1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "compiler/glsl_types.h"
25 #include "loop_analysis.h"
26 #include "ir_hierarchical_visitor.h"
27 
28 static void try_add_loop_terminator(loop_variable_state *ls, ir_if *ir);
29 
30 static bool all_expression_operands_are_loop_constant(ir_rvalue *,
31 						      hash_table *);
32 
33 static ir_rvalue *get_basic_induction_increment(ir_assignment *, hash_table *);
34 
35 /**
36  * Find an initializer of a variable outside a loop
37  *
38  * Works backwards from the loop to find the pre-loop value of the variable.
39  * This is used, for example, to find the initial value of loop induction
40  * variables.
41  *
42  * \param loop  Loop where \c var is an induction variable
43  * \param var   Variable whose initializer is to be found
44  *
45  * \return
46  * The \c ir_rvalue assigned to the variable outside the loop.  May return
47  * \c NULL if no initializer can be found.
48  */
49 static ir_rvalue *
find_initial_value(ir_loop * loop,ir_variable * var)50 find_initial_value(ir_loop *loop, ir_variable *var)
51 {
52    for (exec_node *node = loop->prev; !node->is_head_sentinel();
53         node = node->prev) {
54       ir_instruction *ir = (ir_instruction *) node;
55 
56       switch (ir->ir_type) {
57       case ir_type_call:
58       case ir_type_loop:
59       case ir_type_loop_jump:
60       case ir_type_return:
61       case ir_type_if:
62          return NULL;
63 
64       case ir_type_function:
65       case ir_type_function_signature:
66          assert(!"Should not get here.");
67          return NULL;
68 
69       case ir_type_assignment: {
70          ir_assignment *assign = ir->as_assignment();
71          ir_variable *assignee = assign->lhs->whole_variable_referenced();
72 
73          if (assignee == var)
74             return (assign->condition != NULL) ? NULL : assign->rhs;
75 
76          break;
77       }
78 
79       default:
80          break;
81       }
82    }
83 
84    return NULL;
85 }
86 
87 
88 static int
calculate_iterations(ir_rvalue * from,ir_rvalue * to,ir_rvalue * increment,enum ir_expression_operation op,bool continue_from_then,bool swap_compare_operands)89 calculate_iterations(ir_rvalue *from, ir_rvalue *to, ir_rvalue *increment,
90                      enum ir_expression_operation op, bool continue_from_then,
91                      bool swap_compare_operands)
92 {
93    if (from == NULL || to == NULL || increment == NULL)
94       return -1;
95 
96    void *mem_ctx = ralloc_context(NULL);
97 
98    ir_expression *const sub =
99       new(mem_ctx) ir_expression(ir_binop_sub, from->type, to, from);
100 
101    ir_expression *const div =
102       new(mem_ctx) ir_expression(ir_binop_div, sub->type, sub, increment);
103 
104    ir_constant *iter = div->constant_expression_value(mem_ctx);
105    if (iter == NULL) {
106       ralloc_free(mem_ctx);
107       return -1;
108    }
109 
110    if (!iter->type->is_integer()) {
111       const ir_expression_operation op = iter->type->is_double()
112          ? ir_unop_d2i : ir_unop_f2i;
113       ir_rvalue *cast =
114          new(mem_ctx) ir_expression(op, glsl_type::int_type, iter, NULL);
115 
116       iter = cast->constant_expression_value(mem_ctx);
117    }
118 
119    int iter_value = iter->get_int_component(0);
120 
121    /* Make sure that the calculated number of iterations satisfies the exit
122     * condition.  This is needed to catch off-by-one errors and some types of
123     * ill-formed loops.  For example, we need to detect that the following
124     * loop does not have a maximum iteration count.
125     *
126     *    for (float x = 0.0; x != 0.9; x += 0.2)
127     *        ;
128     */
129    const int bias[] = { -1, 0, 1 };
130    bool valid_loop = false;
131 
132    for (unsigned i = 0; i < ARRAY_SIZE(bias); i++) {
133       /* Increment may be of type int, uint or float. */
134       switch (increment->type->base_type) {
135       case GLSL_TYPE_INT:
136          iter = new(mem_ctx) ir_constant(iter_value + bias[i]);
137          break;
138       case GLSL_TYPE_UINT:
139          iter = new(mem_ctx) ir_constant(unsigned(iter_value + bias[i]));
140          break;
141       case GLSL_TYPE_FLOAT:
142          iter = new(mem_ctx) ir_constant(float(iter_value + bias[i]));
143          break;
144       case GLSL_TYPE_DOUBLE:
145          iter = new(mem_ctx) ir_constant(double(iter_value + bias[i]));
146          break;
147       default:
148           unreachable("Unsupported type for loop iterator.");
149       }
150 
151       ir_expression *const mul =
152          new(mem_ctx) ir_expression(ir_binop_mul, increment->type, iter,
153                                     increment);
154 
155       ir_expression *const add =
156          new(mem_ctx) ir_expression(ir_binop_add, mul->type, mul, from);
157 
158       ir_expression *cmp = swap_compare_operands
159          ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, add)
160          : new(mem_ctx) ir_expression(op, glsl_type::bool_type, add, to);
161       if (continue_from_then)
162          cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
163 
164       ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
165 
166       assert(cmp_result != NULL);
167       if (cmp_result->get_bool_component(0)) {
168          iter_value += bias[i];
169          valid_loop = true;
170          break;
171       }
172    }
173 
174    ralloc_free(mem_ctx);
175    return (valid_loop) ? iter_value : -1;
176 }
177 
178 static bool
incremented_before_terminator(ir_loop * loop,ir_variable * var,ir_if * terminator)179 incremented_before_terminator(ir_loop *loop, ir_variable *var,
180                               ir_if *terminator)
181 {
182    for (exec_node *node = loop->body_instructions.get_head();
183         !node->is_tail_sentinel();
184         node = node->get_next()) {
185       ir_instruction *ir = (ir_instruction *) node;
186 
187       switch (ir->ir_type) {
188       case ir_type_if:
189          if (ir->as_if() == terminator)
190             return false;
191          break;
192 
193       case ir_type_assignment: {
194          ir_assignment *assign = ir->as_assignment();
195          ir_variable *assignee = assign->lhs->whole_variable_referenced();
196 
197          if (assignee == var) {
198             assert(assign->condition == NULL);
199             return true;
200          }
201 
202          break;
203       }
204 
205       default:
206          break;
207       }
208    }
209 
210    unreachable("Unable to find induction variable");
211 }
212 
213 /**
214  * Record the fact that the given loop variable was referenced inside the loop.
215  *
216  * \arg in_assignee is true if the reference was on the LHS of an assignment.
217  *
218  * \arg in_conditional_code_or_nested_loop is true if the reference occurred
219  * inside an if statement or a nested loop.
220  *
221  * \arg current_assignment is the ir_assignment node that the loop variable is
222  * on the LHS of, if any (ignored if \c in_assignee is false).
223  */
224 void
record_reference(bool in_assignee,bool in_conditional_code_or_nested_loop,ir_assignment * current_assignment)225 loop_variable::record_reference(bool in_assignee,
226                                 bool in_conditional_code_or_nested_loop,
227                                 ir_assignment *current_assignment)
228 {
229    if (in_assignee) {
230       assert(current_assignment != NULL);
231 
232       if (in_conditional_code_or_nested_loop ||
233           current_assignment->condition != NULL) {
234          this->conditional_or_nested_assignment = true;
235       }
236 
237       if (this->first_assignment == NULL) {
238          assert(this->num_assignments == 0);
239 
240          this->first_assignment = current_assignment;
241       }
242 
243       this->num_assignments++;
244    } else if (this->first_assignment == current_assignment) {
245       /* This catches the case where the variable is used in the RHS of an
246        * assignment where it is also in the LHS.
247        */
248       this->read_before_write = true;
249    }
250 }
251 
252 
loop_state()253 loop_state::loop_state()
254 {
255    this->ht = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
256                                       _mesa_key_pointer_equal);
257    this->mem_ctx = ralloc_context(NULL);
258    this->loop_found = false;
259 }
260 
261 
~loop_state()262 loop_state::~loop_state()
263 {
264    _mesa_hash_table_destroy(this->ht, NULL);
265    ralloc_free(this->mem_ctx);
266 }
267 
268 
269 loop_variable_state *
insert(ir_loop * ir)270 loop_state::insert(ir_loop *ir)
271 {
272    loop_variable_state *ls = new(this->mem_ctx) loop_variable_state;
273 
274    _mesa_hash_table_insert(this->ht, ir, ls);
275    this->loop_found = true;
276 
277    return ls;
278 }
279 
280 
281 loop_variable_state *
get(const ir_loop * ir)282 loop_state::get(const ir_loop *ir)
283 {
284    hash_entry *entry = _mesa_hash_table_search(this->ht, ir);
285    return entry ? (loop_variable_state *) entry->data : NULL;
286 }
287 
288 
289 loop_variable *
get(const ir_variable * ir)290 loop_variable_state::get(const ir_variable *ir)
291 {
292    hash_entry *entry = _mesa_hash_table_search(this->var_hash, ir);
293    return entry ? (loop_variable *) entry->data : NULL;
294 }
295 
296 
297 loop_variable *
insert(ir_variable * var)298 loop_variable_state::insert(ir_variable *var)
299 {
300    void *mem_ctx = ralloc_parent(this);
301    loop_variable *lv = rzalloc(mem_ctx, loop_variable);
302 
303    lv->var = var;
304 
305    _mesa_hash_table_insert(this->var_hash, lv->var, lv);
306    this->variables.push_tail(lv);
307 
308    return lv;
309 }
310 
311 
312 loop_terminator *
insert(ir_if * if_stmt,bool continue_from_then)313 loop_variable_state::insert(ir_if *if_stmt, bool continue_from_then)
314 {
315    void *mem_ctx = ralloc_parent(this);
316    loop_terminator *t = new(mem_ctx) loop_terminator();
317 
318    t->ir = if_stmt;
319    t->continue_from_then = continue_from_then;
320 
321    this->terminators.push_tail(t);
322 
323    return t;
324 }
325 
326 
327 /**
328  * If the given variable already is recorded in the state for this loop,
329  * return the corresponding loop_variable object that records information
330  * about it.
331  *
332  * Otherwise, create a new loop_variable object to record information about
333  * the variable, and set its \c read_before_write field appropriately based on
334  * \c in_assignee.
335  *
336  * \arg in_assignee is true if this variable was encountered on the LHS of an
337  * assignment.
338  */
339 loop_variable *
get_or_insert(ir_variable * var,bool in_assignee)340 loop_variable_state::get_or_insert(ir_variable *var, bool in_assignee)
341 {
342    loop_variable *lv = this->get(var);
343 
344    if (lv == NULL) {
345       lv = this->insert(var);
346       lv->read_before_write = !in_assignee;
347    }
348 
349    return lv;
350 }
351 
352 
353 namespace {
354 
355 class loop_analysis : public ir_hierarchical_visitor {
356 public:
357    loop_analysis(loop_state *loops);
358 
359    virtual ir_visitor_status visit(ir_loop_jump *);
360    virtual ir_visitor_status visit(ir_dereference_variable *);
361 
362    virtual ir_visitor_status visit_enter(ir_call *);
363 
364    virtual ir_visitor_status visit_enter(ir_loop *);
365    virtual ir_visitor_status visit_leave(ir_loop *);
366    virtual ir_visitor_status visit_enter(ir_assignment *);
367    virtual ir_visitor_status visit_leave(ir_assignment *);
368    virtual ir_visitor_status visit_enter(ir_if *);
369    virtual ir_visitor_status visit_leave(ir_if *);
370 
371    loop_state *loops;
372 
373    int if_statement_depth;
374 
375    ir_assignment *current_assignment;
376 
377    exec_list state;
378 };
379 
380 } /* anonymous namespace */
381 
loop_analysis(loop_state * loops)382 loop_analysis::loop_analysis(loop_state *loops)
383    : loops(loops), if_statement_depth(0), current_assignment(NULL)
384 {
385    /* empty */
386 }
387 
388 
389 ir_visitor_status
visit(ir_loop_jump * ir)390 loop_analysis::visit(ir_loop_jump *ir)
391 {
392    (void) ir;
393 
394    assert(!this->state.is_empty());
395 
396    loop_variable_state *const ls =
397       (loop_variable_state *) this->state.get_head();
398 
399    ls->num_loop_jumps++;
400 
401    return visit_continue;
402 }
403 
404 
405 ir_visitor_status
visit_enter(ir_call *)406 loop_analysis::visit_enter(ir_call *)
407 {
408    /* Mark every loop that we're currently analyzing as containing an ir_call
409     * (even those at outer nesting levels).
410     */
411    foreach_in_list(loop_variable_state, ls, &this->state) {
412       ls->contains_calls = true;
413    }
414 
415    return visit_continue_with_parent;
416 }
417 
418 
419 ir_visitor_status
visit(ir_dereference_variable * ir)420 loop_analysis::visit(ir_dereference_variable *ir)
421 {
422    /* If we're not somewhere inside a loop, there's nothing to do.
423     */
424    if (this->state.is_empty())
425       return visit_continue;
426 
427    bool nested = false;
428 
429    foreach_in_list(loop_variable_state, ls, &this->state) {
430       ir_variable *var = ir->variable_referenced();
431       loop_variable *lv = ls->get_or_insert(var, this->in_assignee);
432 
433       lv->record_reference(this->in_assignee,
434                            nested || this->if_statement_depth > 0,
435                            this->current_assignment);
436       nested = true;
437    }
438 
439    return visit_continue;
440 }
441 
442 ir_visitor_status
visit_enter(ir_loop * ir)443 loop_analysis::visit_enter(ir_loop *ir)
444 {
445    loop_variable_state *ls = this->loops->insert(ir);
446    this->state.push_head(ls);
447 
448    return visit_continue;
449 }
450 
451 ir_visitor_status
visit_leave(ir_loop * ir)452 loop_analysis::visit_leave(ir_loop *ir)
453 {
454    loop_variable_state *const ls =
455       (loop_variable_state *) this->state.pop_head();
456 
457    /* Function calls may contain side effects.  These could alter any of our
458     * variables in ways that cannot be known, and may even terminate shader
459     * execution (say, calling discard in the fragment shader).  So we can't
460     * rely on any of our analysis about assignments to variables.
461     *
462     * We could perform some conservative analysis (prove there's no statically
463     * possible assignment, etc.) but it isn't worth it for now; function
464     * inlining will allow us to unroll loops anyway.
465     */
466    if (ls->contains_calls)
467       return visit_continue;
468 
469    foreach_in_list(ir_instruction, node, &ir->body_instructions) {
470       /* Skip over declarations at the start of a loop.
471        */
472       if (node->as_variable())
473 	 continue;
474 
475       ir_if *if_stmt = ((ir_instruction *) node)->as_if();
476 
477       if (if_stmt != NULL)
478          try_add_loop_terminator(ls, if_stmt);
479    }
480 
481 
482    foreach_in_list_safe(loop_variable, lv, &ls->variables) {
483       /* Move variables that are already marked as being loop constant to
484        * a separate list.  These trivially don't need to be tested.
485        */
486       if (lv->is_loop_constant()) {
487 	 lv->remove();
488 	 ls->constants.push_tail(lv);
489       }
490    }
491 
492    /* Each variable assigned in the loop that isn't already marked as being loop
493     * constant might still be loop constant.  The requirements at this point
494     * are:
495     *
496     *    - Variable is written before it is read.
497     *
498     *    - Only one assignment to the variable.
499     *
500     *    - All operands on the RHS of the assignment are also loop constants.
501     *
502     * The last requirement is the reason for the progress loop.  A variable
503     * marked as a loop constant on one pass may allow other variables to be
504     * marked as loop constant on following passes.
505     */
506    bool progress;
507    do {
508       progress = false;
509 
510       foreach_in_list_safe(loop_variable, lv, &ls->variables) {
511 	 if (lv->conditional_or_nested_assignment || (lv->num_assignments > 1))
512 	    continue;
513 
514 	 /* Process the RHS of the assignment.  If all of the variables
515 	  * accessed there are loop constants, then add this
516 	  */
517 	 ir_rvalue *const rhs = lv->first_assignment->rhs;
518 	 if (all_expression_operands_are_loop_constant(rhs, ls->var_hash)) {
519 	    lv->rhs_clean = true;
520 
521 	    if (lv->is_loop_constant()) {
522 	       progress = true;
523 
524 	       lv->remove();
525 	       ls->constants.push_tail(lv);
526 	    }
527 	 }
528       }
529    } while (progress);
530 
531    /* The remaining variables that are not loop invariant might be loop
532     * induction variables.
533     */
534    foreach_in_list_safe(loop_variable, lv, &ls->variables) {
535       /* If there is more than one assignment to a variable, it cannot be a
536        * loop induction variable.  This isn't strictly true, but this is a
537        * very simple induction variable detector, and it can't handle more
538        * complex cases.
539        */
540       if (lv->num_assignments > 1)
541 	 continue;
542 
543       /* All of the variables with zero assignments in the loop are loop
544        * invariant, and they should have already been filtered out.
545        */
546       assert(lv->num_assignments == 1);
547       assert(lv->first_assignment != NULL);
548 
549       /* The assignment to the variable in the loop must be unconditional and
550        * not inside a nested loop.
551        */
552       if (lv->conditional_or_nested_assignment)
553 	 continue;
554 
555       /* Basic loop induction variables have a single assignment in the loop
556        * that has the form 'VAR = VAR + i' or 'VAR = VAR - i' where i is a
557        * loop invariant.
558        */
559       ir_rvalue *const inc =
560 	 get_basic_induction_increment(lv->first_assignment, ls->var_hash);
561       if (inc != NULL) {
562 	 lv->increment = inc;
563 
564 	 lv->remove();
565 	 ls->induction_variables.push_tail(lv);
566       }
567    }
568 
569    /* Search the loop terminating conditions for those of the form 'i < c'
570     * where i is a loop induction variable, c is a constant, and < is any
571     * relative operator.  From each of these we can infer an iteration count.
572     * Also figure out which terminator (if any) produces the smallest
573     * iteration count--this is the limiting terminator.
574     */
575    foreach_in_list(loop_terminator, t, &ls->terminators) {
576       ir_if *if_stmt = t->ir;
577 
578       /* If-statements can be either 'if (expr)' or 'if (deref)'.  We only care
579        * about the former here.
580        */
581       ir_expression *cond = if_stmt->condition->as_expression();
582       if (cond == NULL)
583 	 continue;
584 
585       switch (cond->operation) {
586       case ir_binop_less:
587       case ir_binop_gequal: {
588 	 /* The expressions that we care about will either be of the form
589 	  * 'counter < limit' or 'limit < counter'.  Figure out which is
590 	  * which.
591 	  */
592 	 ir_rvalue *counter = cond->operands[0]->as_dereference_variable();
593 	 ir_constant *limit = cond->operands[1]->as_constant();
594 	 enum ir_expression_operation cmp = cond->operation;
595          bool swap_compare_operands = false;
596 
597 	 if (limit == NULL) {
598 	    counter = cond->operands[1]->as_dereference_variable();
599 	    limit = cond->operands[0]->as_constant();
600             swap_compare_operands = true;
601 	 }
602 
603 	 if ((counter == NULL) || (limit == NULL))
604 	    break;
605 
606 	 ir_variable *var = counter->variable_referenced();
607 
608 	 ir_rvalue *init = find_initial_value(ir, var);
609 
610          loop_variable *lv = ls->get(var);
611          if (lv != NULL && lv->is_induction_var()) {
612             t->iterations = calculate_iterations(init, limit, lv->increment,
613                                                  cmp, t->continue_from_then,
614                                                  swap_compare_operands);
615 
616             if (incremented_before_terminator(ir, var, t->ir)) {
617                t->iterations--;
618             }
619 
620             if (t->iterations >= 0 &&
621                 (ls->limiting_terminator == NULL ||
622                  t->iterations < ls->limiting_terminator->iterations)) {
623                ls->limiting_terminator = t;
624             }
625          }
626          break;
627       }
628 
629       default:
630          break;
631       }
632    }
633 
634    return visit_continue;
635 }
636 
637 ir_visitor_status
visit_enter(ir_if * ir)638 loop_analysis::visit_enter(ir_if *ir)
639 {
640    (void) ir;
641 
642    if (!this->state.is_empty())
643       this->if_statement_depth++;
644 
645    return visit_continue;
646 }
647 
648 ir_visitor_status
visit_leave(ir_if * ir)649 loop_analysis::visit_leave(ir_if *ir)
650 {
651    (void) ir;
652 
653    if (!this->state.is_empty())
654       this->if_statement_depth--;
655 
656    return visit_continue;
657 }
658 
659 ir_visitor_status
visit_enter(ir_assignment * ir)660 loop_analysis::visit_enter(ir_assignment *ir)
661 {
662    /* If we're not somewhere inside a loop, there's nothing to do.
663     */
664    if (this->state.is_empty())
665       return visit_continue_with_parent;
666 
667    this->current_assignment = ir;
668 
669    return visit_continue;
670 }
671 
672 ir_visitor_status
visit_leave(ir_assignment * ir)673 loop_analysis::visit_leave(ir_assignment *ir)
674 {
675    /* Since the visit_enter exits with visit_continue_with_parent for this
676     * case, the loop state stack should never be empty here.
677     */
678    assert(!this->state.is_empty());
679 
680    assert(this->current_assignment == ir);
681    this->current_assignment = NULL;
682 
683    return visit_continue;
684 }
685 
686 
687 class examine_rhs : public ir_hierarchical_visitor {
688 public:
examine_rhs(hash_table * loop_variables)689    examine_rhs(hash_table *loop_variables)
690    {
691       this->only_uses_loop_constants = true;
692       this->loop_variables = loop_variables;
693    }
694 
visit(ir_dereference_variable * ir)695    virtual ir_visitor_status visit(ir_dereference_variable *ir)
696    {
697       hash_entry *entry = _mesa_hash_table_search(this->loop_variables,
698                                                   ir->var);
699       loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
700 
701       assert(lv != NULL);
702 
703       if (lv->is_loop_constant()) {
704 	 return visit_continue;
705       } else {
706 	 this->only_uses_loop_constants = false;
707 	 return visit_stop;
708       }
709    }
710 
711    hash_table *loop_variables;
712    bool only_uses_loop_constants;
713 };
714 
715 
716 bool
all_expression_operands_are_loop_constant(ir_rvalue * ir,hash_table * variables)717 all_expression_operands_are_loop_constant(ir_rvalue *ir, hash_table *variables)
718 {
719    examine_rhs v(variables);
720 
721    ir->accept(&v);
722 
723    return v.only_uses_loop_constants;
724 }
725 
726 
727 ir_rvalue *
get_basic_induction_increment(ir_assignment * ir,hash_table * var_hash)728 get_basic_induction_increment(ir_assignment *ir, hash_table *var_hash)
729 {
730    /* The RHS must be a binary expression.
731     */
732    ir_expression *const rhs = ir->rhs->as_expression();
733    if ((rhs == NULL)
734        || ((rhs->operation != ir_binop_add)
735 	   && (rhs->operation != ir_binop_sub)))
736       return NULL;
737 
738    /* One of the of operands of the expression must be the variable assigned.
739     * If the operation is subtraction, the variable in question must be the
740     * "left" operand.
741     */
742    ir_variable *const var = ir->lhs->variable_referenced();
743 
744    ir_variable *const op0 = rhs->operands[0]->variable_referenced();
745    ir_variable *const op1 = rhs->operands[1]->variable_referenced();
746 
747    if (((op0 != var) && (op1 != var))
748        || ((op1 == var) && (rhs->operation == ir_binop_sub)))
749       return NULL;
750 
751    ir_rvalue *inc = (op0 == var) ? rhs->operands[1] : rhs->operands[0];
752 
753    if (inc->as_constant() == NULL) {
754       ir_variable *const inc_var = inc->variable_referenced();
755       if (inc_var != NULL) {
756          hash_entry *entry = _mesa_hash_table_search(var_hash, inc_var);
757          loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
758 
759          if (lv == NULL || !lv->is_loop_constant()) {
760             assert(lv != NULL);
761             inc = NULL;
762          }
763       } else
764 	 inc = NULL;
765    }
766 
767    if ((inc != NULL) && (rhs->operation == ir_binop_sub)) {
768       void *mem_ctx = ralloc_parent(ir);
769 
770       inc = new(mem_ctx) ir_expression(ir_unop_neg,
771 				       inc->type,
772 				       inc->clone(mem_ctx, NULL),
773 				       NULL);
774    }
775 
776    return inc;
777 }
778 
779 
780 /**
781  * Detect whether an if-statement is a loop terminating condition, if so
782  * add it to the list of loop terminators.
783  *
784  * Detects if-statements of the form
785  *
786  *  (if (expression bool ...) (...then_instrs...break))
787  *
788  *     or
789  *
790  *  (if (expression bool ...) ... (...else_instrs...break))
791  */
792 void
try_add_loop_terminator(loop_variable_state * ls,ir_if * ir)793 try_add_loop_terminator(loop_variable_state *ls, ir_if *ir)
794 {
795    ir_instruction *inst = (ir_instruction *) ir->then_instructions.get_tail();
796    ir_instruction *else_inst =
797       (ir_instruction *) ir->else_instructions.get_tail();
798 
799    if (is_break(inst) || is_break(else_inst))
800       ls->insert(ir, is_break(else_inst));
801 }
802 
803 
804 loop_state *
analyze_loop_variables(exec_list * instructions)805 analyze_loop_variables(exec_list *instructions)
806 {
807    loop_state *loops = new loop_state;
808    loop_analysis v(loops);
809 
810    v.run(instructions);
811    return v.loops;
812 }
813