1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/TableGen/Error.h"
26 #include "llvm/TableGen/Record.h"
27 #include <algorithm>
28 #include <cstdio>
29 #include <set>
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "dag-patterns"
33 
isIntegerOrPtr(MVT VT)34 static inline bool isIntegerOrPtr(MVT VT) {
35   return VT.isInteger() || VT == MVT::iPTR;
36 }
isFloatingPoint(MVT VT)37 static inline bool isFloatingPoint(MVT VT) {
38   return VT.isFloatingPoint();
39 }
isVector(MVT VT)40 static inline bool isVector(MVT VT) {
41   return VT.isVector();
42 }
isScalar(MVT VT)43 static inline bool isScalar(MVT VT) {
44   return !VT.isVector();
45 }
46 
47 template <typename Predicate>
berase_if(MachineValueTypeSet & S,Predicate P)48 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
49   bool Erased = false;
50   // It is ok to iterate over MachineValueTypeSet and remove elements from it
51   // at the same time.
52   for (MVT T : S) {
53     if (!P(T))
54       continue;
55     Erased = true;
56     S.erase(T);
57   }
58   return Erased;
59 }
60 
61 // --- TypeSetByHwMode
62 
63 // This is a parameterized type-set class. For each mode there is a list
64 // of types that are currently possible for a given tree node. Type
65 // inference will apply to each mode separately.
66 
TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList)67 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
68   for (const ValueTypeByHwMode &VVT : VTList)
69     insert(VVT);
70 }
71 
isValueTypeByHwMode(bool AllowEmpty) const72 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
73   for (const auto &I : *this) {
74     if (I.second.size() > 1)
75       return false;
76     if (!AllowEmpty && I.second.empty())
77       return false;
78   }
79   return true;
80 }
81 
getValueTypeByHwMode() const82 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
83   assert(isValueTypeByHwMode(true) &&
84          "The type set has multiple types for at least one HW mode");
85   ValueTypeByHwMode VVT;
86   for (const auto &I : *this) {
87     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
88     VVT.getOrCreateTypeForMode(I.first, T);
89   }
90   return VVT;
91 }
92 
isPossible() const93 bool TypeSetByHwMode::isPossible() const {
94   for (const auto &I : *this)
95     if (!I.second.empty())
96       return true;
97   return false;
98 }
99 
insert(const ValueTypeByHwMode & VVT)100 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
101   bool Changed = false;
102   SmallDenseSet<unsigned, 4> Modes;
103   for (const auto &P : VVT) {
104     unsigned M = P.first;
105     Modes.insert(M);
106     // Make sure there exists a set for each specific mode from VVT.
107     Changed |= getOrCreate(M).insert(P.second).second;
108   }
109 
110   // If VVT has a default mode, add the corresponding type to all
111   // modes in "this" that do not exist in VVT.
112   if (Modes.count(DefaultMode)) {
113     MVT DT = VVT.getType(DefaultMode);
114     for (auto &I : *this)
115       if (!Modes.count(I.first))
116         Changed |= I.second.insert(DT).second;
117   }
118   return Changed;
119 }
120 
121 // Constrain the type set to be the intersection with VTS.
constrain(const TypeSetByHwMode & VTS)122 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
123   bool Changed = false;
124   if (hasDefault()) {
125     for (const auto &I : VTS) {
126       unsigned M = I.first;
127       if (M == DefaultMode || hasMode(M))
128         continue;
129       Map.insert({M, Map.at(DefaultMode)});
130       Changed = true;
131     }
132   }
133 
134   for (auto &I : *this) {
135     unsigned M = I.first;
136     SetType &S = I.second;
137     if (VTS.hasMode(M) || VTS.hasDefault()) {
138       Changed |= intersect(I.second, VTS.get(M));
139     } else if (!S.empty()) {
140       S.clear();
141       Changed = true;
142     }
143   }
144   return Changed;
145 }
146 
147 template <typename Predicate>
constrain(Predicate P)148 bool TypeSetByHwMode::constrain(Predicate P) {
149   bool Changed = false;
150   for (auto &I : *this)
151     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
152   return Changed;
153 }
154 
155 template <typename Predicate>
assign_if(const TypeSetByHwMode & VTS,Predicate P)156 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
157   assert(empty());
158   for (const auto &I : VTS) {
159     SetType &S = getOrCreate(I.first);
160     for (auto J : I.second)
161       if (P(J))
162         S.insert(J);
163   }
164   return !empty();
165 }
166 
writeToStream(raw_ostream & OS) const167 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
168   SmallVector<unsigned, 4> Modes;
169   Modes.reserve(Map.size());
170 
171   for (const auto &I : *this)
172     Modes.push_back(I.first);
173   if (Modes.empty()) {
174     OS << "{}";
175     return;
176   }
177   array_pod_sort(Modes.begin(), Modes.end());
178 
179   OS << '{';
180   for (unsigned M : Modes) {
181     OS << ' ' << getModeName(M) << ':';
182     writeToStream(get(M), OS);
183   }
184   OS << " }";
185 }
186 
writeToStream(const SetType & S,raw_ostream & OS)187 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
188   SmallVector<MVT, 4> Types(S.begin(), S.end());
189   array_pod_sort(Types.begin(), Types.end());
190 
191   OS << '[';
192   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
193     OS << ValueTypeByHwMode::getMVTName(Types[i]);
194     if (i != e-1)
195       OS << ' ';
196   }
197   OS << ']';
198 }
199 
operator ==(const TypeSetByHwMode & VTS) const200 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
201   bool HaveDefault = hasDefault();
202   if (HaveDefault != VTS.hasDefault())
203     return false;
204 
205   if (isSimple()) {
206     if (VTS.isSimple())
207       return *begin() == *VTS.begin();
208     return false;
209   }
210 
211   SmallDenseSet<unsigned, 4> Modes;
212   for (auto &I : *this)
213     Modes.insert(I.first);
214   for (const auto &I : VTS)
215     Modes.insert(I.first);
216 
217   if (HaveDefault) {
218     // Both sets have default mode.
219     for (unsigned M : Modes) {
220       if (get(M) != VTS.get(M))
221         return false;
222     }
223   } else {
224     // Neither set has default mode.
225     for (unsigned M : Modes) {
226       // If there is no default mode, an empty set is equivalent to not having
227       // the corresponding mode.
228       bool NoModeThis = !hasMode(M) || get(M).empty();
229       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
230       if (NoModeThis != NoModeVTS)
231         return false;
232       if (!NoModeThis)
233         if (get(M) != VTS.get(M))
234           return false;
235     }
236   }
237 
238   return true;
239 }
240 
241 namespace llvm {
operator <<(raw_ostream & OS,const TypeSetByHwMode & T)242   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
243     T.writeToStream(OS);
244     return OS;
245   }
246 }
247 
248 LLVM_DUMP_METHOD
dump() const249 void TypeSetByHwMode::dump() const {
250   dbgs() << *this << '\n';
251 }
252 
intersect(SetType & Out,const SetType & In)253 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
254   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
255   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
256 
257   if (OutP == InP)
258     return berase_if(Out, Int);
259 
260   // Compute the intersection of scalars separately to account for only
261   // one set containing iPTR.
262   // The itersection of iPTR with a set of integer scalar types that does not
263   // include iPTR will result in the most specific scalar type:
264   // - iPTR is more specific than any set with two elements or more
265   // - iPTR is less specific than any single integer scalar type.
266   // For example
267   // { iPTR } * { i32 }     -> { i32 }
268   // { iPTR } * { i32 i64 } -> { iPTR }
269   // and
270   // { iPTR i32 } * { i32 }          -> { i32 }
271   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
272   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
273 
274   // Compute the difference between the two sets in such a way that the
275   // iPTR is in the set that is being subtracted. This is to see if there
276   // are any extra scalars in the set without iPTR that are not in the
277   // set containing iPTR. Then the iPTR could be considered a "wildcard"
278   // matching these scalars. If there is only one such scalar, it would
279   // replace the iPTR, if there are more, the iPTR would be retained.
280   SetType Diff;
281   if (InP) {
282     Diff = Out;
283     berase_if(Diff, [&In](MVT T) { return In.count(T); });
284     // Pre-remove these elements and rely only on InP/OutP to determine
285     // whether a change has been made.
286     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
287   } else {
288     Diff = In;
289     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
290     Out.erase(MVT::iPTR);
291   }
292 
293   // The actual intersection.
294   bool Changed = berase_if(Out, Int);
295   unsigned NumD = Diff.size();
296   if (NumD == 0)
297     return Changed;
298 
299   if (NumD == 1) {
300     Out.insert(*Diff.begin());
301     // This is a change only if Out was the one with iPTR (which is now
302     // being replaced).
303     Changed |= OutP;
304   } else {
305     // Multiple elements from Out are now replaced with iPTR.
306     Out.insert(MVT::iPTR);
307     Changed |= !OutP;
308   }
309   return Changed;
310 }
311 
validate() const312 bool TypeSetByHwMode::validate() const {
313 #ifndef NDEBUG
314   if (empty())
315     return true;
316   bool AllEmpty = true;
317   for (const auto &I : *this)
318     AllEmpty &= I.second.empty();
319   return !AllEmpty;
320 #endif
321   return true;
322 }
323 
324 // --- TypeInfer
325 
MergeInTypeInfo(TypeSetByHwMode & Out,const TypeSetByHwMode & In)326 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
327                                 const TypeSetByHwMode &In) {
328   ValidateOnExit _1(Out, *this);
329   In.validate();
330   if (In.empty() || Out == In || TP.hasError())
331     return false;
332   if (Out.empty()) {
333     Out = In;
334     return true;
335   }
336 
337   bool Changed = Out.constrain(In);
338   if (Changed && Out.empty())
339     TP.error("Type contradiction");
340 
341   return Changed;
342 }
343 
forceArbitrary(TypeSetByHwMode & Out)344 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
345   ValidateOnExit _1(Out, *this);
346   if (TP.hasError())
347     return false;
348   assert(!Out.empty() && "cannot pick from an empty set");
349 
350   bool Changed = false;
351   for (auto &I : Out) {
352     TypeSetByHwMode::SetType &S = I.second;
353     if (S.size() <= 1)
354       continue;
355     MVT T = *S.begin(); // Pick the first element.
356     S.clear();
357     S.insert(T);
358     Changed = true;
359   }
360   return Changed;
361 }
362 
EnforceInteger(TypeSetByHwMode & Out)363 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
364   ValidateOnExit _1(Out, *this);
365   if (TP.hasError())
366     return false;
367   if (!Out.empty())
368     return Out.constrain(isIntegerOrPtr);
369 
370   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
371 }
372 
EnforceFloatingPoint(TypeSetByHwMode & Out)373 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
374   ValidateOnExit _1(Out, *this);
375   if (TP.hasError())
376     return false;
377   if (!Out.empty())
378     return Out.constrain(isFloatingPoint);
379 
380   return Out.assign_if(getLegalTypes(), isFloatingPoint);
381 }
382 
EnforceScalar(TypeSetByHwMode & Out)383 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
384   ValidateOnExit _1(Out, *this);
385   if (TP.hasError())
386     return false;
387   if (!Out.empty())
388     return Out.constrain(isScalar);
389 
390   return Out.assign_if(getLegalTypes(), isScalar);
391 }
392 
EnforceVector(TypeSetByHwMode & Out)393 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
394   ValidateOnExit _1(Out, *this);
395   if (TP.hasError())
396     return false;
397   if (!Out.empty())
398     return Out.constrain(isVector);
399 
400   return Out.assign_if(getLegalTypes(), isVector);
401 }
402 
EnforceAny(TypeSetByHwMode & Out)403 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
404   ValidateOnExit _1(Out, *this);
405   if (TP.hasError() || !Out.empty())
406     return false;
407 
408   Out = getLegalTypes();
409   return true;
410 }
411 
412 template <typename Iter, typename Pred, typename Less>
min_if(Iter B,Iter E,Pred P,Less L)413 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
414   if (B == E)
415     return E;
416   Iter Min = E;
417   for (Iter I = B; I != E; ++I) {
418     if (!P(*I))
419       continue;
420     if (Min == E || L(*I, *Min))
421       Min = I;
422   }
423   return Min;
424 }
425 
426 template <typename Iter, typename Pred, typename Less>
max_if(Iter B,Iter E,Pred P,Less L)427 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
428   if (B == E)
429     return E;
430   Iter Max = E;
431   for (Iter I = B; I != E; ++I) {
432     if (!P(*I))
433       continue;
434     if (Max == E || L(*Max, *I))
435       Max = I;
436   }
437   return Max;
438 }
439 
440 /// Make sure that for each type in Small, there exists a larger type in Big.
EnforceSmallerThan(TypeSetByHwMode & Small,TypeSetByHwMode & Big)441 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
442                                    TypeSetByHwMode &Big) {
443   ValidateOnExit _1(Small, *this), _2(Big, *this);
444   if (TP.hasError())
445     return false;
446   bool Changed = false;
447 
448   if (Small.empty())
449     Changed |= EnforceAny(Small);
450   if (Big.empty())
451     Changed |= EnforceAny(Big);
452 
453   assert(Small.hasDefault() && Big.hasDefault());
454 
455   std::vector<unsigned> Modes = union_modes(Small, Big);
456 
457   // 1. Only allow integer or floating point types and make sure that
458   //    both sides are both integer or both floating point.
459   // 2. Make sure that either both sides have vector types, or neither
460   //    of them does.
461   for (unsigned M : Modes) {
462     TypeSetByHwMode::SetType &S = Small.get(M);
463     TypeSetByHwMode::SetType &B = Big.get(M);
464 
465     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
466       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
467       Changed |= berase_if(S, NotInt) |
468                  berase_if(B, NotInt);
469     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
470       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
471       Changed |= berase_if(S, NotFP) |
472                  berase_if(B, NotFP);
473     } else if (S.empty() || B.empty()) {
474       Changed = !S.empty() || !B.empty();
475       S.clear();
476       B.clear();
477     } else {
478       TP.error("Incompatible types");
479       return Changed;
480     }
481 
482     if (none_of(S, isVector) || none_of(B, isVector)) {
483       Changed |= berase_if(S, isVector) |
484                  berase_if(B, isVector);
485     }
486   }
487 
488   auto LT = [](MVT A, MVT B) -> bool {
489     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
490            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
491             A.getSizeInBits() < B.getSizeInBits());
492   };
493   auto LE = [](MVT A, MVT B) -> bool {
494     // This function is used when removing elements: when a vector is compared
495     // to a non-vector, it should return false (to avoid removal).
496     if (A.isVector() != B.isVector())
497       return false;
498 
499     // Note on the < comparison below:
500     // X86 has patterns like
501     //   (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
502     // where the truncated vector is given a type v16i8, while the source
503     // vector has type v4i32. They both have the same size in bits.
504     // The minimal type in the result is obviously v16i8, and when we remove
505     // all types from the source that are smaller-or-equal than v8i16, the
506     // only source type would also be removed (since it's equal in size).
507     return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
508            A.getSizeInBits() < B.getSizeInBits();
509   };
510 
511   for (unsigned M : Modes) {
512     TypeSetByHwMode::SetType &S = Small.get(M);
513     TypeSetByHwMode::SetType &B = Big.get(M);
514     // MinS = min scalar in Small, remove all scalars from Big that are
515     // smaller-or-equal than MinS.
516     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
517     if (MinS != S.end())
518       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
519 
520     // MaxS = max scalar in Big, remove all scalars from Small that are
521     // larger than MaxS.
522     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
523     if (MaxS != B.end())
524       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
525 
526     // MinV = min vector in Small, remove all vectors from Big that are
527     // smaller-or-equal than MinV.
528     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
529     if (MinV != S.end())
530       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
531 
532     // MaxV = max vector in Big, remove all vectors from Small that are
533     // larger than MaxV.
534     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
535     if (MaxV != B.end())
536       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
537   }
538 
539   return Changed;
540 }
541 
542 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
543 ///    for each type U in Elem, U is a scalar type.
544 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
545 ///    type T in Vec, such that U is the element type of T.
EnforceVectorEltTypeIs(TypeSetByHwMode & Vec,TypeSetByHwMode & Elem)546 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
547                                        TypeSetByHwMode &Elem) {
548   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
549   if (TP.hasError())
550     return false;
551   bool Changed = false;
552 
553   if (Vec.empty())
554     Changed |= EnforceVector(Vec);
555   if (Elem.empty())
556     Changed |= EnforceScalar(Elem);
557 
558   for (unsigned M : union_modes(Vec, Elem)) {
559     TypeSetByHwMode::SetType &V = Vec.get(M);
560     TypeSetByHwMode::SetType &E = Elem.get(M);
561 
562     Changed |= berase_if(V, isScalar);  // Scalar = !vector
563     Changed |= berase_if(E, isVector);  // Vector = !scalar
564     assert(!V.empty() && !E.empty());
565 
566     SmallSet<MVT,4> VT, ST;
567     // Collect element types from the "vector" set.
568     for (MVT T : V)
569       VT.insert(T.getVectorElementType());
570     // Collect scalar types from the "element" set.
571     for (MVT T : E)
572       ST.insert(T);
573 
574     // Remove from V all (vector) types whose element type is not in S.
575     Changed |= berase_if(V, [&ST](MVT T) -> bool {
576                               return !ST.count(T.getVectorElementType());
577                             });
578     // Remove from E all (scalar) types, for which there is no corresponding
579     // type in V.
580     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
581   }
582 
583   return Changed;
584 }
585 
EnforceVectorEltTypeIs(TypeSetByHwMode & Vec,const ValueTypeByHwMode & VVT)586 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
587                                        const ValueTypeByHwMode &VVT) {
588   TypeSetByHwMode Tmp(VVT);
589   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
590   return EnforceVectorEltTypeIs(Vec, Tmp);
591 }
592 
593 /// Ensure that for each type T in Sub, T is a vector type, and there
594 /// exists a type U in Vec such that U is a vector type with the same
595 /// element type as T and at least as many elements as T.
EnforceVectorSubVectorTypeIs(TypeSetByHwMode & Vec,TypeSetByHwMode & Sub)596 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
597                                              TypeSetByHwMode &Sub) {
598   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
599   if (TP.hasError())
600     return false;
601 
602   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
603   auto IsSubVec = [](MVT B, MVT P) -> bool {
604     if (!B.isVector() || !P.isVector())
605       return false;
606     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
607     // but until there are obvious use-cases for this, keep the
608     // types separate.
609     if (B.isScalableVector() != P.isScalableVector())
610       return false;
611     if (B.getVectorElementType() != P.getVectorElementType())
612       return false;
613     return B.getVectorNumElements() < P.getVectorNumElements();
614   };
615 
616   /// Return true if S has no element (vector type) that T is a sub-vector of,
617   /// i.e. has the same element type as T and more elements.
618   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
619     for (const auto &I : S)
620       if (IsSubVec(T, I))
621         return false;
622     return true;
623   };
624 
625   /// Return true if S has no element (vector type) that T is a super-vector
626   /// of, i.e. has the same element type as T and fewer elements.
627   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628     for (const auto &I : S)
629       if (IsSubVec(I, T))
630         return false;
631     return true;
632   };
633 
634   bool Changed = false;
635 
636   if (Vec.empty())
637     Changed |= EnforceVector(Vec);
638   if (Sub.empty())
639     Changed |= EnforceVector(Sub);
640 
641   for (unsigned M : union_modes(Vec, Sub)) {
642     TypeSetByHwMode::SetType &S = Sub.get(M);
643     TypeSetByHwMode::SetType &V = Vec.get(M);
644 
645     Changed |= berase_if(S, isScalar);
646 
647     // Erase all types from S that are not sub-vectors of a type in V.
648     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
649 
650     // Erase all types from V that are not super-vectors of a type in S.
651     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
652   }
653 
654   return Changed;
655 }
656 
657 /// 1. Ensure that V has a scalar type iff W has a scalar type.
658 /// 2. Ensure that for each vector type T in V, there exists a vector
659 ///    type U in W, such that T and U have the same number of elements.
660 /// 3. Ensure that for each vector type U in W, there exists a vector
661 ///    type T in V, such that T and U have the same number of elements
662 ///    (reverse of 2).
EnforceSameNumElts(TypeSetByHwMode & V,TypeSetByHwMode & W)663 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
664   ValidateOnExit _1(V, *this), _2(W, *this);
665   if (TP.hasError())
666     return false;
667 
668   bool Changed = false;
669   if (V.empty())
670     Changed |= EnforceAny(V);
671   if (W.empty())
672     Changed |= EnforceAny(W);
673 
674   // An actual vector type cannot have 0 elements, so we can treat scalars
675   // as zero-length vectors. This way both vectors and scalars can be
676   // processed identically.
677   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
678     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
679   };
680 
681   for (unsigned M : union_modes(V, W)) {
682     TypeSetByHwMode::SetType &VS = V.get(M);
683     TypeSetByHwMode::SetType &WS = W.get(M);
684 
685     SmallSet<unsigned,2> VN, WN;
686     for (MVT T : VS)
687       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
688     for (MVT T : WS)
689       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
690 
691     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
692     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
693   }
694   return Changed;
695 }
696 
697 /// 1. Ensure that for each type T in A, there exists a type U in B,
698 ///    such that T and U have equal size in bits.
699 /// 2. Ensure that for each type U in B, there exists a type T in A
700 ///    such that T and U have equal size in bits (reverse of 1).
EnforceSameSize(TypeSetByHwMode & A,TypeSetByHwMode & B)701 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
702   ValidateOnExit _1(A, *this), _2(B, *this);
703   if (TP.hasError())
704     return false;
705   bool Changed = false;
706   if (A.empty())
707     Changed |= EnforceAny(A);
708   if (B.empty())
709     Changed |= EnforceAny(B);
710 
711   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
712     return !Sizes.count(T.getSizeInBits());
713   };
714 
715   for (unsigned M : union_modes(A, B)) {
716     TypeSetByHwMode::SetType &AS = A.get(M);
717     TypeSetByHwMode::SetType &BS = B.get(M);
718     SmallSet<unsigned,2> AN, BN;
719 
720     for (MVT T : AS)
721       AN.insert(T.getSizeInBits());
722     for (MVT T : BS)
723       BN.insert(T.getSizeInBits());
724 
725     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
726     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
727   }
728 
729   return Changed;
730 }
731 
expandOverloads(TypeSetByHwMode & VTS)732 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
733   ValidateOnExit _1(VTS, *this);
734   TypeSetByHwMode Legal = getLegalTypes();
735   bool HaveLegalDef = Legal.hasDefault();
736 
737   for (auto &I : VTS) {
738     unsigned M = I.first;
739     if (!Legal.hasMode(M) && !HaveLegalDef) {
740       TP.error("Invalid mode " + Twine(M));
741       return;
742     }
743     expandOverloads(I.second, Legal.get(M));
744   }
745 }
746 
expandOverloads(TypeSetByHwMode::SetType & Out,const TypeSetByHwMode::SetType & Legal)747 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
748                                 const TypeSetByHwMode::SetType &Legal) {
749   std::set<MVT> Ovs;
750   for (MVT T : Out) {
751     if (!T.isOverloaded())
752       continue;
753 
754     Ovs.insert(T);
755     // MachineValueTypeSet allows iteration and erasing.
756     Out.erase(T);
757   }
758 
759   for (MVT Ov : Ovs) {
760     switch (Ov.SimpleTy) {
761       case MVT::iPTRAny:
762         Out.insert(MVT::iPTR);
763         return;
764       case MVT::iAny:
765         for (MVT T : MVT::integer_valuetypes())
766           if (Legal.count(T))
767             Out.insert(T);
768         for (MVT T : MVT::integer_vector_valuetypes())
769           if (Legal.count(T))
770             Out.insert(T);
771         return;
772       case MVT::fAny:
773         for (MVT T : MVT::fp_valuetypes())
774           if (Legal.count(T))
775             Out.insert(T);
776         for (MVT T : MVT::fp_vector_valuetypes())
777           if (Legal.count(T))
778             Out.insert(T);
779         return;
780       case MVT::vAny:
781         for (MVT T : MVT::vector_valuetypes())
782           if (Legal.count(T))
783             Out.insert(T);
784         return;
785       case MVT::Any:
786         for (MVT T : MVT::all_valuetypes())
787           if (Legal.count(T))
788             Out.insert(T);
789         return;
790       default:
791         break;
792     }
793   }
794 }
795 
getLegalTypes()796 TypeSetByHwMode TypeInfer::getLegalTypes() {
797   if (!LegalTypesCached) {
798     // Stuff all types from all modes into the default mode.
799     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
800     for (const auto &I : LTS)
801       LegalCache.insert(I.second);
802     LegalTypesCached = true;
803   }
804   TypeSetByHwMode VTS;
805   VTS.getOrCreate(DefaultMode) = LegalCache;
806   return VTS;
807 }
808 
809 #ifndef NDEBUG
~ValidateOnExit()810 TypeInfer::ValidateOnExit::~ValidateOnExit() {
811   if (Infer.Validate && !VTS.validate()) {
812     dbgs() << "Type set is empty for each HW mode:\n"
813               "possible type contradiction in the pattern below "
814               "(use -print-records with llvm-tblgen to see all "
815               "expanded records).\n";
816     Infer.TP.dump();
817     llvm_unreachable(nullptr);
818   }
819 }
820 #endif
821 
822 //===----------------------------------------------------------------------===//
823 // TreePredicateFn Implementation
824 //===----------------------------------------------------------------------===//
825 
826 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern * N)827 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
828   assert(
829       (!hasPredCode() || !hasImmCode()) &&
830       ".td file corrupt: can't have a node predicate *and* an imm predicate");
831 }
832 
hasPredCode() const833 bool TreePredicateFn::hasPredCode() const {
834   return isLoad() || isStore() || isAtomic() ||
835          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
836 }
837 
getPredCode() const838 std::string TreePredicateFn::getPredCode() const {
839   std::string Code = "";
840 
841   if (!isLoad() && !isStore() && !isAtomic()) {
842     Record *MemoryVT = getMemoryVT();
843 
844     if (MemoryVT)
845       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
846                       "MemoryVT requires IsLoad or IsStore");
847   }
848 
849   if (!isLoad() && !isStore()) {
850     if (isUnindexed())
851       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
852                       "IsUnindexed requires IsLoad or IsStore");
853 
854     Record *ScalarMemoryVT = getScalarMemoryVT();
855 
856     if (ScalarMemoryVT)
857       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
858                       "ScalarMemoryVT requires IsLoad or IsStore");
859   }
860 
861   if (isLoad() + isStore() + isAtomic() > 1)
862     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
863                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
864 
865   if (isLoad()) {
866     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
867         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
868         getScalarMemoryVT() == nullptr)
869       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870                       "IsLoad cannot be used by itself");
871   } else {
872     if (isNonExtLoad())
873       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
874                       "IsNonExtLoad requires IsLoad");
875     if (isAnyExtLoad())
876       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
877                       "IsAnyExtLoad requires IsLoad");
878     if (isSignExtLoad())
879       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
880                       "IsSignExtLoad requires IsLoad");
881     if (isZeroExtLoad())
882       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
883                       "IsZeroExtLoad requires IsLoad");
884   }
885 
886   if (isStore()) {
887     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
888         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
889       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
890                       "IsStore cannot be used by itself");
891   } else {
892     if (isNonTruncStore())
893       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
894                       "IsNonTruncStore requires IsStore");
895     if (isTruncStore())
896       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
897                       "IsTruncStore requires IsStore");
898   }
899 
900   if (isAtomic()) {
901     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
902         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
903         !isAtomicOrderingAcquireRelease() &&
904         !isAtomicOrderingSequentiallyConsistent() &&
905         !isAtomicOrderingAcquireOrStronger() &&
906         !isAtomicOrderingReleaseOrStronger() &&
907         !isAtomicOrderingWeakerThanAcquire() &&
908         !isAtomicOrderingWeakerThanRelease())
909       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910                       "IsAtomic cannot be used by itself");
911   } else {
912     if (isAtomicOrderingMonotonic())
913       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
914                       "IsAtomicOrderingMonotonic requires IsAtomic");
915     if (isAtomicOrderingAcquire())
916       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
917                       "IsAtomicOrderingAcquire requires IsAtomic");
918     if (isAtomicOrderingRelease())
919       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
920                       "IsAtomicOrderingRelease requires IsAtomic");
921     if (isAtomicOrderingAcquireRelease())
922       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
923                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
924     if (isAtomicOrderingSequentiallyConsistent())
925       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
926                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
927     if (isAtomicOrderingAcquireOrStronger())
928       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
929                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
930     if (isAtomicOrderingReleaseOrStronger())
931       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
932                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
933     if (isAtomicOrderingWeakerThanAcquire())
934       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
936   }
937 
938   if (isLoad() || isStore() || isAtomic()) {
939     StringRef SDNodeName =
940         isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
941 
942     Record *MemoryVT = getMemoryVT();
943 
944     if (MemoryVT)
945       Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
946                MemoryVT->getName() + ") return false;\n")
947                   .str();
948   }
949 
950   if (isAtomic() && isAtomicOrderingMonotonic())
951     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
952             "AtomicOrdering::Monotonic) return false;\n";
953   if (isAtomic() && isAtomicOrderingAcquire())
954     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
955             "AtomicOrdering::Acquire) return false;\n";
956   if (isAtomic() && isAtomicOrderingRelease())
957     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
958             "AtomicOrdering::Release) return false;\n";
959   if (isAtomic() && isAtomicOrderingAcquireRelease())
960     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
961             "AtomicOrdering::AcquireRelease) return false;\n";
962   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
963     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
964             "AtomicOrdering::SequentiallyConsistent) return false;\n";
965 
966   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
967     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
968             "return false;\n";
969   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
970     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
971             "return false;\n";
972 
973   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
974     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
975             "return false;\n";
976   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
977     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
978             "return false;\n";
979 
980   if (isLoad() || isStore()) {
981     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
982 
983     if (isUnindexed())
984       Code += ("if (cast<" + SDNodeName +
985                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
986                "return false;\n")
987                   .str();
988 
989     if (isLoad()) {
990       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
991            isZeroExtLoad()) > 1)
992         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
994                         "IsZeroExtLoad are mutually exclusive");
995       if (isNonExtLoad())
996         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
997                 "ISD::NON_EXTLOAD) return false;\n";
998       if (isAnyExtLoad())
999         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1000                 "return false;\n";
1001       if (isSignExtLoad())
1002         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1003                 "return false;\n";
1004       if (isZeroExtLoad())
1005         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1006                 "return false;\n";
1007     } else {
1008       if ((isNonTruncStore() + isTruncStore()) > 1)
1009         PrintFatalError(
1010             getOrigPatFragRecord()->getRecord()->getLoc(),
1011             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1012       if (isNonTruncStore())
1013         Code +=
1014             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1015       if (isTruncStore())
1016         Code +=
1017             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1018     }
1019 
1020     Record *ScalarMemoryVT = getScalarMemoryVT();
1021 
1022     if (ScalarMemoryVT)
1023       Code += ("if (cast<" + SDNodeName +
1024                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1025                ScalarMemoryVT->getName() + ") return false;\n")
1026                   .str();
1027   }
1028 
1029   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1030 
1031   Code += PredicateCode;
1032 
1033   if (PredicateCode.empty() && !Code.empty())
1034     Code += "return true;\n";
1035 
1036   return Code;
1037 }
1038 
hasImmCode() const1039 bool TreePredicateFn::hasImmCode() const {
1040   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1041 }
1042 
getImmCode() const1043 std::string TreePredicateFn::getImmCode() const {
1044   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1045 }
1046 
immCodeUsesAPInt() const1047 bool TreePredicateFn::immCodeUsesAPInt() const {
1048   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1049 }
1050 
immCodeUsesAPFloat() const1051 bool TreePredicateFn::immCodeUsesAPFloat() const {
1052   bool Unset;
1053   // The return value will be false when IsAPFloat is unset.
1054   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1055                                                                    Unset);
1056 }
1057 
isPredefinedPredicateEqualTo(StringRef Field,bool Value) const1058 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1059                                                    bool Value) const {
1060   bool Unset;
1061   bool Result =
1062       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1063   if (Unset)
1064     return false;
1065   return Result == Value;
1066 }
isLoad() const1067 bool TreePredicateFn::isLoad() const {
1068   return isPredefinedPredicateEqualTo("IsLoad", true);
1069 }
isStore() const1070 bool TreePredicateFn::isStore() const {
1071   return isPredefinedPredicateEqualTo("IsStore", true);
1072 }
isAtomic() const1073 bool TreePredicateFn::isAtomic() const {
1074   return isPredefinedPredicateEqualTo("IsAtomic", true);
1075 }
isUnindexed() const1076 bool TreePredicateFn::isUnindexed() const {
1077   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1078 }
isNonExtLoad() const1079 bool TreePredicateFn::isNonExtLoad() const {
1080   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1081 }
isAnyExtLoad() const1082 bool TreePredicateFn::isAnyExtLoad() const {
1083   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1084 }
isSignExtLoad() const1085 bool TreePredicateFn::isSignExtLoad() const {
1086   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1087 }
isZeroExtLoad() const1088 bool TreePredicateFn::isZeroExtLoad() const {
1089   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1090 }
isNonTruncStore() const1091 bool TreePredicateFn::isNonTruncStore() const {
1092   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1093 }
isTruncStore() const1094 bool TreePredicateFn::isTruncStore() const {
1095   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1096 }
isAtomicOrderingMonotonic() const1097 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1098   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1099 }
isAtomicOrderingAcquire() const1100 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1101   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1102 }
isAtomicOrderingRelease() const1103 bool TreePredicateFn::isAtomicOrderingRelease() const {
1104   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1105 }
isAtomicOrderingAcquireRelease() const1106 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1107   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1108 }
isAtomicOrderingSequentiallyConsistent() const1109 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1110   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1111                                       true);
1112 }
isAtomicOrderingAcquireOrStronger() const1113 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1114   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1115 }
isAtomicOrderingWeakerThanAcquire() const1116 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1117   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1118 }
isAtomicOrderingReleaseOrStronger() const1119 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1120   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1121 }
isAtomicOrderingWeakerThanRelease() const1122 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1123   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1124 }
getMemoryVT() const1125 Record *TreePredicateFn::getMemoryVT() const {
1126   Record *R = getOrigPatFragRecord()->getRecord();
1127   if (R->isValueUnset("MemoryVT"))
1128     return nullptr;
1129   return R->getValueAsDef("MemoryVT");
1130 }
getScalarMemoryVT() const1131 Record *TreePredicateFn::getScalarMemoryVT() const {
1132   Record *R = getOrigPatFragRecord()->getRecord();
1133   if (R->isValueUnset("ScalarMemoryVT"))
1134     return nullptr;
1135   return R->getValueAsDef("ScalarMemoryVT");
1136 }
hasGISelPredicateCode() const1137 bool TreePredicateFn::hasGISelPredicateCode() const {
1138   return !PatFragRec->getRecord()
1139               ->getValueAsString("GISelPredicateCode")
1140               .empty();
1141 }
getGISelPredicateCode() const1142 std::string TreePredicateFn::getGISelPredicateCode() const {
1143   return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1144 }
1145 
getImmType() const1146 StringRef TreePredicateFn::getImmType() const {
1147   if (immCodeUsesAPInt())
1148     return "const APInt &";
1149   if (immCodeUsesAPFloat())
1150     return "const APFloat &";
1151   return "int64_t";
1152 }
1153 
getImmTypeIdentifier() const1154 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1155   if (immCodeUsesAPInt())
1156     return "APInt";
1157   else if (immCodeUsesAPFloat())
1158     return "APFloat";
1159   return "I64";
1160 }
1161 
1162 /// isAlwaysTrue - Return true if this is a noop predicate.
isAlwaysTrue() const1163 bool TreePredicateFn::isAlwaysTrue() const {
1164   return !hasPredCode() && !hasImmCode();
1165 }
1166 
1167 /// Return the name to use in the generated code to reference this, this is
1168 /// "Predicate_foo" if from a pattern fragment "foo".
getFnName() const1169 std::string TreePredicateFn::getFnName() const {
1170   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1171 }
1172 
1173 /// getCodeToRunOnSDNode - Return the code for the function body that
1174 /// evaluates this predicate.  The argument is expected to be in "Node",
1175 /// not N.  This handles casting and conversion to a concrete node type as
1176 /// appropriate.
getCodeToRunOnSDNode() const1177 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1178   // Handle immediate predicates first.
1179   std::string ImmCode = getImmCode();
1180   if (!ImmCode.empty()) {
1181     if (isLoad())
1182       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1183                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1184     if (isStore())
1185       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1186                       "IsStore cannot be used with ImmLeaf or its subclasses");
1187     if (isUnindexed())
1188       PrintFatalError(
1189           getOrigPatFragRecord()->getRecord()->getLoc(),
1190           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1191     if (isNonExtLoad())
1192       PrintFatalError(
1193           getOrigPatFragRecord()->getRecord()->getLoc(),
1194           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1195     if (isAnyExtLoad())
1196       PrintFatalError(
1197           getOrigPatFragRecord()->getRecord()->getLoc(),
1198           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1199     if (isSignExtLoad())
1200       PrintFatalError(
1201           getOrigPatFragRecord()->getRecord()->getLoc(),
1202           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1203     if (isZeroExtLoad())
1204       PrintFatalError(
1205           getOrigPatFragRecord()->getRecord()->getLoc(),
1206           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1207     if (isNonTruncStore())
1208       PrintFatalError(
1209           getOrigPatFragRecord()->getRecord()->getLoc(),
1210           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1211     if (isTruncStore())
1212       PrintFatalError(
1213           getOrigPatFragRecord()->getRecord()->getLoc(),
1214           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1215     if (getMemoryVT())
1216       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1217                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1218     if (getScalarMemoryVT())
1219       PrintFatalError(
1220           getOrigPatFragRecord()->getRecord()->getLoc(),
1221           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1222 
1223     std::string Result = ("    " + getImmType() + " Imm = ").str();
1224     if (immCodeUsesAPFloat())
1225       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1226     else if (immCodeUsesAPInt())
1227       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1228     else
1229       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1230     return Result + ImmCode;
1231   }
1232 
1233   // Handle arbitrary node predicates.
1234   assert(hasPredCode() && "Don't have any predicate code!");
1235   StringRef ClassName;
1236   if (PatFragRec->getOnlyTree()->isLeaf())
1237     ClassName = "SDNode";
1238   else {
1239     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1240     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1241   }
1242   std::string Result;
1243   if (ClassName == "SDNode")
1244     Result = "    SDNode *N = Node;\n";
1245   else
1246     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1247 
1248   return Result + getPredCode();
1249 }
1250 
1251 //===----------------------------------------------------------------------===//
1252 // PatternToMatch implementation
1253 //
1254 
1255 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1256 /// patterns before small ones.  This is used to determine the size of a
1257 /// pattern.
getPatternSize(const TreePatternNode * P,const CodeGenDAGPatterns & CGP)1258 static unsigned getPatternSize(const TreePatternNode *P,
1259                                const CodeGenDAGPatterns &CGP) {
1260   unsigned Size = 3;  // The node itself.
1261   // If the root node is a ConstantSDNode, increases its size.
1262   // e.g. (set R32:$dst, 0).
1263   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1264     Size += 2;
1265 
1266   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1267     Size += AM->getComplexity();
1268     // We don't want to count any children twice, so return early.
1269     return Size;
1270   }
1271 
1272   // If this node has some predicate function that must match, it adds to the
1273   // complexity of this node.
1274   if (!P->getPredicateFns().empty())
1275     ++Size;
1276 
1277   // Count children in the count if they are also nodes.
1278   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1279     const TreePatternNode *Child = P->getChild(i);
1280     if (!Child->isLeaf() && Child->getNumTypes()) {
1281       const TypeSetByHwMode &T0 = Child->getType(0);
1282       // At this point, all variable type sets should be simple, i.e. only
1283       // have a default mode.
1284       if (T0.getMachineValueType() != MVT::Other) {
1285         Size += getPatternSize(Child, CGP);
1286         continue;
1287       }
1288     }
1289     if (Child->isLeaf()) {
1290       if (isa<IntInit>(Child->getLeafValue()))
1291         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1292       else if (Child->getComplexPatternInfo(CGP))
1293         Size += getPatternSize(Child, CGP);
1294       else if (!Child->getPredicateFns().empty())
1295         ++Size;
1296     }
1297   }
1298 
1299   return Size;
1300 }
1301 
1302 /// Compute the complexity metric for the input pattern.  This roughly
1303 /// corresponds to the number of nodes that are covered.
1304 int PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns & CGP) const1305 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1306   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1307 }
1308 
1309 /// getPredicateCheck - Return a single string containing all of this
1310 /// pattern's predicates concatenated with "&&" operators.
1311 ///
getPredicateCheck() const1312 std::string PatternToMatch::getPredicateCheck() const {
1313   SmallVector<const Predicate*,4> PredList;
1314   for (const Predicate &P : Predicates)
1315     PredList.push_back(&P);
1316   llvm::sort(PredList.begin(), PredList.end(), deref<llvm::less>());
1317 
1318   std::string Check;
1319   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1320     if (i != 0)
1321       Check += " && ";
1322     Check += '(' + PredList[i]->getCondString() + ')';
1323   }
1324   return Check;
1325 }
1326 
1327 //===----------------------------------------------------------------------===//
1328 // SDTypeConstraint implementation
1329 //
1330 
SDTypeConstraint(Record * R,const CodeGenHwModes & CGH)1331 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1332   OperandNo = R->getValueAsInt("OperandNum");
1333 
1334   if (R->isSubClassOf("SDTCisVT")) {
1335     ConstraintType = SDTCisVT;
1336     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1337     for (const auto &P : VVT)
1338       if (P.second == MVT::isVoid)
1339         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1340   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1341     ConstraintType = SDTCisPtrTy;
1342   } else if (R->isSubClassOf("SDTCisInt")) {
1343     ConstraintType = SDTCisInt;
1344   } else if (R->isSubClassOf("SDTCisFP")) {
1345     ConstraintType = SDTCisFP;
1346   } else if (R->isSubClassOf("SDTCisVec")) {
1347     ConstraintType = SDTCisVec;
1348   } else if (R->isSubClassOf("SDTCisSameAs")) {
1349     ConstraintType = SDTCisSameAs;
1350     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1351   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1352     ConstraintType = SDTCisVTSmallerThanOp;
1353     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1354       R->getValueAsInt("OtherOperandNum");
1355   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1356     ConstraintType = SDTCisOpSmallerThanOp;
1357     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1358       R->getValueAsInt("BigOperandNum");
1359   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1360     ConstraintType = SDTCisEltOfVec;
1361     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1362   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1363     ConstraintType = SDTCisSubVecOfVec;
1364     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1365       R->getValueAsInt("OtherOpNum");
1366   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1367     ConstraintType = SDTCVecEltisVT;
1368     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1369     for (const auto &P : VVT) {
1370       MVT T = P.second;
1371       if (T.isVector())
1372         PrintFatalError(R->getLoc(),
1373                         "Cannot use vector type as SDTCVecEltisVT");
1374       if (!T.isInteger() && !T.isFloatingPoint())
1375         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1376                                      "as SDTCVecEltisVT");
1377     }
1378   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1379     ConstraintType = SDTCisSameNumEltsAs;
1380     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1381       R->getValueAsInt("OtherOperandNum");
1382   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1383     ConstraintType = SDTCisSameSizeAs;
1384     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1385       R->getValueAsInt("OtherOperandNum");
1386   } else {
1387     PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1388   }
1389 }
1390 
1391 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1392 /// N, and the result number in ResNo.
getOperandNum(unsigned OpNo,TreePatternNode * N,const SDNodeInfo & NodeInfo,unsigned & ResNo)1393 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1394                                       const SDNodeInfo &NodeInfo,
1395                                       unsigned &ResNo) {
1396   unsigned NumResults = NodeInfo.getNumResults();
1397   if (OpNo < NumResults) {
1398     ResNo = OpNo;
1399     return N;
1400   }
1401 
1402   OpNo -= NumResults;
1403 
1404   if (OpNo >= N->getNumChildren()) {
1405     std::string S;
1406     raw_string_ostream OS(S);
1407     OS << "Invalid operand number in type constraint "
1408            << (OpNo+NumResults) << " ";
1409     N->print(OS);
1410     PrintFatalError(OS.str());
1411   }
1412 
1413   return N->getChild(OpNo);
1414 }
1415 
1416 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1417 /// constraint to the nodes operands.  This returns true if it makes a
1418 /// change, false otherwise.  If a type contradiction is found, flag an error.
ApplyTypeConstraint(TreePatternNode * N,const SDNodeInfo & NodeInfo,TreePattern & TP) const1419 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1420                                            const SDNodeInfo &NodeInfo,
1421                                            TreePattern &TP) const {
1422   if (TP.hasError())
1423     return false;
1424 
1425   unsigned ResNo = 0; // The result number being referenced.
1426   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1427   TypeInfer &TI = TP.getInfer();
1428 
1429   switch (ConstraintType) {
1430   case SDTCisVT:
1431     // Operand must be a particular type.
1432     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1433   case SDTCisPtrTy:
1434     // Operand must be same as target pointer type.
1435     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1436   case SDTCisInt:
1437     // Require it to be one of the legal integer VTs.
1438      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1439   case SDTCisFP:
1440     // Require it to be one of the legal fp VTs.
1441     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1442   case SDTCisVec:
1443     // Require it to be one of the legal vector VTs.
1444     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1445   case SDTCisSameAs: {
1446     unsigned OResNo = 0;
1447     TreePatternNode *OtherNode =
1448       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1449     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1450            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1451   }
1452   case SDTCisVTSmallerThanOp: {
1453     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1454     // have an integer type that is smaller than the VT.
1455     if (!NodeToApply->isLeaf() ||
1456         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1457         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1458                ->isSubClassOf("ValueType")) {
1459       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1460       return false;
1461     }
1462     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1463     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1464     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1465     TypeSetByHwMode TypeListTmp(VVT);
1466 
1467     unsigned OResNo = 0;
1468     TreePatternNode *OtherNode =
1469       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1470                     OResNo);
1471 
1472     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1473   }
1474   case SDTCisOpSmallerThanOp: {
1475     unsigned BResNo = 0;
1476     TreePatternNode *BigOperand =
1477       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1478                     BResNo);
1479     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1480                                  BigOperand->getExtType(BResNo));
1481   }
1482   case SDTCisEltOfVec: {
1483     unsigned VResNo = 0;
1484     TreePatternNode *VecOperand =
1485       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1486                     VResNo);
1487     // Filter vector types out of VecOperand that don't have the right element
1488     // type.
1489     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1490                                      NodeToApply->getExtType(ResNo));
1491   }
1492   case SDTCisSubVecOfVec: {
1493     unsigned VResNo = 0;
1494     TreePatternNode *BigVecOperand =
1495       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1496                     VResNo);
1497 
1498     // Filter vector types out of BigVecOperand that don't have the
1499     // right subvector type.
1500     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1501                                            NodeToApply->getExtType(ResNo));
1502   }
1503   case SDTCVecEltisVT: {
1504     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1505   }
1506   case SDTCisSameNumEltsAs: {
1507     unsigned OResNo = 0;
1508     TreePatternNode *OtherNode =
1509       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1510                     N, NodeInfo, OResNo);
1511     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1512                                  NodeToApply->getExtType(ResNo));
1513   }
1514   case SDTCisSameSizeAs: {
1515     unsigned OResNo = 0;
1516     TreePatternNode *OtherNode =
1517       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1518                     N, NodeInfo, OResNo);
1519     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1520                               NodeToApply->getExtType(ResNo));
1521   }
1522   }
1523   llvm_unreachable("Invalid ConstraintType!");
1524 }
1525 
1526 // Update the node type to match an instruction operand or result as specified
1527 // in the ins or outs lists on the instruction definition. Return true if the
1528 // type was actually changed.
UpdateNodeTypeFromInst(unsigned ResNo,Record * Operand,TreePattern & TP)1529 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1530                                              Record *Operand,
1531                                              TreePattern &TP) {
1532   // The 'unknown' operand indicates that types should be inferred from the
1533   // context.
1534   if (Operand->isSubClassOf("unknown_class"))
1535     return false;
1536 
1537   // The Operand class specifies a type directly.
1538   if (Operand->isSubClassOf("Operand")) {
1539     Record *R = Operand->getValueAsDef("Type");
1540     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1541     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1542   }
1543 
1544   // PointerLikeRegClass has a type that is determined at runtime.
1545   if (Operand->isSubClassOf("PointerLikeRegClass"))
1546     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1547 
1548   // Both RegisterClass and RegisterOperand operands derive their types from a
1549   // register class def.
1550   Record *RC = nullptr;
1551   if (Operand->isSubClassOf("RegisterClass"))
1552     RC = Operand;
1553   else if (Operand->isSubClassOf("RegisterOperand"))
1554     RC = Operand->getValueAsDef("RegClass");
1555 
1556   assert(RC && "Unknown operand type");
1557   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1558   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1559 }
1560 
ContainsUnresolvedType(TreePattern & TP) const1561 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1562   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1563     if (!TP.getInfer().isConcrete(Types[i], true))
1564       return true;
1565   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1566     if (getChild(i)->ContainsUnresolvedType(TP))
1567       return true;
1568   return false;
1569 }
1570 
hasProperTypeByHwMode() const1571 bool TreePatternNode::hasProperTypeByHwMode() const {
1572   for (const TypeSetByHwMode &S : Types)
1573     if (!S.isDefaultOnly())
1574       return true;
1575   for (const TreePatternNodePtr &C : Children)
1576     if (C->hasProperTypeByHwMode())
1577       return true;
1578   return false;
1579 }
1580 
hasPossibleType() const1581 bool TreePatternNode::hasPossibleType() const {
1582   for (const TypeSetByHwMode &S : Types)
1583     if (!S.isPossible())
1584       return false;
1585   for (const TreePatternNodePtr &C : Children)
1586     if (!C->hasPossibleType())
1587       return false;
1588   return true;
1589 }
1590 
setDefaultMode(unsigned Mode)1591 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1592   for (TypeSetByHwMode &S : Types) {
1593     S.makeSimple(Mode);
1594     // Check if the selected mode had a type conflict.
1595     if (S.get(DefaultMode).empty())
1596       return false;
1597   }
1598   for (const TreePatternNodePtr &C : Children)
1599     if (!C->setDefaultMode(Mode))
1600       return false;
1601   return true;
1602 }
1603 
1604 //===----------------------------------------------------------------------===//
1605 // SDNodeInfo implementation
1606 //
SDNodeInfo(Record * R,const CodeGenHwModes & CGH)1607 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1608   EnumName    = R->getValueAsString("Opcode");
1609   SDClassName = R->getValueAsString("SDClass");
1610   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1611   NumResults = TypeProfile->getValueAsInt("NumResults");
1612   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1613 
1614   // Parse the properties.
1615   Properties = parseSDPatternOperatorProperties(R);
1616 
1617   // Parse the type constraints.
1618   std::vector<Record*> ConstraintList =
1619     TypeProfile->getValueAsListOfDefs("Constraints");
1620   for (Record *R : ConstraintList)
1621     TypeConstraints.emplace_back(R, CGH);
1622 }
1623 
1624 /// getKnownType - If the type constraints on this node imply a fixed type
1625 /// (e.g. all stores return void, etc), then return it as an
1626 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
getKnownType(unsigned ResNo) const1627 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1628   unsigned NumResults = getNumResults();
1629   assert(NumResults <= 1 &&
1630          "We only work with nodes with zero or one result so far!");
1631   assert(ResNo == 0 && "Only handles single result nodes so far");
1632 
1633   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1634     // Make sure that this applies to the correct node result.
1635     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1636       continue;
1637 
1638     switch (Constraint.ConstraintType) {
1639     default: break;
1640     case SDTypeConstraint::SDTCisVT:
1641       if (Constraint.VVT.isSimple())
1642         return Constraint.VVT.getSimple().SimpleTy;
1643       break;
1644     case SDTypeConstraint::SDTCisPtrTy:
1645       return MVT::iPTR;
1646     }
1647   }
1648   return MVT::Other;
1649 }
1650 
1651 //===----------------------------------------------------------------------===//
1652 // TreePatternNode implementation
1653 //
1654 
GetNumNodeResults(Record * Operator,CodeGenDAGPatterns & CDP)1655 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1656   if (Operator->getName() == "set" ||
1657       Operator->getName() == "implicit")
1658     return 0;  // All return nothing.
1659 
1660   if (Operator->isSubClassOf("Intrinsic"))
1661     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1662 
1663   if (Operator->isSubClassOf("SDNode"))
1664     return CDP.getSDNodeInfo(Operator).getNumResults();
1665 
1666   if (Operator->isSubClassOf("PatFrags")) {
1667     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1668     // the forward reference case where one pattern fragment references another
1669     // before it is processed.
1670     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1671       // The number of results of a fragment with alternative records is the
1672       // maximum number of results across all alternatives.
1673       unsigned NumResults = 0;
1674       for (auto T : PFRec->getTrees())
1675         NumResults = std::max(NumResults, T->getNumTypes());
1676       return NumResults;
1677     }
1678 
1679     ListInit *LI = Operator->getValueAsListInit("Fragments");
1680     assert(LI && "Invalid Fragment");
1681     unsigned NumResults = 0;
1682     for (Init *I : LI->getValues()) {
1683       Record *Op = nullptr;
1684       if (DagInit *Dag = dyn_cast<DagInit>(I))
1685         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1686           Op = DI->getDef();
1687       assert(Op && "Invalid Fragment");
1688       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1689     }
1690     return NumResults;
1691   }
1692 
1693   if (Operator->isSubClassOf("Instruction")) {
1694     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1695 
1696     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1697 
1698     // Subtract any defaulted outputs.
1699     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1700       Record *OperandNode = InstInfo.Operands[i].Rec;
1701 
1702       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1703           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1704         --NumDefsToAdd;
1705     }
1706 
1707     // Add on one implicit def if it has a resolvable type.
1708     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1709       ++NumDefsToAdd;
1710     return NumDefsToAdd;
1711   }
1712 
1713   if (Operator->isSubClassOf("SDNodeXForm"))
1714     return 1;  // FIXME: Generalize SDNodeXForm
1715 
1716   if (Operator->isSubClassOf("ValueType"))
1717     return 1;  // A type-cast of one result.
1718 
1719   if (Operator->isSubClassOf("ComplexPattern"))
1720     return 1;
1721 
1722   errs() << *Operator;
1723   PrintFatalError("Unhandled node in GetNumNodeResults");
1724 }
1725 
print(raw_ostream & OS) const1726 void TreePatternNode::print(raw_ostream &OS) const {
1727   if (isLeaf())
1728     OS << *getLeafValue();
1729   else
1730     OS << '(' << getOperator()->getName();
1731 
1732   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1733     OS << ':';
1734     getExtType(i).writeToStream(OS);
1735   }
1736 
1737   if (!isLeaf()) {
1738     if (getNumChildren() != 0) {
1739       OS << " ";
1740       getChild(0)->print(OS);
1741       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1742         OS << ", ";
1743         getChild(i)->print(OS);
1744       }
1745     }
1746     OS << ")";
1747   }
1748 
1749   for (const TreePredicateFn &Pred : PredicateFns)
1750     OS << "<<P:" << Pred.getFnName() << ">>";
1751   if (TransformFn)
1752     OS << "<<X:" << TransformFn->getName() << ">>";
1753   if (!getName().empty())
1754     OS << ":$" << getName();
1755 
1756 }
dump() const1757 void TreePatternNode::dump() const {
1758   print(errs());
1759 }
1760 
1761 /// isIsomorphicTo - Return true if this node is recursively
1762 /// isomorphic to the specified node.  For this comparison, the node's
1763 /// entire state is considered. The assigned name is ignored, since
1764 /// nodes with differing names are considered isomorphic. However, if
1765 /// the assigned name is present in the dependent variable set, then
1766 /// the assigned name is considered significant and the node is
1767 /// isomorphic if the names match.
isIsomorphicTo(const TreePatternNode * N,const MultipleUseVarSet & DepVars) const1768 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1769                                      const MultipleUseVarSet &DepVars) const {
1770   if (N == this) return true;
1771   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1772       getPredicateFns() != N->getPredicateFns() ||
1773       getTransformFn() != N->getTransformFn())
1774     return false;
1775 
1776   if (isLeaf()) {
1777     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1778       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1779         return ((DI->getDef() == NDI->getDef())
1780                 && (DepVars.find(getName()) == DepVars.end()
1781                     || getName() == N->getName()));
1782       }
1783     }
1784     return getLeafValue() == N->getLeafValue();
1785   }
1786 
1787   if (N->getOperator() != getOperator() ||
1788       N->getNumChildren() != getNumChildren()) return false;
1789   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1790     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1791       return false;
1792   return true;
1793 }
1794 
1795 /// clone - Make a copy of this tree and all of its children.
1796 ///
clone() const1797 TreePatternNodePtr TreePatternNode::clone() const {
1798   TreePatternNodePtr New;
1799   if (isLeaf()) {
1800     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1801   } else {
1802     std::vector<TreePatternNodePtr> CChildren;
1803     CChildren.reserve(Children.size());
1804     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1805       CChildren.push_back(getChild(i)->clone());
1806     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1807                                             getNumTypes());
1808   }
1809   New->setName(getName());
1810   New->Types = Types;
1811   New->setPredicateFns(getPredicateFns());
1812   New->setTransformFn(getTransformFn());
1813   return New;
1814 }
1815 
1816 /// RemoveAllTypes - Recursively strip all the types of this tree.
RemoveAllTypes()1817 void TreePatternNode::RemoveAllTypes() {
1818   // Reset to unknown type.
1819   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1820   if (isLeaf()) return;
1821   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1822     getChild(i)->RemoveAllTypes();
1823 }
1824 
1825 
1826 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1827 /// with actual values specified by ArgMap.
SubstituteFormalArguments(std::map<std::string,TreePatternNodePtr> & ArgMap)1828 void TreePatternNode::SubstituteFormalArguments(
1829     std::map<std::string, TreePatternNodePtr> &ArgMap) {
1830   if (isLeaf()) return;
1831 
1832   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1833     TreePatternNode *Child = getChild(i);
1834     if (Child->isLeaf()) {
1835       Init *Val = Child->getLeafValue();
1836       // Note that, when substituting into an output pattern, Val might be an
1837       // UnsetInit.
1838       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1839           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1840         // We found a use of a formal argument, replace it with its value.
1841         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1842         assert(NewChild && "Couldn't find formal argument!");
1843         assert((Child->getPredicateFns().empty() ||
1844                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1845                "Non-empty child predicate clobbered!");
1846         setChild(i, std::move(NewChild));
1847       }
1848     } else {
1849       getChild(i)->SubstituteFormalArguments(ArgMap);
1850     }
1851   }
1852 }
1853 
1854 
1855 /// InlinePatternFragments - If this pattern refers to any pattern
1856 /// fragments, return the set of inlined versions (this can be more than
1857 /// one if a PatFrags record has multiple alternatives).
InlinePatternFragments(TreePatternNodePtr T,TreePattern & TP,std::vector<TreePatternNodePtr> & OutAlternatives)1858 void TreePatternNode::InlinePatternFragments(
1859   TreePatternNodePtr T, TreePattern &TP,
1860   std::vector<TreePatternNodePtr> &OutAlternatives) {
1861 
1862   if (TP.hasError())
1863     return;
1864 
1865   if (isLeaf()) {
1866     OutAlternatives.push_back(T);  // nothing to do.
1867     return;
1868   }
1869 
1870   Record *Op = getOperator();
1871 
1872   if (!Op->isSubClassOf("PatFrags")) {
1873     if (getNumChildren() == 0) {
1874       OutAlternatives.push_back(T);
1875       return;
1876     }
1877 
1878     // Recursively inline children nodes.
1879     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1880     ChildAlternatives.resize(getNumChildren());
1881     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1882       TreePatternNodePtr Child = getChildShared(i);
1883       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1884       // If there are no alternatives for any child, there are no
1885       // alternatives for this expression as whole.
1886       if (ChildAlternatives[i].empty())
1887         return;
1888 
1889       for (auto NewChild : ChildAlternatives[i])
1890         assert((Child->getPredicateFns().empty() ||
1891                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1892                "Non-empty child predicate clobbered!");
1893     }
1894 
1895     // The end result is an all-pairs construction of the resultant pattern.
1896     std::vector<unsigned> Idxs;
1897     Idxs.resize(ChildAlternatives.size());
1898     bool NotDone;
1899     do {
1900       // Create the variant and add it to the output list.
1901       std::vector<TreePatternNodePtr> NewChildren;
1902       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1903         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1904       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
1905           getOperator(), std::move(NewChildren), getNumTypes());
1906 
1907       // Copy over properties.
1908       R->setName(getName());
1909       R->setPredicateFns(getPredicateFns());
1910       R->setTransformFn(getTransformFn());
1911       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
1912         R->setType(i, getExtType(i));
1913 
1914       // Register alternative.
1915       OutAlternatives.push_back(R);
1916 
1917       // Increment indices to the next permutation by incrementing the
1918       // indices from last index backward, e.g., generate the sequence
1919       // [0, 0], [0, 1], [1, 0], [1, 1].
1920       int IdxsIdx;
1921       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
1922         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
1923           Idxs[IdxsIdx] = 0;
1924         else
1925           break;
1926       }
1927       NotDone = (IdxsIdx >= 0);
1928     } while (NotDone);
1929 
1930     return;
1931   }
1932 
1933   // Otherwise, we found a reference to a fragment.  First, look up its
1934   // TreePattern record.
1935   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1936 
1937   // Verify that we are passing the right number of operands.
1938   if (Frag->getNumArgs() != Children.size()) {
1939     TP.error("'" + Op->getName() + "' fragment requires " +
1940              Twine(Frag->getNumArgs()) + " operands!");
1941     return;
1942   }
1943 
1944   // Compute the map of formal to actual arguments.
1945   std::map<std::string, TreePatternNodePtr> ArgMap;
1946   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
1947     const TreePatternNodePtr &Child = getChildShared(i);
1948     ArgMap[Frag->getArgName(i)] = Child;
1949   }
1950 
1951   // Loop over all fragment alternatives.
1952   for (auto Alternative : Frag->getTrees()) {
1953     TreePatternNodePtr FragTree = Alternative->clone();
1954 
1955     TreePredicateFn PredFn(Frag);
1956     if (!PredFn.isAlwaysTrue())
1957       FragTree->addPredicateFn(PredFn);
1958 
1959     // Resolve formal arguments to their actual value.
1960     if (Frag->getNumArgs())
1961       FragTree->SubstituteFormalArguments(ArgMap);
1962 
1963     // Transfer types.  Note that the resolved alternative may have fewer
1964     // (but not more) results than the PatFrags node.
1965     FragTree->setName(getName());
1966     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
1967       FragTree->UpdateNodeType(i, getExtType(i), TP);
1968 
1969     // Transfer in the old predicates.
1970     for (const TreePredicateFn &Pred : getPredicateFns())
1971       FragTree->addPredicateFn(Pred);
1972 
1973     // The fragment we inlined could have recursive inlining that is needed.  See
1974     // if there are any pattern fragments in it and inline them as needed.
1975     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
1976   }
1977 }
1978 
1979 /// getImplicitType - Check to see if the specified record has an implicit
1980 /// type which should be applied to it.  This will infer the type of register
1981 /// references from the register file information, for example.
1982 ///
1983 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1984 /// the F8RC register class argument in:
1985 ///
1986 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1987 ///
1988 /// When Unnamed is false, return the type of a named DAG operand such as the
1989 /// GPR:$src operand above.
1990 ///
getImplicitType(Record * R,unsigned ResNo,bool NotRegisters,bool Unnamed,TreePattern & TP)1991 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
1992                                        bool NotRegisters,
1993                                        bool Unnamed,
1994                                        TreePattern &TP) {
1995   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1996 
1997   // Check to see if this is a register operand.
1998   if (R->isSubClassOf("RegisterOperand")) {
1999     assert(ResNo == 0 && "Regoperand ref only has one result!");
2000     if (NotRegisters)
2001       return TypeSetByHwMode(); // Unknown.
2002     Record *RegClass = R->getValueAsDef("RegClass");
2003     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2004     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2005   }
2006 
2007   // Check to see if this is a register or a register class.
2008   if (R->isSubClassOf("RegisterClass")) {
2009     assert(ResNo == 0 && "Regclass ref only has one result!");
2010     // An unnamed register class represents itself as an i32 immediate, for
2011     // example on a COPY_TO_REGCLASS instruction.
2012     if (Unnamed)
2013       return TypeSetByHwMode(MVT::i32);
2014 
2015     // In a named operand, the register class provides the possible set of
2016     // types.
2017     if (NotRegisters)
2018       return TypeSetByHwMode(); // Unknown.
2019     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2020     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2021   }
2022 
2023   if (R->isSubClassOf("PatFrags")) {
2024     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2025     // Pattern fragment types will be resolved when they are inlined.
2026     return TypeSetByHwMode(); // Unknown.
2027   }
2028 
2029   if (R->isSubClassOf("Register")) {
2030     assert(ResNo == 0 && "Registers only produce one result!");
2031     if (NotRegisters)
2032       return TypeSetByHwMode(); // Unknown.
2033     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2034     return TypeSetByHwMode(T.getRegisterVTs(R));
2035   }
2036 
2037   if (R->isSubClassOf("SubRegIndex")) {
2038     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2039     return TypeSetByHwMode(MVT::i32);
2040   }
2041 
2042   if (R->isSubClassOf("ValueType")) {
2043     assert(ResNo == 0 && "This node only has one result!");
2044     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2045     //
2046     //   (sext_inreg GPR:$src, i16)
2047     //                         ~~~
2048     if (Unnamed)
2049       return TypeSetByHwMode(MVT::Other);
2050     // With a name, the ValueType simply provides the type of the named
2051     // variable.
2052     //
2053     //   (sext_inreg i32:$src, i16)
2054     //               ~~~~~~~~
2055     if (NotRegisters)
2056       return TypeSetByHwMode(); // Unknown.
2057     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2058     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2059   }
2060 
2061   if (R->isSubClassOf("CondCode")) {
2062     assert(ResNo == 0 && "This node only has one result!");
2063     // Using a CondCodeSDNode.
2064     return TypeSetByHwMode(MVT::Other);
2065   }
2066 
2067   if (R->isSubClassOf("ComplexPattern")) {
2068     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2069     if (NotRegisters)
2070       return TypeSetByHwMode(); // Unknown.
2071     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2072   }
2073   if (R->isSubClassOf("PointerLikeRegClass")) {
2074     assert(ResNo == 0 && "Regclass can only have one result!");
2075     TypeSetByHwMode VTS(MVT::iPTR);
2076     TP.getInfer().expandOverloads(VTS);
2077     return VTS;
2078   }
2079 
2080   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2081       R->getName() == "zero_reg") {
2082     // Placeholder.
2083     return TypeSetByHwMode(); // Unknown.
2084   }
2085 
2086   if (R->isSubClassOf("Operand")) {
2087     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2088     Record *T = R->getValueAsDef("Type");
2089     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2090   }
2091 
2092   TP.error("Unknown node flavor used in pattern: " + R->getName());
2093   return TypeSetByHwMode(MVT::Other);
2094 }
2095 
2096 
2097 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2098 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2099 const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns & CDP) const2100 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2101   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2102       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2103       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2104     return nullptr;
2105 
2106   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2107   return &CDP.getIntrinsicInfo(IID);
2108 }
2109 
2110 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2111 /// return the ComplexPattern information, otherwise return null.
2112 const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns & CGP) const2113 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2114   Record *Rec;
2115   if (isLeaf()) {
2116     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2117     if (!DI)
2118       return nullptr;
2119     Rec = DI->getDef();
2120   } else
2121     Rec = getOperator();
2122 
2123   if (!Rec->isSubClassOf("ComplexPattern"))
2124     return nullptr;
2125   return &CGP.getComplexPattern(Rec);
2126 }
2127 
getNumMIResults(const CodeGenDAGPatterns & CGP) const2128 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2129   // A ComplexPattern specifically declares how many results it fills in.
2130   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2131     return CP->getNumOperands();
2132 
2133   // If MIOperandInfo is specified, that gives the count.
2134   if (isLeaf()) {
2135     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2136     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2137       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2138       if (MIOps->getNumArgs())
2139         return MIOps->getNumArgs();
2140     }
2141   }
2142 
2143   // Otherwise there is just one result.
2144   return 1;
2145 }
2146 
2147 /// NodeHasProperty - Return true if this node has the specified property.
NodeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const2148 bool TreePatternNode::NodeHasProperty(SDNP Property,
2149                                       const CodeGenDAGPatterns &CGP) const {
2150   if (isLeaf()) {
2151     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2152       return CP->hasProperty(Property);
2153 
2154     return false;
2155   }
2156 
2157   if (Property != SDNPHasChain) {
2158     // The chain proprety is already present on the different intrinsic node
2159     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2160     // on the intrinsic. Anything else is specific to the individual intrinsic.
2161     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2162       return Int->hasProperty(Property);
2163   }
2164 
2165   if (!Operator->isSubClassOf("SDPatternOperator"))
2166     return false;
2167 
2168   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2169 }
2170 
2171 
2172 
2173 
2174 /// TreeHasProperty - Return true if any node in this tree has the specified
2175 /// property.
TreeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const2176 bool TreePatternNode::TreeHasProperty(SDNP Property,
2177                                       const CodeGenDAGPatterns &CGP) const {
2178   if (NodeHasProperty(Property, CGP))
2179     return true;
2180   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2181     if (getChild(i)->TreeHasProperty(Property, CGP))
2182       return true;
2183   return false;
2184 }
2185 
2186 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2187 /// commutative intrinsic.
2188 bool
isCommutativeIntrinsic(const CodeGenDAGPatterns & CDP) const2189 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2190   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2191     return Int->isCommutative;
2192   return false;
2193 }
2194 
isOperandClass(const TreePatternNode * N,StringRef Class)2195 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2196   if (!N->isLeaf())
2197     return N->getOperator()->isSubClassOf(Class);
2198 
2199   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2200   if (DI && DI->getDef()->isSubClassOf(Class))
2201     return true;
2202 
2203   return false;
2204 }
2205 
emitTooManyOperandsError(TreePattern & TP,StringRef InstName,unsigned Expected,unsigned Actual)2206 static void emitTooManyOperandsError(TreePattern &TP,
2207                                      StringRef InstName,
2208                                      unsigned Expected,
2209                                      unsigned Actual) {
2210   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2211            " operands but expected only " + Twine(Expected) + "!");
2212 }
2213 
emitTooFewOperandsError(TreePattern & TP,StringRef InstName,unsigned Actual)2214 static void emitTooFewOperandsError(TreePattern &TP,
2215                                     StringRef InstName,
2216                                     unsigned Actual) {
2217   TP.error("Instruction '" + InstName +
2218            "' expects more than the provided " + Twine(Actual) + " operands!");
2219 }
2220 
2221 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2222 /// this node and its children in the tree.  This returns true if it makes a
2223 /// change, false otherwise.  If a type contradiction is found, flag an error.
ApplyTypeConstraints(TreePattern & TP,bool NotRegisters)2224 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2225   if (TP.hasError())
2226     return false;
2227 
2228   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2229   if (isLeaf()) {
2230     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2231       // If it's a regclass or something else known, include the type.
2232       bool MadeChange = false;
2233       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2234         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2235                                                         NotRegisters,
2236                                                         !hasName(), TP), TP);
2237       return MadeChange;
2238     }
2239 
2240     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2241       assert(Types.size() == 1 && "Invalid IntInit");
2242 
2243       // Int inits are always integers. :)
2244       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2245 
2246       if (!TP.getInfer().isConcrete(Types[0], false))
2247         return MadeChange;
2248 
2249       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2250       for (auto &P : VVT) {
2251         MVT::SimpleValueType VT = P.second.SimpleTy;
2252         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2253           continue;
2254         unsigned Size = MVT(VT).getSizeInBits();
2255         // Make sure that the value is representable for this type.
2256         if (Size >= 32)
2257           continue;
2258         // Check that the value doesn't use more bits than we have. It must
2259         // either be a sign- or zero-extended equivalent of the original.
2260         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2261         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2262             SignBitAndAbove == 1)
2263           continue;
2264 
2265         TP.error("Integer value '" + Twine(II->getValue()) +
2266                  "' is out of range for type '" + getEnumName(VT) + "'!");
2267         break;
2268       }
2269       return MadeChange;
2270     }
2271 
2272     return false;
2273   }
2274 
2275   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2276     bool MadeChange = false;
2277 
2278     // Apply the result type to the node.
2279     unsigned NumRetVTs = Int->IS.RetVTs.size();
2280     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2281 
2282     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2283       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2284 
2285     if (getNumChildren() != NumParamVTs + 1) {
2286       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2287                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2288       return false;
2289     }
2290 
2291     // Apply type info to the intrinsic ID.
2292     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2293 
2294     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2295       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2296 
2297       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2298       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2299       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2300     }
2301     return MadeChange;
2302   }
2303 
2304   if (getOperator()->isSubClassOf("SDNode")) {
2305     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2306 
2307     // Check that the number of operands is sane.  Negative operands -> varargs.
2308     if (NI.getNumOperands() >= 0 &&
2309         getNumChildren() != (unsigned)NI.getNumOperands()) {
2310       TP.error(getOperator()->getName() + " node requires exactly " +
2311                Twine(NI.getNumOperands()) + " operands!");
2312       return false;
2313     }
2314 
2315     bool MadeChange = false;
2316     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2317       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2318     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2319     return MadeChange;
2320   }
2321 
2322   if (getOperator()->isSubClassOf("Instruction")) {
2323     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2324     CodeGenInstruction &InstInfo =
2325       CDP.getTargetInfo().getInstruction(getOperator());
2326 
2327     bool MadeChange = false;
2328 
2329     // Apply the result types to the node, these come from the things in the
2330     // (outs) list of the instruction.
2331     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2332                                         Inst.getNumResults());
2333     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2334       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2335 
2336     // If the instruction has implicit defs, we apply the first one as a result.
2337     // FIXME: This sucks, it should apply all implicit defs.
2338     if (!InstInfo.ImplicitDefs.empty()) {
2339       unsigned ResNo = NumResultsToAdd;
2340 
2341       // FIXME: Generalize to multiple possible types and multiple possible
2342       // ImplicitDefs.
2343       MVT::SimpleValueType VT =
2344         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2345 
2346       if (VT != MVT::Other)
2347         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2348     }
2349 
2350     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2351     // be the same.
2352     if (getOperator()->getName() == "INSERT_SUBREG") {
2353       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2354       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2355       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2356     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2357       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2358       // variadic.
2359 
2360       unsigned NChild = getNumChildren();
2361       if (NChild < 3) {
2362         TP.error("REG_SEQUENCE requires at least 3 operands!");
2363         return false;
2364       }
2365 
2366       if (NChild % 2 == 0) {
2367         TP.error("REG_SEQUENCE requires an odd number of operands!");
2368         return false;
2369       }
2370 
2371       if (!isOperandClass(getChild(0), "RegisterClass")) {
2372         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2373         return false;
2374       }
2375 
2376       for (unsigned I = 1; I < NChild; I += 2) {
2377         TreePatternNode *SubIdxChild = getChild(I + 1);
2378         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2379           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2380                    Twine(I + 1) + "!");
2381           return false;
2382         }
2383       }
2384     }
2385 
2386     unsigned ChildNo = 0;
2387     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2388       Record *OperandNode = Inst.getOperand(i);
2389 
2390       // If the instruction expects a predicate or optional def operand, we
2391       // codegen this by setting the operand to it's default value if it has a
2392       // non-empty DefaultOps field.
2393       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2394           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2395         continue;
2396 
2397       // Verify that we didn't run out of provided operands.
2398       if (ChildNo >= getNumChildren()) {
2399         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2400         return false;
2401       }
2402 
2403       TreePatternNode *Child = getChild(ChildNo++);
2404       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2405 
2406       // If the operand has sub-operands, they may be provided by distinct
2407       // child patterns, so attempt to match each sub-operand separately.
2408       if (OperandNode->isSubClassOf("Operand")) {
2409         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2410         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2411           // But don't do that if the whole operand is being provided by
2412           // a single ComplexPattern-related Operand.
2413 
2414           if (Child->getNumMIResults(CDP) < NumArgs) {
2415             // Match first sub-operand against the child we already have.
2416             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2417             MadeChange |=
2418               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2419 
2420             // And the remaining sub-operands against subsequent children.
2421             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2422               if (ChildNo >= getNumChildren()) {
2423                 emitTooFewOperandsError(TP, getOperator()->getName(),
2424                                         getNumChildren());
2425                 return false;
2426               }
2427               Child = getChild(ChildNo++);
2428 
2429               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2430               MadeChange |=
2431                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2432             }
2433             continue;
2434           }
2435         }
2436       }
2437 
2438       // If we didn't match by pieces above, attempt to match the whole
2439       // operand now.
2440       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2441     }
2442 
2443     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2444       emitTooManyOperandsError(TP, getOperator()->getName(),
2445                                ChildNo, getNumChildren());
2446       return false;
2447     }
2448 
2449     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2450       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2451     return MadeChange;
2452   }
2453 
2454   if (getOperator()->isSubClassOf("ComplexPattern")) {
2455     bool MadeChange = false;
2456 
2457     for (unsigned i = 0; i < getNumChildren(); ++i)
2458       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2459 
2460     return MadeChange;
2461   }
2462 
2463   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2464 
2465   // Node transforms always take one operand.
2466   if (getNumChildren() != 1) {
2467     TP.error("Node transform '" + getOperator()->getName() +
2468              "' requires one operand!");
2469     return false;
2470   }
2471 
2472   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2473   return MadeChange;
2474 }
2475 
2476 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2477 /// RHS of a commutative operation, not the on LHS.
OnlyOnRHSOfCommutative(TreePatternNode * N)2478 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2479   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2480     return true;
2481   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2482     return true;
2483   return false;
2484 }
2485 
2486 
2487 /// canPatternMatch - If it is impossible for this pattern to match on this
2488 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2489 /// used as a sanity check for .td files (to prevent people from writing stuff
2490 /// that can never possibly work), and to prevent the pattern permuter from
2491 /// generating stuff that is useless.
canPatternMatch(std::string & Reason,const CodeGenDAGPatterns & CDP)2492 bool TreePatternNode::canPatternMatch(std::string &Reason,
2493                                       const CodeGenDAGPatterns &CDP) {
2494   if (isLeaf()) return true;
2495 
2496   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2497     if (!getChild(i)->canPatternMatch(Reason, CDP))
2498       return false;
2499 
2500   // If this is an intrinsic, handle cases that would make it not match.  For
2501   // example, if an operand is required to be an immediate.
2502   if (getOperator()->isSubClassOf("Intrinsic")) {
2503     // TODO:
2504     return true;
2505   }
2506 
2507   if (getOperator()->isSubClassOf("ComplexPattern"))
2508     return true;
2509 
2510   // If this node is a commutative operator, check that the LHS isn't an
2511   // immediate.
2512   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2513   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2514   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2515     // Scan all of the operands of the node and make sure that only the last one
2516     // is a constant node, unless the RHS also is.
2517     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2518       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2519       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2520         if (OnlyOnRHSOfCommutative(getChild(i))) {
2521           Reason="Immediate value must be on the RHS of commutative operators!";
2522           return false;
2523         }
2524     }
2525   }
2526 
2527   return true;
2528 }
2529 
2530 //===----------------------------------------------------------------------===//
2531 // TreePattern implementation
2532 //
2533 
TreePattern(Record * TheRec,ListInit * RawPat,bool isInput,CodeGenDAGPatterns & cdp)2534 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2535                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2536                          isInputPattern(isInput), HasError(false),
2537                          Infer(*this) {
2538   for (Init *I : RawPat->getValues())
2539     Trees.push_back(ParseTreePattern(I, ""));
2540 }
2541 
TreePattern(Record * TheRec,DagInit * Pat,bool isInput,CodeGenDAGPatterns & cdp)2542 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2543                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2544                          isInputPattern(isInput), HasError(false),
2545                          Infer(*this) {
2546   Trees.push_back(ParseTreePattern(Pat, ""));
2547 }
2548 
TreePattern(Record * TheRec,TreePatternNodePtr Pat,bool isInput,CodeGenDAGPatterns & cdp)2549 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2550                          CodeGenDAGPatterns &cdp)
2551     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2552       Infer(*this) {
2553   Trees.push_back(Pat);
2554 }
2555 
error(const Twine & Msg)2556 void TreePattern::error(const Twine &Msg) {
2557   if (HasError)
2558     return;
2559   dump();
2560   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2561   HasError = true;
2562 }
2563 
ComputeNamedNodes()2564 void TreePattern::ComputeNamedNodes() {
2565   for (TreePatternNodePtr &Tree : Trees)
2566     ComputeNamedNodes(Tree.get());
2567 }
2568 
ComputeNamedNodes(TreePatternNode * N)2569 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2570   if (!N->getName().empty())
2571     NamedNodes[N->getName()].push_back(N);
2572 
2573   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2574     ComputeNamedNodes(N->getChild(i));
2575 }
2576 
ParseTreePattern(Init * TheInit,StringRef OpName)2577 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2578                                                  StringRef OpName) {
2579   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2580     Record *R = DI->getDef();
2581 
2582     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2583     // TreePatternNode of its own.  For example:
2584     ///   (foo GPR, imm) -> (foo GPR, (imm))
2585     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2586       return ParseTreePattern(
2587         DagInit::get(DI, nullptr,
2588                      std::vector<std::pair<Init*, StringInit*> >()),
2589         OpName);
2590 
2591     // Input argument?
2592     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2593     if (R->getName() == "node" && !OpName.empty()) {
2594       if (OpName.empty())
2595         error("'node' argument requires a name to match with operand list");
2596       Args.push_back(OpName);
2597     }
2598 
2599     Res->setName(OpName);
2600     return Res;
2601   }
2602 
2603   // ?:$name or just $name.
2604   if (isa<UnsetInit>(TheInit)) {
2605     if (OpName.empty())
2606       error("'?' argument requires a name to match with operand list");
2607     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2608     Args.push_back(OpName);
2609     Res->setName(OpName);
2610     return Res;
2611   }
2612 
2613   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2614     if (!OpName.empty())
2615       error("Constant int or bit argument should not have a name!");
2616     if (isa<BitInit>(TheInit))
2617       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2618     return std::make_shared<TreePatternNode>(TheInit, 1);
2619   }
2620 
2621   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2622     // Turn this into an IntInit.
2623     Init *II = BI->convertInitializerTo(IntRecTy::get());
2624     if (!II || !isa<IntInit>(II))
2625       error("Bits value must be constants!");
2626     return ParseTreePattern(II, OpName);
2627   }
2628 
2629   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2630   if (!Dag) {
2631     TheInit->print(errs());
2632     error("Pattern has unexpected init kind!");
2633   }
2634   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2635   if (!OpDef) error("Pattern has unexpected operator type!");
2636   Record *Operator = OpDef->getDef();
2637 
2638   if (Operator->isSubClassOf("ValueType")) {
2639     // If the operator is a ValueType, then this must be "type cast" of a leaf
2640     // node.
2641     if (Dag->getNumArgs() != 1)
2642       error("Type cast only takes one operand!");
2643 
2644     TreePatternNodePtr New =
2645         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2646 
2647     // Apply the type cast.
2648     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2649     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2650     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2651 
2652     if (!OpName.empty())
2653       error("ValueType cast should not have a name!");
2654     return New;
2655   }
2656 
2657   // Verify that this is something that makes sense for an operator.
2658   if (!Operator->isSubClassOf("PatFrags") &&
2659       !Operator->isSubClassOf("SDNode") &&
2660       !Operator->isSubClassOf("Instruction") &&
2661       !Operator->isSubClassOf("SDNodeXForm") &&
2662       !Operator->isSubClassOf("Intrinsic") &&
2663       !Operator->isSubClassOf("ComplexPattern") &&
2664       Operator->getName() != "set" &&
2665       Operator->getName() != "implicit")
2666     error("Unrecognized node '" + Operator->getName() + "'!");
2667 
2668   //  Check to see if this is something that is illegal in an input pattern.
2669   if (isInputPattern) {
2670     if (Operator->isSubClassOf("Instruction") ||
2671         Operator->isSubClassOf("SDNodeXForm"))
2672       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2673   } else {
2674     if (Operator->isSubClassOf("Intrinsic"))
2675       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2676 
2677     if (Operator->isSubClassOf("SDNode") &&
2678         Operator->getName() != "imm" &&
2679         Operator->getName() != "fpimm" &&
2680         Operator->getName() != "tglobaltlsaddr" &&
2681         Operator->getName() != "tconstpool" &&
2682         Operator->getName() != "tjumptable" &&
2683         Operator->getName() != "tframeindex" &&
2684         Operator->getName() != "texternalsym" &&
2685         Operator->getName() != "tblockaddress" &&
2686         Operator->getName() != "tglobaladdr" &&
2687         Operator->getName() != "bb" &&
2688         Operator->getName() != "vt" &&
2689         Operator->getName() != "mcsym")
2690       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2691   }
2692 
2693   std::vector<TreePatternNodePtr> Children;
2694 
2695   // Parse all the operands.
2696   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2697     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2698 
2699   // Get the actual number of results before Operator is converted to an intrinsic
2700   // node (which is hard-coded to have either zero or one result).
2701   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2702 
2703   // If the operator is an intrinsic, then this is just syntactic sugar for
2704   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2705   // convert the intrinsic name to a number.
2706   if (Operator->isSubClassOf("Intrinsic")) {
2707     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2708     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2709 
2710     // If this intrinsic returns void, it must have side-effects and thus a
2711     // chain.
2712     if (Int.IS.RetVTs.empty())
2713       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2714     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2715       // Has side-effects, requires chain.
2716       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2717     else // Otherwise, no chain.
2718       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2719 
2720     Children.insert(Children.begin(),
2721                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2722   }
2723 
2724   if (Operator->isSubClassOf("ComplexPattern")) {
2725     for (unsigned i = 0; i < Children.size(); ++i) {
2726       TreePatternNodePtr Child = Children[i];
2727 
2728       if (Child->getName().empty())
2729         error("All arguments to a ComplexPattern must be named");
2730 
2731       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2732       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2733       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2734       auto OperandId = std::make_pair(Operator, i);
2735       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2736       if (PrevOp != ComplexPatternOperands.end()) {
2737         if (PrevOp->getValue() != OperandId)
2738           error("All ComplexPattern operands must appear consistently: "
2739                 "in the same order in just one ComplexPattern instance.");
2740       } else
2741         ComplexPatternOperands[Child->getName()] = OperandId;
2742     }
2743   }
2744 
2745   TreePatternNodePtr Result =
2746       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2747                                         NumResults);
2748   Result->setName(OpName);
2749 
2750   if (Dag->getName()) {
2751     assert(Result->getName().empty());
2752     Result->setName(Dag->getNameStr());
2753   }
2754   return Result;
2755 }
2756 
2757 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2758 /// will never match in favor of something obvious that will.  This is here
2759 /// strictly as a convenience to target authors because it allows them to write
2760 /// more type generic things and have useless type casts fold away.
2761 ///
2762 /// This returns true if any change is made.
SimplifyTree(TreePatternNodePtr & N)2763 static bool SimplifyTree(TreePatternNodePtr &N) {
2764   if (N->isLeaf())
2765     return false;
2766 
2767   // If we have a bitconvert with a resolved type and if the source and
2768   // destination types are the same, then the bitconvert is useless, remove it.
2769   if (N->getOperator()->getName() == "bitconvert" &&
2770       N->getExtType(0).isValueTypeByHwMode(false) &&
2771       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2772       N->getName().empty()) {
2773     N = N->getChildShared(0);
2774     SimplifyTree(N);
2775     return true;
2776   }
2777 
2778   // Walk all children.
2779   bool MadeChange = false;
2780   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2781     TreePatternNodePtr Child = N->getChildShared(i);
2782     MadeChange |= SimplifyTree(Child);
2783     N->setChild(i, std::move(Child));
2784   }
2785   return MadeChange;
2786 }
2787 
2788 
2789 
2790 /// InferAllTypes - Infer/propagate as many types throughout the expression
2791 /// patterns as possible.  Return true if all types are inferred, false
2792 /// otherwise.  Flags an error if a type contradiction is found.
2793 bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode *,1>> * InNamedTypes)2794 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2795   if (NamedNodes.empty())
2796     ComputeNamedNodes();
2797 
2798   bool MadeChange = true;
2799   while (MadeChange) {
2800     MadeChange = false;
2801     for (TreePatternNodePtr &Tree : Trees) {
2802       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2803       MadeChange |= SimplifyTree(Tree);
2804     }
2805 
2806     // If there are constraints on our named nodes, apply them.
2807     for (auto &Entry : NamedNodes) {
2808       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2809 
2810       // If we have input named node types, propagate their types to the named
2811       // values here.
2812       if (InNamedTypes) {
2813         if (!InNamedTypes->count(Entry.getKey())) {
2814           error("Node '" + std::string(Entry.getKey()) +
2815                 "' in output pattern but not input pattern");
2816           return true;
2817         }
2818 
2819         const SmallVectorImpl<TreePatternNode*> &InNodes =
2820           InNamedTypes->find(Entry.getKey())->second;
2821 
2822         // The input types should be fully resolved by now.
2823         for (TreePatternNode *Node : Nodes) {
2824           // If this node is a register class, and it is the root of the pattern
2825           // then we're mapping something onto an input register.  We allow
2826           // changing the type of the input register in this case.  This allows
2827           // us to match things like:
2828           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2829           if (Node == Trees[0].get() && Node->isLeaf()) {
2830             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2831             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2832                        DI->getDef()->isSubClassOf("RegisterOperand")))
2833               continue;
2834           }
2835 
2836           assert(Node->getNumTypes() == 1 &&
2837                  InNodes[0]->getNumTypes() == 1 &&
2838                  "FIXME: cannot name multiple result nodes yet");
2839           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2840                                              *this);
2841         }
2842       }
2843 
2844       // If there are multiple nodes with the same name, they must all have the
2845       // same type.
2846       if (Entry.second.size() > 1) {
2847         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2848           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2849           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2850                  "FIXME: cannot name multiple result nodes yet");
2851 
2852           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2853           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2854         }
2855       }
2856     }
2857   }
2858 
2859   bool HasUnresolvedTypes = false;
2860   for (const TreePatternNodePtr &Tree : Trees)
2861     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2862   return !HasUnresolvedTypes;
2863 }
2864 
print(raw_ostream & OS) const2865 void TreePattern::print(raw_ostream &OS) const {
2866   OS << getRecord()->getName();
2867   if (!Args.empty()) {
2868     OS << "(" << Args[0];
2869     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2870       OS << ", " << Args[i];
2871     OS << ")";
2872   }
2873   OS << ": ";
2874 
2875   if (Trees.size() > 1)
2876     OS << "[\n";
2877   for (const TreePatternNodePtr &Tree : Trees) {
2878     OS << "\t";
2879     Tree->print(OS);
2880     OS << "\n";
2881   }
2882 
2883   if (Trees.size() > 1)
2884     OS << "]\n";
2885 }
2886 
dump() const2887 void TreePattern::dump() const { print(errs()); }
2888 
2889 //===----------------------------------------------------------------------===//
2890 // CodeGenDAGPatterns implementation
2891 //
2892 
CodeGenDAGPatterns(RecordKeeper & R,PatternRewriterFn PatternRewriter)2893 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2894                                        PatternRewriterFn PatternRewriter)
2895     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2896       PatternRewriter(PatternRewriter) {
2897 
2898   Intrinsics = CodeGenIntrinsicTable(Records, false);
2899   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2900   ParseNodeInfo();
2901   ParseNodeTransforms();
2902   ParseComplexPatterns();
2903   ParsePatternFragments();
2904   ParseDefaultOperands();
2905   ParseInstructions();
2906   ParsePatternFragments(/*OutFrags*/true);
2907   ParsePatterns();
2908 
2909   // Break patterns with parameterized types into a series of patterns,
2910   // where each one has a fixed type and is predicated on the conditions
2911   // of the associated HW mode.
2912   ExpandHwModeBasedTypes();
2913 
2914   // Generate variants.  For example, commutative patterns can match
2915   // multiple ways.  Add them to PatternsToMatch as well.
2916   GenerateVariants();
2917 
2918   // Infer instruction flags.  For example, we can detect loads,
2919   // stores, and side effects in many cases by examining an
2920   // instruction's pattern.
2921   InferInstructionFlags();
2922 
2923   // Verify that instruction flags match the patterns.
2924   VerifyInstructionFlags();
2925 }
2926 
getSDNodeNamed(const std::string & Name) const2927 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2928   Record *N = Records.getDef(Name);
2929   if (!N || !N->isSubClassOf("SDNode"))
2930     PrintFatalError("Error getting SDNode '" + Name + "'!");
2931 
2932   return N;
2933 }
2934 
2935 // Parse all of the SDNode definitions for the target, populating SDNodes.
ParseNodeInfo()2936 void CodeGenDAGPatterns::ParseNodeInfo() {
2937   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2938   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2939 
2940   while (!Nodes.empty()) {
2941     Record *R = Nodes.back();
2942     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2943     Nodes.pop_back();
2944   }
2945 
2946   // Get the builtin intrinsic nodes.
2947   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2948   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2949   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2950 }
2951 
2952 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2953 /// map, and emit them to the file as functions.
ParseNodeTransforms()2954 void CodeGenDAGPatterns::ParseNodeTransforms() {
2955   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2956   while (!Xforms.empty()) {
2957     Record *XFormNode = Xforms.back();
2958     Record *SDNode = XFormNode->getValueAsDef("Opcode");
2959     StringRef Code = XFormNode->getValueAsString("XFormFunction");
2960     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2961 
2962     Xforms.pop_back();
2963   }
2964 }
2965 
ParseComplexPatterns()2966 void CodeGenDAGPatterns::ParseComplexPatterns() {
2967   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2968   while (!AMs.empty()) {
2969     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2970     AMs.pop_back();
2971   }
2972 }
2973 
2974 
2975 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2976 /// file, building up the PatternFragments map.  After we've collected them all,
2977 /// inline fragments together as necessary, so that there are no references left
2978 /// inside a pattern fragment to a pattern fragment.
2979 ///
ParsePatternFragments(bool OutFrags)2980 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2981   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
2982 
2983   // First step, parse all of the fragments.
2984   for (Record *Frag : Fragments) {
2985     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2986       continue;
2987 
2988     ListInit *LI = Frag->getValueAsListInit("Fragments");
2989     TreePattern *P =
2990         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2991              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
2992              *this)).get();
2993 
2994     // Validate the argument list, converting it to set, to discard duplicates.
2995     std::vector<std::string> &Args = P->getArgList();
2996     // Copy the args so we can take StringRefs to them.
2997     auto ArgsCopy = Args;
2998     SmallDenseSet<StringRef, 4> OperandsSet;
2999     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3000 
3001     if (OperandsSet.count(""))
3002       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3003 
3004     // Parse the operands list.
3005     DagInit *OpsList = Frag->getValueAsDag("Operands");
3006     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3007     // Special cases: ops == outs == ins. Different names are used to
3008     // improve readability.
3009     if (!OpsOp ||
3010         (OpsOp->getDef()->getName() != "ops" &&
3011          OpsOp->getDef()->getName() != "outs" &&
3012          OpsOp->getDef()->getName() != "ins"))
3013       P->error("Operands list should start with '(ops ... '!");
3014 
3015     // Copy over the arguments.
3016     Args.clear();
3017     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3018       if (!isa<DefInit>(OpsList->getArg(j)) ||
3019           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3020         P->error("Operands list should all be 'node' values.");
3021       if (!OpsList->getArgName(j))
3022         P->error("Operands list should have names for each operand!");
3023       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3024       if (!OperandsSet.count(ArgNameStr))
3025         P->error("'" + ArgNameStr +
3026                  "' does not occur in pattern or was multiply specified!");
3027       OperandsSet.erase(ArgNameStr);
3028       Args.push_back(ArgNameStr);
3029     }
3030 
3031     if (!OperandsSet.empty())
3032       P->error("Operands list does not contain an entry for operand '" +
3033                *OperandsSet.begin() + "'!");
3034 
3035     // If there is a code init for this fragment, keep track of the fact that
3036     // this fragment uses it.
3037     TreePredicateFn PredFn(P);
3038     if (!PredFn.isAlwaysTrue())
3039       for (auto T : P->getTrees())
3040         T->addPredicateFn(PredFn);
3041 
3042     // If there is a node transformation corresponding to this, keep track of
3043     // it.
3044     Record *Transform = Frag->getValueAsDef("OperandTransform");
3045     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3046       for (auto T : P->getTrees())
3047         T->setTransformFn(Transform);
3048   }
3049 
3050   // Now that we've parsed all of the tree fragments, do a closure on them so
3051   // that there are not references to PatFrags left inside of them.
3052   for (Record *Frag : Fragments) {
3053     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3054       continue;
3055 
3056     TreePattern &ThePat = *PatternFragments[Frag];
3057     ThePat.InlinePatternFragments();
3058 
3059     // Infer as many types as possible.  Don't worry about it if we don't infer
3060     // all of them, some may depend on the inputs of the pattern.  Also, don't
3061     // validate type sets; validation may cause spurious failures e.g. if a
3062     // fragment needs floating-point types but the current target does not have
3063     // any (this is only an error if that fragment is ever used!).
3064     {
3065       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3066       ThePat.InferAllTypes();
3067       ThePat.resetError();
3068     }
3069 
3070     // If debugging, print out the pattern fragment result.
3071     LLVM_DEBUG(ThePat.dump());
3072   }
3073 }
3074 
ParseDefaultOperands()3075 void CodeGenDAGPatterns::ParseDefaultOperands() {
3076   std::vector<Record*> DefaultOps;
3077   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3078 
3079   // Find some SDNode.
3080   assert(!SDNodes.empty() && "No SDNodes parsed?");
3081   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3082 
3083   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3084     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3085 
3086     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3087     // SomeSDnode so that we can parse this.
3088     std::vector<std::pair<Init*, StringInit*> > Ops;
3089     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3090       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3091                                    DefaultInfo->getArgName(op)));
3092     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3093 
3094     // Create a TreePattern to parse this.
3095     TreePattern P(DefaultOps[i], DI, false, *this);
3096     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3097 
3098     // Copy the operands over into a DAGDefaultOperand.
3099     DAGDefaultOperand DefaultOpInfo;
3100 
3101     const TreePatternNodePtr &T = P.getTree(0);
3102     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3103       TreePatternNodePtr TPN = T->getChildShared(op);
3104       while (TPN->ApplyTypeConstraints(P, false))
3105         /* Resolve all types */;
3106 
3107       if (TPN->ContainsUnresolvedType(P)) {
3108         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3109                         DefaultOps[i]->getName() +
3110                         "' doesn't have a concrete type!");
3111       }
3112       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3113     }
3114 
3115     // Insert it into the DefaultOperands map so we can find it later.
3116     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3117   }
3118 }
3119 
3120 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3121 /// instruction input.  Return true if this is a real use.
HandleUse(TreePattern & I,TreePatternNodePtr Pat,std::map<std::string,TreePatternNodePtr> & InstInputs)3122 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3123                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3124   // No name -> not interesting.
3125   if (Pat->getName().empty()) {
3126     if (Pat->isLeaf()) {
3127       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3128       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3129                  DI->getDef()->isSubClassOf("RegisterOperand")))
3130         I.error("Input " + DI->getDef()->getName() + " must be named!");
3131     }
3132     return false;
3133   }
3134 
3135   Record *Rec;
3136   if (Pat->isLeaf()) {
3137     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3138     if (!DI)
3139       I.error("Input $" + Pat->getName() + " must be an identifier!");
3140     Rec = DI->getDef();
3141   } else {
3142     Rec = Pat->getOperator();
3143   }
3144 
3145   // SRCVALUE nodes are ignored.
3146   if (Rec->getName() == "srcvalue")
3147     return false;
3148 
3149   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3150   if (!Slot) {
3151     Slot = Pat;
3152     return true;
3153   }
3154   Record *SlotRec;
3155   if (Slot->isLeaf()) {
3156     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3157   } else {
3158     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3159     SlotRec = Slot->getOperator();
3160   }
3161 
3162   // Ensure that the inputs agree if we've already seen this input.
3163   if (Rec != SlotRec)
3164     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3165   // Ensure that the types can agree as well.
3166   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3167   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3168   if (Slot->getExtTypes() != Pat->getExtTypes())
3169     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3170   return true;
3171 }
3172 
3173 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3174 /// part of "I", the instruction), computing the set of inputs and outputs of
3175 /// the pattern.  Report errors if we see anything naughty.
FindPatternInputsAndOutputs(TreePattern & I,TreePatternNodePtr Pat,std::map<std::string,TreePatternNodePtr> & InstInputs,std::map<std::string,TreePatternNodePtr> & InstResults,std::vector<Record * > & InstImpResults)3176 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3177     TreePattern &I, TreePatternNodePtr Pat,
3178     std::map<std::string, TreePatternNodePtr> &InstInputs,
3179     std::map<std::string, TreePatternNodePtr> &InstResults,
3180     std::vector<Record *> &InstImpResults) {
3181 
3182   // The instruction pattern still has unresolved fragments.  For *named*
3183   // nodes we must resolve those here.  This may not result in multiple
3184   // alternatives.
3185   if (!Pat->getName().empty()) {
3186     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3187     SrcPattern.InlinePatternFragments();
3188     SrcPattern.InferAllTypes();
3189     Pat = SrcPattern.getOnlyTree();
3190   }
3191 
3192   if (Pat->isLeaf()) {
3193     bool isUse = HandleUse(I, Pat, InstInputs);
3194     if (!isUse && Pat->getTransformFn())
3195       I.error("Cannot specify a transform function for a non-input value!");
3196     return;
3197   }
3198 
3199   if (Pat->getOperator()->getName() == "implicit") {
3200     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3201       TreePatternNode *Dest = Pat->getChild(i);
3202       if (!Dest->isLeaf())
3203         I.error("implicitly defined value should be a register!");
3204 
3205       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3206       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3207         I.error("implicitly defined value should be a register!");
3208       InstImpResults.push_back(Val->getDef());
3209     }
3210     return;
3211   }
3212 
3213   if (Pat->getOperator()->getName() != "set") {
3214     // If this is not a set, verify that the children nodes are not void typed,
3215     // and recurse.
3216     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3217       if (Pat->getChild(i)->getNumTypes() == 0)
3218         I.error("Cannot have void nodes inside of patterns!");
3219       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3220                                   InstResults, InstImpResults);
3221     }
3222 
3223     // If this is a non-leaf node with no children, treat it basically as if
3224     // it were a leaf.  This handles nodes like (imm).
3225     bool isUse = HandleUse(I, Pat, InstInputs);
3226 
3227     if (!isUse && Pat->getTransformFn())
3228       I.error("Cannot specify a transform function for a non-input value!");
3229     return;
3230   }
3231 
3232   // Otherwise, this is a set, validate and collect instruction results.
3233   if (Pat->getNumChildren() == 0)
3234     I.error("set requires operands!");
3235 
3236   if (Pat->getTransformFn())
3237     I.error("Cannot specify a transform function on a set node!");
3238 
3239   // Check the set destinations.
3240   unsigned NumDests = Pat->getNumChildren()-1;
3241   for (unsigned i = 0; i != NumDests; ++i) {
3242     TreePatternNodePtr Dest = Pat->getChildShared(i);
3243     // For set destinations we also must resolve fragments here.
3244     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3245     DestPattern.InlinePatternFragments();
3246     DestPattern.InferAllTypes();
3247     Dest = DestPattern.getOnlyTree();
3248 
3249     if (!Dest->isLeaf())
3250       I.error("set destination should be a register!");
3251 
3252     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3253     if (!Val) {
3254       I.error("set destination should be a register!");
3255       continue;
3256     }
3257 
3258     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3259         Val->getDef()->isSubClassOf("ValueType") ||
3260         Val->getDef()->isSubClassOf("RegisterOperand") ||
3261         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3262       if (Dest->getName().empty())
3263         I.error("set destination must have a name!");
3264       if (InstResults.count(Dest->getName()))
3265         I.error("cannot set '" + Dest->getName() + "' multiple times");
3266       InstResults[Dest->getName()] = Dest;
3267     } else if (Val->getDef()->isSubClassOf("Register")) {
3268       InstImpResults.push_back(Val->getDef());
3269     } else {
3270       I.error("set destination should be a register!");
3271     }
3272   }
3273 
3274   // Verify and collect info from the computation.
3275   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3276                               InstResults, InstImpResults);
3277 }
3278 
3279 //===----------------------------------------------------------------------===//
3280 // Instruction Analysis
3281 //===----------------------------------------------------------------------===//
3282 
3283 class InstAnalyzer {
3284   const CodeGenDAGPatterns &CDP;
3285 public:
3286   bool hasSideEffects;
3287   bool mayStore;
3288   bool mayLoad;
3289   bool isBitcast;
3290   bool isVariadic;
3291   bool hasChain;
3292 
InstAnalyzer(const CodeGenDAGPatterns & cdp)3293   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3294     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3295       isBitcast(false), isVariadic(false), hasChain(false) {}
3296 
Analyze(const PatternToMatch & Pat)3297   void Analyze(const PatternToMatch &Pat) {
3298     const TreePatternNode *N = Pat.getSrcPattern();
3299     AnalyzeNode(N);
3300     // These properties are detected only on the root node.
3301     isBitcast = IsNodeBitcast(N);
3302   }
3303 
3304 private:
IsNodeBitcast(const TreePatternNode * N) const3305   bool IsNodeBitcast(const TreePatternNode *N) const {
3306     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3307       return false;
3308 
3309     if (N->isLeaf())
3310       return false;
3311     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3312       return false;
3313 
3314     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3315     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3316       return false;
3317     return OpInfo.getEnumName() == "ISD::BITCAST";
3318   }
3319 
3320 public:
AnalyzeNode(const TreePatternNode * N)3321   void AnalyzeNode(const TreePatternNode *N) {
3322     if (N->isLeaf()) {
3323       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3324         Record *LeafRec = DI->getDef();
3325         // Handle ComplexPattern leaves.
3326         if (LeafRec->isSubClassOf("ComplexPattern")) {
3327           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3328           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3329           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3330           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3331         }
3332       }
3333       return;
3334     }
3335 
3336     // Analyze children.
3337     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3338       AnalyzeNode(N->getChild(i));
3339 
3340     // Notice properties of the node.
3341     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3342     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3343     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3344     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3345     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3346 
3347     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3348       // If this is an intrinsic, analyze it.
3349       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3350         mayLoad = true;// These may load memory.
3351 
3352       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3353         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3354 
3355       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3356           IntInfo->hasSideEffects)
3357         // ReadWriteMem intrinsics can have other strange effects.
3358         hasSideEffects = true;
3359     }
3360   }
3361 
3362 };
3363 
InferFromPattern(CodeGenInstruction & InstInfo,const InstAnalyzer & PatInfo,Record * PatDef)3364 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3365                              const InstAnalyzer &PatInfo,
3366                              Record *PatDef) {
3367   bool Error = false;
3368 
3369   // Remember where InstInfo got its flags.
3370   if (InstInfo.hasUndefFlags())
3371       InstInfo.InferredFrom = PatDef;
3372 
3373   // Check explicitly set flags for consistency.
3374   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3375       !InstInfo.hasSideEffects_Unset) {
3376     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3377     // the pattern has no side effects. That could be useful for div/rem
3378     // instructions that may trap.
3379     if (!InstInfo.hasSideEffects) {
3380       Error = true;
3381       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3382                  Twine(InstInfo.hasSideEffects));
3383     }
3384   }
3385 
3386   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3387     Error = true;
3388     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3389                Twine(InstInfo.mayStore));
3390   }
3391 
3392   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3393     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3394     // Some targets translate immediates to loads.
3395     if (!InstInfo.mayLoad) {
3396       Error = true;
3397       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3398                  Twine(InstInfo.mayLoad));
3399     }
3400   }
3401 
3402   // Transfer inferred flags.
3403   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3404   InstInfo.mayStore |= PatInfo.mayStore;
3405   InstInfo.mayLoad |= PatInfo.mayLoad;
3406 
3407   // These flags are silently added without any verification.
3408   // FIXME: To match historical behavior of TableGen, for now add those flags
3409   // only when we're inferring from the primary instruction pattern.
3410   if (PatDef->isSubClassOf("Instruction")) {
3411     InstInfo.isBitcast |= PatInfo.isBitcast;
3412     InstInfo.hasChain |= PatInfo.hasChain;
3413     InstInfo.hasChain_Inferred = true;
3414   }
3415 
3416   // Don't infer isVariadic. This flag means something different on SDNodes and
3417   // instructions. For example, a CALL SDNode is variadic because it has the
3418   // call arguments as operands, but a CALL instruction is not variadic - it
3419   // has argument registers as implicit, not explicit uses.
3420 
3421   return Error;
3422 }
3423 
3424 /// hasNullFragReference - Return true if the DAG has any reference to the
3425 /// null_frag operator.
hasNullFragReference(DagInit * DI)3426 static bool hasNullFragReference(DagInit *DI) {
3427   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3428   if (!OpDef) return false;
3429   Record *Operator = OpDef->getDef();
3430 
3431   // If this is the null fragment, return true.
3432   if (Operator->getName() == "null_frag") return true;
3433   // If any of the arguments reference the null fragment, return true.
3434   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3435     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3436     if (Arg && hasNullFragReference(Arg))
3437       return true;
3438   }
3439 
3440   return false;
3441 }
3442 
3443 /// hasNullFragReference - Return true if any DAG in the list references
3444 /// the null_frag operator.
hasNullFragReference(ListInit * LI)3445 static bool hasNullFragReference(ListInit *LI) {
3446   for (Init *I : LI->getValues()) {
3447     DagInit *DI = dyn_cast<DagInit>(I);
3448     assert(DI && "non-dag in an instruction Pattern list?!");
3449     if (hasNullFragReference(DI))
3450       return true;
3451   }
3452   return false;
3453 }
3454 
3455 /// Get all the instructions in a tree.
3456 static void
getInstructionsInTree(TreePatternNode * Tree,SmallVectorImpl<Record * > & Instrs)3457 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3458   if (Tree->isLeaf())
3459     return;
3460   if (Tree->getOperator()->isSubClassOf("Instruction"))
3461     Instrs.push_back(Tree->getOperator());
3462   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3463     getInstructionsInTree(Tree->getChild(i), Instrs);
3464 }
3465 
3466 /// Check the class of a pattern leaf node against the instruction operand it
3467 /// represents.
checkOperandClass(CGIOperandList::OperandInfo & OI,Record * Leaf)3468 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3469                               Record *Leaf) {
3470   if (OI.Rec == Leaf)
3471     return true;
3472 
3473   // Allow direct value types to be used in instruction set patterns.
3474   // The type will be checked later.
3475   if (Leaf->isSubClassOf("ValueType"))
3476     return true;
3477 
3478   // Patterns can also be ComplexPattern instances.
3479   if (Leaf->isSubClassOf("ComplexPattern"))
3480     return true;
3481 
3482   return false;
3483 }
3484 
parseInstructionPattern(CodeGenInstruction & CGI,ListInit * Pat,DAGInstMap & DAGInsts)3485 void CodeGenDAGPatterns::parseInstructionPattern(
3486     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3487 
3488   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3489 
3490   // Parse the instruction.
3491   TreePattern I(CGI.TheDef, Pat, true, *this);
3492 
3493   // InstInputs - Keep track of all of the inputs of the instruction, along
3494   // with the record they are declared as.
3495   std::map<std::string, TreePatternNodePtr> InstInputs;
3496 
3497   // InstResults - Keep track of all the virtual registers that are 'set'
3498   // in the instruction, including what reg class they are.
3499   std::map<std::string, TreePatternNodePtr> InstResults;
3500 
3501   std::vector<Record*> InstImpResults;
3502 
3503   // Verify that the top-level forms in the instruction are of void type, and
3504   // fill in the InstResults map.
3505   SmallString<32> TypesString;
3506   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3507     TypesString.clear();
3508     TreePatternNodePtr Pat = I.getTree(j);
3509     if (Pat->getNumTypes() != 0) {
3510       raw_svector_ostream OS(TypesString);
3511       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3512         if (k > 0)
3513           OS << ", ";
3514         Pat->getExtType(k).writeToStream(OS);
3515       }
3516       I.error("Top-level forms in instruction pattern should have"
3517                " void types, has types " +
3518                OS.str());
3519     }
3520 
3521     // Find inputs and outputs, and verify the structure of the uses/defs.
3522     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3523                                 InstImpResults);
3524   }
3525 
3526   // Now that we have inputs and outputs of the pattern, inspect the operands
3527   // list for the instruction.  This determines the order that operands are
3528   // added to the machine instruction the node corresponds to.
3529   unsigned NumResults = InstResults.size();
3530 
3531   // Parse the operands list from the (ops) list, validating it.
3532   assert(I.getArgList().empty() && "Args list should still be empty here!");
3533 
3534   // Check that all of the results occur first in the list.
3535   std::vector<Record*> Results;
3536   SmallVector<TreePatternNodePtr, 2> ResNodes;
3537   for (unsigned i = 0; i != NumResults; ++i) {
3538     if (i == CGI.Operands.size())
3539       I.error("'" + InstResults.begin()->first +
3540                "' set but does not appear in operand list!");
3541     const std::string &OpName = CGI.Operands[i].Name;
3542 
3543     // Check that it exists in InstResults.
3544     TreePatternNodePtr RNode = InstResults[OpName];
3545     if (!RNode)
3546       I.error("Operand $" + OpName + " does not exist in operand list!");
3547 
3548 
3549     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3550     ResNodes.push_back(std::move(RNode));
3551     if (!R)
3552       I.error("Operand $" + OpName + " should be a set destination: all "
3553                "outputs must occur before inputs in operand list!");
3554 
3555     if (!checkOperandClass(CGI.Operands[i], R))
3556       I.error("Operand $" + OpName + " class mismatch!");
3557 
3558     // Remember the return type.
3559     Results.push_back(CGI.Operands[i].Rec);
3560 
3561     // Okay, this one checks out.
3562     InstResults.erase(OpName);
3563   }
3564 
3565   // Loop over the inputs next.
3566   std::vector<TreePatternNodePtr> ResultNodeOperands;
3567   std::vector<Record*> Operands;
3568   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3569     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3570     const std::string &OpName = Op.Name;
3571     if (OpName.empty())
3572       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3573 
3574     if (!InstInputs.count(OpName)) {
3575       // If this is an operand with a DefaultOps set filled in, we can ignore
3576       // this.  When we codegen it, we will do so as always executed.
3577       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3578         // Does it have a non-empty DefaultOps field?  If so, ignore this
3579         // operand.
3580         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3581           continue;
3582       }
3583       I.error("Operand $" + OpName +
3584                " does not appear in the instruction pattern");
3585     }
3586     TreePatternNodePtr InVal = InstInputs[OpName];
3587     InstInputs.erase(OpName);   // It occurred, remove from map.
3588 
3589     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3590       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3591       if (!checkOperandClass(Op, InRec))
3592         I.error("Operand $" + OpName + "'s register class disagrees"
3593                  " between the operand and pattern");
3594     }
3595     Operands.push_back(Op.Rec);
3596 
3597     // Construct the result for the dest-pattern operand list.
3598     TreePatternNodePtr OpNode = InVal->clone();
3599 
3600     // No predicate is useful on the result.
3601     OpNode->clearPredicateFns();
3602 
3603     // Promote the xform function to be an explicit node if set.
3604     if (Record *Xform = OpNode->getTransformFn()) {
3605       OpNode->setTransformFn(nullptr);
3606       std::vector<TreePatternNodePtr> Children;
3607       Children.push_back(OpNode);
3608       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3609                                                  OpNode->getNumTypes());
3610     }
3611 
3612     ResultNodeOperands.push_back(std::move(OpNode));
3613   }
3614 
3615   if (!InstInputs.empty())
3616     I.error("Input operand $" + InstInputs.begin()->first +
3617             " occurs in pattern but not in operands list!");
3618 
3619   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3620       I.getRecord(), std::move(ResultNodeOperands),
3621       GetNumNodeResults(I.getRecord(), *this));
3622   // Copy fully inferred output node types to instruction result pattern.
3623   for (unsigned i = 0; i != NumResults; ++i) {
3624     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3625     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3626   }
3627 
3628   // FIXME: Assume only the first tree is the pattern. The others are clobber
3629   // nodes.
3630   TreePatternNodePtr Pattern = I.getTree(0);
3631   TreePatternNodePtr SrcPattern;
3632   if (Pattern->getOperator()->getName() == "set") {
3633     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3634   } else{
3635     // Not a set (store or something?)
3636     SrcPattern = Pattern;
3637   }
3638 
3639   // Create and insert the instruction.
3640   // FIXME: InstImpResults should not be part of DAGInstruction.
3641   Record *R = I.getRecord();
3642   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3643                    std::forward_as_tuple(Results, Operands, InstImpResults,
3644                                          SrcPattern, ResultPattern));
3645 
3646   LLVM_DEBUG(I.dump());
3647 }
3648 
3649 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3650 /// any fragments involved.  This populates the Instructions list with fully
3651 /// resolved instructions.
ParseInstructions()3652 void CodeGenDAGPatterns::ParseInstructions() {
3653   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3654 
3655   for (Record *Instr : Instrs) {
3656     ListInit *LI = nullptr;
3657 
3658     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3659       LI = Instr->getValueAsListInit("Pattern");
3660 
3661     // If there is no pattern, only collect minimal information about the
3662     // instruction for its operand list.  We have to assume that there is one
3663     // result, as we have no detailed info. A pattern which references the
3664     // null_frag operator is as-if no pattern were specified. Normally this
3665     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3666     // null_frag.
3667     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3668       std::vector<Record*> Results;
3669       std::vector<Record*> Operands;
3670 
3671       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3672 
3673       if (InstInfo.Operands.size() != 0) {
3674         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3675           Results.push_back(InstInfo.Operands[j].Rec);
3676 
3677         // The rest are inputs.
3678         for (unsigned j = InstInfo.Operands.NumDefs,
3679                e = InstInfo.Operands.size(); j < e; ++j)
3680           Operands.push_back(InstInfo.Operands[j].Rec);
3681       }
3682 
3683       // Create and insert the instruction.
3684       std::vector<Record*> ImpResults;
3685       Instructions.insert(std::make_pair(Instr,
3686                             DAGInstruction(Results, Operands, ImpResults)));
3687       continue;  // no pattern.
3688     }
3689 
3690     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3691     parseInstructionPattern(CGI, LI, Instructions);
3692   }
3693 
3694   // If we can, convert the instructions to be patterns that are matched!
3695   for (auto &Entry : Instructions) {
3696     Record *Instr = Entry.first;
3697     DAGInstruction &TheInst = Entry.second;
3698     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3699     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3700 
3701     if (SrcPattern && ResultPattern) {
3702       TreePattern Pattern(Instr, SrcPattern, true, *this);
3703       TreePattern Result(Instr, ResultPattern, false, *this);
3704       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3705     }
3706   }
3707 }
3708 
3709 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3710 
FindNames(TreePatternNode * P,std::map<std::string,NameRecord> & Names,TreePattern * PatternTop)3711 static void FindNames(TreePatternNode *P,
3712                       std::map<std::string, NameRecord> &Names,
3713                       TreePattern *PatternTop) {
3714   if (!P->getName().empty()) {
3715     NameRecord &Rec = Names[P->getName()];
3716     // If this is the first instance of the name, remember the node.
3717     if (Rec.second++ == 0)
3718       Rec.first = P;
3719     else if (Rec.first->getExtTypes() != P->getExtTypes())
3720       PatternTop->error("repetition of value: $" + P->getName() +
3721                         " where different uses have different types!");
3722   }
3723 
3724   if (!P->isLeaf()) {
3725     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3726       FindNames(P->getChild(i), Names, PatternTop);
3727   }
3728 }
3729 
makePredList(ListInit * L)3730 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3731   std::vector<Predicate> Preds;
3732   for (Init *I : L->getValues()) {
3733     if (DefInit *Pred = dyn_cast<DefInit>(I))
3734       Preds.push_back(Pred->getDef());
3735     else
3736       llvm_unreachable("Non-def on the list");
3737   }
3738 
3739   // Sort so that different orders get canonicalized to the same string.
3740   llvm::sort(Preds.begin(), Preds.end());
3741   return Preds;
3742 }
3743 
AddPatternToMatch(TreePattern * Pattern,PatternToMatch && PTM)3744 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3745                                            PatternToMatch &&PTM) {
3746   // Do some sanity checking on the pattern we're about to match.
3747   std::string Reason;
3748   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3749     PrintWarning(Pattern->getRecord()->getLoc(),
3750       Twine("Pattern can never match: ") + Reason);
3751     return;
3752   }
3753 
3754   // If the source pattern's root is a complex pattern, that complex pattern
3755   // must specify the nodes it can potentially match.
3756   if (const ComplexPattern *CP =
3757         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3758     if (CP->getRootNodes().empty())
3759       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3760                      " could match");
3761 
3762 
3763   // Find all of the named values in the input and output, ensure they have the
3764   // same type.
3765   std::map<std::string, NameRecord> SrcNames, DstNames;
3766   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3767   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3768 
3769   // Scan all of the named values in the destination pattern, rejecting them if
3770   // they don't exist in the input pattern.
3771   for (const auto &Entry : DstNames) {
3772     if (SrcNames[Entry.first].first == nullptr)
3773       Pattern->error("Pattern has input without matching name in output: $" +
3774                      Entry.first);
3775   }
3776 
3777   // Scan all of the named values in the source pattern, rejecting them if the
3778   // name isn't used in the dest, and isn't used to tie two values together.
3779   for (const auto &Entry : SrcNames)
3780     if (DstNames[Entry.first].first == nullptr &&
3781         SrcNames[Entry.first].second == 1)
3782       Pattern->error("Pattern has dead named input: $" + Entry.first);
3783 
3784   PatternsToMatch.push_back(PTM);
3785 }
3786 
InferInstructionFlags()3787 void CodeGenDAGPatterns::InferInstructionFlags() {
3788   ArrayRef<const CodeGenInstruction*> Instructions =
3789     Target.getInstructionsByEnumValue();
3790 
3791   unsigned Errors = 0;
3792 
3793   // Try to infer flags from all patterns in PatternToMatch.  These include
3794   // both the primary instruction patterns (which always come first) and
3795   // patterns defined outside the instruction.
3796   for (const PatternToMatch &PTM : ptms()) {
3797     // We can only infer from single-instruction patterns, otherwise we won't
3798     // know which instruction should get the flags.
3799     SmallVector<Record*, 8> PatInstrs;
3800     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3801     if (PatInstrs.size() != 1)
3802       continue;
3803 
3804     // Get the single instruction.
3805     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3806 
3807     // Only infer properties from the first pattern. We'll verify the others.
3808     if (InstInfo.InferredFrom)
3809       continue;
3810 
3811     InstAnalyzer PatInfo(*this);
3812     PatInfo.Analyze(PTM);
3813     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3814   }
3815 
3816   if (Errors)
3817     PrintFatalError("pattern conflicts");
3818 
3819   // If requested by the target, guess any undefined properties.
3820   if (Target.guessInstructionProperties()) {
3821     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3822       CodeGenInstruction *InstInfo =
3823         const_cast<CodeGenInstruction *>(Instructions[i]);
3824       if (InstInfo->InferredFrom)
3825         continue;
3826       // The mayLoad and mayStore flags default to false.
3827       // Conservatively assume hasSideEffects if it wasn't explicit.
3828       if (InstInfo->hasSideEffects_Unset)
3829         InstInfo->hasSideEffects = true;
3830     }
3831     return;
3832   }
3833 
3834   // Complain about any flags that are still undefined.
3835   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3836     CodeGenInstruction *InstInfo =
3837       const_cast<CodeGenInstruction *>(Instructions[i]);
3838     if (InstInfo->InferredFrom)
3839       continue;
3840     if (InstInfo->hasSideEffects_Unset)
3841       PrintError(InstInfo->TheDef->getLoc(),
3842                  "Can't infer hasSideEffects from patterns");
3843     if (InstInfo->mayStore_Unset)
3844       PrintError(InstInfo->TheDef->getLoc(),
3845                  "Can't infer mayStore from patterns");
3846     if (InstInfo->mayLoad_Unset)
3847       PrintError(InstInfo->TheDef->getLoc(),
3848                  "Can't infer mayLoad from patterns");
3849   }
3850 }
3851 
3852 
3853 /// Verify instruction flags against pattern node properties.
VerifyInstructionFlags()3854 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3855   unsigned Errors = 0;
3856   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3857     const PatternToMatch &PTM = *I;
3858     SmallVector<Record*, 8> Instrs;
3859     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3860     if (Instrs.empty())
3861       continue;
3862 
3863     // Count the number of instructions with each flag set.
3864     unsigned NumSideEffects = 0;
3865     unsigned NumStores = 0;
3866     unsigned NumLoads = 0;
3867     for (const Record *Instr : Instrs) {
3868       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3869       NumSideEffects += InstInfo.hasSideEffects;
3870       NumStores += InstInfo.mayStore;
3871       NumLoads += InstInfo.mayLoad;
3872     }
3873 
3874     // Analyze the source pattern.
3875     InstAnalyzer PatInfo(*this);
3876     PatInfo.Analyze(PTM);
3877 
3878     // Collect error messages.
3879     SmallVector<std::string, 4> Msgs;
3880 
3881     // Check for missing flags in the output.
3882     // Permit extra flags for now at least.
3883     if (PatInfo.hasSideEffects && !NumSideEffects)
3884       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3885 
3886     // Don't verify store flags on instructions with side effects. At least for
3887     // intrinsics, side effects implies mayStore.
3888     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3889       Msgs.push_back("pattern may store, but mayStore isn't set");
3890 
3891     // Similarly, mayStore implies mayLoad on intrinsics.
3892     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3893       Msgs.push_back("pattern may load, but mayLoad isn't set");
3894 
3895     // Print error messages.
3896     if (Msgs.empty())
3897       continue;
3898     ++Errors;
3899 
3900     for (const std::string &Msg : Msgs)
3901       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3902                  (Instrs.size() == 1 ?
3903                   "instruction" : "output instructions"));
3904     // Provide the location of the relevant instruction definitions.
3905     for (const Record *Instr : Instrs) {
3906       if (Instr != PTM.getSrcRecord())
3907         PrintError(Instr->getLoc(), "defined here");
3908       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3909       if (InstInfo.InferredFrom &&
3910           InstInfo.InferredFrom != InstInfo.TheDef &&
3911           InstInfo.InferredFrom != PTM.getSrcRecord())
3912         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3913     }
3914   }
3915   if (Errors)
3916     PrintFatalError("Errors in DAG patterns");
3917 }
3918 
3919 /// Given a pattern result with an unresolved type, see if we can find one
3920 /// instruction with an unresolved result type.  Force this result type to an
3921 /// arbitrary element if it's possible types to converge results.
ForceArbitraryInstResultType(TreePatternNode * N,TreePattern & TP)3922 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3923   if (N->isLeaf())
3924     return false;
3925 
3926   // Analyze children.
3927   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3928     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3929       return true;
3930 
3931   if (!N->getOperator()->isSubClassOf("Instruction"))
3932     return false;
3933 
3934   // If this type is already concrete or completely unknown we can't do
3935   // anything.
3936   TypeInfer &TI = TP.getInfer();
3937   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3938     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3939       continue;
3940 
3941     // Otherwise, force its type to an arbitrary choice.
3942     if (TI.forceArbitrary(N->getExtType(i)))
3943       return true;
3944   }
3945 
3946   return false;
3947 }
3948 
3949 // Promote xform function to be an explicit node wherever set.
PromoteXForms(TreePatternNodePtr N)3950 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
3951   if (Record *Xform = N->getTransformFn()) {
3952       N->setTransformFn(nullptr);
3953       std::vector<TreePatternNodePtr> Children;
3954       Children.push_back(PromoteXForms(N));
3955       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
3956                                                N->getNumTypes());
3957   }
3958 
3959   if (!N->isLeaf())
3960     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3961       TreePatternNodePtr Child = N->getChildShared(i);
3962       N->setChild(i, PromoteXForms(Child));
3963     }
3964   return N;
3965 }
3966 
ParseOnePattern(Record * TheDef,TreePattern & Pattern,TreePattern & Result,const std::vector<Record * > & InstImpResults)3967 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
3968        TreePattern &Pattern, TreePattern &Result,
3969        const std::vector<Record *> &InstImpResults) {
3970 
3971   // Inline pattern fragments and expand multiple alternatives.
3972   Pattern.InlinePatternFragments();
3973   Result.InlinePatternFragments();
3974 
3975   if (Result.getNumTrees() != 1)
3976     Result.error("Cannot use multi-alternative fragments in result pattern!");
3977 
3978   // Infer types.
3979   bool IterateInference;
3980   bool InferredAllPatternTypes, InferredAllResultTypes;
3981   do {
3982     // Infer as many types as possible.  If we cannot infer all of them, we
3983     // can never do anything with this pattern: report it to the user.
3984     InferredAllPatternTypes =
3985         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
3986 
3987     // Infer as many types as possible.  If we cannot infer all of them, we
3988     // can never do anything with this pattern: report it to the user.
3989     InferredAllResultTypes =
3990         Result.InferAllTypes(&Pattern.getNamedNodesMap());
3991 
3992     IterateInference = false;
3993 
3994     // Apply the type of the result to the source pattern.  This helps us
3995     // resolve cases where the input type is known to be a pointer type (which
3996     // is considered resolved), but the result knows it needs to be 32- or
3997     // 64-bits.  Infer the other way for good measure.
3998     for (auto T : Pattern.getTrees())
3999       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4000                                         T->getNumTypes());
4001          i != e; ++i) {
4002         IterateInference |= T->UpdateNodeType(
4003             i, Result.getOnlyTree()->getExtType(i), Result);
4004         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4005             i, T->getExtType(i), Result);
4006       }
4007 
4008     // If our iteration has converged and the input pattern's types are fully
4009     // resolved but the result pattern is not fully resolved, we may have a
4010     // situation where we have two instructions in the result pattern and
4011     // the instructions require a common register class, but don't care about
4012     // what actual MVT is used.  This is actually a bug in our modelling:
4013     // output patterns should have register classes, not MVTs.
4014     //
4015     // In any case, to handle this, we just go through and disambiguate some
4016     // arbitrary types to the result pattern's nodes.
4017     if (!IterateInference && InferredAllPatternTypes &&
4018         !InferredAllResultTypes)
4019       IterateInference =
4020           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4021   } while (IterateInference);
4022 
4023   // Verify that we inferred enough types that we can do something with the
4024   // pattern and result.  If these fire the user has to add type casts.
4025   if (!InferredAllPatternTypes)
4026     Pattern.error("Could not infer all types in pattern!");
4027   if (!InferredAllResultTypes) {
4028     Pattern.dump();
4029     Result.error("Could not infer all types in pattern result!");
4030   }
4031 
4032   // Promote xform function to be an explicit node wherever set.
4033   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4034 
4035   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4036   Temp.InferAllTypes();
4037 
4038   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4039   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4040 
4041   if (PatternRewriter)
4042     PatternRewriter(&Pattern);
4043 
4044   // A pattern may end up with an "impossible" type, i.e. a situation
4045   // where all types have been eliminated for some node in this pattern.
4046   // This could occur for intrinsics that only make sense for a specific
4047   // value type, and use a specific register class. If, for some mode,
4048   // that register class does not accept that type, the type inference
4049   // will lead to a contradiction, which is not an error however, but
4050   // a sign that this pattern will simply never match.
4051   if (Temp.getOnlyTree()->hasPossibleType())
4052     for (auto T : Pattern.getTrees())
4053       if (T->hasPossibleType())
4054         AddPatternToMatch(&Pattern,
4055                           PatternToMatch(TheDef, makePredList(Preds),
4056                                          T, Temp.getOnlyTree(),
4057                                          InstImpResults, Complexity,
4058                                          TheDef->getID()));
4059 }
4060 
ParsePatterns()4061 void CodeGenDAGPatterns::ParsePatterns() {
4062   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4063 
4064   for (Record *CurPattern : Patterns) {
4065     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4066 
4067     // If the pattern references the null_frag, there's nothing to do.
4068     if (hasNullFragReference(Tree))
4069       continue;
4070 
4071     TreePattern Pattern(CurPattern, Tree, true, *this);
4072 
4073     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4074     if (LI->empty()) continue;  // no pattern.
4075 
4076     // Parse the instruction.
4077     TreePattern Result(CurPattern, LI, false, *this);
4078 
4079     if (Result.getNumTrees() != 1)
4080       Result.error("Cannot handle instructions producing instructions "
4081                    "with temporaries yet!");
4082 
4083     // Validate that the input pattern is correct.
4084     std::map<std::string, TreePatternNodePtr> InstInputs;
4085     std::map<std::string, TreePatternNodePtr> InstResults;
4086     std::vector<Record*> InstImpResults;
4087     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4088       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4089                                   InstResults, InstImpResults);
4090 
4091     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4092   }
4093 }
4094 
collectModes(std::set<unsigned> & Modes,const TreePatternNode * N)4095 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4096   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4097     for (const auto &I : VTS)
4098       Modes.insert(I.first);
4099 
4100   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4101     collectModes(Modes, N->getChild(i));
4102 }
4103 
ExpandHwModeBasedTypes()4104 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4105   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4106   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4107   std::vector<PatternToMatch> Copy = PatternsToMatch;
4108   PatternsToMatch.clear();
4109 
4110   auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4111     TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4112     TreePatternNodePtr NewDst = P.DstPattern->clone();
4113     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4114       return;
4115     }
4116 
4117     std::vector<Predicate> Preds = P.Predicates;
4118     const std::vector<Predicate> &MC = ModeChecks[Mode];
4119     Preds.insert(Preds.end(), MC.begin(), MC.end());
4120     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4121                                  std::move(NewDst), P.getDstRegs(),
4122                                  P.getAddedComplexity(), Record::getNewUID(),
4123                                  Mode);
4124   };
4125 
4126   for (PatternToMatch &P : Copy) {
4127     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4128     if (P.SrcPattern->hasProperTypeByHwMode())
4129       SrcP = P.SrcPattern;
4130     if (P.DstPattern->hasProperTypeByHwMode())
4131       DstP = P.DstPattern;
4132     if (!SrcP && !DstP) {
4133       PatternsToMatch.push_back(P);
4134       continue;
4135     }
4136 
4137     std::set<unsigned> Modes;
4138     if (SrcP)
4139       collectModes(Modes, SrcP.get());
4140     if (DstP)
4141       collectModes(Modes, DstP.get());
4142 
4143     // The predicate for the default mode needs to be constructed for each
4144     // pattern separately.
4145     // Since not all modes must be present in each pattern, if a mode m is
4146     // absent, then there is no point in constructing a check for m. If such
4147     // a check was created, it would be equivalent to checking the default
4148     // mode, except not all modes' predicates would be a part of the checking
4149     // code. The subsequently generated check for the default mode would then
4150     // have the exact same patterns, but a different predicate code. To avoid
4151     // duplicated patterns with different predicate checks, construct the
4152     // default check as a negation of all predicates that are actually present
4153     // in the source/destination patterns.
4154     std::vector<Predicate> DefaultPred;
4155 
4156     for (unsigned M : Modes) {
4157       if (M == DefaultMode)
4158         continue;
4159       if (ModeChecks.find(M) != ModeChecks.end())
4160         continue;
4161 
4162       // Fill the map entry for this mode.
4163       const HwMode &HM = CGH.getMode(M);
4164       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4165 
4166       // Add negations of the HM's predicates to the default predicate.
4167       DefaultPred.emplace_back(Predicate(HM.Features, false));
4168     }
4169 
4170     for (unsigned M : Modes) {
4171       if (M == DefaultMode)
4172         continue;
4173       AppendPattern(P, M);
4174     }
4175 
4176     bool HasDefault = Modes.count(DefaultMode);
4177     if (HasDefault)
4178       AppendPattern(P, DefaultMode);
4179   }
4180 }
4181 
4182 /// Dependent variable map for CodeGenDAGPattern variant generation
4183 typedef StringMap<int> DepVarMap;
4184 
FindDepVarsOf(TreePatternNode * N,DepVarMap & DepMap)4185 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4186   if (N->isLeaf()) {
4187     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4188       DepMap[N->getName()]++;
4189   } else {
4190     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4191       FindDepVarsOf(N->getChild(i), DepMap);
4192   }
4193 }
4194 
4195 /// Find dependent variables within child patterns
FindDepVars(TreePatternNode * N,MultipleUseVarSet & DepVars)4196 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4197   DepVarMap depcounts;
4198   FindDepVarsOf(N, depcounts);
4199   for (const auto &Pair : depcounts) {
4200     if (Pair.getValue() > 1)
4201       DepVars.insert(Pair.getKey());
4202   }
4203 }
4204 
4205 #ifndef NDEBUG
4206 /// Dump the dependent variable set:
DumpDepVars(MultipleUseVarSet & DepVars)4207 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4208   if (DepVars.empty()) {
4209     LLVM_DEBUG(errs() << "<empty set>");
4210   } else {
4211     LLVM_DEBUG(errs() << "[ ");
4212     for (const auto &DepVar : DepVars) {
4213       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4214     }
4215     LLVM_DEBUG(errs() << "]");
4216   }
4217 }
4218 #endif
4219 
4220 
4221 /// CombineChildVariants - Given a bunch of permutations of each child of the
4222 /// 'operator' node, put them together in all possible ways.
CombineChildVariants(TreePatternNodePtr Orig,const std::vector<std::vector<TreePatternNodePtr>> & ChildVariants,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4223 static void CombineChildVariants(
4224     TreePatternNodePtr Orig,
4225     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4226     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4227     const MultipleUseVarSet &DepVars) {
4228   // Make sure that each operand has at least one variant to choose from.
4229   for (const auto &Variants : ChildVariants)
4230     if (Variants.empty())
4231       return;
4232 
4233   // The end result is an all-pairs construction of the resultant pattern.
4234   std::vector<unsigned> Idxs;
4235   Idxs.resize(ChildVariants.size());
4236   bool NotDone;
4237   do {
4238 #ifndef NDEBUG
4239     LLVM_DEBUG(if (!Idxs.empty()) {
4240       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4241       for (unsigned Idx : Idxs) {
4242         errs() << Idx << " ";
4243       }
4244       errs() << "]\n";
4245     });
4246 #endif
4247     // Create the variant and add it to the output list.
4248     std::vector<TreePatternNodePtr> NewChildren;
4249     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4250       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4251     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4252         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4253 
4254     // Copy over properties.
4255     R->setName(Orig->getName());
4256     R->setPredicateFns(Orig->getPredicateFns());
4257     R->setTransformFn(Orig->getTransformFn());
4258     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4259       R->setType(i, Orig->getExtType(i));
4260 
4261     // If this pattern cannot match, do not include it as a variant.
4262     std::string ErrString;
4263     // Scan to see if this pattern has already been emitted.  We can get
4264     // duplication due to things like commuting:
4265     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4266     // which are the same pattern.  Ignore the dups.
4267     if (R->canPatternMatch(ErrString, CDP) &&
4268         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4269           return R->isIsomorphicTo(Variant.get(), DepVars);
4270         }))
4271       OutVariants.push_back(R);
4272 
4273     // Increment indices to the next permutation by incrementing the
4274     // indices from last index backward, e.g., generate the sequence
4275     // [0, 0], [0, 1], [1, 0], [1, 1].
4276     int IdxsIdx;
4277     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4278       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4279         Idxs[IdxsIdx] = 0;
4280       else
4281         break;
4282     }
4283     NotDone = (IdxsIdx >= 0);
4284   } while (NotDone);
4285 }
4286 
4287 /// CombineChildVariants - A helper function for binary operators.
4288 ///
CombineChildVariants(TreePatternNodePtr Orig,const std::vector<TreePatternNodePtr> & LHS,const std::vector<TreePatternNodePtr> & RHS,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4289 static void CombineChildVariants(TreePatternNodePtr Orig,
4290                                  const std::vector<TreePatternNodePtr> &LHS,
4291                                  const std::vector<TreePatternNodePtr> &RHS,
4292                                  std::vector<TreePatternNodePtr> &OutVariants,
4293                                  CodeGenDAGPatterns &CDP,
4294                                  const MultipleUseVarSet &DepVars) {
4295   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4296   ChildVariants.push_back(LHS);
4297   ChildVariants.push_back(RHS);
4298   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4299 }
4300 
4301 static void
GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,std::vector<TreePatternNodePtr> & Children)4302 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4303                                   std::vector<TreePatternNodePtr> &Children) {
4304   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4305   Record *Operator = N->getOperator();
4306 
4307   // Only permit raw nodes.
4308   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
4309       N->getTransformFn()) {
4310     Children.push_back(N);
4311     return;
4312   }
4313 
4314   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4315     Children.push_back(N->getChildShared(0));
4316   else
4317     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4318 
4319   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4320     Children.push_back(N->getChildShared(1));
4321   else
4322     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4323 }
4324 
4325 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4326 /// the (potentially recursive) pattern by using algebraic laws.
4327 ///
GenerateVariantsOf(TreePatternNodePtr N,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4328 static void GenerateVariantsOf(TreePatternNodePtr N,
4329                                std::vector<TreePatternNodePtr> &OutVariants,
4330                                CodeGenDAGPatterns &CDP,
4331                                const MultipleUseVarSet &DepVars) {
4332   // We cannot permute leaves or ComplexPattern uses.
4333   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4334     OutVariants.push_back(N);
4335     return;
4336   }
4337 
4338   // Look up interesting info about the node.
4339   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4340 
4341   // If this node is associative, re-associate.
4342   if (NodeInfo.hasProperty(SDNPAssociative)) {
4343     // Re-associate by pulling together all of the linked operators
4344     std::vector<TreePatternNodePtr> MaximalChildren;
4345     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4346 
4347     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4348     // permutations.
4349     if (MaximalChildren.size() == 3) {
4350       // Find the variants of all of our maximal children.
4351       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4352       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4353       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4354       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4355 
4356       // There are only two ways we can permute the tree:
4357       //   (A op B) op C    and    A op (B op C)
4358       // Within these forms, we can also permute A/B/C.
4359 
4360       // Generate legal pair permutations of A/B/C.
4361       std::vector<TreePatternNodePtr> ABVariants;
4362       std::vector<TreePatternNodePtr> BAVariants;
4363       std::vector<TreePatternNodePtr> ACVariants;
4364       std::vector<TreePatternNodePtr> CAVariants;
4365       std::vector<TreePatternNodePtr> BCVariants;
4366       std::vector<TreePatternNodePtr> CBVariants;
4367       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4368       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4369       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4370       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4371       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4372       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4373 
4374       // Combine those into the result: (x op x) op x
4375       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4376       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4377       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4378       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4379       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4380       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4381 
4382       // Combine those into the result: x op (x op x)
4383       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4384       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4385       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4386       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4387       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4388       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4389       return;
4390     }
4391   }
4392 
4393   // Compute permutations of all children.
4394   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4395   ChildVariants.resize(N->getNumChildren());
4396   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4397     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4398 
4399   // Build all permutations based on how the children were formed.
4400   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4401 
4402   // If this node is commutative, consider the commuted order.
4403   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4404   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4405     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4406            "Commutative but doesn't have 2 children!");
4407     // Don't count children which are actually register references.
4408     unsigned NC = 0;
4409     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4410       TreePatternNode *Child = N->getChild(i);
4411       if (Child->isLeaf())
4412         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4413           Record *RR = DI->getDef();
4414           if (RR->isSubClassOf("Register"))
4415             continue;
4416         }
4417       NC++;
4418     }
4419     // Consider the commuted order.
4420     if (isCommIntrinsic) {
4421       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4422       // operands are the commutative operands, and there might be more operands
4423       // after those.
4424       assert(NC >= 3 &&
4425              "Commutative intrinsic should have at least 3 children!");
4426       std::vector<std::vector<TreePatternNodePtr>> Variants;
4427       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4428       Variants.push_back(std::move(ChildVariants[2]));
4429       Variants.push_back(std::move(ChildVariants[1]));
4430       for (unsigned i = 3; i != NC; ++i)
4431         Variants.push_back(std::move(ChildVariants[i]));
4432       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4433     } else if (NC == N->getNumChildren()) {
4434       std::vector<std::vector<TreePatternNodePtr>> Variants;
4435       Variants.push_back(std::move(ChildVariants[1]));
4436       Variants.push_back(std::move(ChildVariants[0]));
4437       for (unsigned i = 2; i != NC; ++i)
4438         Variants.push_back(std::move(ChildVariants[i]));
4439       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4440     }
4441   }
4442 }
4443 
4444 
4445 // GenerateVariants - Generate variants.  For example, commutative patterns can
4446 // match multiple ways.  Add them to PatternsToMatch as well.
GenerateVariants()4447 void CodeGenDAGPatterns::GenerateVariants() {
4448   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4449 
4450   // Loop over all of the patterns we've collected, checking to see if we can
4451   // generate variants of the instruction, through the exploitation of
4452   // identities.  This permits the target to provide aggressive matching without
4453   // the .td file having to contain tons of variants of instructions.
4454   //
4455   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4456   // intentionally do not reconsider these.  Any variants of added patterns have
4457   // already been added.
4458   //
4459   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4460     MultipleUseVarSet             DepVars;
4461     std::vector<TreePatternNodePtr> Variants;
4462     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4463     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4464     LLVM_DEBUG(DumpDepVars(DepVars));
4465     LLVM_DEBUG(errs() << "\n");
4466     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4467                        *this, DepVars);
4468 
4469     assert(!Variants.empty() && "Must create at least original variant!");
4470     if (Variants.size() == 1)  // No additional variants for this pattern.
4471       continue;
4472 
4473     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4474                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4475 
4476     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4477       TreePatternNodePtr Variant = Variants[v];
4478 
4479       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4480                  errs() << "\n");
4481 
4482       // Scan to see if an instruction or explicit pattern already matches this.
4483       bool AlreadyExists = false;
4484       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4485         // Skip if the top level predicates do not match.
4486         if (PatternsToMatch[i].getPredicates() !=
4487             PatternsToMatch[p].getPredicates())
4488           continue;
4489         // Check to see if this variant already exists.
4490         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4491                                     DepVars)) {
4492           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4493           AlreadyExists = true;
4494           break;
4495         }
4496       }
4497       // If we already have it, ignore the variant.
4498       if (AlreadyExists) continue;
4499 
4500       // Otherwise, add it to the list of patterns we have.
4501       PatternsToMatch.push_back(PatternToMatch(
4502           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4503           Variant, PatternsToMatch[i].getDstPatternShared(),
4504           PatternsToMatch[i].getDstRegs(),
4505           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4506     }
4507 
4508     LLVM_DEBUG(errs() << "\n");
4509   }
4510 }
4511