. It is used to generate
9087     // debugging information.
9088     bool isSwiftErrorArg =
9089         TLI->supportSwiftError() &&
9090         Arg.hasAttribute(Attribute::SwiftError);
9091     if (!ArgHasUses && !isSwiftErrorArg) {
9092       SDB->setUnusedArgValue(&Arg, InVals[i]);
9093 
9094       // Also remember any frame index for use in FastISel.
9095       if (FrameIndexSDNode *FI =
9096           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9097         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9098     }
9099 
9100     for (unsigned Val = 0; Val != NumValues; ++Val) {
9101       EVT VT = ValueVTs[Val];
9102       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9103                                                       F.getCallingConv(), VT);
9104       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9105           *CurDAG->getContext(), F.getCallingConv(), VT);
9106 
9107       // Even an apparant 'unused' swifterror argument needs to be returned. So
9108       // we do generate a copy for it that can be used on return from the
9109       // function.
9110       if (ArgHasUses || isSwiftErrorArg) {
9111         Optional<ISD::NodeType> AssertOp;
9112         if (Arg.hasAttribute(Attribute::SExt))
9113           AssertOp = ISD::AssertSext;
9114         else if (Arg.hasAttribute(Attribute::ZExt))
9115           AssertOp = ISD::AssertZext;
9116 
9117         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9118                                              PartVT, VT, nullptr,
9119                                              F.getCallingConv(), AssertOp));
9120       }
9121 
9122       i += NumParts;
9123     }
9124 
9125     // We don't need to do anything else for unused arguments.
9126     if (ArgValues.empty())
9127       continue;
9128 
9129     // Note down frame index.
9130     if (FrameIndexSDNode *FI =
9131         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9132       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9133 
9134     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9135                                      SDB->getCurSDLoc());
9136 
9137     SDB->setValue(&Arg, Res);
9138     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9139       // We want to associate the argument with the frame index, among
9140       // involved operands, that correspond to the lowest address. The
9141       // getCopyFromParts function, called earlier, is swapping the order of
9142       // the operands to BUILD_PAIR depending on endianness. The result of
9143       // that swapping is that the least significant bits of the argument will
9144       // be in the first operand of the BUILD_PAIR node, and the most
9145       // significant bits will be in the second operand.
9146       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9147       if (LoadSDNode *LNode =
9148           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9149         if (FrameIndexSDNode *FI =
9150             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9151           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9152     }
9153 
9154     // Update the SwiftErrorVRegDefMap.
9155     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9156       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9157       if (TargetRegisterInfo::isVirtualRegister(Reg))
9158         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9159                                            FuncInfo->SwiftErrorArg, Reg);
9160     }
9161 
9162     // If this argument is live outside of the entry block, insert a copy from
9163     // wherever we got it to the vreg that other BB's will reference it as.
9164     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9165       // If we can, though, try to skip creating an unnecessary vreg.
9166       // FIXME: This isn't very clean... it would be nice to make this more
9167       // general.  It's also subtly incompatible with the hacks FastISel
9168       // uses with vregs.
9169       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9170       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9171         FuncInfo->ValueMap[&Arg] = Reg;
9172         continue;
9173       }
9174     }
9175     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9176       FuncInfo->InitializeRegForValue(&Arg);
9177       SDB->CopyToExportRegsIfNeeded(&Arg);
9178     }
9179   }
9180 
9181   if (!Chains.empty()) {
9182     Chains.push_back(NewRoot);
9183     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9184   }
9185 
9186   DAG.setRoot(NewRoot);
9187 
9188   assert(i == InVals.size() && "Argument register count mismatch!");
9189 
9190   // If any argument copy elisions occurred and we have debug info, update the
9191   // stale frame indices used in the dbg.declare variable info table.
9192   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9193   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9194     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9195       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9196       if (I != ArgCopyElisionFrameIndexMap.end())
9197         VI.Slot = I->second;
9198     }
9199   }
9200 
9201   // Finally, if the target has anything special to do, allow it to do so.
9202   EmitFunctionEntryCode();
9203 }
9204 
9205 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9206 /// ensure constants are generated when needed.  Remember the virtual registers
9207 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9208 /// directly add them, because expansion might result in multiple MBB's for one
9209 /// BB.  As such, the start of the BB might correspond to a different MBB than
9210 /// the end.
9211 void
HandlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)9212 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9213   const TerminatorInst *TI = LLVMBB->getTerminator();
9214 
9215   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9216 
9217   // Check PHI nodes in successors that expect a value to be available from this
9218   // block.
9219   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9220     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9221     if (!isa<PHINode>(SuccBB->begin())) continue;
9222     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9223 
9224     // If this terminator has multiple identical successors (common for
9225     // switches), only handle each succ once.
9226     if (!SuccsHandled.insert(SuccMBB).second)
9227       continue;
9228 
9229     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9230 
9231     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9232     // nodes and Machine PHI nodes, but the incoming operands have not been
9233     // emitted yet.
9234     for (const PHINode &PN : SuccBB->phis()) {
9235       // Ignore dead phi's.
9236       if (PN.use_empty())
9237         continue;
9238 
9239       // Skip empty types
9240       if (PN.getType()->isEmptyTy())
9241         continue;
9242 
9243       unsigned Reg;
9244       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9245 
9246       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9247         unsigned &RegOut = ConstantsOut[C];
9248         if (RegOut == 0) {
9249           RegOut = FuncInfo.CreateRegs(C->getType());
9250           CopyValueToVirtualRegister(C, RegOut);
9251         }
9252         Reg = RegOut;
9253       } else {
9254         DenseMap<const Value *, unsigned>::iterator I =
9255           FuncInfo.ValueMap.find(PHIOp);
9256         if (I != FuncInfo.ValueMap.end())
9257           Reg = I->second;
9258         else {
9259           assert(isa<AllocaInst>(PHIOp) &&
9260                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9261                  "Didn't codegen value into a register!??");
9262           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9263           CopyValueToVirtualRegister(PHIOp, Reg);
9264         }
9265       }
9266 
9267       // Remember that this register needs to added to the machine PHI node as
9268       // the input for this MBB.
9269       SmallVector<EVT, 4> ValueVTs;
9270       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9271       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9272       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9273         EVT VT = ValueVTs[vti];
9274         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9275         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9276           FuncInfo.PHINodesToUpdate.push_back(
9277               std::make_pair(&*MBBI++, Reg + i));
9278         Reg += NumRegisters;
9279       }
9280     }
9281   }
9282 
9283   ConstantsOut.clear();
9284 }
9285 
9286 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9287 /// is 0.
9288 MachineBasicBlock *
9289 SelectionDAGBuilder::StackProtectorDescriptor::
AddSuccessorMBB(const BasicBlock * BB,MachineBasicBlock * ParentMBB,bool IsLikely,MachineBasicBlock * SuccMBB)9290 AddSuccessorMBB(const BasicBlock *BB,
9291                 MachineBasicBlock *ParentMBB,
9292                 bool IsLikely,
9293                 MachineBasicBlock *SuccMBB) {
9294   // If SuccBB has not been created yet, create it.
9295   if (!SuccMBB) {
9296     MachineFunction *MF = ParentMBB->getParent();
9297     MachineFunction::iterator BBI(ParentMBB);
9298     SuccMBB = MF->CreateMachineBasicBlock(BB);
9299     MF->insert(++BBI, SuccMBB);
9300   }
9301   // Add it as a successor of ParentMBB.
9302   ParentMBB->addSuccessor(
9303       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9304   return SuccMBB;
9305 }
9306 
NextBlock(MachineBasicBlock * MBB)9307 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9308   MachineFunction::iterator I(MBB);
9309   if (++I == FuncInfo.MF->end())
9310     return nullptr;
9311   return &*I;
9312 }
9313 
9314 /// During lowering new call nodes can be created (such as memset, etc.).
9315 /// Those will become new roots of the current DAG, but complications arise
9316 /// when they are tail calls. In such cases, the call lowering will update
9317 /// the root, but the builder still needs to know that a tail call has been
9318 /// lowered in order to avoid generating an additional return.
updateDAGForMaybeTailCall(SDValue MaybeTC)9319 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9320   // If the node is null, we do have a tail call.
9321   if (MaybeTC.getNode() != nullptr)
9322     DAG.setRoot(MaybeTC);
9323   else
9324     HasTailCall = true;
9325 }
9326 
9327 uint64_t
getJumpTableRange(const CaseClusterVector & Clusters,unsigned First,unsigned Last) const9328 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9329                                        unsigned First, unsigned Last) const {
9330   assert(Last >= First);
9331   const APInt &LowCase = Clusters[First].Low->getValue();
9332   const APInt &HighCase = Clusters[Last].High->getValue();
9333   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9334 
9335   // FIXME: A range of consecutive cases has 100% density, but only requires one
9336   // comparison to lower. We should discriminate against such consecutive ranges
9337   // in jump tables.
9338 
9339   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9340 }
9341 
getJumpTableNumCases(const SmallVectorImpl<unsigned> & TotalCases,unsigned First,unsigned Last) const9342 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9343     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9344     unsigned Last) const {
9345   assert(Last >= First);
9346   assert(TotalCases[Last] >= TotalCases[First]);
9347   uint64_t NumCases =
9348       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9349   return NumCases;
9350 }
9351 
buildJumpTable(const CaseClusterVector & Clusters,unsigned First,unsigned Last,const SwitchInst * SI,MachineBasicBlock * DefaultMBB,CaseCluster & JTCluster)9352 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9353                                          unsigned First, unsigned Last,
9354                                          const SwitchInst *SI,
9355                                          MachineBasicBlock *DefaultMBB,
9356                                          CaseCluster &JTCluster) {
9357   assert(First <= Last);
9358 
9359   auto Prob = BranchProbability::getZero();
9360   unsigned NumCmps = 0;
9361   std::vector<MachineBasicBlock*> Table;
9362   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9363 
9364   // Initialize probabilities in JTProbs.
9365   for (unsigned I = First; I <= Last; ++I)
9366     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9367 
9368   for (unsigned I = First; I <= Last; ++I) {
9369     assert(Clusters[I].Kind == CC_Range);
9370     Prob += Clusters[I].Prob;
9371     const APInt &Low = Clusters[I].Low->getValue();
9372     const APInt &High = Clusters[I].High->getValue();
9373     NumCmps += (Low == High) ? 1 : 2;
9374     if (I != First) {
9375       // Fill the gap between this and the previous cluster.
9376       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9377       assert(PreviousHigh.slt(Low));
9378       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9379       for (uint64_t J = 0; J < Gap; J++)
9380         Table.push_back(DefaultMBB);
9381     }
9382     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9383     for (uint64_t J = 0; J < ClusterSize; ++J)
9384       Table.push_back(Clusters[I].MBB);
9385     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9386   }
9387 
9388   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9389   unsigned NumDests = JTProbs.size();
9390   if (TLI.isSuitableForBitTests(
9391           NumDests, NumCmps, Clusters[First].Low->getValue(),
9392           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9393     // Clusters[First..Last] should be lowered as bit tests instead.
9394     return false;
9395   }
9396 
9397   // Create the MBB that will load from and jump through the table.
9398   // Note: We create it here, but it's not inserted into the function yet.
9399   MachineFunction *CurMF = FuncInfo.MF;
9400   MachineBasicBlock *JumpTableMBB =
9401       CurMF->CreateMachineBasicBlock(SI->getParent());
9402 
9403   // Add successors. Note: use table order for determinism.
9404   SmallPtrSet<MachineBasicBlock *, 8> Done;
9405   for (MachineBasicBlock *Succ : Table) {
9406     if (Done.count(Succ))
9407       continue;
9408     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9409     Done.insert(Succ);
9410   }
9411   JumpTableMBB->normalizeSuccProbs();
9412 
9413   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9414                      ->createJumpTableIndex(Table);
9415 
9416   // Set up the jump table info.
9417   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9418   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9419                       Clusters[Last].High->getValue(), SI->getCondition(),
9420                       nullptr, false);
9421   JTCases.emplace_back(std::move(JTH), std::move(JT));
9422 
9423   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9424                                      JTCases.size() - 1, Prob);
9425   return true;
9426 }
9427 
findJumpTables(CaseClusterVector & Clusters,const SwitchInst * SI,MachineBasicBlock * DefaultMBB)9428 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9429                                          const SwitchInst *SI,
9430                                          MachineBasicBlock *DefaultMBB) {
9431 #ifndef NDEBUG
9432   // Clusters must be non-empty, sorted, and only contain Range clusters.
9433   assert(!Clusters.empty());
9434   for (CaseCluster &C : Clusters)
9435     assert(C.Kind == CC_Range);
9436   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9437     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9438 #endif
9439 
9440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9441   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9442     return;
9443 
9444   const int64_t N = Clusters.size();
9445   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9446   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9447 
9448   if (N < 2 || N < MinJumpTableEntries)
9449     return;
9450 
9451   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9452   SmallVector<unsigned, 8> TotalCases(N);
9453   for (unsigned i = 0; i < N; ++i) {
9454     const APInt &Hi = Clusters[i].High->getValue();
9455     const APInt &Lo = Clusters[i].Low->getValue();
9456     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9457     if (i != 0)
9458       TotalCases[i] += TotalCases[i - 1];
9459   }
9460 
9461   // Cheap case: the whole range may be suitable for jump table.
9462   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9463   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9464   assert(NumCases < UINT64_MAX / 100);
9465   assert(Range >= NumCases);
9466   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9467     CaseCluster JTCluster;
9468     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9469       Clusters[0] = JTCluster;
9470       Clusters.resize(1);
9471       return;
9472     }
9473   }
9474 
9475   // The algorithm below is not suitable for -O0.
9476   if (TM.getOptLevel() == CodeGenOpt::None)
9477     return;
9478 
9479   // Split Clusters into minimum number of dense partitions. The algorithm uses
9480   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9481   // for the Case Statement'" (1994), but builds the MinPartitions array in
9482   // reverse order to make it easier to reconstruct the partitions in ascending
9483   // order. In the choice between two optimal partitionings, it picks the one
9484   // which yields more jump tables.
9485 
9486   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9487   SmallVector<unsigned, 8> MinPartitions(N);
9488   // LastElement[i] is the last element of the partition starting at i.
9489   SmallVector<unsigned, 8> LastElement(N);
9490   // PartitionsScore[i] is used to break ties when choosing between two
9491   // partitionings resulting in the same number of partitions.
9492   SmallVector<unsigned, 8> PartitionsScore(N);
9493   // For PartitionsScore, a small number of comparisons is considered as good as
9494   // a jump table and a single comparison is considered better than a jump
9495   // table.
9496   enum PartitionScores : unsigned {
9497     NoTable = 0,
9498     Table = 1,
9499     FewCases = 1,
9500     SingleCase = 2
9501   };
9502 
9503   // Base case: There is only one way to partition Clusters[N-1].
9504   MinPartitions[N - 1] = 1;
9505   LastElement[N - 1] = N - 1;
9506   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9507 
9508   // Note: loop indexes are signed to avoid underflow.
9509   for (int64_t i = N - 2; i >= 0; i--) {
9510     // Find optimal partitioning of Clusters[i..N-1].
9511     // Baseline: Put Clusters[i] into a partition on its own.
9512     MinPartitions[i] = MinPartitions[i + 1] + 1;
9513     LastElement[i] = i;
9514     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9515 
9516     // Search for a solution that results in fewer partitions.
9517     for (int64_t j = N - 1; j > i; j--) {
9518       // Try building a partition from Clusters[i..j].
9519       uint64_t Range = getJumpTableRange(Clusters, i, j);
9520       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9521       assert(NumCases < UINT64_MAX / 100);
9522       assert(Range >= NumCases);
9523       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9524         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9525         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9526         int64_t NumEntries = j - i + 1;
9527 
9528         if (NumEntries == 1)
9529           Score += PartitionScores::SingleCase;
9530         else if (NumEntries <= SmallNumberOfEntries)
9531           Score += PartitionScores::FewCases;
9532         else if (NumEntries >= MinJumpTableEntries)
9533           Score += PartitionScores::Table;
9534 
9535         // If this leads to fewer partitions, or to the same number of
9536         // partitions with better score, it is a better partitioning.
9537         if (NumPartitions < MinPartitions[i] ||
9538             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9539           MinPartitions[i] = NumPartitions;
9540           LastElement[i] = j;
9541           PartitionsScore[i] = Score;
9542         }
9543       }
9544     }
9545   }
9546 
9547   // Iterate over the partitions, replacing some with jump tables in-place.
9548   unsigned DstIndex = 0;
9549   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9550     Last = LastElement[First];
9551     assert(Last >= First);
9552     assert(DstIndex <= First);
9553     unsigned NumClusters = Last - First + 1;
9554 
9555     CaseCluster JTCluster;
9556     if (NumClusters >= MinJumpTableEntries &&
9557         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9558       Clusters[DstIndex++] = JTCluster;
9559     } else {
9560       for (unsigned I = First; I <= Last; ++I)
9561         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9562     }
9563   }
9564   Clusters.resize(DstIndex);
9565 }
9566 
buildBitTests(CaseClusterVector & Clusters,unsigned First,unsigned Last,const SwitchInst * SI,CaseCluster & BTCluster)9567 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9568                                         unsigned First, unsigned Last,
9569                                         const SwitchInst *SI,
9570                                         CaseCluster &BTCluster) {
9571   assert(First <= Last);
9572   if (First == Last)
9573     return false;
9574 
9575   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9576   unsigned NumCmps = 0;
9577   for (int64_t I = First; I <= Last; ++I) {
9578     assert(Clusters[I].Kind == CC_Range);
9579     Dests.set(Clusters[I].MBB->getNumber());
9580     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9581   }
9582   unsigned NumDests = Dests.count();
9583 
9584   APInt Low = Clusters[First].Low->getValue();
9585   APInt High = Clusters[Last].High->getValue();
9586   assert(Low.slt(High));
9587 
9588   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9589   const DataLayout &DL = DAG.getDataLayout();
9590   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9591     return false;
9592 
9593   APInt LowBound;
9594   APInt CmpRange;
9595 
9596   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9597   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9598          "Case range must fit in bit mask!");
9599 
9600   // Check if the clusters cover a contiguous range such that no value in the
9601   // range will jump to the default statement.
9602   bool ContiguousRange = true;
9603   for (int64_t I = First + 1; I <= Last; ++I) {
9604     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9605       ContiguousRange = false;
9606       break;
9607     }
9608   }
9609 
9610   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9611     // Optimize the case where all the case values fit in a word without having
9612     // to subtract minValue. In this case, we can optimize away the subtraction.
9613     LowBound = APInt::getNullValue(Low.getBitWidth());
9614     CmpRange = High;
9615     ContiguousRange = false;
9616   } else {
9617     LowBound = Low;
9618     CmpRange = High - Low;
9619   }
9620 
9621   CaseBitsVector CBV;
9622   auto TotalProb = BranchProbability::getZero();
9623   for (unsigned i = First; i <= Last; ++i) {
9624     // Find the CaseBits for this destination.
9625     unsigned j;
9626     for (j = 0; j < CBV.size(); ++j)
9627       if (CBV[j].BB == Clusters[i].MBB)
9628         break;
9629     if (j == CBV.size())
9630       CBV.push_back(
9631           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9632     CaseBits *CB = &CBV[j];
9633 
9634     // Update Mask, Bits and ExtraProb.
9635     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9636     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9637     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9638     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9639     CB->Bits += Hi - Lo + 1;
9640     CB->ExtraProb += Clusters[i].Prob;
9641     TotalProb += Clusters[i].Prob;
9642   }
9643 
9644   BitTestInfo BTI;
9645   llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9646     // Sort by probability first, number of bits second, bit mask third.
9647     if (a.ExtraProb != b.ExtraProb)
9648       return a.ExtraProb > b.ExtraProb;
9649     if (a.Bits != b.Bits)
9650       return a.Bits > b.Bits;
9651     return a.Mask < b.Mask;
9652   });
9653 
9654   for (auto &CB : CBV) {
9655     MachineBasicBlock *BitTestBB =
9656         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9657     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9658   }
9659   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9660                             SI->getCondition(), -1U, MVT::Other, false,
9661                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9662                             TotalProb);
9663 
9664   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9665                                     BitTestCases.size() - 1, TotalProb);
9666   return true;
9667 }
9668 
findBitTestClusters(CaseClusterVector & Clusters,const SwitchInst * SI)9669 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9670                                               const SwitchInst *SI) {
9671 // Partition Clusters into as few subsets as possible, where each subset has a
9672 // range that fits in a machine word and has <= 3 unique destinations.
9673 
9674 #ifndef NDEBUG
9675   // Clusters must be sorted and contain Range or JumpTable clusters.
9676   assert(!Clusters.empty());
9677   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9678   for (const CaseCluster &C : Clusters)
9679     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9680   for (unsigned i = 1; i < Clusters.size(); ++i)
9681     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9682 #endif
9683 
9684   // The algorithm below is not suitable for -O0.
9685   if (TM.getOptLevel() == CodeGenOpt::None)
9686     return;
9687 
9688   // If target does not have legal shift left, do not emit bit tests at all.
9689   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9690   const DataLayout &DL = DAG.getDataLayout();
9691 
9692   EVT PTy = TLI.getPointerTy(DL);
9693   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9694     return;
9695 
9696   int BitWidth = PTy.getSizeInBits();
9697   const int64_t N = Clusters.size();
9698 
9699   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9700   SmallVector<unsigned, 8> MinPartitions(N);
9701   // LastElement[i] is the last element of the partition starting at i.
9702   SmallVector<unsigned, 8> LastElement(N);
9703 
9704   // FIXME: This might not be the best algorithm for finding bit test clusters.
9705 
9706   // Base case: There is only one way to partition Clusters[N-1].
9707   MinPartitions[N - 1] = 1;
9708   LastElement[N - 1] = N - 1;
9709 
9710   // Note: loop indexes are signed to avoid underflow.
9711   for (int64_t i = N - 2; i >= 0; --i) {
9712     // Find optimal partitioning of Clusters[i..N-1].
9713     // Baseline: Put Clusters[i] into a partition on its own.
9714     MinPartitions[i] = MinPartitions[i + 1] + 1;
9715     LastElement[i] = i;
9716 
9717     // Search for a solution that results in fewer partitions.
9718     // Note: the search is limited by BitWidth, reducing time complexity.
9719     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9720       // Try building a partition from Clusters[i..j].
9721 
9722       // Check the range.
9723       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9724                                Clusters[j].High->getValue(), DL))
9725         continue;
9726 
9727       // Check nbr of destinations and cluster types.
9728       // FIXME: This works, but doesn't seem very efficient.
9729       bool RangesOnly = true;
9730       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9731       for (int64_t k = i; k <= j; k++) {
9732         if (Clusters[k].Kind != CC_Range) {
9733           RangesOnly = false;
9734           break;
9735         }
9736         Dests.set(Clusters[k].MBB->getNumber());
9737       }
9738       if (!RangesOnly || Dests.count() > 3)
9739         break;
9740 
9741       // Check if it's a better partition.
9742       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9743       if (NumPartitions < MinPartitions[i]) {
9744         // Found a better partition.
9745         MinPartitions[i] = NumPartitions;
9746         LastElement[i] = j;
9747       }
9748     }
9749   }
9750 
9751   // Iterate over the partitions, replacing with bit-test clusters in-place.
9752   unsigned DstIndex = 0;
9753   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9754     Last = LastElement[First];
9755     assert(First <= Last);
9756     assert(DstIndex <= First);
9757 
9758     CaseCluster BitTestCluster;
9759     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9760       Clusters[DstIndex++] = BitTestCluster;
9761     } else {
9762       size_t NumClusters = Last - First + 1;
9763       std::memmove(&Clusters[DstIndex], &Clusters[First],
9764                    sizeof(Clusters[0]) * NumClusters);
9765       DstIndex += NumClusters;
9766     }
9767   }
9768   Clusters.resize(DstIndex);
9769 }
9770 
lowerWorkItem(SwitchWorkListItem W,Value * Cond,MachineBasicBlock * SwitchMBB,MachineBasicBlock * DefaultMBB)9771 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9772                                         MachineBasicBlock *SwitchMBB,
9773                                         MachineBasicBlock *DefaultMBB) {
9774   MachineFunction *CurMF = FuncInfo.MF;
9775   MachineBasicBlock *NextMBB = nullptr;
9776   MachineFunction::iterator BBI(W.MBB);
9777   if (++BBI != FuncInfo.MF->end())
9778     NextMBB = &*BBI;
9779 
9780   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9781 
9782   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9783 
9784   if (Size == 2 && W.MBB == SwitchMBB) {
9785     // If any two of the cases has the same destination, and if one value
9786     // is the same as the other, but has one bit unset that the other has set,
9787     // use bit manipulation to do two compares at once.  For example:
9788     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9789     // TODO: This could be extended to merge any 2 cases in switches with 3
9790     // cases.
9791     // TODO: Handle cases where W.CaseBB != SwitchBB.
9792     CaseCluster &Small = *W.FirstCluster;
9793     CaseCluster &Big = *W.LastCluster;
9794 
9795     if (Small.Low == Small.High && Big.Low == Big.High &&
9796         Small.MBB == Big.MBB) {
9797       const APInt &SmallValue = Small.Low->getValue();
9798       const APInt &BigValue = Big.Low->getValue();
9799 
9800       // Check that there is only one bit different.
9801       APInt CommonBit = BigValue ^ SmallValue;
9802       if (CommonBit.isPowerOf2()) {
9803         SDValue CondLHS = getValue(Cond);
9804         EVT VT = CondLHS.getValueType();
9805         SDLoc DL = getCurSDLoc();
9806 
9807         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9808                                  DAG.getConstant(CommonBit, DL, VT));
9809         SDValue Cond = DAG.getSetCC(
9810             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9811             ISD::SETEQ);
9812 
9813         // Update successor info.
9814         // Both Small and Big will jump to Small.BB, so we sum up the
9815         // probabilities.
9816         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9817         if (BPI)
9818           addSuccessorWithProb(
9819               SwitchMBB, DefaultMBB,
9820               // The default destination is the first successor in IR.
9821               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9822         else
9823           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9824 
9825         // Insert the true branch.
9826         SDValue BrCond =
9827             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9828                         DAG.getBasicBlock(Small.MBB));
9829         // Insert the false branch.
9830         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9831                              DAG.getBasicBlock(DefaultMBB));
9832 
9833         DAG.setRoot(BrCond);
9834         return;
9835       }
9836     }
9837   }
9838 
9839   if (TM.getOptLevel() != CodeGenOpt::None) {
9840     // Here, we order cases by probability so the most likely case will be
9841     // checked first. However, two clusters can have the same probability in
9842     // which case their relative ordering is non-deterministic. So we use Low
9843     // as a tie-breaker as clusters are guaranteed to never overlap.
9844     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9845                [](const CaseCluster &a, const CaseCluster &b) {
9846       return a.Prob != b.Prob ?
9847              a.Prob > b.Prob :
9848              a.Low->getValue().slt(b.Low->getValue());
9849     });
9850 
9851     // Rearrange the case blocks so that the last one falls through if possible
9852     // without changing the order of probabilities.
9853     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9854       --I;
9855       if (I->Prob > W.LastCluster->Prob)
9856         break;
9857       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9858         std::swap(*I, *W.LastCluster);
9859         break;
9860       }
9861     }
9862   }
9863 
9864   // Compute total probability.
9865   BranchProbability DefaultProb = W.DefaultProb;
9866   BranchProbability UnhandledProbs = DefaultProb;
9867   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9868     UnhandledProbs += I->Prob;
9869 
9870   MachineBasicBlock *CurMBB = W.MBB;
9871   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9872     MachineBasicBlock *Fallthrough;
9873     if (I == W.LastCluster) {
9874       // For the last cluster, fall through to the default destination.
9875       Fallthrough = DefaultMBB;
9876     } else {
9877       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9878       CurMF->insert(BBI, Fallthrough);
9879       // Put Cond in a virtual register to make it available from the new blocks.
9880       ExportFromCurrentBlock(Cond);
9881     }
9882     UnhandledProbs -= I->Prob;
9883 
9884     switch (I->Kind) {
9885       case CC_JumpTable: {
9886         // FIXME: Optimize away range check based on pivot comparisons.
9887         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9888         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9889 
9890         // The jump block hasn't been inserted yet; insert it here.
9891         MachineBasicBlock *JumpMBB = JT->MBB;
9892         CurMF->insert(BBI, JumpMBB);
9893 
9894         auto JumpProb = I->Prob;
9895         auto FallthroughProb = UnhandledProbs;
9896 
9897         // If the default statement is a target of the jump table, we evenly
9898         // distribute the default probability to successors of CurMBB. Also
9899         // update the probability on the edge from JumpMBB to Fallthrough.
9900         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9901                                               SE = JumpMBB->succ_end();
9902              SI != SE; ++SI) {
9903           if (*SI == DefaultMBB) {
9904             JumpProb += DefaultProb / 2;
9905             FallthroughProb -= DefaultProb / 2;
9906             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9907             JumpMBB->normalizeSuccProbs();
9908             break;
9909           }
9910         }
9911 
9912         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9913         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9914         CurMBB->normalizeSuccProbs();
9915 
9916         // The jump table header will be inserted in our current block, do the
9917         // range check, and fall through to our fallthrough block.
9918         JTH->HeaderBB = CurMBB;
9919         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9920 
9921         // If we're in the right place, emit the jump table header right now.
9922         if (CurMBB == SwitchMBB) {
9923           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9924           JTH->Emitted = true;
9925         }
9926         break;
9927       }
9928       case CC_BitTests: {
9929         // FIXME: Optimize away range check based on pivot comparisons.
9930         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9931 
9932         // The bit test blocks haven't been inserted yet; insert them here.
9933         for (BitTestCase &BTC : BTB->Cases)
9934           CurMF->insert(BBI, BTC.ThisBB);
9935 
9936         // Fill in fields of the BitTestBlock.
9937         BTB->Parent = CurMBB;
9938         BTB->Default = Fallthrough;
9939 
9940         BTB->DefaultProb = UnhandledProbs;
9941         // If the cases in bit test don't form a contiguous range, we evenly
9942         // distribute the probability on the edge to Fallthrough to two
9943         // successors of CurMBB.
9944         if (!BTB->ContiguousRange) {
9945           BTB->Prob += DefaultProb / 2;
9946           BTB->DefaultProb -= DefaultProb / 2;
9947         }
9948 
9949         // If we're in the right place, emit the bit test header right now.
9950         if (CurMBB == SwitchMBB) {
9951           visitBitTestHeader(*BTB, SwitchMBB);
9952           BTB->Emitted = true;
9953         }
9954         break;
9955       }
9956       case CC_Range: {
9957         const Value *RHS, *LHS, *MHS;
9958         ISD::CondCode CC;
9959         if (I->Low == I->High) {
9960           // Check Cond == I->Low.
9961           CC = ISD::SETEQ;
9962           LHS = Cond;
9963           RHS=I->Low;
9964           MHS = nullptr;
9965         } else {
9966           // Check I->Low <= Cond <= I->High.
9967           CC = ISD::SETLE;
9968           LHS = I->Low;
9969           MHS = Cond;
9970           RHS = I->High;
9971         }
9972 
9973         // The false probability is the sum of all unhandled cases.
9974         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
9975                      getCurSDLoc(), I->Prob, UnhandledProbs);
9976 
9977         if (CurMBB == SwitchMBB)
9978           visitSwitchCase(CB, SwitchMBB);
9979         else
9980           SwitchCases.push_back(CB);
9981 
9982         break;
9983       }
9984     }
9985     CurMBB = Fallthrough;
9986   }
9987 }
9988 
caseClusterRank(const CaseCluster & CC,CaseClusterIt First,CaseClusterIt Last)9989 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9990                                               CaseClusterIt First,
9991                                               CaseClusterIt Last) {
9992   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9993     if (X.Prob != CC.Prob)
9994       return X.Prob > CC.Prob;
9995 
9996     // Ties are broken by comparing the case value.
9997     return X.Low->getValue().slt(CC.Low->getValue());
9998   });
9999 }
10000 
splitWorkItem(SwitchWorkList & WorkList,const SwitchWorkListItem & W,Value * Cond,MachineBasicBlock * SwitchMBB)10001 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10002                                         const SwitchWorkListItem &W,
10003                                         Value *Cond,
10004                                         MachineBasicBlock *SwitchMBB) {
10005   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10006          "Clusters not sorted?");
10007 
10008   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10009 
10010   // Balance the tree based on branch probabilities to create a near-optimal (in
10011   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10012   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10013   CaseClusterIt LastLeft = W.FirstCluster;
10014   CaseClusterIt FirstRight = W.LastCluster;
10015   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10016   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10017 
10018   // Move LastLeft and FirstRight towards each other from opposite directions to
10019   // find a partitioning of the clusters which balances the probability on both
10020   // sides. If LeftProb and RightProb are equal, alternate which side is
10021   // taken to ensure 0-probability nodes are distributed evenly.
10022   unsigned I = 0;
10023   while (LastLeft + 1 < FirstRight) {
10024     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10025       LeftProb += (++LastLeft)->Prob;
10026     else
10027       RightProb += (--FirstRight)->Prob;
10028     I++;
10029   }
10030 
10031   while (true) {
10032     // Our binary search tree differs from a typical BST in that ours can have up
10033     // to three values in each leaf. The pivot selection above doesn't take that
10034     // into account, which means the tree might require more nodes and be less
10035     // efficient. We compensate for this here.
10036 
10037     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10038     unsigned NumRight = W.LastCluster - FirstRight + 1;
10039 
10040     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10041       // If one side has less than 3 clusters, and the other has more than 3,
10042       // consider taking a cluster from the other side.
10043 
10044       if (NumLeft < NumRight) {
10045         // Consider moving the first cluster on the right to the left side.
10046         CaseCluster &CC = *FirstRight;
10047         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10048         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10049         if (LeftSideRank <= RightSideRank) {
10050           // Moving the cluster to the left does not demote it.
10051           ++LastLeft;
10052           ++FirstRight;
10053           continue;
10054         }
10055       } else {
10056         assert(NumRight < NumLeft);
10057         // Consider moving the last element on the left to the right side.
10058         CaseCluster &CC = *LastLeft;
10059         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10060         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10061         if (RightSideRank <= LeftSideRank) {
10062           // Moving the cluster to the right does not demot it.
10063           --LastLeft;
10064           --FirstRight;
10065           continue;
10066         }
10067       }
10068     }
10069     break;
10070   }
10071 
10072   assert(LastLeft + 1 == FirstRight);
10073   assert(LastLeft >= W.FirstCluster);
10074   assert(FirstRight <= W.LastCluster);
10075 
10076   // Use the first element on the right as pivot since we will make less-than
10077   // comparisons against it.
10078   CaseClusterIt PivotCluster = FirstRight;
10079   assert(PivotCluster > W.FirstCluster);
10080   assert(PivotCluster <= W.LastCluster);
10081 
10082   CaseClusterIt FirstLeft = W.FirstCluster;
10083   CaseClusterIt LastRight = W.LastCluster;
10084 
10085   const ConstantInt *Pivot = PivotCluster->Low;
10086 
10087   // New blocks will be inserted immediately after the current one.
10088   MachineFunction::iterator BBI(W.MBB);
10089   ++BBI;
10090 
10091   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10092   // we can branch to its destination directly if it's squeezed exactly in
10093   // between the known lower bound and Pivot - 1.
10094   MachineBasicBlock *LeftMBB;
10095   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10096       FirstLeft->Low == W.GE &&
10097       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10098     LeftMBB = FirstLeft->MBB;
10099   } else {
10100     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10101     FuncInfo.MF->insert(BBI, LeftMBB);
10102     WorkList.push_back(
10103         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10104     // Put Cond in a virtual register to make it available from the new blocks.
10105     ExportFromCurrentBlock(Cond);
10106   }
10107 
10108   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10109   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10110   // directly if RHS.High equals the current upper bound.
10111   MachineBasicBlock *RightMBB;
10112   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10113       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10114     RightMBB = FirstRight->MBB;
10115   } else {
10116     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10117     FuncInfo.MF->insert(BBI, RightMBB);
10118     WorkList.push_back(
10119         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10120     // Put Cond in a virtual register to make it available from the new blocks.
10121     ExportFromCurrentBlock(Cond);
10122   }
10123 
10124   // Create the CaseBlock record that will be used to lower the branch.
10125   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10126                getCurSDLoc(), LeftProb, RightProb);
10127 
10128   if (W.MBB == SwitchMBB)
10129     visitSwitchCase(CB, SwitchMBB);
10130   else
10131     SwitchCases.push_back(CB);
10132 }
10133 
10134 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10135 // from the swith statement.
scaleCaseProbality(BranchProbability CaseProb,BranchProbability PeeledCaseProb)10136 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10137                                             BranchProbability PeeledCaseProb) {
10138   if (PeeledCaseProb == BranchProbability::getOne())
10139     return BranchProbability::getZero();
10140   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10141 
10142   uint32_t Numerator = CaseProb.getNumerator();
10143   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10144   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10145 }
10146 
10147 // Try to peel the top probability case if it exceeds the threshold.
10148 // Return current MachineBasicBlock for the switch statement if the peeling
10149 // does not occur.
10150 // If the peeling is performed, return the newly created MachineBasicBlock
10151 // for the peeled switch statement. Also update Clusters to remove the peeled
10152 // case. PeeledCaseProb is the BranchProbability for the peeled case.
peelDominantCaseCluster(const SwitchInst & SI,CaseClusterVector & Clusters,BranchProbability & PeeledCaseProb)10153 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10154     const SwitchInst &SI, CaseClusterVector &Clusters,
10155     BranchProbability &PeeledCaseProb) {
10156   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10157   // Don't perform if there is only one cluster or optimizing for size.
10158   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10159       TM.getOptLevel() == CodeGenOpt::None ||
10160       SwitchMBB->getParent()->getFunction().optForMinSize())
10161     return SwitchMBB;
10162 
10163   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10164   unsigned PeeledCaseIndex = 0;
10165   bool SwitchPeeled = false;
10166   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10167     CaseCluster &CC = Clusters[Index];
10168     if (CC.Prob < TopCaseProb)
10169       continue;
10170     TopCaseProb = CC.Prob;
10171     PeeledCaseIndex = Index;
10172     SwitchPeeled = true;
10173   }
10174   if (!SwitchPeeled)
10175     return SwitchMBB;
10176 
10177   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10178                     << TopCaseProb << "\n");
10179 
10180   // Record the MBB for the peeled switch statement.
10181   MachineFunction::iterator BBI(SwitchMBB);
10182   ++BBI;
10183   MachineBasicBlock *PeeledSwitchMBB =
10184       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10185   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10186 
10187   ExportFromCurrentBlock(SI.getCondition());
10188   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10189   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10190                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10191   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10192 
10193   Clusters.erase(PeeledCaseIt);
10194   for (CaseCluster &CC : Clusters) {
10195     LLVM_DEBUG(
10196         dbgs() << "Scale the probablity for one cluster, before scaling: "
10197                << CC.Prob << "\n");
10198     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10199     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10200   }
10201   PeeledCaseProb = TopCaseProb;
10202   return PeeledSwitchMBB;
10203 }
10204 
visitSwitch(const SwitchInst & SI)10205 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10206   // Extract cases from the switch.
10207   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10208   CaseClusterVector Clusters;
10209   Clusters.reserve(SI.getNumCases());
10210   for (auto I : SI.cases()) {
10211     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10212     const ConstantInt *CaseVal = I.getCaseValue();
10213     BranchProbability Prob =
10214         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10215             : BranchProbability(1, SI.getNumCases() + 1);
10216     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10217   }
10218 
10219   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10220 
10221   // Cluster adjacent cases with the same destination. We do this at all
10222   // optimization levels because it's cheap to do and will make codegen faster
10223   // if there are many clusters.
10224   sortAndRangeify(Clusters);
10225 
10226   if (TM.getOptLevel() != CodeGenOpt::None) {
10227     // Replace an unreachable default with the most popular destination.
10228     // FIXME: Exploit unreachable default more aggressively.
10229     bool UnreachableDefault =
10230         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10231     if (UnreachableDefault && !Clusters.empty()) {
10232       DenseMap<const BasicBlock *, unsigned> Popularity;
10233       unsigned MaxPop = 0;
10234       const BasicBlock *MaxBB = nullptr;
10235       for (auto I : SI.cases()) {
10236         const BasicBlock *BB = I.getCaseSuccessor();
10237         if (++Popularity[BB] > MaxPop) {
10238           MaxPop = Popularity[BB];
10239           MaxBB = BB;
10240         }
10241       }
10242       // Set new default.
10243       assert(MaxPop > 0 && MaxBB);
10244       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10245 
10246       // Remove cases that were pointing to the destination that is now the
10247       // default.
10248       CaseClusterVector New;
10249       New.reserve(Clusters.size());
10250       for (CaseCluster &CC : Clusters) {
10251         if (CC.MBB != DefaultMBB)
10252           New.push_back(CC);
10253       }
10254       Clusters = std::move(New);
10255     }
10256   }
10257 
10258   // The branch probablity of the peeled case.
10259   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10260   MachineBasicBlock *PeeledSwitchMBB =
10261       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10262 
10263   // If there is only the default destination, jump there directly.
10264   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10265   if (Clusters.empty()) {
10266     assert(PeeledSwitchMBB == SwitchMBB);
10267     SwitchMBB->addSuccessor(DefaultMBB);
10268     if (DefaultMBB != NextBlock(SwitchMBB)) {
10269       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10270                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10271     }
10272     return;
10273   }
10274 
10275   findJumpTables(Clusters, &SI, DefaultMBB);
10276   findBitTestClusters(Clusters, &SI);
10277 
10278   LLVM_DEBUG({
10279     dbgs() << "Case clusters: ";
10280     for (const CaseCluster &C : Clusters) {
10281       if (C.Kind == CC_JumpTable)
10282         dbgs() << "JT:";
10283       if (C.Kind == CC_BitTests)
10284         dbgs() << "BT:";
10285 
10286       C.Low->getValue().print(dbgs(), true);
10287       if (C.Low != C.High) {
10288         dbgs() << '-';
10289         C.High->getValue().print(dbgs(), true);
10290       }
10291       dbgs() << ' ';
10292     }
10293     dbgs() << '\n';
10294   });
10295 
10296   assert(!Clusters.empty());
10297   SwitchWorkList WorkList;
10298   CaseClusterIt First = Clusters.begin();
10299   CaseClusterIt Last = Clusters.end() - 1;
10300   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10301   // Scale the branchprobability for DefaultMBB if the peel occurs and
10302   // DefaultMBB is not replaced.
10303   if (PeeledCaseProb != BranchProbability::getZero() &&
10304       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10305     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10306   WorkList.push_back(
10307       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10308 
10309   while (!WorkList.empty()) {
10310     SwitchWorkListItem W = WorkList.back();
10311     WorkList.pop_back();
10312     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10313 
10314     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10315         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10316       // For optimized builds, lower large range as a balanced binary tree.
10317       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10318       continue;
10319     }
10320 
10321     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10322   }
10323 }
10324