1 /*
2 **
3 ** Copyright 2007, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18 //#define LOG_NDEBUG 0
19 #define LOG_TAG "AudioTrack"
20
21 #include <inttypes.h>
22 #include <math.h>
23 #include <sys/resource.h>
24
25 #include <android-base/macros.h>
26 #include <audio_utils/clock.h>
27 #include <audio_utils/primitives.h>
28 #include <binder/IPCThreadState.h>
29 #include <media/AudioTrack.h>
30 #include <utils/Log.h>
31 #include <private/media/AudioTrackShared.h>
32 #include <processgroup/sched_policy.h>
33 #include <media/IAudioFlinger.h>
34 #include <media/IAudioPolicyService.h>
35 #include <media/AudioParameter.h>
36 #include <media/AudioResamplerPublic.h>
37 #include <media/AudioSystem.h>
38 #include <media/MediaAnalyticsItem.h>
39 #include <media/TypeConverter.h>
40
41 #define WAIT_PERIOD_MS 10
42 #define WAIT_STREAM_END_TIMEOUT_SEC 120
43 static const int kMaxLoopCountNotifications = 32;
44
45 namespace android {
46 // ---------------------------------------------------------------------------
47
48 using media::VolumeShaper;
49
50 // TODO: Move to a separate .h
51
52 template <typename T>
min(const T & x,const T & y)53 static inline const T &min(const T &x, const T &y) {
54 return x < y ? x : y;
55 }
56
57 template <typename T>
max(const T & x,const T & y)58 static inline const T &max(const T &x, const T &y) {
59 return x > y ? x : y;
60 }
61
framesToNanoseconds(ssize_t frames,uint32_t sampleRate,float speed)62 static inline nsecs_t framesToNanoseconds(ssize_t frames, uint32_t sampleRate, float speed)
63 {
64 return ((double)frames * 1000000000) / ((double)sampleRate * speed);
65 }
66
convertTimespecToUs(const struct timespec & tv)67 static int64_t convertTimespecToUs(const struct timespec &tv)
68 {
69 return tv.tv_sec * 1000000LL + tv.tv_nsec / 1000;
70 }
71
72 // TODO move to audio_utils.
convertNsToTimespec(int64_t ns)73 static inline struct timespec convertNsToTimespec(int64_t ns) {
74 struct timespec tv;
75 tv.tv_sec = static_cast<time_t>(ns / NANOS_PER_SECOND);
76 tv.tv_nsec = static_cast<long>(ns % NANOS_PER_SECOND);
77 return tv;
78 }
79
80 // current monotonic time in microseconds.
getNowUs()81 static int64_t getNowUs()
82 {
83 struct timespec tv;
84 (void) clock_gettime(CLOCK_MONOTONIC, &tv);
85 return convertTimespecToUs(tv);
86 }
87
88 // FIXME: we don't use the pitch setting in the time stretcher (not working);
89 // instead we emulate it using our sample rate converter.
90 static const bool kFixPitch = true; // enable pitch fix
adjustSampleRate(uint32_t sampleRate,float pitch)91 static inline uint32_t adjustSampleRate(uint32_t sampleRate, float pitch)
92 {
93 return kFixPitch ? (sampleRate * pitch + 0.5) : sampleRate;
94 }
95
adjustSpeed(float speed,float pitch)96 static inline float adjustSpeed(float speed, float pitch)
97 {
98 return kFixPitch ? speed / max(pitch, AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) : speed;
99 }
100
adjustPitch(float pitch)101 static inline float adjustPitch(float pitch)
102 {
103 return kFixPitch ? AUDIO_TIMESTRETCH_PITCH_NORMAL : pitch;
104 }
105
106 // static
getMinFrameCount(size_t * frameCount,audio_stream_type_t streamType,uint32_t sampleRate)107 status_t AudioTrack::getMinFrameCount(
108 size_t* frameCount,
109 audio_stream_type_t streamType,
110 uint32_t sampleRate)
111 {
112 if (frameCount == NULL) {
113 return BAD_VALUE;
114 }
115
116 // FIXME handle in server, like createTrack_l(), possible missing info:
117 // audio_io_handle_t output
118 // audio_format_t format
119 // audio_channel_mask_t channelMask
120 // audio_output_flags_t flags (FAST)
121 uint32_t afSampleRate;
122 status_t status;
123 status = AudioSystem::getOutputSamplingRate(&afSampleRate, streamType);
124 if (status != NO_ERROR) {
125 ALOGE("%s(): Unable to query output sample rate for stream type %d; status %d",
126 __func__, streamType, status);
127 return status;
128 }
129 size_t afFrameCount;
130 status = AudioSystem::getOutputFrameCount(&afFrameCount, streamType);
131 if (status != NO_ERROR) {
132 ALOGE("%s(): Unable to query output frame count for stream type %d; status %d",
133 __func__, streamType, status);
134 return status;
135 }
136 uint32_t afLatency;
137 status = AudioSystem::getOutputLatency(&afLatency, streamType);
138 if (status != NO_ERROR) {
139 ALOGE("%s(): Unable to query output latency for stream type %d; status %d",
140 __func__, streamType, status);
141 return status;
142 }
143
144 // When called from createTrack, speed is 1.0f (normal speed).
145 // This is rechecked again on setting playback rate (TODO: on setting sample rate, too).
146 *frameCount = AudioSystem::calculateMinFrameCount(afLatency, afFrameCount, afSampleRate,
147 sampleRate, 1.0f /*, 0 notificationsPerBufferReq*/);
148
149 // The formula above should always produce a non-zero value under normal circumstances:
150 // AudioTrack.SAMPLE_RATE_HZ_MIN <= sampleRate <= AudioTrack.SAMPLE_RATE_HZ_MAX.
151 // Return error in the unlikely event that it does not, as that's part of the API contract.
152 if (*frameCount == 0) {
153 ALOGE("%s(): failed for streamType %d, sampleRate %u",
154 __func__, streamType, sampleRate);
155 return BAD_VALUE;
156 }
157 ALOGV("%s(): getMinFrameCount=%zu: afFrameCount=%zu, afSampleRate=%u, afLatency=%u",
158 __func__, *frameCount, afFrameCount, afSampleRate, afLatency);
159 return NO_ERROR;
160 }
161
162 // static
isDirectOutputSupported(const audio_config_base_t & config,const audio_attributes_t & attributes)163 bool AudioTrack::isDirectOutputSupported(const audio_config_base_t& config,
164 const audio_attributes_t& attributes) {
165 ALOGV("%s()", __FUNCTION__);
166 const sp<IAudioPolicyService>& aps = AudioSystem::get_audio_policy_service();
167 if (aps == 0) return false;
168 return aps->isDirectOutputSupported(config, attributes);
169 }
170
171 // ---------------------------------------------------------------------------
172
gather(const AudioTrack * track)173 void AudioTrack::MediaMetrics::gather(const AudioTrack *track)
174 {
175 // only if we're in a good state...
176 // XXX: shall we gather alternative info if failing?
177 const status_t lstatus = track->initCheck();
178 if (lstatus != NO_ERROR) {
179 ALOGD("%s(): no metrics gathered, track status=%d", __func__, (int) lstatus);
180 return;
181 }
182
183 #define MM_PREFIX "android.media.audiotrack." // avoid cut-n-paste errors.
184
185 // Java API 28 entries, do not change.
186 mAnalyticsItem->setCString(MM_PREFIX "streamtype", toString(track->streamType()).c_str());
187 mAnalyticsItem->setCString(MM_PREFIX "type",
188 toString(track->mAttributes.content_type).c_str());
189 mAnalyticsItem->setCString(MM_PREFIX "usage", toString(track->mAttributes.usage).c_str());
190
191 // Non-API entries, these can change due to a Java string mistake.
192 mAnalyticsItem->setInt32(MM_PREFIX "sampleRate", (int32_t)track->mSampleRate);
193 mAnalyticsItem->setInt64(MM_PREFIX "channelMask", (int64_t)track->mChannelMask);
194 // Non-API entries, these can change.
195 mAnalyticsItem->setInt32(MM_PREFIX "portId", (int32_t)track->mPortId);
196 mAnalyticsItem->setCString(MM_PREFIX "encoding", toString(track->mFormat).c_str());
197 mAnalyticsItem->setInt32(MM_PREFIX "frameCount", (int32_t)track->mFrameCount);
198 mAnalyticsItem->setCString(MM_PREFIX "attributes", toString(track->mAttributes).c_str());
199 }
200
201 // hand the user a snapshot of the metrics.
getMetrics(MediaAnalyticsItem * & item)202 status_t AudioTrack::getMetrics(MediaAnalyticsItem * &item)
203 {
204 mMediaMetrics.gather(this);
205 MediaAnalyticsItem *tmp = mMediaMetrics.dup();
206 if (tmp == nullptr) {
207 return BAD_VALUE;
208 }
209 item = tmp;
210 return NO_ERROR;
211 }
212
AudioTrack()213 AudioTrack::AudioTrack()
214 : mStatus(NO_INIT),
215 mState(STATE_STOPPED),
216 mPreviousPriority(ANDROID_PRIORITY_NORMAL),
217 mPreviousSchedulingGroup(SP_DEFAULT),
218 mPausedPosition(0),
219 mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE),
220 mRoutedDeviceId(AUDIO_PORT_HANDLE_NONE)
221 {
222 mAttributes.content_type = AUDIO_CONTENT_TYPE_UNKNOWN;
223 mAttributes.usage = AUDIO_USAGE_UNKNOWN;
224 mAttributes.flags = 0x0;
225 strcpy(mAttributes.tags, "");
226 }
227
AudioTrack(audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t frameCount,audio_output_flags_t flags,callback_t cbf,void * user,int32_t notificationFrames,audio_session_t sessionId,transfer_type transferType,const audio_offload_info_t * offloadInfo,uid_t uid,pid_t pid,const audio_attributes_t * pAttributes,bool doNotReconnect,float maxRequiredSpeed,audio_port_handle_t selectedDeviceId)228 AudioTrack::AudioTrack(
229 audio_stream_type_t streamType,
230 uint32_t sampleRate,
231 audio_format_t format,
232 audio_channel_mask_t channelMask,
233 size_t frameCount,
234 audio_output_flags_t flags,
235 callback_t cbf,
236 void* user,
237 int32_t notificationFrames,
238 audio_session_t sessionId,
239 transfer_type transferType,
240 const audio_offload_info_t *offloadInfo,
241 uid_t uid,
242 pid_t pid,
243 const audio_attributes_t* pAttributes,
244 bool doNotReconnect,
245 float maxRequiredSpeed,
246 audio_port_handle_t selectedDeviceId)
247 : mStatus(NO_INIT),
248 mState(STATE_STOPPED),
249 mPreviousPriority(ANDROID_PRIORITY_NORMAL),
250 mPreviousSchedulingGroup(SP_DEFAULT),
251 mPausedPosition(0)
252 {
253 mAttributes = AUDIO_ATTRIBUTES_INITIALIZER;
254
255 (void)set(streamType, sampleRate, format, channelMask,
256 frameCount, flags, cbf, user, notificationFrames,
257 0 /*sharedBuffer*/, false /*threadCanCallJava*/, sessionId, transferType,
258 offloadInfo, uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed, selectedDeviceId);
259 }
260
AudioTrack(audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,const sp<IMemory> & sharedBuffer,audio_output_flags_t flags,callback_t cbf,void * user,int32_t notificationFrames,audio_session_t sessionId,transfer_type transferType,const audio_offload_info_t * offloadInfo,uid_t uid,pid_t pid,const audio_attributes_t * pAttributes,bool doNotReconnect,float maxRequiredSpeed)261 AudioTrack::AudioTrack(
262 audio_stream_type_t streamType,
263 uint32_t sampleRate,
264 audio_format_t format,
265 audio_channel_mask_t channelMask,
266 const sp<IMemory>& sharedBuffer,
267 audio_output_flags_t flags,
268 callback_t cbf,
269 void* user,
270 int32_t notificationFrames,
271 audio_session_t sessionId,
272 transfer_type transferType,
273 const audio_offload_info_t *offloadInfo,
274 uid_t uid,
275 pid_t pid,
276 const audio_attributes_t* pAttributes,
277 bool doNotReconnect,
278 float maxRequiredSpeed)
279 : mStatus(NO_INIT),
280 mState(STATE_STOPPED),
281 mPreviousPriority(ANDROID_PRIORITY_NORMAL),
282 mPreviousSchedulingGroup(SP_DEFAULT),
283 mPausedPosition(0),
284 mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE)
285 {
286 mAttributes = AUDIO_ATTRIBUTES_INITIALIZER;
287
288 (void)set(streamType, sampleRate, format, channelMask,
289 0 /*frameCount*/, flags, cbf, user, notificationFrames,
290 sharedBuffer, false /*threadCanCallJava*/, sessionId, transferType, offloadInfo,
291 uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed);
292 }
293
~AudioTrack()294 AudioTrack::~AudioTrack()
295 {
296 // pull together the numbers, before we clean up our structures
297 mMediaMetrics.gather(this);
298
299 if (mStatus == NO_ERROR) {
300 // Make sure that callback function exits in the case where
301 // it is looping on buffer full condition in obtainBuffer().
302 // Otherwise the callback thread will never exit.
303 stop();
304 if (mAudioTrackThread != 0) {
305 mProxy->interrupt();
306 mAudioTrackThread->requestExit(); // see comment in AudioTrack.h
307 mAudioTrackThread->requestExitAndWait();
308 mAudioTrackThread.clear();
309 }
310 // No lock here: worst case we remove a NULL callback which will be a nop
311 if (mDeviceCallback != 0 && mOutput != AUDIO_IO_HANDLE_NONE) {
312 AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId);
313 }
314 IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
315 mAudioTrack.clear();
316 mCblkMemory.clear();
317 mSharedBuffer.clear();
318 IPCThreadState::self()->flushCommands();
319 ALOGV("%s(%d), releasing session id %d from %d on behalf of %d",
320 __func__, mPortId,
321 mSessionId, IPCThreadState::self()->getCallingPid(), mClientPid);
322 AudioSystem::releaseAudioSessionId(mSessionId, mClientPid);
323 }
324 }
325
set(audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t frameCount,audio_output_flags_t flags,callback_t cbf,void * user,int32_t notificationFrames,const sp<IMemory> & sharedBuffer,bool threadCanCallJava,audio_session_t sessionId,transfer_type transferType,const audio_offload_info_t * offloadInfo,uid_t uid,pid_t pid,const audio_attributes_t * pAttributes,bool doNotReconnect,float maxRequiredSpeed,audio_port_handle_t selectedDeviceId)326 status_t AudioTrack::set(
327 audio_stream_type_t streamType,
328 uint32_t sampleRate,
329 audio_format_t format,
330 audio_channel_mask_t channelMask,
331 size_t frameCount,
332 audio_output_flags_t flags,
333 callback_t cbf,
334 void* user,
335 int32_t notificationFrames,
336 const sp<IMemory>& sharedBuffer,
337 bool threadCanCallJava,
338 audio_session_t sessionId,
339 transfer_type transferType,
340 const audio_offload_info_t *offloadInfo,
341 uid_t uid,
342 pid_t pid,
343 const audio_attributes_t* pAttributes,
344 bool doNotReconnect,
345 float maxRequiredSpeed,
346 audio_port_handle_t selectedDeviceId)
347 {
348 status_t status;
349 uint32_t channelCount;
350 pid_t callingPid;
351 pid_t myPid;
352
353 // Note mPortId is not valid until the track is created, so omit mPortId in ALOG for set.
354 ALOGV("%s(): streamType %d, sampleRate %u, format %#x, channelMask %#x, frameCount %zu, "
355 "flags #%x, notificationFrames %d, sessionId %d, transferType %d, uid %d, pid %d",
356 __func__,
357 streamType, sampleRate, format, channelMask, frameCount, flags, notificationFrames,
358 sessionId, transferType, uid, pid);
359
360 mThreadCanCallJava = threadCanCallJava;
361 mSelectedDeviceId = selectedDeviceId;
362 mSessionId = sessionId;
363
364 switch (transferType) {
365 case TRANSFER_DEFAULT:
366 if (sharedBuffer != 0) {
367 transferType = TRANSFER_SHARED;
368 } else if (cbf == NULL || threadCanCallJava) {
369 transferType = TRANSFER_SYNC;
370 } else {
371 transferType = TRANSFER_CALLBACK;
372 }
373 break;
374 case TRANSFER_CALLBACK:
375 case TRANSFER_SYNC_NOTIF_CALLBACK:
376 if (cbf == NULL || sharedBuffer != 0) {
377 ALOGE("%s(): Transfer type %s but cbf == NULL || sharedBuffer != 0",
378 convertTransferToText(transferType), __func__);
379 status = BAD_VALUE;
380 goto exit;
381 }
382 break;
383 case TRANSFER_OBTAIN:
384 case TRANSFER_SYNC:
385 if (sharedBuffer != 0) {
386 ALOGE("%s(): Transfer type TRANSFER_OBTAIN but sharedBuffer != 0", __func__);
387 status = BAD_VALUE;
388 goto exit;
389 }
390 break;
391 case TRANSFER_SHARED:
392 if (sharedBuffer == 0) {
393 ALOGE("%s(): Transfer type TRANSFER_SHARED but sharedBuffer == 0", __func__);
394 status = BAD_VALUE;
395 goto exit;
396 }
397 break;
398 default:
399 ALOGE("%s(): Invalid transfer type %d",
400 __func__, transferType);
401 status = BAD_VALUE;
402 goto exit;
403 }
404 mSharedBuffer = sharedBuffer;
405 mTransfer = transferType;
406 mDoNotReconnect = doNotReconnect;
407
408 ALOGV_IF(sharedBuffer != 0, "%s(): sharedBuffer: %p, size: %zu",
409 __func__, sharedBuffer->pointer(), sharedBuffer->size());
410
411 ALOGV("%s(): streamType %d frameCount %zu flags %04x",
412 __func__, streamType, frameCount, flags);
413
414 // invariant that mAudioTrack != 0 is true only after set() returns successfully
415 if (mAudioTrack != 0) {
416 ALOGE("%s(): Track already in use", __func__);
417 status = INVALID_OPERATION;
418 goto exit;
419 }
420
421 // handle default values first.
422 if (streamType == AUDIO_STREAM_DEFAULT) {
423 streamType = AUDIO_STREAM_MUSIC;
424 }
425 if (pAttributes == NULL) {
426 if (uint32_t(streamType) >= AUDIO_STREAM_PUBLIC_CNT) {
427 ALOGE("%s(): Invalid stream type %d", __func__, streamType);
428 status = BAD_VALUE;
429 goto exit;
430 }
431 mStreamType = streamType;
432
433 } else {
434 // stream type shouldn't be looked at, this track has audio attributes
435 memcpy(&mAttributes, pAttributes, sizeof(audio_attributes_t));
436 ALOGV("%s(): Building AudioTrack with attributes:"
437 " usage=%d content=%d flags=0x%x tags=[%s]",
438 __func__,
439 mAttributes.usage, mAttributes.content_type, mAttributes.flags, mAttributes.tags);
440 mStreamType = AUDIO_STREAM_DEFAULT;
441 audio_flags_to_audio_output_flags(mAttributes.flags, &flags);
442 }
443
444 // these below should probably come from the audioFlinger too...
445 if (format == AUDIO_FORMAT_DEFAULT) {
446 format = AUDIO_FORMAT_PCM_16_BIT;
447 } else if (format == AUDIO_FORMAT_IEC61937) { // HDMI pass-through?
448 mAttributes.flags |= AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO;
449 }
450
451 // validate parameters
452 if (!audio_is_valid_format(format)) {
453 ALOGE("%s(): Invalid format %#x", __func__, format);
454 status = BAD_VALUE;
455 goto exit;
456 }
457 mFormat = format;
458
459 if (!audio_is_output_channel(channelMask)) {
460 ALOGE("%s(): Invalid channel mask %#x", __func__, channelMask);
461 status = BAD_VALUE;
462 goto exit;
463 }
464 mChannelMask = channelMask;
465 channelCount = audio_channel_count_from_out_mask(channelMask);
466 mChannelCount = channelCount;
467
468 // force direct flag if format is not linear PCM
469 // or offload was requested
470 if ((flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
471 || !audio_is_linear_pcm(format)) {
472 ALOGV( (flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
473 ? "%s(): Offload request, forcing to Direct Output"
474 : "%s(): Not linear PCM, forcing to Direct Output",
475 __func__);
476 flags = (audio_output_flags_t)
477 // FIXME why can't we allow direct AND fast?
478 ((flags | AUDIO_OUTPUT_FLAG_DIRECT) & ~AUDIO_OUTPUT_FLAG_FAST);
479 }
480
481 // force direct flag if HW A/V sync requested
482 if ((flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) != 0) {
483 flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_DIRECT);
484 }
485
486 if (flags & AUDIO_OUTPUT_FLAG_DIRECT) {
487 if (audio_has_proportional_frames(format)) {
488 mFrameSize = channelCount * audio_bytes_per_sample(format);
489 } else {
490 mFrameSize = sizeof(uint8_t);
491 }
492 } else {
493 ALOG_ASSERT(audio_has_proportional_frames(format));
494 mFrameSize = channelCount * audio_bytes_per_sample(format);
495 // createTrack will return an error if PCM format is not supported by server,
496 // so no need to check for specific PCM formats here
497 }
498
499 // sampling rate must be specified for direct outputs
500 if (sampleRate == 0 && (flags & AUDIO_OUTPUT_FLAG_DIRECT) != 0) {
501 status = BAD_VALUE;
502 goto exit;
503 }
504 mSampleRate = sampleRate;
505 mOriginalSampleRate = sampleRate;
506 mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT;
507 // 1.0 <= mMaxRequiredSpeed <= AUDIO_TIMESTRETCH_SPEED_MAX
508 mMaxRequiredSpeed = min(max(maxRequiredSpeed, 1.0f), AUDIO_TIMESTRETCH_SPEED_MAX);
509
510 // Make copy of input parameter offloadInfo so that in the future:
511 // (a) createTrack_l doesn't need it as an input parameter
512 // (b) we can support re-creation of offloaded tracks
513 if (offloadInfo != NULL) {
514 mOffloadInfoCopy = *offloadInfo;
515 mOffloadInfo = &mOffloadInfoCopy;
516 } else {
517 mOffloadInfo = NULL;
518 memset(&mOffloadInfoCopy, 0, sizeof(audio_offload_info_t));
519 }
520
521 mVolume[AUDIO_INTERLEAVE_LEFT] = 1.0f;
522 mVolume[AUDIO_INTERLEAVE_RIGHT] = 1.0f;
523 mSendLevel = 0.0f;
524 // mFrameCount is initialized in createTrack_l
525 mReqFrameCount = frameCount;
526 if (notificationFrames >= 0) {
527 mNotificationFramesReq = notificationFrames;
528 mNotificationsPerBufferReq = 0;
529 } else {
530 if (!(flags & AUDIO_OUTPUT_FLAG_FAST)) {
531 ALOGE("%s(): notificationFrames=%d not permitted for non-fast track",
532 __func__, notificationFrames);
533 status = BAD_VALUE;
534 goto exit;
535 }
536 if (frameCount > 0) {
537 ALOGE("%s(): notificationFrames=%d not permitted with non-zero frameCount=%zu",
538 __func__, notificationFrames, frameCount);
539 status = BAD_VALUE;
540 goto exit;
541 }
542 mNotificationFramesReq = 0;
543 const uint32_t minNotificationsPerBuffer = 1;
544 const uint32_t maxNotificationsPerBuffer = 8;
545 mNotificationsPerBufferReq = min(maxNotificationsPerBuffer,
546 max((uint32_t) -notificationFrames, minNotificationsPerBuffer));
547 ALOGW_IF(mNotificationsPerBufferReq != (uint32_t) -notificationFrames,
548 "%s(): notificationFrames=%d clamped to the range -%u to -%u",
549 __func__,
550 notificationFrames, minNotificationsPerBuffer, maxNotificationsPerBuffer);
551 }
552 mNotificationFramesAct = 0;
553 callingPid = IPCThreadState::self()->getCallingPid();
554 myPid = getpid();
555 if (uid == AUDIO_UID_INVALID || (callingPid != myPid)) {
556 mClientUid = IPCThreadState::self()->getCallingUid();
557 } else {
558 mClientUid = uid;
559 }
560 if (pid == -1 || (callingPid != myPid)) {
561 mClientPid = callingPid;
562 } else {
563 mClientPid = pid;
564 }
565 mAuxEffectId = 0;
566 mOrigFlags = mFlags = flags;
567 mCbf = cbf;
568
569 if (cbf != NULL) {
570 mAudioTrackThread = new AudioTrackThread(*this);
571 mAudioTrackThread->run("AudioTrack", ANDROID_PRIORITY_AUDIO, 0 /*stack*/);
572 // thread begins in paused state, and will not reference us until start()
573 }
574
575 // create the IAudioTrack
576 {
577 AutoMutex lock(mLock);
578 status = createTrack_l();
579 }
580 if (status != NO_ERROR) {
581 if (mAudioTrackThread != 0) {
582 mAudioTrackThread->requestExit(); // see comment in AudioTrack.h
583 mAudioTrackThread->requestExitAndWait();
584 mAudioTrackThread.clear();
585 }
586 goto exit;
587 }
588
589 mUserData = user;
590 mLoopCount = 0;
591 mLoopStart = 0;
592 mLoopEnd = 0;
593 mLoopCountNotified = 0;
594 mMarkerPosition = 0;
595 mMarkerReached = false;
596 mNewPosition = 0;
597 mUpdatePeriod = 0;
598 mPosition = 0;
599 mReleased = 0;
600 mStartNs = 0;
601 mStartFromZeroUs = 0;
602 AudioSystem::acquireAudioSessionId(mSessionId, mClientPid);
603 mSequence = 1;
604 mObservedSequence = mSequence;
605 mInUnderrun = false;
606 mPreviousTimestampValid = false;
607 mTimestampStartupGlitchReported = false;
608 mTimestampRetrogradePositionReported = false;
609 mTimestampRetrogradeTimeReported = false;
610 mTimestampStallReported = false;
611 mTimestampStaleTimeReported = false;
612 mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID;
613 mStartTs.mPosition = 0;
614 mUnderrunCountOffset = 0;
615 mFramesWritten = 0;
616 mFramesWrittenServerOffset = 0;
617 mFramesWrittenAtRestore = -1; // -1 is a unique initializer.
618 mVolumeHandler = new media::VolumeHandler();
619
620 exit:
621 mStatus = status;
622 return status;
623 }
624
625 // -------------------------------------------------------------------------
626
start()627 status_t AudioTrack::start()
628 {
629 AutoMutex lock(mLock);
630 ALOGV("%s(%d): prior state:%s", __func__, mPortId, stateToString(mState));
631
632 if (mState == STATE_ACTIVE) {
633 return INVALID_OPERATION;
634 }
635
636 mInUnderrun = true;
637
638 State previousState = mState;
639 if (previousState == STATE_PAUSED_STOPPING) {
640 mState = STATE_STOPPING;
641 } else {
642 mState = STATE_ACTIVE;
643 }
644 (void) updateAndGetPosition_l();
645
646 // save start timestamp
647 if (isOffloadedOrDirect_l()) {
648 if (getTimestamp_l(mStartTs) != OK) {
649 mStartTs.mPosition = 0;
650 }
651 } else {
652 if (getTimestamp_l(&mStartEts) != OK) {
653 mStartEts.clear();
654 }
655 }
656 mStartNs = systemTime(); // save this for timestamp adjustment after starting.
657 if (previousState == STATE_STOPPED || previousState == STATE_FLUSHED) {
658 // reset current position as seen by client to 0
659 mPosition = 0;
660 mPreviousTimestampValid = false;
661 mTimestampStartupGlitchReported = false;
662 mTimestampRetrogradePositionReported = false;
663 mTimestampRetrogradeTimeReported = false;
664 mTimestampStallReported = false;
665 mTimestampStaleTimeReported = false;
666 mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID;
667
668 if (!isOffloadedOrDirect_l()
669 && mStartEts.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] > 0) {
670 // Server side has consumed something, but is it finished consuming?
671 // It is possible since flush and stop are asynchronous that the server
672 // is still active at this point.
673 ALOGV("%s(%d): server read:%lld cumulative flushed:%lld client written:%lld",
674 __func__, mPortId,
675 (long long)(mFramesWrittenServerOffset
676 + mStartEts.mPosition[ExtendedTimestamp::LOCATION_SERVER]),
677 (long long)mStartEts.mFlushed,
678 (long long)mFramesWritten);
679 // mStartEts is already adjusted by mFramesWrittenServerOffset, so we delta adjust.
680 mFramesWrittenServerOffset -= mStartEts.mPosition[ExtendedTimestamp::LOCATION_SERVER];
681 }
682 mFramesWritten = 0;
683 mProxy->clearTimestamp(); // need new server push for valid timestamp
684 mMarkerReached = false;
685
686 // For offloaded tracks, we don't know if the hardware counters are really zero here,
687 // since the flush is asynchronous and stop may not fully drain.
688 // We save the time when the track is started to later verify whether
689 // the counters are realistic (i.e. start from zero after this time).
690 mStartFromZeroUs = mStartNs / 1000;
691
692 // force refresh of remaining frames by processAudioBuffer() as last
693 // write before stop could be partial.
694 mRefreshRemaining = true;
695
696 // for static track, clear the old flags when starting from stopped state
697 if (mSharedBuffer != 0) {
698 android_atomic_and(
699 ~(CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END),
700 &mCblk->mFlags);
701 }
702 }
703 mNewPosition = mPosition + mUpdatePeriod;
704 int32_t flags = android_atomic_and(~(CBLK_STREAM_END_DONE | CBLK_DISABLED), &mCblk->mFlags);
705
706 status_t status = NO_ERROR;
707 if (!(flags & CBLK_INVALID)) {
708 status = mAudioTrack->start();
709 if (status == DEAD_OBJECT) {
710 flags |= CBLK_INVALID;
711 }
712 }
713 if (flags & CBLK_INVALID) {
714 status = restoreTrack_l("start");
715 }
716
717 // resume or pause the callback thread as needed.
718 sp<AudioTrackThread> t = mAudioTrackThread;
719 if (status == NO_ERROR) {
720 if (t != 0) {
721 if (previousState == STATE_STOPPING) {
722 mProxy->interrupt();
723 } else {
724 t->resume();
725 }
726 } else {
727 mPreviousPriority = getpriority(PRIO_PROCESS, 0);
728 get_sched_policy(0, &mPreviousSchedulingGroup);
729 androidSetThreadPriority(0, ANDROID_PRIORITY_AUDIO);
730 }
731
732 // Start our local VolumeHandler for restoration purposes.
733 mVolumeHandler->setStarted();
734 } else {
735 ALOGE("%s(%d): status %d", __func__, mPortId, status);
736 mState = previousState;
737 if (t != 0) {
738 if (previousState != STATE_STOPPING) {
739 t->pause();
740 }
741 } else {
742 setpriority(PRIO_PROCESS, 0, mPreviousPriority);
743 set_sched_policy(0, mPreviousSchedulingGroup);
744 }
745 }
746
747 return status;
748 }
749
stop()750 void AudioTrack::stop()
751 {
752 AutoMutex lock(mLock);
753 ALOGV("%s(%d): prior state:%s", __func__, mPortId, stateToString(mState));
754
755 if (mState != STATE_ACTIVE && mState != STATE_PAUSED) {
756 return;
757 }
758
759 if (isOffloaded_l()) {
760 mState = STATE_STOPPING;
761 } else {
762 mState = STATE_STOPPED;
763 ALOGD_IF(mSharedBuffer == nullptr,
764 "%s(%d): called with %u frames delivered", __func__, mPortId, mReleased.value());
765 mReleased = 0;
766 }
767
768 mProxy->stop(); // notify server not to read beyond current client position until start().
769 mProxy->interrupt();
770 mAudioTrack->stop();
771
772 // Note: legacy handling - stop does not clear playback marker
773 // and periodic update counter, but flush does for streaming tracks.
774
775 if (mSharedBuffer != 0) {
776 // clear buffer position and loop count.
777 mStaticProxy->setBufferPositionAndLoop(0 /* position */,
778 0 /* loopStart */, 0 /* loopEnd */, 0 /* loopCount */);
779 }
780
781 sp<AudioTrackThread> t = mAudioTrackThread;
782 if (t != 0) {
783 if (!isOffloaded_l()) {
784 t->pause();
785 } else if (mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK) {
786 // causes wake up of the playback thread, that will callback the client for
787 // EVENT_STREAM_END in processAudioBuffer()
788 t->wake();
789 }
790 } else {
791 setpriority(PRIO_PROCESS, 0, mPreviousPriority);
792 set_sched_policy(0, mPreviousSchedulingGroup);
793 }
794 }
795
stopped() const796 bool AudioTrack::stopped() const
797 {
798 AutoMutex lock(mLock);
799 return mState != STATE_ACTIVE;
800 }
801
flush()802 void AudioTrack::flush()
803 {
804 AutoMutex lock(mLock);
805 ALOGV("%s(%d): prior state:%s", __func__, mPortId, stateToString(mState));
806
807 if (mSharedBuffer != 0) {
808 return;
809 }
810 if (mState == STATE_ACTIVE) {
811 return;
812 }
813 flush_l();
814 }
815
flush_l()816 void AudioTrack::flush_l()
817 {
818 ALOG_ASSERT(mState != STATE_ACTIVE);
819
820 // clear playback marker and periodic update counter
821 mMarkerPosition = 0;
822 mMarkerReached = false;
823 mUpdatePeriod = 0;
824 mRefreshRemaining = true;
825
826 mState = STATE_FLUSHED;
827 mReleased = 0;
828 if (isOffloaded_l()) {
829 mProxy->interrupt();
830 }
831 mProxy->flush();
832 mAudioTrack->flush();
833 }
834
pause()835 void AudioTrack::pause()
836 {
837 AutoMutex lock(mLock);
838 ALOGV("%s(%d): prior state:%s", __func__, mPortId, stateToString(mState));
839
840 if (mState == STATE_ACTIVE) {
841 mState = STATE_PAUSED;
842 } else if (mState == STATE_STOPPING) {
843 mState = STATE_PAUSED_STOPPING;
844 } else {
845 return;
846 }
847 mProxy->interrupt();
848 mAudioTrack->pause();
849
850 if (isOffloaded_l()) {
851 if (mOutput != AUDIO_IO_HANDLE_NONE) {
852 // An offload output can be re-used between two audio tracks having
853 // the same configuration. A timestamp query for a paused track
854 // while the other is running would return an incorrect time.
855 // To fix this, cache the playback position on a pause() and return
856 // this time when requested until the track is resumed.
857
858 // OffloadThread sends HAL pause in its threadLoop. Time saved
859 // here can be slightly off.
860
861 // TODO: check return code for getRenderPosition.
862
863 uint32_t halFrames;
864 AudioSystem::getRenderPosition(mOutput, &halFrames, &mPausedPosition);
865 ALOGV("%s(%d): for offload, cache current position %u",
866 __func__, mPortId, mPausedPosition);
867 }
868 }
869 }
870
setVolume(float left,float right)871 status_t AudioTrack::setVolume(float left, float right)
872 {
873 // This duplicates a test by AudioTrack JNI, but that is not the only caller
874 if (isnanf(left) || left < GAIN_FLOAT_ZERO || left > GAIN_FLOAT_UNITY ||
875 isnanf(right) || right < GAIN_FLOAT_ZERO || right > GAIN_FLOAT_UNITY) {
876 return BAD_VALUE;
877 }
878
879 AutoMutex lock(mLock);
880 mVolume[AUDIO_INTERLEAVE_LEFT] = left;
881 mVolume[AUDIO_INTERLEAVE_RIGHT] = right;
882
883 mProxy->setVolumeLR(gain_minifloat_pack(gain_from_float(left), gain_from_float(right)));
884
885 if (isOffloaded_l()) {
886 mAudioTrack->signal();
887 }
888 return NO_ERROR;
889 }
890
setVolume(float volume)891 status_t AudioTrack::setVolume(float volume)
892 {
893 return setVolume(volume, volume);
894 }
895
setAuxEffectSendLevel(float level)896 status_t AudioTrack::setAuxEffectSendLevel(float level)
897 {
898 // This duplicates a test by AudioTrack JNI, but that is not the only caller
899 if (isnanf(level) || level < GAIN_FLOAT_ZERO || level > GAIN_FLOAT_UNITY) {
900 return BAD_VALUE;
901 }
902
903 AutoMutex lock(mLock);
904 mSendLevel = level;
905 mProxy->setSendLevel(level);
906
907 return NO_ERROR;
908 }
909
getAuxEffectSendLevel(float * level) const910 void AudioTrack::getAuxEffectSendLevel(float* level) const
911 {
912 if (level != NULL) {
913 *level = mSendLevel;
914 }
915 }
916
setSampleRate(uint32_t rate)917 status_t AudioTrack::setSampleRate(uint32_t rate)
918 {
919 AutoMutex lock(mLock);
920 ALOGV("%s(%d): prior state:%s rate:%u", __func__, mPortId, stateToString(mState), rate);
921
922 if (rate == mSampleRate) {
923 return NO_ERROR;
924 }
925 if (isOffloadedOrDirect_l() || (mFlags & AUDIO_OUTPUT_FLAG_FAST)
926 || (mChannelMask & AUDIO_CHANNEL_HAPTIC_ALL)) {
927 return INVALID_OPERATION;
928 }
929 if (mOutput == AUDIO_IO_HANDLE_NONE) {
930 return NO_INIT;
931 }
932 // NOTE: it is theoretically possible, but highly unlikely, that a device change
933 // could mean a previously allowed sampling rate is no longer allowed.
934 uint32_t afSamplingRate;
935 if (AudioSystem::getSamplingRate(mOutput, &afSamplingRate) != NO_ERROR) {
936 return NO_INIT;
937 }
938 // pitch is emulated by adjusting speed and sampleRate
939 const uint32_t effectiveSampleRate = adjustSampleRate(rate, mPlaybackRate.mPitch);
940 if (rate == 0 || effectiveSampleRate > afSamplingRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
941 return BAD_VALUE;
942 }
943 // TODO: Should we also check if the buffer size is compatible?
944
945 mSampleRate = rate;
946 mProxy->setSampleRate(effectiveSampleRate);
947
948 return NO_ERROR;
949 }
950
getSampleRate() const951 uint32_t AudioTrack::getSampleRate() const
952 {
953 AutoMutex lock(mLock);
954
955 // sample rate can be updated during playback by the offloaded decoder so we need to
956 // query the HAL and update if needed.
957 // FIXME use Proxy return channel to update the rate from server and avoid polling here
958 if (isOffloadedOrDirect_l()) {
959 if (mOutput != AUDIO_IO_HANDLE_NONE) {
960 uint32_t sampleRate = 0;
961 status_t status = AudioSystem::getSamplingRate(mOutput, &sampleRate);
962 if (status == NO_ERROR) {
963 mSampleRate = sampleRate;
964 }
965 }
966 }
967 return mSampleRate;
968 }
969
getOriginalSampleRate() const970 uint32_t AudioTrack::getOriginalSampleRate() const
971 {
972 return mOriginalSampleRate;
973 }
974
setPlaybackRate(const AudioPlaybackRate & playbackRate)975 status_t AudioTrack::setPlaybackRate(const AudioPlaybackRate &playbackRate)
976 {
977 AutoMutex lock(mLock);
978 if (isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) {
979 return NO_ERROR;
980 }
981 if (isOffloadedOrDirect_l()) {
982 return INVALID_OPERATION;
983 }
984 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
985 return INVALID_OPERATION;
986 }
987
988 ALOGV("%s(%d): mSampleRate:%u mSpeed:%f mPitch:%f",
989 __func__, mPortId, mSampleRate, playbackRate.mSpeed, playbackRate.mPitch);
990 // pitch is emulated by adjusting speed and sampleRate
991 const uint32_t effectiveRate = adjustSampleRate(mSampleRate, playbackRate.mPitch);
992 const float effectiveSpeed = adjustSpeed(playbackRate.mSpeed, playbackRate.mPitch);
993 const float effectivePitch = adjustPitch(playbackRate.mPitch);
994 AudioPlaybackRate playbackRateTemp = playbackRate;
995 playbackRateTemp.mSpeed = effectiveSpeed;
996 playbackRateTemp.mPitch = effectivePitch;
997
998 ALOGV("%s(%d) (effective) mSampleRate:%u mSpeed:%f mPitch:%f",
999 __func__, mPortId, effectiveRate, effectiveSpeed, effectivePitch);
1000
1001 if (!isAudioPlaybackRateValid(playbackRateTemp)) {
1002 ALOGW("%s(%d) (%f, %f) failed (effective rate out of bounds)",
1003 __func__, mPortId, playbackRate.mSpeed, playbackRate.mPitch);
1004 return BAD_VALUE;
1005 }
1006 // Check if the buffer size is compatible.
1007 if (!isSampleRateSpeedAllowed_l(effectiveRate, effectiveSpeed)) {
1008 ALOGW("%s(%d) (%f, %f) failed (buffer size)",
1009 __func__, mPortId, playbackRate.mSpeed, playbackRate.mPitch);
1010 return BAD_VALUE;
1011 }
1012
1013 // Check resampler ratios are within bounds
1014 if ((uint64_t)effectiveRate > (uint64_t)mSampleRate *
1015 (uint64_t)AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1016 ALOGW("%s(%d) (%f, %f) failed. Resample rate exceeds max accepted value",
1017 __func__, mPortId, playbackRate.mSpeed, playbackRate.mPitch);
1018 return BAD_VALUE;
1019 }
1020
1021 if ((uint64_t)effectiveRate * (uint64_t)AUDIO_RESAMPLER_UP_RATIO_MAX < (uint64_t)mSampleRate) {
1022 ALOGW("%s(%d) (%f, %f) failed. Resample rate below min accepted value",
1023 __func__, mPortId, playbackRate.mSpeed, playbackRate.mPitch);
1024 return BAD_VALUE;
1025 }
1026 mPlaybackRate = playbackRate;
1027 //set effective rates
1028 mProxy->setPlaybackRate(playbackRateTemp);
1029 mProxy->setSampleRate(effectiveRate); // FIXME: not quite "atomic" with setPlaybackRate
1030 return NO_ERROR;
1031 }
1032
getPlaybackRate() const1033 const AudioPlaybackRate& AudioTrack::getPlaybackRate() const
1034 {
1035 AutoMutex lock(mLock);
1036 return mPlaybackRate;
1037 }
1038
getBufferSizeInFrames()1039 ssize_t AudioTrack::getBufferSizeInFrames()
1040 {
1041 AutoMutex lock(mLock);
1042 if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
1043 return NO_INIT;
1044 }
1045 return (ssize_t) mProxy->getBufferSizeInFrames();
1046 }
1047
getBufferDurationInUs(int64_t * duration)1048 status_t AudioTrack::getBufferDurationInUs(int64_t *duration)
1049 {
1050 if (duration == nullptr) {
1051 return BAD_VALUE;
1052 }
1053 AutoMutex lock(mLock);
1054 if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
1055 return NO_INIT;
1056 }
1057 ssize_t bufferSizeInFrames = (ssize_t) mProxy->getBufferSizeInFrames();
1058 if (bufferSizeInFrames < 0) {
1059 return (status_t)bufferSizeInFrames;
1060 }
1061 *duration = (int64_t)((double)bufferSizeInFrames * 1000000
1062 / ((double)mSampleRate * mPlaybackRate.mSpeed));
1063 return NO_ERROR;
1064 }
1065
setBufferSizeInFrames(size_t bufferSizeInFrames)1066 ssize_t AudioTrack::setBufferSizeInFrames(size_t bufferSizeInFrames)
1067 {
1068 AutoMutex lock(mLock);
1069 if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
1070 return NO_INIT;
1071 }
1072 // Reject if timed track or compressed audio.
1073 if (!audio_is_linear_pcm(mFormat)) {
1074 return INVALID_OPERATION;
1075 }
1076 return (ssize_t) mProxy->setBufferSizeInFrames((uint32_t) bufferSizeInFrames);
1077 }
1078
setLoop(uint32_t loopStart,uint32_t loopEnd,int loopCount)1079 status_t AudioTrack::setLoop(uint32_t loopStart, uint32_t loopEnd, int loopCount)
1080 {
1081 if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
1082 return INVALID_OPERATION;
1083 }
1084
1085 if (loopCount == 0) {
1086 ;
1087 } else if (loopCount >= -1 && loopStart < loopEnd && loopEnd <= mFrameCount &&
1088 loopEnd - loopStart >= MIN_LOOP) {
1089 ;
1090 } else {
1091 return BAD_VALUE;
1092 }
1093
1094 AutoMutex lock(mLock);
1095 // See setPosition() regarding setting parameters such as loop points or position while active
1096 if (mState == STATE_ACTIVE) {
1097 return INVALID_OPERATION;
1098 }
1099 setLoop_l(loopStart, loopEnd, loopCount);
1100 return NO_ERROR;
1101 }
1102
setLoop_l(uint32_t loopStart,uint32_t loopEnd,int loopCount)1103 void AudioTrack::setLoop_l(uint32_t loopStart, uint32_t loopEnd, int loopCount)
1104 {
1105 // We do not update the periodic notification point.
1106 // mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
1107 mLoopCount = loopCount;
1108 mLoopEnd = loopEnd;
1109 mLoopStart = loopStart;
1110 mLoopCountNotified = loopCount;
1111 mStaticProxy->setLoop(loopStart, loopEnd, loopCount);
1112
1113 // Waking the AudioTrackThread is not needed as this cannot be called when active.
1114 }
1115
setMarkerPosition(uint32_t marker)1116 status_t AudioTrack::setMarkerPosition(uint32_t marker)
1117 {
1118 // The only purpose of setting marker position is to get a callback
1119 if (mCbf == NULL || isOffloadedOrDirect()) {
1120 return INVALID_OPERATION;
1121 }
1122
1123 AutoMutex lock(mLock);
1124 mMarkerPosition = marker;
1125 mMarkerReached = false;
1126
1127 sp<AudioTrackThread> t = mAudioTrackThread;
1128 if (t != 0) {
1129 t->wake();
1130 }
1131 return NO_ERROR;
1132 }
1133
getMarkerPosition(uint32_t * marker) const1134 status_t AudioTrack::getMarkerPosition(uint32_t *marker) const
1135 {
1136 if (isOffloadedOrDirect()) {
1137 return INVALID_OPERATION;
1138 }
1139 if (marker == NULL) {
1140 return BAD_VALUE;
1141 }
1142
1143 AutoMutex lock(mLock);
1144 mMarkerPosition.getValue(marker);
1145
1146 return NO_ERROR;
1147 }
1148
setPositionUpdatePeriod(uint32_t updatePeriod)1149 status_t AudioTrack::setPositionUpdatePeriod(uint32_t updatePeriod)
1150 {
1151 // The only purpose of setting position update period is to get a callback
1152 if (mCbf == NULL || isOffloadedOrDirect()) {
1153 return INVALID_OPERATION;
1154 }
1155
1156 AutoMutex lock(mLock);
1157 mNewPosition = updateAndGetPosition_l() + updatePeriod;
1158 mUpdatePeriod = updatePeriod;
1159
1160 sp<AudioTrackThread> t = mAudioTrackThread;
1161 if (t != 0) {
1162 t->wake();
1163 }
1164 return NO_ERROR;
1165 }
1166
getPositionUpdatePeriod(uint32_t * updatePeriod) const1167 status_t AudioTrack::getPositionUpdatePeriod(uint32_t *updatePeriod) const
1168 {
1169 if (isOffloadedOrDirect()) {
1170 return INVALID_OPERATION;
1171 }
1172 if (updatePeriod == NULL) {
1173 return BAD_VALUE;
1174 }
1175
1176 AutoMutex lock(mLock);
1177 *updatePeriod = mUpdatePeriod;
1178
1179 return NO_ERROR;
1180 }
1181
setPosition(uint32_t position)1182 status_t AudioTrack::setPosition(uint32_t position)
1183 {
1184 if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
1185 return INVALID_OPERATION;
1186 }
1187 if (position > mFrameCount) {
1188 return BAD_VALUE;
1189 }
1190
1191 AutoMutex lock(mLock);
1192 // Currently we require that the player is inactive before setting parameters such as position
1193 // or loop points. Otherwise, there could be a race condition: the application could read the
1194 // current position, compute a new position or loop parameters, and then set that position or
1195 // loop parameters but it would do the "wrong" thing since the position has continued to advance
1196 // in the mean time. If we ever provide a sequencer in server, we could allow a way for the app
1197 // to specify how it wants to handle such scenarios.
1198 if (mState == STATE_ACTIVE) {
1199 return INVALID_OPERATION;
1200 }
1201 // After setting the position, use full update period before notification.
1202 mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
1203 mStaticProxy->setBufferPosition(position);
1204
1205 // Waking the AudioTrackThread is not needed as this cannot be called when active.
1206 return NO_ERROR;
1207 }
1208
getPosition(uint32_t * position)1209 status_t AudioTrack::getPosition(uint32_t *position)
1210 {
1211 if (position == NULL) {
1212 return BAD_VALUE;
1213 }
1214
1215 AutoMutex lock(mLock);
1216 // FIXME: offloaded and direct tracks call into the HAL for render positions
1217 // for compressed/synced data; however, we use proxy position for pure linear pcm data
1218 // as we do not know the capability of the HAL for pcm position support and standby.
1219 // There may be some latency differences between the HAL position and the proxy position.
1220 if (isOffloadedOrDirect_l() && !isPurePcmData_l()) {
1221 uint32_t dspFrames = 0;
1222
1223 if (isOffloaded_l() && ((mState == STATE_PAUSED) || (mState == STATE_PAUSED_STOPPING))) {
1224 ALOGV("%s(%d): called in paused state, return cached position %u",
1225 __func__, mPortId, mPausedPosition);
1226 *position = mPausedPosition;
1227 return NO_ERROR;
1228 }
1229
1230 if (mOutput != AUDIO_IO_HANDLE_NONE) {
1231 uint32_t halFrames; // actually unused
1232 (void) AudioSystem::getRenderPosition(mOutput, &halFrames, &dspFrames);
1233 // FIXME: on getRenderPosition() error, we return OK with frame position 0.
1234 }
1235 // FIXME: dspFrames may not be zero in (mState == STATE_STOPPED || mState == STATE_FLUSHED)
1236 // due to hardware latency. We leave this behavior for now.
1237 *position = dspFrames;
1238 } else {
1239 if (mCblk->mFlags & CBLK_INVALID) {
1240 (void) restoreTrack_l("getPosition");
1241 // FIXME: for compatibility with the Java API we ignore the restoreTrack_l()
1242 // error here (e.g. DEAD_OBJECT) and return OK with the last recorded server position.
1243 }
1244
1245 // IAudioTrack::stop() isn't synchronous; we don't know when presentation completes
1246 *position = (mState == STATE_STOPPED || mState == STATE_FLUSHED) ?
1247 0 : updateAndGetPosition_l().value();
1248 }
1249 return NO_ERROR;
1250 }
1251
getBufferPosition(uint32_t * position)1252 status_t AudioTrack::getBufferPosition(uint32_t *position)
1253 {
1254 if (mSharedBuffer == 0) {
1255 return INVALID_OPERATION;
1256 }
1257 if (position == NULL) {
1258 return BAD_VALUE;
1259 }
1260
1261 AutoMutex lock(mLock);
1262 *position = mStaticProxy->getBufferPosition();
1263 return NO_ERROR;
1264 }
1265
reload()1266 status_t AudioTrack::reload()
1267 {
1268 if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
1269 return INVALID_OPERATION;
1270 }
1271
1272 AutoMutex lock(mLock);
1273 // See setPosition() regarding setting parameters such as loop points or position while active
1274 if (mState == STATE_ACTIVE) {
1275 return INVALID_OPERATION;
1276 }
1277 mNewPosition = mUpdatePeriod;
1278 (void) updateAndGetPosition_l();
1279 mPosition = 0;
1280 mPreviousTimestampValid = false;
1281 #if 0
1282 // The documentation is not clear on the behavior of reload() and the restoration
1283 // of loop count. Historically we have not restored loop count, start, end,
1284 // but it makes sense if one desires to repeat playing a particular sound.
1285 if (mLoopCount != 0) {
1286 mLoopCountNotified = mLoopCount;
1287 mStaticProxy->setLoop(mLoopStart, mLoopEnd, mLoopCount);
1288 }
1289 #endif
1290 mStaticProxy->setBufferPosition(0);
1291 return NO_ERROR;
1292 }
1293
getOutput() const1294 audio_io_handle_t AudioTrack::getOutput() const
1295 {
1296 AutoMutex lock(mLock);
1297 return mOutput;
1298 }
1299
setOutputDevice(audio_port_handle_t deviceId)1300 status_t AudioTrack::setOutputDevice(audio_port_handle_t deviceId) {
1301 AutoMutex lock(mLock);
1302 if (mSelectedDeviceId != deviceId) {
1303 mSelectedDeviceId = deviceId;
1304 if (mStatus == NO_ERROR) {
1305 android_atomic_or(CBLK_INVALID, &mCblk->mFlags);
1306 mProxy->interrupt();
1307 }
1308 }
1309 return NO_ERROR;
1310 }
1311
getOutputDevice()1312 audio_port_handle_t AudioTrack::getOutputDevice() {
1313 AutoMutex lock(mLock);
1314 return mSelectedDeviceId;
1315 }
1316
1317 // must be called with mLock held
updateRoutedDeviceId_l()1318 void AudioTrack::updateRoutedDeviceId_l()
1319 {
1320 // if the track is inactive, do not update actual device as the output stream maybe routed
1321 // to a device not relevant to this client because of other active use cases.
1322 if (mState != STATE_ACTIVE) {
1323 return;
1324 }
1325 if (mOutput != AUDIO_IO_HANDLE_NONE) {
1326 audio_port_handle_t deviceId = AudioSystem::getDeviceIdForIo(mOutput);
1327 if (deviceId != AUDIO_PORT_HANDLE_NONE) {
1328 mRoutedDeviceId = deviceId;
1329 }
1330 }
1331 }
1332
getRoutedDeviceId()1333 audio_port_handle_t AudioTrack::getRoutedDeviceId() {
1334 AutoMutex lock(mLock);
1335 updateRoutedDeviceId_l();
1336 return mRoutedDeviceId;
1337 }
1338
attachAuxEffect(int effectId)1339 status_t AudioTrack::attachAuxEffect(int effectId)
1340 {
1341 AutoMutex lock(mLock);
1342 status_t status = mAudioTrack->attachAuxEffect(effectId);
1343 if (status == NO_ERROR) {
1344 mAuxEffectId = effectId;
1345 }
1346 return status;
1347 }
1348
streamType() const1349 audio_stream_type_t AudioTrack::streamType() const
1350 {
1351 if (mStreamType == AUDIO_STREAM_DEFAULT) {
1352 return AudioSystem::attributesToStreamType(mAttributes);
1353 }
1354 return mStreamType;
1355 }
1356
latency()1357 uint32_t AudioTrack::latency()
1358 {
1359 AutoMutex lock(mLock);
1360 updateLatency_l();
1361 return mLatency;
1362 }
1363
1364 // -------------------------------------------------------------------------
1365
1366 // must be called with mLock held
updateLatency_l()1367 void AudioTrack::updateLatency_l()
1368 {
1369 status_t status = AudioSystem::getLatency(mOutput, &mAfLatency);
1370 if (status != NO_ERROR) {
1371 ALOGW("%s(%d): getLatency(%d) failed status %d", __func__, mPortId, mOutput, status);
1372 } else {
1373 // FIXME don't believe this lie
1374 mLatency = mAfLatency + (1000LL * mFrameCount) / mSampleRate;
1375 }
1376 }
1377
1378 // TODO Move this macro to a common header file for enum to string conversion in audio framework.
1379 #define MEDIA_CASE_ENUM(name) case name: return #name
convertTransferToText(transfer_type transferType)1380 const char * AudioTrack::convertTransferToText(transfer_type transferType) {
1381 switch (transferType) {
1382 MEDIA_CASE_ENUM(TRANSFER_DEFAULT);
1383 MEDIA_CASE_ENUM(TRANSFER_CALLBACK);
1384 MEDIA_CASE_ENUM(TRANSFER_OBTAIN);
1385 MEDIA_CASE_ENUM(TRANSFER_SYNC);
1386 MEDIA_CASE_ENUM(TRANSFER_SHARED);
1387 MEDIA_CASE_ENUM(TRANSFER_SYNC_NOTIF_CALLBACK);
1388 default:
1389 return "UNRECOGNIZED";
1390 }
1391 }
1392
createTrack_l()1393 status_t AudioTrack::createTrack_l()
1394 {
1395 status_t status;
1396 bool callbackAdded = false;
1397
1398 const sp<IAudioFlinger>& audioFlinger = AudioSystem::get_audio_flinger();
1399 if (audioFlinger == 0) {
1400 ALOGE("%s(%d): Could not get audioflinger",
1401 __func__, mPortId);
1402 status = NO_INIT;
1403 goto exit;
1404 }
1405
1406 {
1407 // mFlags (not mOrigFlags) is modified depending on whether fast request is accepted.
1408 // After fast request is denied, we will request again if IAudioTrack is re-created.
1409 // Client can only express a preference for FAST. Server will perform additional tests.
1410 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1411 // either of these use cases:
1412 // use case 1: shared buffer
1413 bool sharedBuffer = mSharedBuffer != 0;
1414 bool transferAllowed =
1415 // use case 2: callback transfer mode
1416 (mTransfer == TRANSFER_CALLBACK) ||
1417 // use case 3: obtain/release mode
1418 (mTransfer == TRANSFER_OBTAIN) ||
1419 // use case 4: synchronous write
1420 ((mTransfer == TRANSFER_SYNC || mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK)
1421 && mThreadCanCallJava);
1422
1423 bool fastAllowed = sharedBuffer || transferAllowed;
1424 if (!fastAllowed) {
1425 ALOGW("%s(%d): AUDIO_OUTPUT_FLAG_FAST denied by client,"
1426 " not shared buffer and transfer = %s",
1427 __func__, mPortId,
1428 convertTransferToText(mTransfer));
1429 mFlags = (audio_output_flags_t) (mFlags & ~AUDIO_OUTPUT_FLAG_FAST);
1430 }
1431 }
1432
1433 IAudioFlinger::CreateTrackInput input;
1434 if (mStreamType != AUDIO_STREAM_DEFAULT) {
1435 input.attr = AudioSystem::streamTypeToAttributes(mStreamType);
1436 } else {
1437 input.attr = mAttributes;
1438 }
1439 input.config = AUDIO_CONFIG_INITIALIZER;
1440 input.config.sample_rate = mSampleRate;
1441 input.config.channel_mask = mChannelMask;
1442 input.config.format = mFormat;
1443 input.config.offload_info = mOffloadInfoCopy;
1444 input.clientInfo.clientUid = mClientUid;
1445 input.clientInfo.clientPid = mClientPid;
1446 input.clientInfo.clientTid = -1;
1447 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1448 // It is currently meaningless to request SCHED_FIFO for a Java thread. Even if the
1449 // application-level code follows all non-blocking design rules, the language runtime
1450 // doesn't also follow those rules, so the thread will not benefit overall.
1451 if (mAudioTrackThread != 0 && !mThreadCanCallJava) {
1452 input.clientInfo.clientTid = mAudioTrackThread->getTid();
1453 }
1454 }
1455 input.sharedBuffer = mSharedBuffer;
1456 input.notificationsPerBuffer = mNotificationsPerBufferReq;
1457 input.speed = 1.0;
1458 if (audio_has_proportional_frames(mFormat) && mSharedBuffer == 0 &&
1459 (mFlags & AUDIO_OUTPUT_FLAG_FAST) == 0) {
1460 input.speed = !isPurePcmData_l() || isOffloadedOrDirect_l() ? 1.0f :
1461 max(mMaxRequiredSpeed, mPlaybackRate.mSpeed);
1462 }
1463 input.flags = mFlags;
1464 input.frameCount = mReqFrameCount;
1465 input.notificationFrameCount = mNotificationFramesReq;
1466 input.selectedDeviceId = mSelectedDeviceId;
1467 input.sessionId = mSessionId;
1468
1469 IAudioFlinger::CreateTrackOutput output;
1470
1471 sp<IAudioTrack> track = audioFlinger->createTrack(input,
1472 output,
1473 &status);
1474
1475 if (status != NO_ERROR || output.outputId == AUDIO_IO_HANDLE_NONE) {
1476 ALOGE("%s(%d): AudioFlinger could not create track, status: %d output %d",
1477 __func__, mPortId, status, output.outputId);
1478 if (status == NO_ERROR) {
1479 status = NO_INIT;
1480 }
1481 goto exit;
1482 }
1483 ALOG_ASSERT(track != 0);
1484
1485 mFrameCount = output.frameCount;
1486 mNotificationFramesAct = (uint32_t)output.notificationFrameCount;
1487 mRoutedDeviceId = output.selectedDeviceId;
1488 mSessionId = output.sessionId;
1489
1490 mSampleRate = output.sampleRate;
1491 if (mOriginalSampleRate == 0) {
1492 mOriginalSampleRate = mSampleRate;
1493 }
1494
1495 mAfFrameCount = output.afFrameCount;
1496 mAfSampleRate = output.afSampleRate;
1497 mAfLatency = output.afLatencyMs;
1498
1499 mLatency = mAfLatency + (1000LL * mFrameCount) / mSampleRate;
1500
1501 // AudioFlinger now owns the reference to the I/O handle,
1502 // so we are no longer responsible for releasing it.
1503
1504 // FIXME compare to AudioRecord
1505 sp<IMemory> iMem = track->getCblk();
1506 if (iMem == 0) {
1507 ALOGE("%s(%d): Could not get control block", __func__, mPortId);
1508 status = NO_INIT;
1509 goto exit;
1510 }
1511 void *iMemPointer = iMem->pointer();
1512 if (iMemPointer == NULL) {
1513 ALOGE("%s(%d): Could not get control block pointer", __func__, mPortId);
1514 status = NO_INIT;
1515 goto exit;
1516 }
1517 // invariant that mAudioTrack != 0 is true only after set() returns successfully
1518 if (mAudioTrack != 0) {
1519 IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
1520 mDeathNotifier.clear();
1521 }
1522 mAudioTrack = track;
1523 mCblkMemory = iMem;
1524 IPCThreadState::self()->flushCommands();
1525
1526 audio_track_cblk_t* cblk = static_cast<audio_track_cblk_t*>(iMemPointer);
1527 mCblk = cblk;
1528
1529 mAwaitBoost = false;
1530 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1531 if (output.flags & AUDIO_OUTPUT_FLAG_FAST) {
1532 ALOGI("%s(%d): AUDIO_OUTPUT_FLAG_FAST successful; frameCount %zu -> %zu",
1533 __func__, mPortId, mReqFrameCount, mFrameCount);
1534 if (!mThreadCanCallJava) {
1535 mAwaitBoost = true;
1536 }
1537 } else {
1538 ALOGW("%s(%d): AUDIO_OUTPUT_FLAG_FAST denied by server; frameCount %zu -> %zu",
1539 __func__, mPortId, mReqFrameCount, mFrameCount);
1540 }
1541 }
1542 mFlags = output.flags;
1543
1544 //mOutput != output includes the case where mOutput == AUDIO_IO_HANDLE_NONE for first creation
1545 if (mDeviceCallback != 0) {
1546 if (mOutput != AUDIO_IO_HANDLE_NONE) {
1547 AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId);
1548 }
1549 AudioSystem::addAudioDeviceCallback(this, output.outputId, output.portId);
1550 callbackAdded = true;
1551 }
1552
1553 mPortId = output.portId;
1554 // We retain a copy of the I/O handle, but don't own the reference
1555 mOutput = output.outputId;
1556 mRefreshRemaining = true;
1557
1558 // Starting address of buffers in shared memory. If there is a shared buffer, buffers
1559 // is the value of pointer() for the shared buffer, otherwise buffers points
1560 // immediately after the control block. This address is for the mapping within client
1561 // address space. AudioFlinger::TrackBase::mBuffer is for the server address space.
1562 void* buffers;
1563 if (mSharedBuffer == 0) {
1564 buffers = cblk + 1;
1565 } else {
1566 buffers = mSharedBuffer->pointer();
1567 if (buffers == NULL) {
1568 ALOGE("%s(%d): Could not get buffer pointer", __func__, mPortId);
1569 status = NO_INIT;
1570 goto exit;
1571 }
1572 }
1573
1574 mAudioTrack->attachAuxEffect(mAuxEffectId);
1575
1576 // If IAudioTrack is re-created, don't let the requested frameCount
1577 // decrease. This can confuse clients that cache frameCount().
1578 if (mFrameCount > mReqFrameCount) {
1579 mReqFrameCount = mFrameCount;
1580 }
1581
1582 // reset server position to 0 as we have new cblk.
1583 mServer = 0;
1584
1585 // update proxy
1586 if (mSharedBuffer == 0) {
1587 mStaticProxy.clear();
1588 mProxy = new AudioTrackClientProxy(cblk, buffers, mFrameCount, mFrameSize);
1589 } else {
1590 mStaticProxy = new StaticAudioTrackClientProxy(cblk, buffers, mFrameCount, mFrameSize);
1591 mProxy = mStaticProxy;
1592 }
1593
1594 mProxy->setVolumeLR(gain_minifloat_pack(
1595 gain_from_float(mVolume[AUDIO_INTERLEAVE_LEFT]),
1596 gain_from_float(mVolume[AUDIO_INTERLEAVE_RIGHT])));
1597
1598 mProxy->setSendLevel(mSendLevel);
1599 const uint32_t effectiveSampleRate = adjustSampleRate(mSampleRate, mPlaybackRate.mPitch);
1600 const float effectiveSpeed = adjustSpeed(mPlaybackRate.mSpeed, mPlaybackRate.mPitch);
1601 const float effectivePitch = adjustPitch(mPlaybackRate.mPitch);
1602 mProxy->setSampleRate(effectiveSampleRate);
1603
1604 AudioPlaybackRate playbackRateTemp = mPlaybackRate;
1605 playbackRateTemp.mSpeed = effectiveSpeed;
1606 playbackRateTemp.mPitch = effectivePitch;
1607 mProxy->setPlaybackRate(playbackRateTemp);
1608 mProxy->setMinimum(mNotificationFramesAct);
1609
1610 mDeathNotifier = new DeathNotifier(this);
1611 IInterface::asBinder(mAudioTrack)->linkToDeath(mDeathNotifier, this);
1612
1613 }
1614
1615 exit:
1616 if (status != NO_ERROR && callbackAdded) {
1617 // note: mOutput is always valid is callbackAdded is true
1618 AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId);
1619 }
1620
1621 mStatus = status;
1622
1623 // sp<IAudioTrack> track destructor will cause releaseOutput() to be called by AudioFlinger
1624 return status;
1625 }
1626
obtainBuffer(Buffer * audioBuffer,int32_t waitCount,size_t * nonContig)1627 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, int32_t waitCount, size_t *nonContig)
1628 {
1629 if (audioBuffer == NULL) {
1630 if (nonContig != NULL) {
1631 *nonContig = 0;
1632 }
1633 return BAD_VALUE;
1634 }
1635 if (mTransfer != TRANSFER_OBTAIN) {
1636 audioBuffer->frameCount = 0;
1637 audioBuffer->size = 0;
1638 audioBuffer->raw = NULL;
1639 if (nonContig != NULL) {
1640 *nonContig = 0;
1641 }
1642 return INVALID_OPERATION;
1643 }
1644
1645 const struct timespec *requested;
1646 struct timespec timeout;
1647 if (waitCount == -1) {
1648 requested = &ClientProxy::kForever;
1649 } else if (waitCount == 0) {
1650 requested = &ClientProxy::kNonBlocking;
1651 } else if (waitCount > 0) {
1652 time_t ms = WAIT_PERIOD_MS * (time_t) waitCount;
1653 timeout.tv_sec = ms / 1000;
1654 timeout.tv_nsec = (long) (ms % 1000) * 1000000;
1655 requested = &timeout;
1656 } else {
1657 ALOGE("%s(%d): invalid waitCount %d", __func__, mPortId, waitCount);
1658 requested = NULL;
1659 }
1660 return obtainBuffer(audioBuffer, requested, NULL /*elapsed*/, nonContig);
1661 }
1662
obtainBuffer(Buffer * audioBuffer,const struct timespec * requested,struct timespec * elapsed,size_t * nonContig)1663 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, const struct timespec *requested,
1664 struct timespec *elapsed, size_t *nonContig)
1665 {
1666 // previous and new IAudioTrack sequence numbers are used to detect track re-creation
1667 uint32_t oldSequence = 0;
1668 uint32_t newSequence;
1669
1670 Proxy::Buffer buffer;
1671 status_t status = NO_ERROR;
1672
1673 static const int32_t kMaxTries = 5;
1674 int32_t tryCounter = kMaxTries;
1675
1676 do {
1677 // obtainBuffer() is called with mutex unlocked, so keep extra references to these fields to
1678 // keep them from going away if another thread re-creates the track during obtainBuffer()
1679 sp<AudioTrackClientProxy> proxy;
1680 sp<IMemory> iMem;
1681
1682 { // start of lock scope
1683 AutoMutex lock(mLock);
1684
1685 newSequence = mSequence;
1686 // did previous obtainBuffer() fail due to media server death or voluntary invalidation?
1687 if (status == DEAD_OBJECT) {
1688 // re-create track, unless someone else has already done so
1689 if (newSequence == oldSequence) {
1690 status = restoreTrack_l("obtainBuffer");
1691 if (status != NO_ERROR) {
1692 buffer.mFrameCount = 0;
1693 buffer.mRaw = NULL;
1694 buffer.mNonContig = 0;
1695 break;
1696 }
1697 }
1698 }
1699 oldSequence = newSequence;
1700
1701 if (status == NOT_ENOUGH_DATA) {
1702 restartIfDisabled();
1703 }
1704
1705 // Keep the extra references
1706 proxy = mProxy;
1707 iMem = mCblkMemory;
1708
1709 if (mState == STATE_STOPPING) {
1710 status = -EINTR;
1711 buffer.mFrameCount = 0;
1712 buffer.mRaw = NULL;
1713 buffer.mNonContig = 0;
1714 break;
1715 }
1716
1717 // Non-blocking if track is stopped or paused
1718 if (mState != STATE_ACTIVE) {
1719 requested = &ClientProxy::kNonBlocking;
1720 }
1721
1722 } // end of lock scope
1723
1724 buffer.mFrameCount = audioBuffer->frameCount;
1725 // FIXME starts the requested timeout and elapsed over from scratch
1726 status = proxy->obtainBuffer(&buffer, requested, elapsed);
1727 } while (((status == DEAD_OBJECT) || (status == NOT_ENOUGH_DATA)) && (tryCounter-- > 0));
1728
1729 audioBuffer->frameCount = buffer.mFrameCount;
1730 audioBuffer->size = buffer.mFrameCount * mFrameSize;
1731 audioBuffer->raw = buffer.mRaw;
1732 if (nonContig != NULL) {
1733 *nonContig = buffer.mNonContig;
1734 }
1735 return status;
1736 }
1737
releaseBuffer(const Buffer * audioBuffer)1738 void AudioTrack::releaseBuffer(const Buffer* audioBuffer)
1739 {
1740 // FIXME add error checking on mode, by adding an internal version
1741 if (mTransfer == TRANSFER_SHARED) {
1742 return;
1743 }
1744
1745 size_t stepCount = audioBuffer->size / mFrameSize;
1746 if (stepCount == 0) {
1747 return;
1748 }
1749
1750 Proxy::Buffer buffer;
1751 buffer.mFrameCount = stepCount;
1752 buffer.mRaw = audioBuffer->raw;
1753
1754 AutoMutex lock(mLock);
1755 mReleased += stepCount;
1756 mInUnderrun = false;
1757 mProxy->releaseBuffer(&buffer);
1758
1759 // restart track if it was disabled by audioflinger due to previous underrun
1760 restartIfDisabled();
1761 }
1762
restartIfDisabled()1763 void AudioTrack::restartIfDisabled()
1764 {
1765 int32_t flags = android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags);
1766 if ((mState == STATE_ACTIVE) && (flags & CBLK_DISABLED)) {
1767 ALOGW("%s(%d): releaseBuffer() track %p disabled due to previous underrun, restarting",
1768 __func__, mPortId, this);
1769 // FIXME ignoring status
1770 mAudioTrack->start();
1771 }
1772 }
1773
1774 // -------------------------------------------------------------------------
1775
write(const void * buffer,size_t userSize,bool blocking)1776 ssize_t AudioTrack::write(const void* buffer, size_t userSize, bool blocking)
1777 {
1778 if (mTransfer != TRANSFER_SYNC && mTransfer != TRANSFER_SYNC_NOTIF_CALLBACK) {
1779 return INVALID_OPERATION;
1780 }
1781
1782 if (isDirect()) {
1783 AutoMutex lock(mLock);
1784 int32_t flags = android_atomic_and(
1785 ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END),
1786 &mCblk->mFlags);
1787 if (flags & CBLK_INVALID) {
1788 return DEAD_OBJECT;
1789 }
1790 }
1791
1792 if (ssize_t(userSize) < 0 || (buffer == NULL && userSize != 0)) {
1793 // Sanity-check: user is most-likely passing an error code, and it would
1794 // make the return value ambiguous (actualSize vs error).
1795 ALOGE("%s(%d): AudioTrack::write(buffer=%p, size=%zu (%zd)",
1796 __func__, mPortId, buffer, userSize, userSize);
1797 return BAD_VALUE;
1798 }
1799
1800 size_t written = 0;
1801 Buffer audioBuffer;
1802
1803 while (userSize >= mFrameSize) {
1804 audioBuffer.frameCount = userSize / mFrameSize;
1805
1806 status_t err = obtainBuffer(&audioBuffer,
1807 blocking ? &ClientProxy::kForever : &ClientProxy::kNonBlocking);
1808 if (err < 0) {
1809 if (written > 0) {
1810 break;
1811 }
1812 if (err == TIMED_OUT || err == -EINTR) {
1813 err = WOULD_BLOCK;
1814 }
1815 return ssize_t(err);
1816 }
1817
1818 size_t toWrite = audioBuffer.size;
1819 memcpy(audioBuffer.i8, buffer, toWrite);
1820 buffer = ((const char *) buffer) + toWrite;
1821 userSize -= toWrite;
1822 written += toWrite;
1823
1824 releaseBuffer(&audioBuffer);
1825 }
1826
1827 if (written > 0) {
1828 mFramesWritten += written / mFrameSize;
1829
1830 if (mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK) {
1831 const sp<AudioTrackThread> t = mAudioTrackThread;
1832 if (t != 0) {
1833 // causes wake up of the playback thread, that will callback the client for
1834 // more data (with EVENT_CAN_WRITE_MORE_DATA) in processAudioBuffer()
1835 t->wake();
1836 }
1837 }
1838 }
1839
1840 return written;
1841 }
1842
1843 // -------------------------------------------------------------------------
1844
processAudioBuffer()1845 nsecs_t AudioTrack::processAudioBuffer()
1846 {
1847 // Currently the AudioTrack thread is not created if there are no callbacks.
1848 // Would it ever make sense to run the thread, even without callbacks?
1849 // If so, then replace this by checks at each use for mCbf != NULL.
1850 LOG_ALWAYS_FATAL_IF(mCblk == NULL);
1851
1852 mLock.lock();
1853 if (mAwaitBoost) {
1854 mAwaitBoost = false;
1855 mLock.unlock();
1856 static const int32_t kMaxTries = 5;
1857 int32_t tryCounter = kMaxTries;
1858 uint32_t pollUs = 10000;
1859 do {
1860 int policy = sched_getscheduler(0) & ~SCHED_RESET_ON_FORK;
1861 if (policy == SCHED_FIFO || policy == SCHED_RR) {
1862 break;
1863 }
1864 usleep(pollUs);
1865 pollUs <<= 1;
1866 } while (tryCounter-- > 0);
1867 if (tryCounter < 0) {
1868 ALOGE("%s(%d): did not receive expected priority boost on time",
1869 __func__, mPortId);
1870 }
1871 // Run again immediately
1872 return 0;
1873 }
1874
1875 // Can only reference mCblk while locked
1876 int32_t flags = android_atomic_and(
1877 ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END), &mCblk->mFlags);
1878
1879 // Check for track invalidation
1880 if (flags & CBLK_INVALID) {
1881 // for offloaded tracks restoreTrack_l() will just update the sequence and clear
1882 // AudioSystem cache. We should not exit here but after calling the callback so
1883 // that the upper layers can recreate the track
1884 if (!isOffloadedOrDirect_l() || (mSequence == mObservedSequence)) {
1885 status_t status __unused = restoreTrack_l("processAudioBuffer");
1886 // FIXME unused status
1887 // after restoration, continue below to make sure that the loop and buffer events
1888 // are notified because they have been cleared from mCblk->mFlags above.
1889 }
1890 }
1891
1892 bool waitStreamEnd = mState == STATE_STOPPING;
1893 bool active = mState == STATE_ACTIVE;
1894
1895 // Manage underrun callback, must be done under lock to avoid race with releaseBuffer()
1896 bool newUnderrun = false;
1897 if (flags & CBLK_UNDERRUN) {
1898 #if 0
1899 // Currently in shared buffer mode, when the server reaches the end of buffer,
1900 // the track stays active in continuous underrun state. It's up to the application
1901 // to pause or stop the track, or set the position to a new offset within buffer.
1902 // This was some experimental code to auto-pause on underrun. Keeping it here
1903 // in "if 0" so we can re-visit this if we add a real sequencer for shared memory content.
1904 if (mTransfer == TRANSFER_SHARED) {
1905 mState = STATE_PAUSED;
1906 active = false;
1907 }
1908 #endif
1909 if (!mInUnderrun) {
1910 mInUnderrun = true;
1911 newUnderrun = true;
1912 }
1913 }
1914
1915 // Get current position of server
1916 Modulo<uint32_t> position(updateAndGetPosition_l());
1917
1918 // Manage marker callback
1919 bool markerReached = false;
1920 Modulo<uint32_t> markerPosition(mMarkerPosition);
1921 // uses 32 bit wraparound for comparison with position.
1922 if (!mMarkerReached && markerPosition.value() > 0 && position >= markerPosition) {
1923 mMarkerReached = markerReached = true;
1924 }
1925
1926 // Determine number of new position callback(s) that will be needed, while locked
1927 size_t newPosCount = 0;
1928 Modulo<uint32_t> newPosition(mNewPosition);
1929 uint32_t updatePeriod = mUpdatePeriod;
1930 // FIXME fails for wraparound, need 64 bits
1931 if (updatePeriod > 0 && position >= newPosition) {
1932 newPosCount = ((position - newPosition).value() / updatePeriod) + 1;
1933 mNewPosition += updatePeriod * newPosCount;
1934 }
1935
1936 // Cache other fields that will be needed soon
1937 uint32_t sampleRate = mSampleRate;
1938 float speed = mPlaybackRate.mSpeed;
1939 const uint32_t notificationFrames = mNotificationFramesAct;
1940 if (mRefreshRemaining) {
1941 mRefreshRemaining = false;
1942 mRemainingFrames = notificationFrames;
1943 mRetryOnPartialBuffer = false;
1944 }
1945 size_t misalignment = mProxy->getMisalignment();
1946 uint32_t sequence = mSequence;
1947 sp<AudioTrackClientProxy> proxy = mProxy;
1948
1949 // Determine the number of new loop callback(s) that will be needed, while locked.
1950 int loopCountNotifications = 0;
1951 uint32_t loopPeriod = 0; // time in frames for next EVENT_LOOP_END or EVENT_BUFFER_END
1952
1953 if (mLoopCount > 0) {
1954 int loopCount;
1955 size_t bufferPosition;
1956 mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
1957 loopPeriod = ((loopCount > 0) ? mLoopEnd : mFrameCount) - bufferPosition;
1958 loopCountNotifications = min(mLoopCountNotified - loopCount, kMaxLoopCountNotifications);
1959 mLoopCountNotified = loopCount; // discard any excess notifications
1960 } else if (mLoopCount < 0) {
1961 // FIXME: We're not accurate with notification count and position with infinite looping
1962 // since loopCount from server side will always return -1 (we could decrement it).
1963 size_t bufferPosition = mStaticProxy->getBufferPosition();
1964 loopCountNotifications = int((flags & (CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL)) != 0);
1965 loopPeriod = mLoopEnd - bufferPosition;
1966 } else if (/* mLoopCount == 0 && */ mSharedBuffer != 0) {
1967 size_t bufferPosition = mStaticProxy->getBufferPosition();
1968 loopPeriod = mFrameCount - bufferPosition;
1969 }
1970
1971 // These fields don't need to be cached, because they are assigned only by set():
1972 // mTransfer, mCbf, mUserData, mFormat, mFrameSize, mFlags
1973 // mFlags is also assigned by createTrack_l(), but not the bit we care about.
1974
1975 mLock.unlock();
1976
1977 // get anchor time to account for callbacks.
1978 const nsecs_t timeBeforeCallbacks = systemTime();
1979
1980 if (waitStreamEnd) {
1981 // FIXME: Instead of blocking in proxy->waitStreamEndDone(), Callback thread
1982 // should wait on proxy futex and handle CBLK_STREAM_END_DONE within this function
1983 // (and make sure we don't callback for more data while we're stopping).
1984 // This helps with position, marker notifications, and track invalidation.
1985 struct timespec timeout;
1986 timeout.tv_sec = WAIT_STREAM_END_TIMEOUT_SEC;
1987 timeout.tv_nsec = 0;
1988
1989 status_t status = proxy->waitStreamEndDone(&timeout);
1990 switch (status) {
1991 case NO_ERROR:
1992 case DEAD_OBJECT:
1993 case TIMED_OUT:
1994 if (status != DEAD_OBJECT) {
1995 // for DEAD_OBJECT, we do not send a EVENT_STREAM_END after stop();
1996 // instead, the application should handle the EVENT_NEW_IAUDIOTRACK.
1997 mCbf(EVENT_STREAM_END, mUserData, NULL);
1998 }
1999 {
2000 AutoMutex lock(mLock);
2001 // The previously assigned value of waitStreamEnd is no longer valid,
2002 // since the mutex has been unlocked and either the callback handler
2003 // or another thread could have re-started the AudioTrack during that time.
2004 waitStreamEnd = mState == STATE_STOPPING;
2005 if (waitStreamEnd) {
2006 mState = STATE_STOPPED;
2007 mReleased = 0;
2008 }
2009 }
2010 if (waitStreamEnd && status != DEAD_OBJECT) {
2011 return NS_INACTIVE;
2012 }
2013 break;
2014 }
2015 return 0;
2016 }
2017
2018 // perform callbacks while unlocked
2019 if (newUnderrun) {
2020 mCbf(EVENT_UNDERRUN, mUserData, NULL);
2021 }
2022 while (loopCountNotifications > 0) {
2023 mCbf(EVENT_LOOP_END, mUserData, NULL);
2024 --loopCountNotifications;
2025 }
2026 if (flags & CBLK_BUFFER_END) {
2027 mCbf(EVENT_BUFFER_END, mUserData, NULL);
2028 }
2029 if (markerReached) {
2030 mCbf(EVENT_MARKER, mUserData, &markerPosition);
2031 }
2032 while (newPosCount > 0) {
2033 size_t temp = newPosition.value(); // FIXME size_t != uint32_t
2034 mCbf(EVENT_NEW_POS, mUserData, &temp);
2035 newPosition += updatePeriod;
2036 newPosCount--;
2037 }
2038
2039 if (mObservedSequence != sequence) {
2040 mObservedSequence = sequence;
2041 mCbf(EVENT_NEW_IAUDIOTRACK, mUserData, NULL);
2042 // for offloaded tracks, just wait for the upper layers to recreate the track
2043 if (isOffloadedOrDirect()) {
2044 return NS_INACTIVE;
2045 }
2046 }
2047
2048 // if inactive, then don't run me again until re-started
2049 if (!active) {
2050 return NS_INACTIVE;
2051 }
2052
2053 // Compute the estimated time until the next timed event (position, markers, loops)
2054 // FIXME only for non-compressed audio
2055 uint32_t minFrames = ~0;
2056 if (!markerReached && position < markerPosition) {
2057 minFrames = (markerPosition - position).value();
2058 }
2059 if (loopPeriod > 0 && loopPeriod < minFrames) {
2060 // loopPeriod is already adjusted for actual position.
2061 minFrames = loopPeriod;
2062 }
2063 if (updatePeriod > 0) {
2064 minFrames = min(minFrames, (newPosition - position).value());
2065 }
2066
2067 // If > 0, poll periodically to recover from a stuck server. A good value is 2.
2068 static const uint32_t kPoll = 0;
2069 if (kPoll > 0 && mTransfer == TRANSFER_CALLBACK && kPoll * notificationFrames < minFrames) {
2070 minFrames = kPoll * notificationFrames;
2071 }
2072
2073 // This "fudge factor" avoids soaking CPU, and compensates for late progress by server
2074 static const nsecs_t kWaitPeriodNs = WAIT_PERIOD_MS * 1000000LL;
2075 const nsecs_t timeAfterCallbacks = systemTime();
2076
2077 // Convert frame units to time units
2078 nsecs_t ns = NS_WHENEVER;
2079 if (minFrames != (uint32_t) ~0) {
2080 // AudioFlinger consumption of client data may be irregular when coming out of device
2081 // standby since the kernel buffers require filling. This is throttled to no more than 2x
2082 // the expected rate in the MixerThread. Hence, we reduce the estimated time to wait by one
2083 // half (but no more than half a second) to improve callback accuracy during these temporary
2084 // data surges.
2085 const nsecs_t estimatedNs = framesToNanoseconds(minFrames, sampleRate, speed);
2086 constexpr nsecs_t maxThrottleCompensationNs = 500000000LL;
2087 ns = estimatedNs - min(estimatedNs / 2, maxThrottleCompensationNs) + kWaitPeriodNs;
2088 ns -= (timeAfterCallbacks - timeBeforeCallbacks); // account for callback time
2089 // TODO: Should we warn if the callback time is too long?
2090 if (ns < 0) ns = 0;
2091 }
2092
2093 // If not supplying data by EVENT_MORE_DATA or EVENT_CAN_WRITE_MORE_DATA, then we're done
2094 if (mTransfer != TRANSFER_CALLBACK && mTransfer != TRANSFER_SYNC_NOTIF_CALLBACK) {
2095 return ns;
2096 }
2097
2098 // EVENT_MORE_DATA callback handling.
2099 // Timing for linear pcm audio data formats can be derived directly from the
2100 // buffer fill level.
2101 // Timing for compressed data is not directly available from the buffer fill level,
2102 // rather indirectly from waiting for blocking mode callbacks or waiting for obtain()
2103 // to return a certain fill level.
2104
2105 struct timespec timeout;
2106 const struct timespec *requested = &ClientProxy::kForever;
2107 if (ns != NS_WHENEVER) {
2108 timeout.tv_sec = ns / 1000000000LL;
2109 timeout.tv_nsec = ns % 1000000000LL;
2110 ALOGV("%s(%d): timeout %ld.%03d",
2111 __func__, mPortId, timeout.tv_sec, (int) timeout.tv_nsec / 1000000);
2112 requested = &timeout;
2113 }
2114
2115 size_t writtenFrames = 0;
2116 while (mRemainingFrames > 0) {
2117
2118 Buffer audioBuffer;
2119 audioBuffer.frameCount = mRemainingFrames;
2120 size_t nonContig;
2121 status_t err = obtainBuffer(&audioBuffer, requested, NULL, &nonContig);
2122 LOG_ALWAYS_FATAL_IF((err != NO_ERROR) != (audioBuffer.frameCount == 0),
2123 "%s(%d): obtainBuffer() err=%d frameCount=%zu",
2124 __func__, mPortId, err, audioBuffer.frameCount);
2125 requested = &ClientProxy::kNonBlocking;
2126 size_t avail = audioBuffer.frameCount + nonContig;
2127 ALOGV("%s(%d): obtainBuffer(%u) returned %zu = %zu + %zu err %d",
2128 __func__, mPortId, mRemainingFrames, avail, audioBuffer.frameCount, nonContig, err);
2129 if (err != NO_ERROR) {
2130 if (err == TIMED_OUT || err == WOULD_BLOCK || err == -EINTR ||
2131 (isOffloaded() && (err == DEAD_OBJECT))) {
2132 // FIXME bug 25195759
2133 return 1000000;
2134 }
2135 ALOGE("%s(%d): Error %d obtaining an audio buffer, giving up.",
2136 __func__, mPortId, err);
2137 return NS_NEVER;
2138 }
2139
2140 if (mRetryOnPartialBuffer && audio_has_proportional_frames(mFormat)) {
2141 mRetryOnPartialBuffer = false;
2142 if (avail < mRemainingFrames) {
2143 if (ns > 0) { // account for obtain time
2144 const nsecs_t timeNow = systemTime();
2145 ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
2146 }
2147
2148 // delayNs is first computed by the additional frames required in the buffer.
2149 nsecs_t delayNs = framesToNanoseconds(
2150 mRemainingFrames - avail, sampleRate, speed);
2151
2152 // afNs is the AudioFlinger mixer period in ns.
2153 const nsecs_t afNs = framesToNanoseconds(mAfFrameCount, mAfSampleRate, speed);
2154
2155 // If the AudioTrack is double buffered based on the AudioFlinger mixer period,
2156 // we may have a race if we wait based on the number of frames desired.
2157 // This is a possible issue with resampling and AAudio.
2158 //
2159 // The granularity of audioflinger processing is one mixer period; if
2160 // our wait time is less than one mixer period, wait at most half the period.
2161 if (delayNs < afNs) {
2162 delayNs = std::min(delayNs, afNs / 2);
2163 }
2164
2165 // adjust our ns wait by delayNs.
2166 if (ns < 0 /* NS_WHENEVER */ || delayNs < ns) {
2167 ns = delayNs;
2168 }
2169 return ns;
2170 }
2171 }
2172
2173 size_t reqSize = audioBuffer.size;
2174 if (mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK) {
2175 // when notifying client it can write more data, pass the total size that can be
2176 // written in the next write() call, since it's not passed through the callback
2177 audioBuffer.size += nonContig;
2178 }
2179 mCbf(mTransfer == TRANSFER_CALLBACK ? EVENT_MORE_DATA : EVENT_CAN_WRITE_MORE_DATA,
2180 mUserData, &audioBuffer);
2181 size_t writtenSize = audioBuffer.size;
2182
2183 // Sanity check on returned size
2184 if (ssize_t(writtenSize) < 0 || writtenSize > reqSize) {
2185 ALOGE("%s(%d): EVENT_MORE_DATA requested %zu bytes but callback returned %zd bytes",
2186 __func__, mPortId, reqSize, ssize_t(writtenSize));
2187 return NS_NEVER;
2188 }
2189
2190 if (writtenSize == 0) {
2191 if (mTransfer == TRANSFER_SYNC_NOTIF_CALLBACK) {
2192 // The callback EVENT_CAN_WRITE_MORE_DATA was processed in the JNI of
2193 // android.media.AudioTrack. The JNI is not using the callback to provide data,
2194 // it only signals to the Java client that it can provide more data, which
2195 // this track is read to accept now.
2196 // The playback thread will be awaken at the next ::write()
2197 return NS_WHENEVER;
2198 }
2199 // The callback is done filling buffers
2200 // Keep this thread going to handle timed events and
2201 // still try to get more data in intervals of WAIT_PERIOD_MS
2202 // but don't just loop and block the CPU, so wait
2203
2204 // mCbf(EVENT_MORE_DATA, ...) might either
2205 // (1) Block until it can fill the buffer, returning 0 size on EOS.
2206 // (2) Block until it can fill the buffer, returning 0 data (silence) on EOS.
2207 // (3) Return 0 size when no data is available, does not wait for more data.
2208 //
2209 // (1) and (2) occurs with AudioPlayer/AwesomePlayer; (3) occurs with NuPlayer.
2210 // We try to compute the wait time to avoid a tight sleep-wait cycle,
2211 // especially for case (3).
2212 //
2213 // The decision to support (1) and (2) affect the sizing of mRemainingFrames
2214 // and this loop; whereas for case (3) we could simply check once with the full
2215 // buffer size and skip the loop entirely.
2216
2217 nsecs_t myns;
2218 if (audio_has_proportional_frames(mFormat)) {
2219 // time to wait based on buffer occupancy
2220 const nsecs_t datans = mRemainingFrames <= avail ? 0 :
2221 framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed);
2222 // audio flinger thread buffer size (TODO: adjust for fast tracks)
2223 // FIXME: use mAfFrameCountHAL instead of mAfFrameCount below for fast tracks.
2224 const nsecs_t afns = framesToNanoseconds(mAfFrameCount, mAfSampleRate, speed);
2225 // add a half the AudioFlinger buffer time to avoid soaking CPU if datans is 0.
2226 myns = datans + (afns / 2);
2227 } else {
2228 // FIXME: This could ping quite a bit if the buffer isn't full.
2229 // Note that when mState is stopping we waitStreamEnd, so it never gets here.
2230 myns = kWaitPeriodNs;
2231 }
2232 if (ns > 0) { // account for obtain and callback time
2233 const nsecs_t timeNow = systemTime();
2234 ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
2235 }
2236 if (ns < 0 /* NS_WHENEVER */ || myns < ns) {
2237 ns = myns;
2238 }
2239 return ns;
2240 }
2241
2242 size_t releasedFrames = writtenSize / mFrameSize;
2243 audioBuffer.frameCount = releasedFrames;
2244 mRemainingFrames -= releasedFrames;
2245 if (misalignment >= releasedFrames) {
2246 misalignment -= releasedFrames;
2247 } else {
2248 misalignment = 0;
2249 }
2250
2251 releaseBuffer(&audioBuffer);
2252 writtenFrames += releasedFrames;
2253
2254 // FIXME here is where we would repeat EVENT_MORE_DATA again on same advanced buffer
2255 // if callback doesn't like to accept the full chunk
2256 if (writtenSize < reqSize) {
2257 continue;
2258 }
2259
2260 // There could be enough non-contiguous frames available to satisfy the remaining request
2261 if (mRemainingFrames <= nonContig) {
2262 continue;
2263 }
2264
2265 #if 0
2266 // This heuristic tries to collapse a series of EVENT_MORE_DATA that would total to a
2267 // sum <= notificationFrames. It replaces that series by at most two EVENT_MORE_DATA
2268 // that total to a sum == notificationFrames.
2269 if (0 < misalignment && misalignment <= mRemainingFrames) {
2270 mRemainingFrames = misalignment;
2271 return ((double)mRemainingFrames * 1100000000) / ((double)sampleRate * speed);
2272 }
2273 #endif
2274
2275 }
2276 if (writtenFrames > 0) {
2277 AutoMutex lock(mLock);
2278 mFramesWritten += writtenFrames;
2279 }
2280 mRemainingFrames = notificationFrames;
2281 mRetryOnPartialBuffer = true;
2282
2283 // A lot has transpired since ns was calculated, so run again immediately and re-calculate
2284 return 0;
2285 }
2286
restoreTrack_l(const char * from)2287 status_t AudioTrack::restoreTrack_l(const char *from)
2288 {
2289 ALOGW("%s(%d): dead IAudioTrack, %s, creating a new one from %s()",
2290 __func__, mPortId, isOffloadedOrDirect_l() ? "Offloaded or Direct" : "PCM", from);
2291 ++mSequence;
2292
2293 // refresh the audio configuration cache in this process to make sure we get new
2294 // output parameters and new IAudioFlinger in createTrack_l()
2295 AudioSystem::clearAudioConfigCache();
2296
2297 if (isOffloadedOrDirect_l() || mDoNotReconnect) {
2298 // FIXME re-creation of offloaded and direct tracks is not yet implemented;
2299 // reconsider enabling for linear PCM encodings when position can be preserved.
2300 return DEAD_OBJECT;
2301 }
2302
2303 // Save so we can return count since creation.
2304 mUnderrunCountOffset = getUnderrunCount_l();
2305
2306 // save the old static buffer position
2307 uint32_t staticPosition = 0;
2308 size_t bufferPosition = 0;
2309 int loopCount = 0;
2310 if (mStaticProxy != 0) {
2311 mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
2312 staticPosition = mStaticProxy->getPosition().unsignedValue();
2313 }
2314
2315 // See b/74409267. Connecting to a BT A2DP device supporting multiple codecs
2316 // causes a lot of churn on the service side, and it can reject starting
2317 // playback of a previously created track. May also apply to other cases.
2318 const int INITIAL_RETRIES = 3;
2319 int retries = INITIAL_RETRIES;
2320 retry:
2321 if (retries < INITIAL_RETRIES) {
2322 // See the comment for clearAudioConfigCache at the start of the function.
2323 AudioSystem::clearAudioConfigCache();
2324 }
2325 mFlags = mOrigFlags;
2326
2327 // If a new IAudioTrack is successfully created, createTrack_l() will modify the
2328 // following member variables: mAudioTrack, mCblkMemory and mCblk.
2329 // It will also delete the strong references on previous IAudioTrack and IMemory.
2330 // If a new IAudioTrack cannot be created, the previous (dead) instance will be left intact.
2331 status_t result = createTrack_l();
2332
2333 if (result == NO_ERROR) {
2334 // take the frames that will be lost by track recreation into account in saved position
2335 // For streaming tracks, this is the amount we obtained from the user/client
2336 // (not the number actually consumed at the server - those are already lost).
2337 if (mStaticProxy == 0) {
2338 mPosition = mReleased;
2339 }
2340 // Continue playback from last known position and restore loop.
2341 if (mStaticProxy != 0) {
2342 if (loopCount != 0) {
2343 mStaticProxy->setBufferPositionAndLoop(bufferPosition,
2344 mLoopStart, mLoopEnd, loopCount);
2345 } else {
2346 mStaticProxy->setBufferPosition(bufferPosition);
2347 if (bufferPosition == mFrameCount) {
2348 ALOGD("%s(%d): restoring track at end of static buffer", __func__, mPortId);
2349 }
2350 }
2351 }
2352 // restore volume handler
2353 mVolumeHandler->forall([this](const VolumeShaper &shaper) -> VolumeShaper::Status {
2354 sp<VolumeShaper::Operation> operationToEnd =
2355 new VolumeShaper::Operation(shaper.mOperation);
2356 // TODO: Ideally we would restore to the exact xOffset position
2357 // as returned by getVolumeShaperState(), but we don't have that
2358 // information when restoring at the client unless we periodically poll
2359 // the server or create shared memory state.
2360 //
2361 // For now, we simply advance to the end of the VolumeShaper effect
2362 // if it has been started.
2363 if (shaper.isStarted()) {
2364 operationToEnd->setNormalizedTime(1.f);
2365 }
2366 return mAudioTrack->applyVolumeShaper(shaper.mConfiguration, operationToEnd);
2367 });
2368
2369 if (mState == STATE_ACTIVE) {
2370 result = mAudioTrack->start();
2371 }
2372 // server resets to zero so we offset
2373 mFramesWrittenServerOffset =
2374 mStaticProxy.get() != nullptr ? staticPosition : mFramesWritten;
2375 mFramesWrittenAtRestore = mFramesWrittenServerOffset;
2376 }
2377 if (result != NO_ERROR) {
2378 ALOGW("%s(%d): failed status %d, retries %d", __func__, mPortId, result, retries);
2379 if (--retries > 0) {
2380 // leave time for an eventual race condition to clear before retrying
2381 usleep(500000);
2382 goto retry;
2383 }
2384 // if no retries left, set invalid bit to force restoring at next occasion
2385 // and avoid inconsistent active state on client and server sides
2386 if (mCblk != nullptr) {
2387 android_atomic_or(CBLK_INVALID, &mCblk->mFlags);
2388 }
2389 }
2390 return result;
2391 }
2392
updateAndGetPosition_l()2393 Modulo<uint32_t> AudioTrack::updateAndGetPosition_l()
2394 {
2395 // This is the sole place to read server consumed frames
2396 Modulo<uint32_t> newServer(mProxy->getPosition());
2397 const int32_t delta = (newServer - mServer).signedValue();
2398 // TODO There is controversy about whether there can be "negative jitter" in server position.
2399 // This should be investigated further, and if possible, it should be addressed.
2400 // A more definite failure mode is infrequent polling by client.
2401 // One could call (void)getPosition_l() in releaseBuffer(),
2402 // so mReleased and mPosition are always lock-step as best possible.
2403 // That should ensure delta never goes negative for infrequent polling
2404 // unless the server has more than 2^31 frames in its buffer,
2405 // in which case the use of uint32_t for these counters has bigger issues.
2406 ALOGE_IF(delta < 0,
2407 "%s(%d): detected illegal retrograde motion by the server: mServer advanced by %d",
2408 __func__, mPortId, delta);
2409 mServer = newServer;
2410 if (delta > 0) { // avoid retrograde
2411 mPosition += delta;
2412 }
2413 return mPosition;
2414 }
2415
isSampleRateSpeedAllowed_l(uint32_t sampleRate,float speed)2416 bool AudioTrack::isSampleRateSpeedAllowed_l(uint32_t sampleRate, float speed)
2417 {
2418 updateLatency_l();
2419 // applicable for mixing tracks only (not offloaded or direct)
2420 if (mStaticProxy != 0) {
2421 return true; // static tracks do not have issues with buffer sizing.
2422 }
2423 const size_t minFrameCount =
2424 AudioSystem::calculateMinFrameCount(mAfLatency, mAfFrameCount, mAfSampleRate,
2425 sampleRate, speed /*, 0 mNotificationsPerBufferReq*/);
2426 const bool allowed = mFrameCount >= minFrameCount;
2427 ALOGD_IF(!allowed,
2428 "%s(%d): denied "
2429 "mAfLatency:%u mAfFrameCount:%zu mAfSampleRate:%u sampleRate:%u speed:%f "
2430 "mFrameCount:%zu < minFrameCount:%zu",
2431 __func__, mPortId,
2432 mAfLatency, mAfFrameCount, mAfSampleRate, sampleRate, speed,
2433 mFrameCount, minFrameCount);
2434 return allowed;
2435 }
2436
setParameters(const String8 & keyValuePairs)2437 status_t AudioTrack::setParameters(const String8& keyValuePairs)
2438 {
2439 AutoMutex lock(mLock);
2440 return mAudioTrack->setParameters(keyValuePairs);
2441 }
2442
selectPresentation(int presentationId,int programId)2443 status_t AudioTrack::selectPresentation(int presentationId, int programId)
2444 {
2445 AutoMutex lock(mLock);
2446 AudioParameter param = AudioParameter();
2447 param.addInt(String8(AudioParameter::keyPresentationId), presentationId);
2448 param.addInt(String8(AudioParameter::keyProgramId), programId);
2449 ALOGV("%s(%d): PresentationId/ProgramId[%s]",
2450 __func__, mPortId, param.toString().string());
2451
2452 return mAudioTrack->setParameters(param.toString());
2453 }
2454
applyVolumeShaper(const sp<VolumeShaper::Configuration> & configuration,const sp<VolumeShaper::Operation> & operation)2455 VolumeShaper::Status AudioTrack::applyVolumeShaper(
2456 const sp<VolumeShaper::Configuration>& configuration,
2457 const sp<VolumeShaper::Operation>& operation)
2458 {
2459 AutoMutex lock(mLock);
2460 mVolumeHandler->setIdIfNecessary(configuration);
2461 VolumeShaper::Status status = mAudioTrack->applyVolumeShaper(configuration, operation);
2462
2463 if (status == DEAD_OBJECT) {
2464 if (restoreTrack_l("applyVolumeShaper") == OK) {
2465 status = mAudioTrack->applyVolumeShaper(configuration, operation);
2466 }
2467 }
2468 if (status >= 0) {
2469 // save VolumeShaper for restore
2470 mVolumeHandler->applyVolumeShaper(configuration, operation);
2471 if (mState == STATE_ACTIVE || mState == STATE_STOPPING) {
2472 mVolumeHandler->setStarted();
2473 }
2474 } else {
2475 // warn only if not an expected restore failure.
2476 ALOGW_IF(!((isOffloadedOrDirect_l() || mDoNotReconnect) && status == DEAD_OBJECT),
2477 "%s(%d): applyVolumeShaper failed: %d", __func__, mPortId, status);
2478 }
2479 return status;
2480 }
2481
getVolumeShaperState(int id)2482 sp<VolumeShaper::State> AudioTrack::getVolumeShaperState(int id)
2483 {
2484 AutoMutex lock(mLock);
2485 sp<VolumeShaper::State> state = mAudioTrack->getVolumeShaperState(id);
2486 if (state.get() == nullptr && (mCblk->mFlags & CBLK_INVALID) != 0) {
2487 if (restoreTrack_l("getVolumeShaperState") == OK) {
2488 state = mAudioTrack->getVolumeShaperState(id);
2489 }
2490 }
2491 return state;
2492 }
2493
getTimestamp(ExtendedTimestamp * timestamp)2494 status_t AudioTrack::getTimestamp(ExtendedTimestamp *timestamp)
2495 {
2496 if (timestamp == nullptr) {
2497 return BAD_VALUE;
2498 }
2499 AutoMutex lock(mLock);
2500 return getTimestamp_l(timestamp);
2501 }
2502
getTimestamp_l(ExtendedTimestamp * timestamp)2503 status_t AudioTrack::getTimestamp_l(ExtendedTimestamp *timestamp)
2504 {
2505 if (mCblk->mFlags & CBLK_INVALID) {
2506 const status_t status = restoreTrack_l("getTimestampExtended");
2507 if (status != OK) {
2508 // per getTimestamp() API doc in header, we return DEAD_OBJECT here,
2509 // recommending that the track be recreated.
2510 return DEAD_OBJECT;
2511 }
2512 }
2513 // check for offloaded/direct here in case restoring somehow changed those flags.
2514 if (isOffloadedOrDirect_l()) {
2515 return INVALID_OPERATION; // not supported
2516 }
2517 status_t status = mProxy->getTimestamp(timestamp);
2518 LOG_ALWAYS_FATAL_IF(status != OK, "%s(%d): status %d not allowed from proxy getTimestamp",
2519 __func__, mPortId, status);
2520 bool found = false;
2521 timestamp->mPosition[ExtendedTimestamp::LOCATION_CLIENT] = mFramesWritten;
2522 timestamp->mTimeNs[ExtendedTimestamp::LOCATION_CLIENT] = 0;
2523 // server side frame offset in case AudioTrack has been restored.
2524 for (int i = ExtendedTimestamp::LOCATION_SERVER;
2525 i < ExtendedTimestamp::LOCATION_MAX; ++i) {
2526 if (timestamp->mTimeNs[i] >= 0) {
2527 // apply server offset (frames flushed is ignored
2528 // so we don't report the jump when the flush occurs).
2529 timestamp->mPosition[i] += mFramesWrittenServerOffset;
2530 found = true;
2531 }
2532 }
2533 return found ? OK : WOULD_BLOCK;
2534 }
2535
getTimestamp(AudioTimestamp & timestamp)2536 status_t AudioTrack::getTimestamp(AudioTimestamp& timestamp)
2537 {
2538 AutoMutex lock(mLock);
2539 return getTimestamp_l(timestamp);
2540 }
2541
getTimestamp_l(AudioTimestamp & timestamp)2542 status_t AudioTrack::getTimestamp_l(AudioTimestamp& timestamp)
2543 {
2544 bool previousTimestampValid = mPreviousTimestampValid;
2545 // Set false here to cover all the error return cases.
2546 mPreviousTimestampValid = false;
2547
2548 switch (mState) {
2549 case STATE_ACTIVE:
2550 case STATE_PAUSED:
2551 break; // handle below
2552 case STATE_FLUSHED:
2553 case STATE_STOPPED:
2554 return WOULD_BLOCK;
2555 case STATE_STOPPING:
2556 case STATE_PAUSED_STOPPING:
2557 if (!isOffloaded_l()) {
2558 return INVALID_OPERATION;
2559 }
2560 break; // offloaded tracks handled below
2561 default:
2562 LOG_ALWAYS_FATAL("%s(%d): Invalid mState in getTimestamp(): %d",
2563 __func__, mPortId, mState);
2564 break;
2565 }
2566
2567 if (mCblk->mFlags & CBLK_INVALID) {
2568 const status_t status = restoreTrack_l("getTimestamp");
2569 if (status != OK) {
2570 // per getTimestamp() API doc in header, we return DEAD_OBJECT here,
2571 // recommending that the track be recreated.
2572 return DEAD_OBJECT;
2573 }
2574 }
2575
2576 // The presented frame count must always lag behind the consumed frame count.
2577 // To avoid a race, read the presented frames first. This ensures that presented <= consumed.
2578
2579 status_t status;
2580 if (isOffloadedOrDirect_l()) {
2581 // use Binder to get timestamp
2582 status = mAudioTrack->getTimestamp(timestamp);
2583 } else {
2584 // read timestamp from shared memory
2585 ExtendedTimestamp ets;
2586 status = mProxy->getTimestamp(&ets);
2587 if (status == OK) {
2588 ExtendedTimestamp::Location location;
2589 status = ets.getBestTimestamp(×tamp, &location);
2590
2591 if (status == OK) {
2592 updateLatency_l();
2593 // It is possible that the best location has moved from the kernel to the server.
2594 // In this case we adjust the position from the previous computed latency.
2595 if (location == ExtendedTimestamp::LOCATION_SERVER) {
2596 ALOGW_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_KERNEL,
2597 "%s(%d): location moved from kernel to server",
2598 __func__, mPortId);
2599 // check that the last kernel OK time info exists and the positions
2600 // are valid (if they predate the current track, the positions may
2601 // be zero or negative).
2602 const int64_t frames =
2603 (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 ||
2604 ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0 ||
2605 ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] <= 0 ||
2606 ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] <= 0)
2607 ?
2608 int64_t((double)mAfLatency * mSampleRate * mPlaybackRate.mSpeed
2609 / 1000)
2610 :
2611 (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK]
2612 - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK]);
2613 ALOGV("%s(%d): frame adjustment:%lld timestamp:%s",
2614 __func__, mPortId, (long long)frames, ets.toString().c_str());
2615 if (frames >= ets.mPosition[location]) {
2616 timestamp.mPosition = 0;
2617 } else {
2618 timestamp.mPosition = (uint32_t)(ets.mPosition[location] - frames);
2619 }
2620 } else if (location == ExtendedTimestamp::LOCATION_KERNEL) {
2621 ALOGV_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_SERVER,
2622 "%s(%d): location moved from server to kernel",
2623 __func__, mPortId);
2624
2625 if (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER] ==
2626 ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL]) {
2627 // In Q, we don't return errors as an invalid time
2628 // but instead we leave the last kernel good timestamp alone.
2629 //
2630 // If server is identical to kernel, the device data pipeline is idle.
2631 // A better start time is now. The retrograde check ensures
2632 // timestamp monotonicity.
2633 const int64_t nowNs = systemTime();
2634 if (!mTimestampStallReported) {
2635 ALOGD("%s(%d): device stall time corrected using current time %lld",
2636 __func__, mPortId, (long long)nowNs);
2637 mTimestampStallReported = true;
2638 }
2639 timestamp.mTime = convertNsToTimespec(nowNs);
2640 } else {
2641 mTimestampStallReported = false;
2642 }
2643 }
2644
2645 // We update the timestamp time even when paused.
2646 if (mState == STATE_PAUSED /* not needed: STATE_PAUSED_STOPPING */) {
2647 const int64_t now = systemTime();
2648 const int64_t at = audio_utils_ns_from_timespec(×tamp.mTime);
2649 const int64_t lag =
2650 (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 ||
2651 ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0)
2652 ? int64_t(mAfLatency * 1000000LL)
2653 : (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK]
2654 - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK])
2655 * NANOS_PER_SECOND / mSampleRate;
2656 const int64_t limit = now - lag; // no earlier than this limit
2657 if (at < limit) {
2658 ALOGV("timestamp pause lag:%lld adjusting from %lld to %lld",
2659 (long long)lag, (long long)at, (long long)limit);
2660 timestamp.mTime = convertNsToTimespec(limit);
2661 }
2662 }
2663 mPreviousLocation = location;
2664 } else {
2665 // right after AudioTrack is started, one may not find a timestamp
2666 ALOGV("%s(%d): getBestTimestamp did not find timestamp", __func__, mPortId);
2667 }
2668 }
2669 if (status == INVALID_OPERATION) {
2670 // INVALID_OPERATION occurs when no timestamp has been issued by the server;
2671 // other failures are signaled by a negative time.
2672 // If we come out of FLUSHED or STOPPED where the position is known
2673 // to be zero we convert this to WOULD_BLOCK (with the implicit meaning of
2674 // "zero" for NuPlayer). We don't convert for track restoration as position
2675 // does not reset.
2676 ALOGV("%s(%d): timestamp server offset:%lld restore frames:%lld",
2677 __func__, mPortId,
2678 (long long)mFramesWrittenServerOffset, (long long)mFramesWrittenAtRestore);
2679 if (mFramesWrittenServerOffset != mFramesWrittenAtRestore) {
2680 status = WOULD_BLOCK;
2681 }
2682 }
2683 }
2684 if (status != NO_ERROR) {
2685 ALOGV_IF(status != WOULD_BLOCK, "%s(%d): getTimestamp error:%#x", __func__, mPortId, status);
2686 return status;
2687 }
2688 if (isOffloadedOrDirect_l()) {
2689 if (isOffloaded_l() && (mState == STATE_PAUSED || mState == STATE_PAUSED_STOPPING)) {
2690 // use cached paused position in case another offloaded track is running.
2691 timestamp.mPosition = mPausedPosition;
2692 clock_gettime(CLOCK_MONOTONIC, ×tamp.mTime);
2693 // TODO: adjust for delay
2694 return NO_ERROR;
2695 }
2696
2697 // Check whether a pending flush or stop has completed, as those commands may
2698 // be asynchronous or return near finish or exhibit glitchy behavior.
2699 //
2700 // Originally this showed up as the first timestamp being a continuation of
2701 // the previous song under gapless playback.
2702 // However, we sometimes see zero timestamps, then a glitch of
2703 // the previous song's position, and then correct timestamps afterwards.
2704 if (mStartFromZeroUs != 0 && mSampleRate != 0) {
2705 static const int kTimeJitterUs = 100000; // 100 ms
2706 static const int k1SecUs = 1000000;
2707
2708 const int64_t timeNow = getNowUs();
2709
2710 if (timeNow < mStartFromZeroUs + k1SecUs) { // within first second of starting
2711 const int64_t timestampTimeUs = convertTimespecToUs(timestamp.mTime);
2712 if (timestampTimeUs < mStartFromZeroUs) {
2713 return WOULD_BLOCK; // stale timestamp time, occurs before start.
2714 }
2715 const int64_t deltaTimeUs = timestampTimeUs - mStartFromZeroUs;
2716 const int64_t deltaPositionByUs = (double)timestamp.mPosition * 1000000
2717 / ((double)mSampleRate * mPlaybackRate.mSpeed);
2718
2719 if (deltaPositionByUs > deltaTimeUs + kTimeJitterUs) {
2720 // Verify that the counter can't count faster than the sample rate
2721 // since the start time. If greater, then that means we may have failed
2722 // to completely flush or stop the previous playing track.
2723 ALOGW_IF(!mTimestampStartupGlitchReported,
2724 "%s(%d): startup glitch detected"
2725 " deltaTimeUs(%lld) deltaPositionUs(%lld) tsmPosition(%u)",
2726 __func__, mPortId,
2727 (long long)deltaTimeUs, (long long)deltaPositionByUs,
2728 timestamp.mPosition);
2729 mTimestampStartupGlitchReported = true;
2730 if (previousTimestampValid
2731 && mPreviousTimestamp.mPosition == 0 /* should be true if valid */) {
2732 timestamp = mPreviousTimestamp;
2733 mPreviousTimestampValid = true;
2734 return NO_ERROR;
2735 }
2736 return WOULD_BLOCK;
2737 }
2738 if (deltaPositionByUs != 0) {
2739 mStartFromZeroUs = 0; // don't check again, we got valid nonzero position.
2740 }
2741 } else {
2742 mStartFromZeroUs = 0; // don't check again, start time expired.
2743 }
2744 mTimestampStartupGlitchReported = false;
2745 }
2746 } else {
2747 // Update the mapping between local consumed (mPosition) and server consumed (mServer)
2748 (void) updateAndGetPosition_l();
2749 // Server consumed (mServer) and presented both use the same server time base,
2750 // and server consumed is always >= presented.
2751 // The delta between these represents the number of frames in the buffer pipeline.
2752 // If this delta between these is greater than the client position, it means that
2753 // actually presented is still stuck at the starting line (figuratively speaking),
2754 // waiting for the first frame to go by. So we can't report a valid timestamp yet.
2755 // Note: We explicitly use non-Modulo comparison here - potential wrap issue when
2756 // mPosition exceeds 32 bits.
2757 // TODO Remove when timestamp is updated to contain pipeline status info.
2758 const int32_t pipelineDepthInFrames = (mServer - timestamp.mPosition).signedValue();
2759 if (pipelineDepthInFrames > 0 /* should be true, but we check anyways */
2760 && (uint32_t)pipelineDepthInFrames > mPosition.value()) {
2761 return INVALID_OPERATION;
2762 }
2763 // Convert timestamp position from server time base to client time base.
2764 // TODO The following code should work OK now because timestamp.mPosition is 32-bit.
2765 // But if we change it to 64-bit then this could fail.
2766 // Use Modulo computation here.
2767 timestamp.mPosition = (mPosition - mServer + timestamp.mPosition).value();
2768 // Immediately after a call to getPosition_l(), mPosition and
2769 // mServer both represent the same frame position. mPosition is
2770 // in client's point of view, and mServer is in server's point of
2771 // view. So the difference between them is the "fudge factor"
2772 // between client and server views due to stop() and/or new
2773 // IAudioTrack. And timestamp.mPosition is initially in server's
2774 // point of view, so we need to apply the same fudge factor to it.
2775 }
2776
2777 // Prevent retrograde motion in timestamp.
2778 // This is sometimes caused by erratic reports of the available space in the ALSA drivers.
2779 if (status == NO_ERROR) {
2780 // Fix stale time when checking timestamp right after start().
2781 // The position is at the last reported location but the time can be stale
2782 // due to pause or standby or cold start latency.
2783 //
2784 // We keep advancing the time (but not the position) to ensure that the
2785 // stale value does not confuse the application.
2786 //
2787 // For offload compatibility, use a default lag value here.
2788 // Any time discrepancy between this update and the pause timestamp is handled
2789 // by the retrograde check afterwards.
2790 int64_t currentTimeNanos = audio_utils_ns_from_timespec(×tamp.mTime);
2791 const int64_t lagNs = int64_t(mAfLatency * 1000000LL);
2792 const int64_t limitNs = mStartNs - lagNs;
2793 if (currentTimeNanos < limitNs) {
2794 if (!mTimestampStaleTimeReported) {
2795 ALOGD("%s(%d): stale timestamp time corrected, "
2796 "currentTimeNanos: %lld < limitNs: %lld < mStartNs: %lld",
2797 __func__, mPortId,
2798 (long long)currentTimeNanos, (long long)limitNs, (long long)mStartNs);
2799 mTimestampStaleTimeReported = true;
2800 }
2801 timestamp.mTime = convertNsToTimespec(limitNs);
2802 currentTimeNanos = limitNs;
2803 } else {
2804 mTimestampStaleTimeReported = false;
2805 }
2806
2807 // previousTimestampValid is set to false when starting after a stop or flush.
2808 if (previousTimestampValid) {
2809 const int64_t previousTimeNanos =
2810 audio_utils_ns_from_timespec(&mPreviousTimestamp.mTime);
2811
2812 // retrograde check
2813 if (currentTimeNanos < previousTimeNanos) {
2814 if (!mTimestampRetrogradeTimeReported) {
2815 ALOGW("%s(%d): retrograde timestamp time corrected, %lld < %lld",
2816 __func__, mPortId,
2817 (long long)currentTimeNanos, (long long)previousTimeNanos);
2818 mTimestampRetrogradeTimeReported = true;
2819 }
2820 timestamp.mTime = mPreviousTimestamp.mTime;
2821 } else {
2822 mTimestampRetrogradeTimeReported = false;
2823 }
2824
2825 // Looking at signed delta will work even when the timestamps
2826 // are wrapping around.
2827 int32_t deltaPosition = (Modulo<uint32_t>(timestamp.mPosition)
2828 - mPreviousTimestamp.mPosition).signedValue();
2829 if (deltaPosition < 0) {
2830 // Only report once per position instead of spamming the log.
2831 if (!mTimestampRetrogradePositionReported) {
2832 ALOGW("%s(%d): retrograde timestamp position corrected, %d = %u - %u",
2833 __func__, mPortId,
2834 deltaPosition,
2835 timestamp.mPosition,
2836 mPreviousTimestamp.mPosition);
2837 mTimestampRetrogradePositionReported = true;
2838 }
2839 } else {
2840 mTimestampRetrogradePositionReported = false;
2841 }
2842 if (deltaPosition < 0) {
2843 timestamp.mPosition = mPreviousTimestamp.mPosition;
2844 deltaPosition = 0;
2845 }
2846 #if 0
2847 // Uncomment this to verify audio timestamp rate.
2848 const int64_t deltaTime =
2849 audio_utils_ns_from_timespec(×tamp.mTime) - previousTimeNanos;
2850 if (deltaTime != 0) {
2851 const int64_t computedSampleRate =
2852 deltaPosition * (long long)NANOS_PER_SECOND / deltaTime;
2853 ALOGD("%s(%d): computedSampleRate:%u sampleRate:%u",
2854 __func__, mPortId,
2855 (unsigned)computedSampleRate, mSampleRate);
2856 }
2857 #endif
2858 }
2859 mPreviousTimestamp = timestamp;
2860 mPreviousTimestampValid = true;
2861 }
2862
2863 return status;
2864 }
2865
getParameters(const String8 & keys)2866 String8 AudioTrack::getParameters(const String8& keys)
2867 {
2868 audio_io_handle_t output = getOutput();
2869 if (output != AUDIO_IO_HANDLE_NONE) {
2870 return AudioSystem::getParameters(output, keys);
2871 } else {
2872 return String8::empty();
2873 }
2874 }
2875
isOffloaded() const2876 bool AudioTrack::isOffloaded() const
2877 {
2878 AutoMutex lock(mLock);
2879 return isOffloaded_l();
2880 }
2881
isDirect() const2882 bool AudioTrack::isDirect() const
2883 {
2884 AutoMutex lock(mLock);
2885 return isDirect_l();
2886 }
2887
isOffloadedOrDirect() const2888 bool AudioTrack::isOffloadedOrDirect() const
2889 {
2890 AutoMutex lock(mLock);
2891 return isOffloadedOrDirect_l();
2892 }
2893
2894
dump(int fd,const Vector<String16> & args __unused) const2895 status_t AudioTrack::dump(int fd, const Vector<String16>& args __unused) const
2896 {
2897 String8 result;
2898
2899 result.append(" AudioTrack::dump\n");
2900 result.appendFormat(" id(%d) status(%d), state(%d), session Id(%d), flags(%#x)\n",
2901 mPortId, mStatus, mState, mSessionId, mFlags);
2902 result.appendFormat(" stream type(%d), left - right volume(%f, %f)\n",
2903 (mStreamType == AUDIO_STREAM_DEFAULT) ?
2904 AudioSystem::attributesToStreamType(mAttributes) :
2905 mStreamType,
2906 mVolume[AUDIO_INTERLEAVE_LEFT], mVolume[AUDIO_INTERLEAVE_RIGHT]);
2907 result.appendFormat(" format(%#x), channel mask(%#x), channel count(%u)\n",
2908 mFormat, mChannelMask, mChannelCount);
2909 result.appendFormat(" sample rate(%u), original sample rate(%u), speed(%f)\n",
2910 mSampleRate, mOriginalSampleRate, mPlaybackRate.mSpeed);
2911 result.appendFormat(" frame count(%zu), req. frame count(%zu)\n",
2912 mFrameCount, mReqFrameCount);
2913 result.appendFormat(" notif. frame count(%u), req. notif. frame count(%u),"
2914 " req. notif. per buff(%u)\n",
2915 mNotificationFramesAct, mNotificationFramesReq, mNotificationsPerBufferReq);
2916 result.appendFormat(" latency (%d), selected device Id(%d), routed device Id(%d)\n",
2917 mLatency, mSelectedDeviceId, mRoutedDeviceId);
2918 result.appendFormat(" output(%d) AF latency (%u) AF frame count(%zu) AF SampleRate(%u)\n",
2919 mOutput, mAfLatency, mAfFrameCount, mAfSampleRate);
2920 ::write(fd, result.string(), result.size());
2921 return NO_ERROR;
2922 }
2923
getUnderrunCount() const2924 uint32_t AudioTrack::getUnderrunCount() const
2925 {
2926 AutoMutex lock(mLock);
2927 return getUnderrunCount_l();
2928 }
2929
getUnderrunCount_l() const2930 uint32_t AudioTrack::getUnderrunCount_l() const
2931 {
2932 return mProxy->getUnderrunCount() + mUnderrunCountOffset;
2933 }
2934
getUnderrunFrames() const2935 uint32_t AudioTrack::getUnderrunFrames() const
2936 {
2937 AutoMutex lock(mLock);
2938 return mProxy->getUnderrunFrames();
2939 }
2940
addAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback> & callback)2941 status_t AudioTrack::addAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback>& callback)
2942 {
2943
2944 if (callback == 0) {
2945 ALOGW("%s(%d): adding NULL callback!", __func__, mPortId);
2946 return BAD_VALUE;
2947 }
2948 AutoMutex lock(mLock);
2949 if (mDeviceCallback.unsafe_get() == callback.get()) {
2950 ALOGW("%s(%d): adding same callback!", __func__, mPortId);
2951 return INVALID_OPERATION;
2952 }
2953 status_t status = NO_ERROR;
2954 if (mOutput != AUDIO_IO_HANDLE_NONE) {
2955 if (mDeviceCallback != 0) {
2956 ALOGW("%s(%d): callback already present!", __func__, mPortId);
2957 AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId);
2958 }
2959 status = AudioSystem::addAudioDeviceCallback(this, mOutput, mPortId);
2960 }
2961 mDeviceCallback = callback;
2962 return status;
2963 }
2964
removeAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback> & callback)2965 status_t AudioTrack::removeAudioDeviceCallback(
2966 const sp<AudioSystem::AudioDeviceCallback>& callback)
2967 {
2968 if (callback == 0) {
2969 ALOGW("%s(%d): removing NULL callback!", __func__, mPortId);
2970 return BAD_VALUE;
2971 }
2972 AutoMutex lock(mLock);
2973 if (mDeviceCallback.unsafe_get() != callback.get()) {
2974 ALOGW("%s removing different callback!", __FUNCTION__);
2975 return INVALID_OPERATION;
2976 }
2977 mDeviceCallback.clear();
2978 if (mOutput != AUDIO_IO_HANDLE_NONE) {
2979 AudioSystem::removeAudioDeviceCallback(this, mOutput, mPortId);
2980 }
2981 return NO_ERROR;
2982 }
2983
2984
onAudioDeviceUpdate(audio_io_handle_t audioIo,audio_port_handle_t deviceId)2985 void AudioTrack::onAudioDeviceUpdate(audio_io_handle_t audioIo,
2986 audio_port_handle_t deviceId)
2987 {
2988 sp<AudioSystem::AudioDeviceCallback> callback;
2989 {
2990 AutoMutex lock(mLock);
2991 if (audioIo != mOutput) {
2992 return;
2993 }
2994 callback = mDeviceCallback.promote();
2995 // only update device if the track is active as route changes due to other use cases are
2996 // irrelevant for this client
2997 if (mState == STATE_ACTIVE) {
2998 mRoutedDeviceId = deviceId;
2999 }
3000 }
3001
3002 if (callback.get() != nullptr) {
3003 callback->onAudioDeviceUpdate(mOutput, mRoutedDeviceId);
3004 }
3005 }
3006
pendingDuration(int32_t * msec,ExtendedTimestamp::Location location)3007 status_t AudioTrack::pendingDuration(int32_t *msec, ExtendedTimestamp::Location location)
3008 {
3009 if (msec == nullptr ||
3010 (location != ExtendedTimestamp::LOCATION_SERVER
3011 && location != ExtendedTimestamp::LOCATION_KERNEL)) {
3012 return BAD_VALUE;
3013 }
3014 AutoMutex lock(mLock);
3015 // inclusive of offloaded and direct tracks.
3016 //
3017 // It is possible, but not enabled, to allow duration computation for non-pcm
3018 // audio_has_proportional_frames() formats because currently they have
3019 // the drain rate equivalent to the pcm sample rate * framesize.
3020 if (!isPurePcmData_l()) {
3021 return INVALID_OPERATION;
3022 }
3023 ExtendedTimestamp ets;
3024 if (getTimestamp_l(&ets) == OK
3025 && ets.mTimeNs[location] > 0) {
3026 int64_t diff = ets.mPosition[ExtendedTimestamp::LOCATION_CLIENT]
3027 - ets.mPosition[location];
3028 if (diff < 0) {
3029 *msec = 0;
3030 } else {
3031 // ms is the playback time by frames
3032 int64_t ms = (int64_t)((double)diff * 1000 /
3033 ((double)mSampleRate * mPlaybackRate.mSpeed));
3034 // clockdiff is the timestamp age (negative)
3035 int64_t clockdiff = (mState != STATE_ACTIVE) ? 0 :
3036 ets.mTimeNs[location]
3037 + ets.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_MONOTONIC]
3038 - systemTime(SYSTEM_TIME_MONOTONIC);
3039
3040 //ALOGV("ms: %lld clockdiff: %lld", (long long)ms, (long long)clockdiff);
3041 static const int NANOS_PER_MILLIS = 1000000;
3042 *msec = (int32_t)(ms + clockdiff / NANOS_PER_MILLIS);
3043 }
3044 return NO_ERROR;
3045 }
3046 if (location != ExtendedTimestamp::LOCATION_SERVER) {
3047 return INVALID_OPERATION; // LOCATION_KERNEL is not available
3048 }
3049 // use server position directly (offloaded and direct arrive here)
3050 updateAndGetPosition_l();
3051 int32_t diff = (Modulo<uint32_t>(mFramesWritten) - mPosition).signedValue();
3052 *msec = (diff <= 0) ? 0
3053 : (int32_t)((double)diff * 1000 / ((double)mSampleRate * mPlaybackRate.mSpeed));
3054 return NO_ERROR;
3055 }
3056
hasStarted()3057 bool AudioTrack::hasStarted()
3058 {
3059 AutoMutex lock(mLock);
3060 switch (mState) {
3061 case STATE_STOPPED:
3062 if (isOffloadedOrDirect_l()) {
3063 // check if we have started in the past to return true.
3064 return mStartFromZeroUs > 0;
3065 }
3066 // A normal audio track may still be draining, so
3067 // check if stream has ended. This covers fasttrack position
3068 // instability and start/stop without any data written.
3069 if (mProxy->getStreamEndDone()) {
3070 return true;
3071 }
3072 FALLTHROUGH_INTENDED;
3073 case STATE_ACTIVE:
3074 case STATE_STOPPING:
3075 break;
3076 case STATE_PAUSED:
3077 case STATE_PAUSED_STOPPING:
3078 case STATE_FLUSHED:
3079 return false; // we're not active
3080 default:
3081 LOG_ALWAYS_FATAL("%s(%d): Invalid mState in hasStarted(): %d", __func__, mPortId, mState);
3082 break;
3083 }
3084
3085 // wait indicates whether we need to wait for a timestamp.
3086 // This is conservatively figured - if we encounter an unexpected error
3087 // then we will not wait.
3088 bool wait = false;
3089 if (isOffloadedOrDirect_l()) {
3090 AudioTimestamp ts;
3091 status_t status = getTimestamp_l(ts);
3092 if (status == WOULD_BLOCK) {
3093 wait = true;
3094 } else if (status == OK) {
3095 wait = (ts.mPosition == 0 || ts.mPosition == mStartTs.mPosition);
3096 }
3097 ALOGV("%s(%d): hasStarted wait:%d ts:%u start position:%lld",
3098 __func__, mPortId,
3099 (int)wait,
3100 ts.mPosition,
3101 (long long)mStartTs.mPosition);
3102 } else {
3103 int location = ExtendedTimestamp::LOCATION_SERVER; // for ALOG
3104 ExtendedTimestamp ets;
3105 status_t status = getTimestamp_l(&ets);
3106 if (status == WOULD_BLOCK) { // no SERVER or KERNEL frame info in ets
3107 wait = true;
3108 } else if (status == OK) {
3109 for (location = ExtendedTimestamp::LOCATION_KERNEL;
3110 location >= ExtendedTimestamp::LOCATION_SERVER; --location) {
3111 if (ets.mTimeNs[location] < 0 || mStartEts.mTimeNs[location] < 0) {
3112 continue;
3113 }
3114 wait = ets.mPosition[location] == 0
3115 || ets.mPosition[location] == mStartEts.mPosition[location];
3116 break;
3117 }
3118 }
3119 ALOGV("%s(%d): hasStarted wait:%d ets:%lld start position:%lld",
3120 __func__, mPortId,
3121 (int)wait,
3122 (long long)ets.mPosition[location],
3123 (long long)mStartEts.mPosition[location]);
3124 }
3125 return !wait;
3126 }
3127
3128 // =========================================================================
3129
binderDied(const wp<IBinder> & who __unused)3130 void AudioTrack::DeathNotifier::binderDied(const wp<IBinder>& who __unused)
3131 {
3132 sp<AudioTrack> audioTrack = mAudioTrack.promote();
3133 if (audioTrack != 0) {
3134 AutoMutex lock(audioTrack->mLock);
3135 audioTrack->mProxy->binderDied();
3136 }
3137 }
3138
3139 // =========================================================================
3140
AudioTrackThread(AudioTrack & receiver)3141 AudioTrack::AudioTrackThread::AudioTrackThread(AudioTrack& receiver)
3142 : Thread(true /* bCanCallJava */) // binder recursion on restoreTrack_l() may call Java.
3143 , mReceiver(receiver), mPaused(true), mPausedInt(false), mPausedNs(0LL),
3144 mIgnoreNextPausedInt(false)
3145 {
3146 }
3147
~AudioTrackThread()3148 AudioTrack::AudioTrackThread::~AudioTrackThread()
3149 {
3150 }
3151
threadLoop()3152 bool AudioTrack::AudioTrackThread::threadLoop()
3153 {
3154 {
3155 AutoMutex _l(mMyLock);
3156 if (mPaused) {
3157 // TODO check return value and handle or log
3158 mMyCond.wait(mMyLock);
3159 // caller will check for exitPending()
3160 return true;
3161 }
3162 if (mIgnoreNextPausedInt) {
3163 mIgnoreNextPausedInt = false;
3164 mPausedInt = false;
3165 }
3166 if (mPausedInt) {
3167 // TODO use futex instead of condition, for event flag "or"
3168 if (mPausedNs > 0) {
3169 // TODO check return value and handle or log
3170 (void) mMyCond.waitRelative(mMyLock, mPausedNs);
3171 } else {
3172 // TODO check return value and handle or log
3173 mMyCond.wait(mMyLock);
3174 }
3175 mPausedInt = false;
3176 return true;
3177 }
3178 }
3179 if (exitPending()) {
3180 return false;
3181 }
3182 nsecs_t ns = mReceiver.processAudioBuffer();
3183 switch (ns) {
3184 case 0:
3185 return true;
3186 case NS_INACTIVE:
3187 pauseInternal();
3188 return true;
3189 case NS_NEVER:
3190 return false;
3191 case NS_WHENEVER:
3192 // Event driven: call wake() when callback notifications conditions change.
3193 ns = INT64_MAX;
3194 FALLTHROUGH_INTENDED;
3195 default:
3196 LOG_ALWAYS_FATAL_IF(ns < 0, "%s(%d): processAudioBuffer() returned %lld",
3197 __func__, mReceiver.mPortId, (long long)ns);
3198 pauseInternal(ns);
3199 return true;
3200 }
3201 }
3202
requestExit()3203 void AudioTrack::AudioTrackThread::requestExit()
3204 {
3205 // must be in this order to avoid a race condition
3206 Thread::requestExit();
3207 resume();
3208 }
3209
pause()3210 void AudioTrack::AudioTrackThread::pause()
3211 {
3212 AutoMutex _l(mMyLock);
3213 mPaused = true;
3214 }
3215
resume()3216 void AudioTrack::AudioTrackThread::resume()
3217 {
3218 AutoMutex _l(mMyLock);
3219 mIgnoreNextPausedInt = true;
3220 if (mPaused || mPausedInt) {
3221 mPaused = false;
3222 mPausedInt = false;
3223 mMyCond.signal();
3224 }
3225 }
3226
wake()3227 void AudioTrack::AudioTrackThread::wake()
3228 {
3229 AutoMutex _l(mMyLock);
3230 if (!mPaused) {
3231 // wake() might be called while servicing a callback - ignore the next
3232 // pause time and call processAudioBuffer.
3233 mIgnoreNextPausedInt = true;
3234 if (mPausedInt && mPausedNs > 0) {
3235 // audio track is active and internally paused with timeout.
3236 mPausedInt = false;
3237 mMyCond.signal();
3238 }
3239 }
3240 }
3241
pauseInternal(nsecs_t ns)3242 void AudioTrack::AudioTrackThread::pauseInternal(nsecs_t ns)
3243 {
3244 AutoMutex _l(mMyLock);
3245 mPausedInt = true;
3246 mPausedNs = ns;
3247 }
3248
3249 } // namespace android
3250