1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15# pylint: disable=protected-access
16"""Contains the base Layer class, from which all layers inherit."""
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21import functools
22import inspect  # Necessary supplement to tf_inspect to deal with variadic args.
23import itertools
24
25import numpy as np
26from six.moves import zip  # pylint: disable=redefined-builtin
27
28from tensorflow.core.framework import node_def_pb2
29from tensorflow.python.distribute import values as distribute_values
30from tensorflow.python.eager import context
31from tensorflow.python.eager import function
32from tensorflow.python.framework import dtypes
33from tensorflow.python.framework import func_graph
34from tensorflow.python.framework import ops
35from tensorflow.python.framework import tensor_util
36from tensorflow.python.keras import backend
37from tensorflow.python.keras import constraints
38from tensorflow.python.keras import initializers
39from tensorflow.python.keras import regularizers
40from tensorflow.python.keras.engine import base_layer_utils
41from tensorflow.python.keras.engine import input_spec
42from tensorflow.python.keras.mixed_precision.experimental import autocast_variable
43from tensorflow.python.keras.mixed_precision.experimental import policy
44from tensorflow.python.keras.utils import generic_utils
45from tensorflow.python.keras.utils import tf_utils
46# A module that only depends on `keras.layers` import these from here.
47from tensorflow.python.keras.utils.generic_utils import to_snake_case  # pylint: disable=unused-import
48from tensorflow.python.keras.utils.tf_utils import is_tensor_or_tensor_list  # pylint: disable=unused-import
49from tensorflow.python.ops import array_ops
50from tensorflow.python.ops import math_ops
51from tensorflow.python.ops import resource_variable_ops
52from tensorflow.python.ops import variables as tf_variables
53from tensorflow.python.training.tracking import base as trackable
54from tensorflow.python.training.tracking import data_structures
55from tensorflow.python.training.tracking import layer_utils as trackable_layer_utils
56from tensorflow.python.training.tracking import object_identity
57from tensorflow.python.util import function_utils
58from tensorflow.python.util import nest
59from tensorflow.python.util import tf_decorator
60from tensorflow.python.util import tf_inspect
61from tensorflow.python.util.tf_export import keras_export
62from tensorflow.tools.docs import doc_controls
63
64
65@keras_export('keras.layers.Layer')
66class Layer(trackable.Trackable):
67  """Base layer class.
68
69  This is the class from which all layers inherit.
70
71  A layer is a class implementing common neural networks operations, such
72  as convolution, batch norm, etc. These operations require managing weights,
73  losses, updates, and inter-layer connectivity.
74
75  Users will just instantiate a layer and then treat it as a callable.
76
77  We recommend that descendants of `Layer` implement the following methods:
78
79  * `__init__()`: Save configuration in member variables
80  * `build()`: Called once from `__call__`, when we know the shapes of inputs
81    and `dtype`. Should have the calls to `add_weight()`, and then
82    call the super's `build()` (which sets `self.built = True`, which is
83    nice in case the user wants to call `build()` manually before the
84    first `__call__`).
85  * `call()`: Called in `__call__` after making sure `build()` has been called
86    once. Should actually perform the logic of applying the layer to the
87    input tensors (which should be passed in as the first argument).
88
89  Arguments:
90    trainable: Boolean, whether the layer's variables should be trainable.
91    name: String name of the layer.
92    dtype: Default dtype of the layer's weights (default of `None` means use the
93      type of the first input).
94    dynamic: Set this to `True` if your layer should only be run eagerly, and
95      should not be used to generate a static computation graph.
96      This would be the case for a Tree-RNN or a recursive network,
97      for example, or generally for any layer that manipulates tensors
98      using Python control flow. If `False`, we assume that the layer can
99      safely be used to generate a static computation graph.
100
101  Read-only properties:
102    name: The name of the layer (string).
103    dtype: Default dtype of the layer's weights (default of `None` means use the
104      type of the first input).
105    updates: List of update ops of this layer.
106    losses: List of losses added by this layer.
107    trainable_weights: List of variables to be included in backprop.
108    non_trainable_weights: List of variables that should not be
109      included in backprop.
110    weights: The concatenation of the lists trainable_weights and
111      non_trainable_weights (in this order).
112
113  Mutable properties:
114    trainable: Whether the layer should be trained (boolean).
115    input_spec: Optional (list of) `InputSpec` object(s) specifying the
116      constraints on inputs that can be accepted by the layer.
117  """
118
119  @trackable.no_automatic_dependency_tracking
120  def __init__(self, trainable=True, name=None, dtype=None, dynamic=False,
121               **kwargs):
122    # These properties should be set by the user via keyword arguments.
123    # note that 'dtype', 'input_shape' and 'batch_input_shape'
124    # are only applicable to input layers: do not pass these keywords
125    # to non-input layers.
126    allowed_kwargs = {
127        'input_shape',
128        'batch_input_shape',
129        'batch_size',
130        'weights',
131        'activity_regularizer',
132    }
133    # Validate optional keyword arguments.
134    for kwarg in kwargs:
135      if kwarg not in allowed_kwargs:
136        raise TypeError('Keyword argument not understood:', kwarg)
137
138    # Mutable properties
139    # Indicates whether the layer's weights are updated during training
140    # and whether the layer's updates are run during training
141    self.trainable = trainable
142    # A stateful layer is a layer whose updates are run during inference too,
143    # for instance stateful RNNs.
144    self.stateful = False
145    # Indicates whether `build` needs to be called upon layer call, to create
146    # the layer's weights.
147    self.built = False
148    # Provides information about which inputs are compatible with the layer.
149    self.input_spec = None
150    self.supports_masking = False
151
152    self._init_set_name(name)
153    self._activity_regularizer = kwargs.pop('activity_regularizer', None)
154    if not hasattr(self, '_trainable_weights'):
155      self._trainable_weights = []
156    if not hasattr(self, '_non_trainable_weights'):
157      self._non_trainable_weights = []
158    self._updates = []
159    # A list of zero-argument lambdas which return Tensors, used for variable
160    # regularizers.
161    self._callable_losses = []
162    # A list of symbolic Tensors containing activity regularizers and losses
163    # manually added through `add_loss` in graph-building mode.
164    self._losses = []
165    # A list of loss values containing activity regularizers and losses
166    # manually added through `add_loss` during eager execution. It is cleared
167    # after every batch.
168    # Because we plan on eventually allowing a same model instance to be trained
169    # in eager mode or graph mode alternatively, we need to keep track of
170    # eager losses and symbolic losses via separate attributes.
171    self._eager_losses = []
172    # A list of metric instances corresponding to the symbolic metric tensors
173    # added using the `add_metric` API.
174    self._metrics = []
175    # TODO(psv): Remove this property.
176    # A dictionary that maps metric names to metric result tensors. The results
177    # are the running averages of metric values over an epoch.
178    self._metrics_tensors = {}
179
180    self._set_dtype_and_policy(dtype)
181
182    self._call_fn_args = function_utils.fn_args(self.call)
183    self._compute_previous_mask = ('mask' in self._call_fn_args or
184                                   hasattr(self, 'compute_mask'))
185    self._call_convention = (base_layer_utils
186                             .CallConvention.EXPLICIT_INPUTS_ARGUMENT)
187    if not hasattr(self, '_layers'):
188      self._layers = []  # Dependencies tracked via attribute assignment.
189
190    # These lists will be filled via successive calls
191    # to self._add_inbound_node().
192    self._inbound_nodes = []
193    self._outbound_nodes = []
194
195    call_argspec = tf_inspect.getfullargspec(self.call)
196    if 'training' in call_argspec.args:
197      self._expects_training_arg = True
198    else:
199      self._expects_training_arg = False
200
201    # Whether the `call` method can be used to build a TF graph without issues.
202    self._dynamic = dynamic
203
204    # Manage input shape information if passed.
205    if 'input_shape' in kwargs or 'batch_input_shape' in kwargs:
206      # In this case we will later create an input layer
207      # to insert before the current layer
208      if 'batch_input_shape' in kwargs:
209        batch_input_shape = tuple(kwargs['batch_input_shape'])
210      elif 'input_shape' in kwargs:
211        if 'batch_size' in kwargs:
212          batch_size = kwargs['batch_size']
213        else:
214          batch_size = None
215        batch_input_shape = (batch_size,) + tuple(kwargs['input_shape'])
216      self._batch_input_shape = batch_input_shape
217
218    # Manage initial weight values if passed.
219    if 'weights' in kwargs:
220      self._initial_weights = kwargs['weights']
221    else:
222      self._initial_weights = None
223
224    # This flag is used to keep track of whether symbolic tensors are added to
225    # the model outside of the call context. This is required for disabling
226    # `run_eagerly` on compile.
227    # TODO(b/124303407): Remove this flag after we add support for the use case.
228    self._contains_symbolic_tensors = False
229
230  def build(self, input_shape):
231    """Creates the variables of the layer (optional, for subclass implementers).
232
233    This is a method that implementers of subclasses of `Layer` or `Model`
234    can override if they need a state-creation step in-between
235    layer instantiation and layer call.
236
237    This is typically used to create the weights of `Layer` subclasses.
238
239    Arguments:
240      input_shape: Instance of `TensorShape`, or list of instances of
241        `TensorShape` if the layer expects a list of inputs
242        (one instance per input).
243    """
244    self.built = True
245
246  @doc_controls.for_subclass_implementers
247  def call(self, inputs, **kwargs):  # pylint: disable=unused-argument
248    """This is where the layer's logic lives.
249
250    Arguments:
251        inputs: Input tensor, or list/tuple of input tensors.
252        **kwargs: Additional keyword arguments.
253
254    Returns:
255        A tensor or list/tuple of tensors.
256    """
257    return inputs
258
259  @doc_controls.for_subclass_implementers
260  def add_weight(self,
261                 name=None,
262                 shape=None,
263                 dtype=None,
264                 initializer=None,
265                 regularizer=None,
266                 trainable=None,
267                 constraint=None,
268                 partitioner=None,
269                 use_resource=None,
270                 synchronization=tf_variables.VariableSynchronization.AUTO,
271                 aggregation=tf_variables.VariableAggregation.NONE,
272                 **kwargs):
273    """Adds a new variable to the layer.
274
275    Arguments:
276      name: Variable name.
277      shape: Variable shape. Defaults to scalar if unspecified.
278      dtype: The type of the variable. Defaults to `self.dtype` or `float32`.
279      initializer: initializer instance (callable).
280      regularizer: regularizer instance (callable).
281      trainable: whether the variable should be part of the layer's
282        "trainable_variables" (e.g. variables, biases)
283        or "non_trainable_variables" (e.g. BatchNorm mean, stddev).
284        Note, if the current variable scope is marked as non-trainable
285        then this parameter is ignored and any added variables are also
286        marked as non-trainable. `trainable` defaults to `True` unless
287        `synchronization` is set to `ON_READ`.
288      constraint: constraint instance (callable).
289      partitioner: Partitioner to be passed to the `Trackable` API.
290      use_resource: Whether to use `ResourceVariable`.
291      synchronization: Indicates when a distributed a variable will be
292        aggregated. Accepted values are constants defined in the class
293        `tf.VariableSynchronization`. By default the synchronization is set to
294        `AUTO` and the current `DistributionStrategy` chooses
295        when to synchronize. If `synchronization` is set to `ON_READ`,
296        `trainable` must not be set to `True`.
297      aggregation: Indicates how a distributed variable will be aggregated.
298        Accepted values are constants defined in the class
299        `tf.VariableAggregation`.
300      **kwargs: Additional keyword arguments. Accepted values are `getter` and
301        `collections`.
302
303    Returns:
304      The created variable.  Usually either a `Variable` or `ResourceVariable`
305      instance.  If `partitioner` is not `None`, a `PartitionedVariable`
306      instance is returned.
307
308    Raises:
309      RuntimeError: If called with partioned variable regularization and
310        eager execution is enabled.
311      ValueError: When giving unsupported dtype and no initializer or when
312        trainable has been set to True with synchronization set as `ON_READ`.
313    """
314    if shape is None:
315      shape = ()
316    # Validate optional keyword arguments.
317    for kwarg in kwargs:
318      if kwarg not in ['getter', 'collections', 'experimental_autocast']:
319        raise TypeError('Unknown keyword argument:', kwarg)
320    getter = kwargs.pop('getter', None)
321    collections = kwargs.pop('collections', None)
322    # 'experimental_autocast' can be set to False by the caller to indicate an
323    # AutoCastVariable should never be created.
324    autocast = kwargs.pop('experimental_autocast', True)
325
326    if dtype is None:
327      dtype = self.dtype or backend.floatx()
328    dtype = dtypes.as_dtype(dtype)
329    if self._dtype is None:
330      self._dtype = dtype.base_dtype.name
331    initializer = initializers.get(initializer)
332    regularizer = regularizers.get(regularizer)
333    constraint = constraints.get(constraint)
334
335    if synchronization == tf_variables.VariableSynchronization.ON_READ:
336      if trainable:
337        raise ValueError(
338            'Synchronization value can be set to '
339            'VariableSynchronization.ON_READ only for non-trainable variables. '
340            'You have specified trainable=True and '
341            'synchronization=VariableSynchronization.ON_READ.')
342      else:
343        # Set trainable to be false when variable is to be synced on read.
344        trainable = False
345    elif trainable is None:
346      trainable = True
347
348    # Initialize variable when no initializer provided
349    if initializer is None:
350      # If dtype is DT_FLOAT, provide a uniform unit scaling initializer
351      if dtype.is_floating:
352        initializer = initializers.glorot_uniform()
353      # If dtype is DT_INT/DT_UINT, provide a default value `zero`
354      # If dtype is DT_BOOL, provide a default value `FALSE`
355      elif dtype.is_integer or dtype.is_unsigned or dtype.is_bool:
356        initializer = initializers.zeros()
357      # NOTES:Do we need to support for handling DT_STRING and DT_COMPLEX here?
358      else:
359        raise ValueError('An initializer for variable %s of type %s is required'
360                         ' for layer %s' % (name, dtype.base_dtype, self.name))
361
362    variable = self._add_variable_with_custom_getter(
363        name=name,
364        shape=shape,
365        # TODO(allenl): a `make_variable` equivalent should be added as a
366        # `Trackable` method.
367        getter=getter or base_layer_utils.make_variable,
368        # Manage errors in Layer rather than Trackable.
369        overwrite=True,
370        initializer=initializer,
371        dtype=dtype,
372        constraint=constraint,
373        trainable=trainable and self.trainable,
374        partitioner=partitioner,
375        use_resource=use_resource,
376        collections=collections,
377        synchronization=synchronization,
378        aggregation=aggregation)
379    backend.track_variable(variable)
380
381    if autocast and self._mixed_precision_policy.should_cast_variables:
382      if isinstance(variable, distribute_values.DistributedVariable):
383        variable = autocast_variable.AutoCastDistributedVariable(variable)
384      else:
385        variable = autocast_variable.AutoCastVariable(variable)
386
387    if regularizer is not None:
388      # TODO(fchollet): in the future, this should be handled at the
389      # level of variable creation, and weight regularization losses
390      # should be variable attributes.
391      name_in_scope = variable.name[:variable.name.find(':')]
392      self._handle_weight_regularization(name_in_scope,
393                                         variable,
394                                         regularizer)
395    if trainable:
396      self._trainable_weights.append(variable)
397    else:
398      self._non_trainable_weights.append(variable)
399    return variable
400
401  def get_config(self):
402    """Returns the config of the layer.
403
404    A layer config is a Python dictionary (serializable)
405    containing the configuration of a layer.
406    The same layer can be reinstantiated later
407    (without its trained weights) from this configuration.
408
409    The config of a layer does not include connectivity
410    information, nor the layer class name. These are handled
411    by `Network` (one layer of abstraction above).
412
413    Returns:
414        Python dictionary.
415    """
416    config = {'name': self.name, 'trainable': self.trainable}
417    if hasattr(self, '_batch_input_shape'):
418      config['batch_input_shape'] = self._batch_input_shape
419    if hasattr(self, 'dtype'):
420      config['dtype'] = self.dtype
421    # TODO(reedwm): Handle serializing self._mixed_precision_policy.
422    return config
423
424  @classmethod
425  def from_config(cls, config):
426    """Creates a layer from its config.
427
428    This method is the reverse of `get_config`,
429    capable of instantiating the same layer from the config
430    dictionary. It does not handle layer connectivity
431    (handled by Network), nor weights (handled by `set_weights`).
432
433    Arguments:
434        config: A Python dictionary, typically the
435            output of get_config.
436
437    Returns:
438        A layer instance.
439    """
440    return cls(**config)
441
442  def compute_output_shape(self, input_shape):
443    """Computes the output shape of the layer.
444
445    Assumes that the layer will be built
446    to match that input shape provided.
447
448    Arguments:
449        input_shape: Shape tuple (tuple of integers)
450            or list of shape tuples (one per output tensor of the layer).
451            Shape tuples can include None for free dimensions,
452            instead of an integer.
453
454    Returns:
455        An input shape tuple.
456    """
457    if context.executing_eagerly():
458      # In this case we build the model first in order to do shape inference.
459      # This is acceptable because the framework only calls
460      # `compute_output_shape` on shape values that the layer would later be
461      # built for. It would however cause issues in case a user attempts to
462      # use `compute_output_shape` manually (these users will have to
463      # implement `compute_output_shape` themselves).
464      self.build(input_shape)
465      with context.graph_mode():
466        graph = func_graph.FuncGraph('graph')
467        with graph.as_default():
468          input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False)
469          inputs = nest.map_structure(
470              base_layer_utils.generate_placeholders_from_shape, input_shape)
471          try:
472            if self._expects_training_arg:
473              outputs = self(inputs, training=False)
474            else:
475              outputs = self(inputs)
476          except TypeError:
477            raise NotImplementedError('We could not automatically infer '
478                                      'the static shape of the layer\'s output.'
479                                      ' Please implement the '
480                                      '`compute_output_shape` method on your '
481                                      'layer (%s).' % self.__class__.__name__)
482      return nest.map_structure(lambda t: t.shape, outputs)
483    raise NotImplementedError
484
485  def compute_mask(self, inputs, mask=None):  # pylint: disable=unused-argument
486    """Computes an output mask tensor.
487
488    Arguments:
489        inputs: Tensor or list of tensors.
490        mask: Tensor or list of tensors.
491
492    Returns:
493        None or a tensor (or list of tensors,
494            one per output tensor of the layer).
495    """
496    if not self.supports_masking:
497      if any(m is not None for m in nest.flatten(mask)):
498        raise TypeError('Layer ' + self.name + ' does not support masking, '
499                        'but was passed an input_mask: ' + str(mask))
500      # masking not explicitly supported: return None as mask.
501      return None
502    # if masking is explicitly supported, by default
503    # carry over the input mask
504    return mask
505
506  def __call__(self, inputs, *args, **kwargs):
507    """Wraps `call`, applying pre- and post-processing steps.
508
509    Arguments:
510      inputs: input tensor(s).
511      *args: additional positional arguments to be passed to `self.call`.
512      **kwargs: additional keyword arguments to be passed to `self.call`.
513
514    Returns:
515      Output tensor(s).
516
517    Note:
518      - The following optional keyword arguments are reserved for specific uses:
519        * `training`: Boolean scalar tensor of Python boolean indicating
520          whether the `call` is meant for training or inference.
521        * `mask`: Boolean input mask.
522      - If the layer's `call` method takes a `mask` argument (as some Keras
523        layers do), its default value will be set to the mask generated
524        for `inputs` by the previous layer (if `input` did come from
525        a layer that generated a corresponding mask, i.e. if it came from
526        a Keras layer with masking support.
527
528    Raises:
529      ValueError: if the layer's `call` method returns None (an invalid value).
530    """
531    input_list = nest.flatten(inputs)
532    # Accept NumPy inputs by converting to Tensors.
533    if any(isinstance(x, (np.ndarray, float, int)) for x in input_list):
534      # Don't call `ops.convert_to_tensor` on all `inputs` because
535      # `SparseTensors` can't be converted to `Tensor`.
536      def _convert_non_tensor(x):
537        if isinstance(x, (np.ndarray, float, int)):
538          return ops.convert_to_tensor(x)
539        return x
540
541      inputs = nest.map_structure(_convert_non_tensor, inputs)
542      input_list = nest.flatten(inputs)
543
544    # We will attempt to build a TF graph if & only if all inputs are symbolic.
545    # This is always the case in graph mode. It can also be the case in eager
546    # mode when all inputs can be traced back to `keras.Input()` (when building
547    # models using the functional API).
548    build_graph = tf_utils.are_all_symbolic_tensors(input_list)
549
550    if build_graph:
551      # Only create Keras history if at least one tensor originates from a
552      # `keras.Input`. Otherwise this Layer may be being used outside the Keras
553      # framework.
554      if base_layer_utils.needs_keras_history(inputs):
555        base_layer_utils.create_keras_history(inputs)
556
557    # Handle Keras mask propagation from previous layer to current layer.
558    previous_mask = None
559    if (not hasattr(self, '_compute_previous_mask') or
560        self._compute_previous_mask):
561      previous_mask = base_layer_utils.collect_previous_mask(inputs)
562      if not hasattr(self, '_call_fn_args'):
563        self._call_fn_args = function_utils.fn_args(self.call)
564      if ('mask' in self._call_fn_args and 'mask' not in kwargs and
565          not generic_utils.is_all_none(previous_mask)):
566        # The previous layer generated a mask, and mask was not explicitly
567        # pass to __call__, hence we set previous_mask as the default value.
568        kwargs['mask'] = previous_mask
569
570    # Clear eager losses on top level model call.
571    # We are clearing the losses only on the top level model call and not on
572    # every layer/mode call because layer/model may be reused.
573    if (context.executing_eagerly() and
574        not base_layer_utils.is_in_call_context()):
575      self._clear_losses()
576
577    with base_layer_utils.call_context():
578      # Check input assumptions set after layer building, e.g. input shape.
579      if build_graph:
580        # Symbolic execution on symbolic tensors. We will attempt to build
581        # the corresponding TF subgraph inside `backend.get_graph()`
582        input_spec.assert_input_compatibility(self.input_spec, inputs,
583                                              self.name)
584        graph = backend.get_graph()
585        with graph.as_default(), ops.name_scope(self._name_scope()):
586          # Build layer if applicable (if the `build` method has been
587          # overridden).
588          self._maybe_build(inputs)
589          # Explicitly pass the learning phase placeholder to `call` if
590          # the `training` argument was left unspecified by the user.
591          # This behavior is restricted to the managed Keras FuncGraph.
592          learning_phase_passed_by_framework = False
593          if (self._expects_training_arg and
594              not base_layer_utils.training_arg_passed_to_call(
595                  tf_inspect.getfullargspec(self.call), args, kwargs) and
596              getattr(graph, 'name', None) == 'keras_graph'):
597            learning_phase_passed_by_framework = True
598            kwargs['training'] = backend.learning_phase()
599          if not self.dynamic:
600            try:
601              with base_layer_utils.autocast_context_manager(
602                  input_list,
603                  self._mixed_precision_policy.should_cast_variables), (
604                      base_layer_utils.AutoAddUpdates(self,
605                                                      inputs)) as auto_updater:
606                outputs = self.call(inputs, *args, **kwargs)
607                auto_updater.set_outputs(outputs)
608
609            except TypeError as e:
610              messages = ('`tf.Tensor` as a Python `bool` is not allowed',
611                          'Tensor objects are only iterable when eager')
612              exception_str = str(e)
613              for msg in messages:
614                if msg in exception_str:
615                  raise TypeError('You are attempting to use Python control '
616                                  'flow in a layer that was not declared to be '
617                                  'dynamic. Pass `dynamic=True` to the class '
618                                  'constructor.\nEncountered error:\n"""\n' +
619                                  exception_str + '\n"""')
620              raise
621          else:
622            # We will use static shape inference to return symbolic tensors
623            # matching the specifications of the layer outputs.
624            # Since `self.dynamic` is True, we will never attempt to
625            # run the underlying TF graph (which is disconnected).
626            # TODO(fchollet): consider py_func as an alternative, which
627            # would enable us to run the underlying graph if needed.
628            outputs = self._symbolic_call(inputs)
629
630          if outputs is None:
631            raise ValueError('A layer\'s `call` method should return a '
632                             'Tensor or a list of Tensors, not None '
633                             '(layer: ' + self.name + ').')
634          if base_layer_utils.have_all_keras_metadata(inputs):
635            if learning_phase_passed_by_framework:
636              kwargs.pop('training')
637            inputs, outputs = self._set_connectivity_metadata_(
638                inputs, outputs, args, kwargs)
639          self._handle_activity_regularization(inputs, outputs)
640          self._set_mask_metadata(inputs, outputs, previous_mask)
641          if hasattr(self, '_set_inputs') and not self.inputs:
642            # Subclassed network: explicitly set metadata normally set by
643            # a call to self._set_inputs().
644            # TODO(b/120997007): This should be done in Eager as well, but
645            # causes garbage collection issues because of the placeholders
646            # created on the default Keras graph.
647            self._set_inputs(inputs, outputs)
648      else:
649        # Eager execution on data tensors.
650        with ops.name_scope(self._name_scope()):
651          self._maybe_build(inputs)
652          with base_layer_utils.autocast_context_manager(
653              input_list, self._mixed_precision_policy.should_cast_variables):
654            outputs = self.call(inputs, *args, **kwargs)
655          self._handle_activity_regularization(inputs, outputs)
656          self._set_mask_metadata(inputs, outputs, previous_mask)
657
658    if not context.executing_eagerly():
659      # Optionally load weight values specified at layer instantiation.
660      # TODO(fchollet): consider enabling this with eager execution too.
661      if (hasattr(self, '_initial_weights') and
662          self._initial_weights is not None):
663        self.set_weights(self._initial_weights)
664        del self._initial_weights
665    return outputs
666
667  @property
668  def dtype(self):
669    return self._dtype
670
671  @property
672  def name(self):
673    return self._name
674
675  @property
676  def dynamic(self):
677    return self._dynamic
678
679  @property
680  def activity_regularizer(self):
681    """Optional regularizer function for the output of this layer."""
682    return self._activity_regularizer
683
684  @activity_regularizer.setter
685  def activity_regularizer(self, regularizer):
686    """Optional regularizer function for the output of this layer."""
687    self._activity_regularizer = regularizer
688
689  @property
690  def trainable_weights(self):
691    if self.trainable:
692      nested = self._gather_children_attribute('trainable_weights')
693      return self._trainable_weights + nested
694    else:
695      return []
696
697  @property
698  def non_trainable_weights(self):
699    if self.trainable:
700      nested = self._gather_children_attribute('non_trainable_weights')
701      return self._non_trainable_weights + nested
702    else:
703      nested = self._gather_children_attribute('weights')
704      return self._trainable_weights + self._non_trainable_weights + nested
705
706  @property
707  def weights(self):
708    """Returns the list of all layer variables/weights.
709
710    Returns:
711      A list of variables.
712    """
713    return self.trainable_weights + self.non_trainable_weights
714
715  @property
716  def updates(self):
717    return self._get_unfiltered_updates(check_trainable=True)
718
719  @property
720  def losses(self):
721    """Losses which are associated with this `Layer`.
722
723    Variable regularization tensors are created when this property is accessed,
724    so it is eager safe: accessing `losses` under a `tf.GradientTape` will
725    propagate gradients back to the corresponding variables.
726
727    Returns:
728      A list of tensors.
729    """
730    collected_losses = []
731
732    # If any eager losses are present, we assume the model to be part of an
733    # eager training loop (either a custom one or the one used when
734    # `run_eagerly=True`), and so we always return just the eager losses in that
735    # case.
736    if self._eager_losses:
737      collected_losses.extend(self._eager_losses)
738    else:
739      collected_losses.extend(self._losses)
740    for regularizer in self._callable_losses:
741      loss_tensor = regularizer()
742      if loss_tensor is not None:
743        collected_losses.append(loss_tensor)
744    return collected_losses + self._gather_children_attribute('losses')
745
746  @doc_controls.for_subclass_implementers
747  def add_loss(self, losses, inputs=None):
748    """Add loss tensor(s), potentially dependent on layer inputs.
749
750    Some losses (for instance, activity regularization losses) may be dependent
751    on the inputs passed when calling a layer. Hence, when reusing the same
752    layer on different inputs `a` and `b`, some entries in `layer.losses` may
753    be dependent on `a` and some on `b`. This method automatically keeps track
754    of dependencies.
755
756    The `get_losses_for` method allows to retrieve the losses relevant to a
757    specific set of inputs.
758
759    Note that `add_loss` is not supported when executing eagerly. Instead,
760    variable regularizers may be added through `add_variable`. Activity
761    regularization is not supported directly (but such losses may be returned
762    from `Layer.call()`).
763
764    Arguments:
765      losses: Loss tensor, or list/tuple of tensors. Rather than tensors, losses
766        may also be zero-argument callables which create a loss tensor.
767        Other types of input are ignored.
768      inputs: Ignored when executing eagerly. If anything other than None is
769        passed, it signals the losses are conditional on some of the layer's
770        inputs, and thus they should only be run where these inputs are
771        available. This is the case for activity regularization losses, for
772        instance. If `None` is passed, the losses are assumed
773        to be unconditional, and will apply across all dataflows of the layer
774        (e.g. weight regularization losses).
775    """
776    losses = generic_utils.to_list(losses)
777
778    def _tag_unconditional(loss):
779      if callable(loss):
780        loss = loss()
781      if loss is None:
782        return None  # Will be filtered out when computing the .losses property
783      if not tensor_util.is_tensor(loss):
784        loss = ops.convert_to_tensor(loss, dtype=backend.floatx())
785      loss._unconditional_loss = (inputs is None)  # pylint: disable=protected-access
786      return loss
787
788    for loss in losses:
789      if callable(loss):
790        self._callable_losses.append(
791            functools.partial(_tag_unconditional, loss))
792      else:
793        if not tensor_util.is_tensor(loss):
794          # Ignoring constant values as this does not affect the gradients.
795          return
796        if tf_utils.is_symbolic_tensor(loss):
797          if not base_layer_utils.is_in_call_context():
798            self._contains_symbolic_tensors = True
799          self._losses.append(_tag_unconditional(loss))
800        else:
801          self._eager_losses.append(_tag_unconditional(loss))
802
803  @trackable.no_automatic_dependency_tracking
804  def _clear_losses(self):
805    """Used every step in eager to reset losses."""
806    self._eager_losses = []
807    if hasattr(self, '_layers'):
808      for layer in trackable_layer_utils.filter_empty_layer_containers(
809          self._layers):
810        layer._clear_losses()
811
812  @doc_controls.for_subclass_implementers
813  def add_metric(self, value, aggregation=None, name=None):
814    """Adds metric tensor to the layer.
815
816    Args:
817      value: Metric tensor.
818      aggregation: Sample-wise metric reduction function. If `aggregation=None`,
819        it indicates that the metric tensor provided has been aggregated
820        already. eg, `bin_acc = BinaryAccuracy(name='acc')` followed by
821        `model.add_metric(bin_acc(y_true, y_pred))`. If aggregation='mean', the
822        given metric tensor will be sample-wise reduced using `mean` function.
823        eg, `model.add_metric(tf.reduce_sum(outputs), name='output_mean',
824        aggregation='mean')`.
825      name: String metric name.
826
827    Raises:
828      ValueError: If `aggregation` is anything other than None or `mean`.
829    """
830    if aggregation is not None and aggregation != 'mean':
831      raise ValueError(
832          'We currently support only `mean` sample-wise metric aggregation. '
833          'You provided aggregation=`%s`' % aggregation)
834
835    is_symbolic = tf_utils.is_symbolic_tensor(value)
836    if name is None and (not is_symbolic or not hasattr(value, '_metric_obj')):
837      # Eg. `self.add_metric(math_ops.reduce_sum(x), aggregation='mean')`
838      # In eager mode, we use metric name to lookup a metric. Without a name,
839      # a new Mean metric wrapper will be created on every model/layer call.
840      # So, we raise an error when no name is provided.
841      # We will do the same for symbolic mode for consistency although a name
842      # will be generated if no name is provided.
843
844      # We will not raise this error in the foll use case for the sake of
845      # consistency as name in provided in the metric constructor.
846      # mean = metrics.Mean(name='my_metric')
847      # model.add_metric(mean(outputs))
848      raise ValueError('Please provide a name for your metric like '
849                       '`self.add_metric(tf.reduce_sum(inputs), '
850                       'name=\'mean_activation\', aggregation=\'mean\')`')
851
852    if is_symbolic:
853      with backend.get_graph().as_default():
854        self._symbolic_add_metric(value, aggregation, name)
855    else:
856      self._eager_add_metric(value, aggregation, name)
857
858  @doc_controls.for_subclass_implementers
859  def add_update(self, updates, inputs=None):
860    """Add update op(s), potentially dependent on layer inputs.
861
862    Weight updates (for instance, the updates of the moving mean and variance
863    in a BatchNormalization layer) may be dependent on the inputs passed
864    when calling a layer. Hence, when reusing the same layer on
865    different inputs `a` and `b`, some entries in `layer.updates` may be
866    dependent on `a` and some on `b`. This method automatically keeps track
867    of dependencies.
868
869    The `get_updates_for` method allows to retrieve the updates relevant to a
870    specific set of inputs.
871
872    This call is ignored when eager execution is enabled (in that case, variable
873    updates are run on the fly and thus do not need to be tracked for later
874    execution).
875
876    Arguments:
877      updates: Update op, or list/tuple of update ops.
878      inputs: If anything other than None is passed, it signals the updates
879        are conditional on some of the layer's inputs,
880        and thus they should only be run where these inputs are available.
881        This is the case for BatchNormalization updates, for instance.
882        If None, the updates will be taken into account unconditionally,
883        and you are responsible for making sure that any dependency they might
884        have is available at runtime.
885        A step counter might fall into this category.
886    """
887    if context.executing_eagerly():
888      return  # Updates already applied when in eager mode.
889
890    def process_update(x):
891      if isinstance(x, ops.Operation):
892        return x
893      elif hasattr(x, 'op'):
894        return x.op
895      else:
896        return ops.convert_to_tensor(x)
897
898    updates = generic_utils.to_list(updates)
899    updates = [process_update(x) for x in updates]
900    self._updates += updates
901    if inputs is None:
902      for u in updates:
903        u._unconditional_update = True  # pylint: disable=protected-access
904    else:
905      for u in updates:
906        u._unconditional_update = False  # pylint: disable=protected-access
907
908  def set_weights(self, weights):
909    """Sets the weights of the layer, from Numpy arrays.
910
911    Arguments:
912        weights: a list of Numpy arrays. The number
913            of arrays and their shape must match
914            number of the dimensions of the weights
915            of the layer (i.e. it should match the
916            output of `get_weights`).
917
918    Raises:
919        ValueError: If the provided weights list does not match the
920            layer's specifications.
921    """
922    params = self.weights
923    if len(params) != len(weights):
924      raise ValueError('You called `set_weights(weights)` on layer "' +
925                       self.name + '" with a  weight list of length ' +
926                       str(len(weights)) + ', but the layer was expecting ' +
927                       str(len(params)) + ' weights. Provided weights: ' +
928                       str(weights)[:50] + '...')
929    if not params:
930      return
931    weight_value_tuples = []
932    param_values = backend.batch_get_value(params)
933    for pv, p, w in zip(param_values, params, weights):
934      if pv.shape != w.shape:
935        raise ValueError('Layer weight shape ' + str(pv.shape) +
936                         ' not compatible with '
937                         'provided weight shape ' + str(w.shape))
938      weight_value_tuples.append((p, w))
939    backend.batch_set_value(weight_value_tuples)
940
941  def get_weights(self):
942    """Returns the current weights of the layer.
943
944    Returns:
945        Weights values as a list of numpy arrays.
946    """
947    params = self.weights
948    return backend.batch_get_value(params)
949
950  def get_updates_for(self, inputs):
951    """Retrieves updates relevant to a specific set of inputs.
952
953    Arguments:
954      inputs: Input tensor or list/tuple of input tensors.
955
956    Returns:
957      List of update ops of the layer that depend on `inputs`.
958
959    Raises:
960      RuntimeError: If called in Eager mode.
961    """
962    # Updates disabled if layer is not trainable and not explicitly stateful.
963    if not self.trainable and not self.stateful:
964      return []
965
966    if inputs is None:
967      # Requesting unconditional updates.
968      return [
969          x for x in self._get_unfiltered_updates() if x._unconditional_update  # pylint: disable=protected-access
970      ]
971
972    # Requesting input-conditional updates.
973    inputs = nest.flatten(inputs)
974    reachable = tf_utils.get_reachable_from_inputs(
975        inputs, self._get_unfiltered_updates())
976    return [u for u in self._get_unfiltered_updates() if u in reachable]  # pylint: disable=protected-access
977
978  def get_losses_for(self, inputs):
979    """Retrieves losses relevant to a specific set of inputs.
980
981    Arguments:
982      inputs: Input tensor or list/tuple of input tensors.
983
984    Returns:
985      List of loss tensors of the layer that depend on `inputs`.
986
987    Raises:
988      RuntimeError: If called in Eager mode.
989    """
990    if inputs is None:
991      # Requesting unconditional losses.
992      return [x for x in self.losses if x._unconditional_loss]  # pylint: disable=protected-access
993
994    # Requesting input-conditional losses.
995    inputs = nest.flatten(inputs)
996    # Retrieve the set of tensors in the TF graph that depend on `inputs`.
997    # The losses we want to return will be part of this set.
998    # To avoid unnecessary work, we stop the search in case all of
999    # `self.losses` have been retrieved.
1000    reachable = tf_utils.get_reachable_from_inputs(inputs, self.losses)
1001    losses = []
1002    for loss in self.losses:
1003      if loss in reachable:
1004        losses.append(loss)
1005    return losses
1006
1007  def get_input_mask_at(self, node_index):
1008    """Retrieves the input mask tensor(s) of a layer at a given node.
1009
1010    Arguments:
1011        node_index: Integer, index of the node
1012            from which to retrieve the attribute.
1013            E.g. `node_index=0` will correspond to the
1014            first time the layer was called.
1015
1016    Returns:
1017        A mask tensor
1018        (or list of tensors if the layer has multiple inputs).
1019    """
1020    inputs = self.get_input_at(node_index)
1021    if isinstance(inputs, list):
1022      return [getattr(x, '_keras_mask', None) for x in inputs]
1023    else:
1024      return getattr(inputs, '_keras_mask', None)
1025
1026  def get_output_mask_at(self, node_index):
1027    """Retrieves the output mask tensor(s) of a layer at a given node.
1028
1029    Arguments:
1030        node_index: Integer, index of the node
1031            from which to retrieve the attribute.
1032            E.g. `node_index=0` will correspond to the
1033            first time the layer was called.
1034
1035    Returns:
1036        A mask tensor
1037        (or list of tensors if the layer has multiple outputs).
1038    """
1039    output = self.get_output_at(node_index)
1040    if isinstance(output, list):
1041      return [getattr(x, '_keras_mask', None) for x in output]
1042    else:
1043      return getattr(output, '_keras_mask', None)
1044
1045  @property
1046  def input_mask(self):
1047    """Retrieves the input mask tensor(s) of a layer.
1048
1049    Only applicable if the layer has exactly one inbound node,
1050    i.e. if it is connected to one incoming layer.
1051
1052    Returns:
1053        Input mask tensor (potentially None) or list of input
1054        mask tensors.
1055
1056    Raises:
1057        AttributeError: if the layer is connected to
1058        more than one incoming layers.
1059    """
1060    inputs = self.input
1061    if isinstance(inputs, list):
1062      return [getattr(x, '_keras_mask', None) for x in inputs]
1063    else:
1064      return getattr(inputs, '_keras_mask', None)
1065
1066  @property
1067  def output_mask(self):
1068    """Retrieves the output mask tensor(s) of a layer.
1069
1070    Only applicable if the layer has exactly one inbound node,
1071    i.e. if it is connected to one incoming layer.
1072
1073    Returns:
1074        Output mask tensor (potentially None) or list of output
1075        mask tensors.
1076
1077    Raises:
1078        AttributeError: if the layer is connected to
1079        more than one incoming layers.
1080    """
1081    output = self.output
1082    if isinstance(output, list):
1083      return [getattr(x, '_keras_mask', None) for x in output]
1084    else:
1085      return getattr(output, '_keras_mask', None)
1086
1087  def get_input_shape_at(self, node_index):
1088    """Retrieves the input shape(s) of a layer at a given node.
1089
1090    Arguments:
1091        node_index: Integer, index of the node
1092            from which to retrieve the attribute.
1093            E.g. `node_index=0` will correspond to the
1094            first time the layer was called.
1095
1096    Returns:
1097        A shape tuple
1098        (or list of shape tuples if the layer has multiple inputs).
1099
1100    Raises:
1101      RuntimeError: If called in Eager mode.
1102    """
1103    return self._get_node_attribute_at_index(node_index, 'input_shapes',
1104                                             'input shape')
1105
1106  def get_output_shape_at(self, node_index):
1107    """Retrieves the output shape(s) of a layer at a given node.
1108
1109    Arguments:
1110        node_index: Integer, index of the node
1111            from which to retrieve the attribute.
1112            E.g. `node_index=0` will correspond to the
1113            first time the layer was called.
1114
1115    Returns:
1116        A shape tuple
1117        (or list of shape tuples if the layer has multiple outputs).
1118
1119    Raises:
1120      RuntimeError: If called in Eager mode.
1121    """
1122    return self._get_node_attribute_at_index(node_index, 'output_shapes',
1123                                             'output shape')
1124
1125  def get_input_at(self, node_index):
1126    """Retrieves the input tensor(s) of a layer at a given node.
1127
1128    Arguments:
1129        node_index: Integer, index of the node
1130            from which to retrieve the attribute.
1131            E.g. `node_index=0` will correspond to the
1132            first time the layer was called.
1133
1134    Returns:
1135        A tensor (or list of tensors if the layer has multiple inputs).
1136
1137    Raises:
1138      RuntimeError: If called in Eager mode.
1139    """
1140    return self._get_node_attribute_at_index(node_index, 'input_tensors',
1141                                             'input')
1142
1143  def get_output_at(self, node_index):
1144    """Retrieves the output tensor(s) of a layer at a given node.
1145
1146    Arguments:
1147        node_index: Integer, index of the node
1148            from which to retrieve the attribute.
1149            E.g. `node_index=0` will correspond to the
1150            first time the layer was called.
1151
1152    Returns:
1153        A tensor (or list of tensors if the layer has multiple outputs).
1154
1155    Raises:
1156      RuntimeError: If called in Eager mode.
1157    """
1158    return self._get_node_attribute_at_index(node_index, 'output_tensors',
1159                                             'output')
1160
1161  @property
1162  def input(self):
1163    """Retrieves the input tensor(s) of a layer.
1164
1165    Only applicable if the layer has exactly one input,
1166    i.e. if it is connected to one incoming layer.
1167
1168    Returns:
1169        Input tensor or list of input tensors.
1170
1171    Raises:
1172        AttributeError: if the layer is connected to
1173        more than one incoming layers.
1174
1175    Raises:
1176      RuntimeError: If called in Eager mode.
1177      AttributeError: If no inbound nodes are found.
1178    """
1179    if not self._inbound_nodes:
1180      raise AttributeError('Layer ' + self.name +
1181                           ' is not connected, no input to return.')
1182    return self._get_node_attribute_at_index(0, 'input_tensors', 'input')
1183
1184  @property
1185  def output(self):
1186    """Retrieves the output tensor(s) of a layer.
1187
1188    Only applicable if the layer has exactly one output,
1189    i.e. if it is connected to one incoming layer.
1190
1191    Returns:
1192      Output tensor or list of output tensors.
1193
1194    Raises:
1195      AttributeError: if the layer is connected to more than one incoming
1196        layers.
1197      RuntimeError: if called in Eager mode.
1198    """
1199    if not self._inbound_nodes:
1200      raise AttributeError('Layer ' + self.name + ' has no inbound nodes.')
1201    return self._get_node_attribute_at_index(0, 'output_tensors', 'output')
1202
1203  @property
1204  def input_shape(self):
1205    """Retrieves the input shape(s) of a layer.
1206
1207    Only applicable if the layer has exactly one input,
1208    i.e. if it is connected to one incoming layer, or if all inputs
1209    have the same shape.
1210
1211    Returns:
1212        Input shape, as an integer shape tuple
1213        (or list of shape tuples, one tuple per input tensor).
1214
1215    Raises:
1216        AttributeError: if the layer has no defined input_shape.
1217        RuntimeError: if called in Eager mode.
1218    """
1219    if not self._inbound_nodes:
1220      raise AttributeError('The layer has never been called '
1221                           'and thus has no defined input shape.')
1222    all_input_shapes = set(
1223        [str(node.input_shapes) for node in self._inbound_nodes])
1224    if len(all_input_shapes) == 1:
1225      return self._inbound_nodes[0].input_shapes
1226    else:
1227      raise AttributeError('The layer "' + str(self.name) +
1228                           ' has multiple inbound nodes, '
1229                           'with different input shapes. Hence '
1230                           'the notion of "input shape" is '
1231                           'ill-defined for the layer. '
1232                           'Use `get_input_shape_at(node_index)` '
1233                           'instead.')
1234
1235  def count_params(self):
1236    """Count the total number of scalars composing the weights.
1237
1238    Returns:
1239        An integer count.
1240
1241    Raises:
1242        ValueError: if the layer isn't yet built
1243          (in which case its weights aren't yet defined).
1244    """
1245    if not self.built:
1246      if self.__class__.__name__ == 'Sequential':
1247        self.build()  # pylint: disable=no-value-for-parameter
1248      else:
1249        raise ValueError('You tried to call `count_params` on ' + self.name +
1250                         ', but the layer isn\'t built. '
1251                         'You can build it manually via: `' + self.name +
1252                         '.build(batch_input_shape)`.')
1253    return int(sum(np.prod(w.shape.as_list()) for w in self.weights))
1254
1255  @property
1256  def output_shape(self):
1257    """Retrieves the output shape(s) of a layer.
1258
1259    Only applicable if the layer has one output,
1260    or if all outputs have the same shape.
1261
1262    Returns:
1263        Output shape, as an integer shape tuple
1264        (or list of shape tuples, one tuple per output tensor).
1265
1266    Raises:
1267        AttributeError: if the layer has no defined output shape.
1268        RuntimeError: if called in Eager mode.
1269    """
1270    if not self._inbound_nodes:
1271      raise AttributeError('The layer has never been called '
1272                           'and thus has no defined output shape.')
1273    all_output_shapes = set(
1274        [str(node.output_shapes) for node in self._inbound_nodes])
1275    if len(all_output_shapes) == 1:
1276      return self._inbound_nodes[0].output_shapes
1277    else:
1278      raise AttributeError('The layer "%s"'
1279                           ' has multiple inbound nodes, '
1280                           'with different output shapes. Hence '
1281                           'the notion of "output shape" is '
1282                           'ill-defined for the layer. '
1283                           'Use `get_output_shape_at(node_index)` '
1284                           'instead.' % self.name)
1285
1286  @property
1287  @doc_controls.do_not_doc_inheritable
1288  def inbound_nodes(self):
1289    """Deprecated, do NOT use! Only for compatibility with external Keras."""
1290    return self._inbound_nodes
1291
1292  @property
1293  @doc_controls.do_not_doc_inheritable
1294  def outbound_nodes(self):
1295    """Deprecated, do NOT use! Only for compatibility with external Keras."""
1296    return self._outbound_nodes
1297
1298  ##############################################################################
1299  # Methods & attributes below are public aliases of other methods.            #
1300  ##############################################################################
1301
1302  def apply(self, inputs, *args, **kwargs):
1303    """Apply the layer on a input.
1304
1305    This is an alias of `self.__call__`.
1306
1307    Arguments:
1308      inputs: Input tensor(s).
1309      *args: additional positional arguments to be passed to `self.call`.
1310      **kwargs: additional keyword arguments to be passed to `self.call`.
1311
1312    Returns:
1313      Output tensor(s).
1314    """
1315    return self.__call__(inputs, *args, **kwargs)
1316
1317  @doc_controls.for_subclass_implementers
1318  def add_variable(self, *args, **kwargs):
1319    """Alias for `add_weight`."""
1320    return self.add_weight(*args, **kwargs)
1321
1322  @property
1323  def variables(self):
1324    """Returns the list of all layer variables/weights.
1325
1326    Alias of `self.weights`.
1327
1328    Returns:
1329      A list of variables.
1330    """
1331    return self.weights
1332
1333  @property
1334  def trainable_variables(self):
1335    return self.trainable_weights
1336
1337  @property
1338  def non_trainable_variables(self):
1339    return self.non_trainable_weights
1340
1341  ##############################################################################
1342  # Methods & attributes below are all private and only used by the framework. #
1343  ##############################################################################
1344
1345  def _set_dtype_and_policy(self, dtype):
1346    """Sets self._dtype and self._mixed_precision_policy."""
1347    if dtype:
1348      if isinstance(dtype, policy.Policy):
1349        self._mixed_precision_policy = dtype
1350        self._dtype = self._mixed_precision_policy.default_variable_dtype
1351      else:
1352        # If a non-policy dtype is passed, no casting should be done. So we use
1353        # the "infer" policy, which does no casting.
1354        self._mixed_precision_policy = policy.Policy('infer')
1355        self._dtype = dtypes.as_dtype(dtype).name
1356    else:
1357      self._mixed_precision_policy = policy.global_policy()
1358      # If the global policy has not been set, it will be an "infer" policy
1359      # without a default variable dtype, and so self._dtype will be None. In
1360      # that case, self._dtype will be set when the layer is built or called.
1361      self._dtype = self._mixed_precision_policy.default_variable_dtype
1362
1363  def _name_scope(self):
1364    return self.name
1365
1366  def _init_set_name(self, name, zero_based=True):
1367    if not name:
1368      self._name = base_layer_utils.unique_layer_name(
1369          generic_utils.to_snake_case(self.__class__.__name__),
1370          zero_based=zero_based)
1371    else:
1372      self._name = name
1373
1374  def _get_existing_metric(self, name=None):
1375    match = [m for m in self._metrics if m.name == name]
1376    if not match:
1377      return
1378    if len(match) > 1:
1379      raise ValueError(
1380          'Please provide different names for the metrics you have added. '
1381          'We found {} metrics with the name: "{}"'.format(len(match), name))
1382    return match[0]
1383
1384  def _eager_add_metric(self, value, aggregation=None, name=None):
1385    # If the given metric is available in `metrics` list we just update state
1386    # on it, otherwise we create a new metric instance and
1387    # add it to the `metrics` list.
1388    match = self._get_existing_metric(name)
1389    if match:
1390      match(value)  # Update the metric state.
1391      return
1392    else:
1393      # Aggregation will always be set in this use case. If not we will raise
1394      # error on model/layer call in graph function mode when model/layer is
1395      # created.
1396      assert aggregation is not None
1397      metric_obj, _ = base_layer_utils.create_mean_metric(value, name)
1398      self._metrics.append(metric_obj)
1399
1400  def _symbolic_add_metric(self, value, aggregation=None, name=None):
1401    if not base_layer_utils.is_in_call_context():
1402      self._contains_symbolic_tensors = True
1403    if aggregation is None:
1404      # Iterate over the metrics and check if the given metric exists already.
1405      # This can happen when a metric instance is created in subclassed model
1406      # layer `__init__` and we have tracked that instance already in
1407      # model.__setattr__.
1408      match = self._get_existing_metric(name)
1409      if match:
1410        result_tensor = value
1411        if match.name not in self._metrics_tensors:
1412          self._metrics_tensors[match.name] = result_tensor
1413          return
1414        else:
1415          raise ValueError(
1416              'We currently do not support reusing a metric instance.')
1417      elif hasattr(value, '_metric_obj'):
1418        # We track the instance using the metadata on the result tensor.
1419        result_tensor = value
1420        metric_obj = result_tensor._metric_obj
1421      else:
1422        raise ValueError(
1423            'We do not support adding an aggregated metric result tensor that '
1424            'is not the output of a `tf.keras.metrics.Metric` metric instance. '
1425            'Without having access to the metric instance we cannot reset the '
1426            'state of a metric after every epoch during training. You can '
1427            'create a `tf.keras.metrics.Metric` instance and pass the result '
1428            'here or pass an un-aggregated result with `aggregation` parameter '
1429            'set as `mean`. For example: `self.add_metric(tf.reduce_sum(inputs)'
1430            ', name=\'mean_activation\', aggregation=\'mean\')`')
1431    else:
1432      # If a non-aggregated tensor is given as input (ie. `aggregation` is
1433      # explicitly set to `mean`), we wrap the tensor in `Mean` metric.
1434      metric_obj, result_tensor = base_layer_utils.create_mean_metric(
1435          value, name)
1436    self._metrics.append(metric_obj)
1437    self._metrics_tensors[metric_obj.name] = result_tensor
1438
1439  def _handle_weight_regularization(self, name, variable, regularizer):
1440    """Create lambdas which compute regularization losses."""
1441
1442    def _loss_for_variable(v):
1443      """Creates a regularization loss `Tensor` for variable `v`."""
1444      with ops.name_scope(name + '/Regularizer'):
1445        regularization = regularizer(v)
1446      return regularization
1447
1448    if isinstance(variable, tf_variables.PartitionedVariable):
1449      for v in variable:
1450        self.add_loss(functools.partial(_loss_for_variable, v))
1451    else:
1452      self.add_loss(functools.partial(_loss_for_variable, variable))
1453
1454  def _handle_activity_regularization(self, inputs, outputs):
1455    # Apply activity regularization.
1456    # Note that it should be applied every time the layer creates a new
1457    # output, since it is output-specific.
1458    if self._activity_regularizer:
1459      output_list = nest.flatten(outputs)
1460      with ops.name_scope('ActivityRegularizer'):
1461        for output in output_list:
1462          activity_loss = self._activity_regularizer(output)
1463          batch_size = math_ops.cast(
1464              array_ops.shape(output)[0], activity_loss.dtype)
1465          # Make activity regularization strength batch-agnostic.
1466          mean_activity_loss = activity_loss / batch_size
1467          self.add_loss(mean_activity_loss, inputs=inputs)
1468
1469  def _set_mask_metadata(self, inputs, outputs, previous_mask):
1470    flat_outputs = nest.flatten(outputs)
1471    mask_already_computed = (
1472        getattr(self, '_compute_output_and_mask_jointly', False) or
1473        all(getattr(x, '_keras_mask', None) is not None for x in flat_outputs))
1474
1475    if not mask_already_computed:
1476      if hasattr(self, 'compute_mask'):
1477        output_masks = self.compute_mask(inputs, previous_mask)
1478        # `compute_mask` can return a single `None` even when a Layer
1479        # has multiple outputs.
1480        if output_masks is None:
1481          flat_masks = [None for _ in flat_outputs]
1482        else:
1483          flat_masks = nest.flatten(output_masks)
1484      else:
1485        flat_masks = [None for _ in flat_outputs]
1486
1487      for output, mask in zip(flat_outputs, flat_masks):
1488        try:
1489          output._keras_mask = mask
1490        except AttributeError:
1491          # C Type such as np.ndarray.
1492          pass
1493
1494    if tf_utils.are_all_symbolic_tensors(flat_outputs):
1495      for output in flat_outputs:
1496        if getattr(output, '_keras_mask', None) is not None:
1497          # Do not track masks for `TensorFlowOpLayer` construction.
1498          output._keras_mask._keras_history_checked = True
1499
1500  def _set_connectivity_metadata_(self, inputs, outputs, args, kwargs):
1501    call_convention = getattr(
1502        self, '_call_convention',
1503        base_layer_utils.CallConvention.EXPLICIT_INPUTS_ARGUMENT)
1504    if args:
1505      if call_convention == (base_layer_utils
1506                             .CallConvention.EXPLICIT_INPUTS_ARGUMENT):
1507        raise TypeError(
1508            'This layer ("{}") takes an `inputs` argument in `call()`, '
1509            'and only the `inputs` argument may be specified as a positional '
1510            'argument. Pass everything else as a keyword argument '
1511            '(those arguments will not be tracked '
1512            'as inputs to the layer).'.format(self.name))
1513      elif call_convention == (base_layer_utils
1514                               .CallConvention.SINGLE_POSITIONAL_ARGUMENT):
1515        raise TypeError(
1516            'This layer ("{}") takes a single positional argument in `call()`,'
1517            ' which is by convention the `inputs` argument, '
1518            'and only this argument may be specified as a positional argument. '
1519            'Pass everything else as a keyword argument '
1520            '(those arguments will not be tracked '
1521            'as inputs to the layer).'.format(self.name))
1522
1523    # If the layer returns tensors from its inputs, unmodified,
1524    # we copy them to avoid loss of tensor metadata.
1525    output_ls = nest.flatten(outputs)
1526    inputs_ls = nest.flatten(inputs)
1527    output_ls_copy = []
1528    for x in output_ls:
1529      if x in inputs_ls:
1530        with ops.name_scope(self.name):
1531          x = array_ops.identity(x)
1532      output_ls_copy.append(x)
1533    outputs = nest.pack_sequence_as(outputs, output_ls_copy)
1534
1535    inputs, kwargs = self._inputs_from_call_args(
1536        call_args=(inputs,) + args, call_kwargs=kwargs)
1537    # Add an inbound node to the layer, so it can keep track of this call.
1538    # This updates the layer history of the output tensor(s).
1539    kwargs.pop('mask', None)  # `mask` should not be serialized.
1540    self._add_inbound_node(
1541        input_tensors=inputs, output_tensors=outputs, arguments=kwargs)
1542    return inputs, outputs
1543
1544  def _inputs_from_call_args(self, call_args, call_kwargs):
1545    """Get Layer inputs from __call__ *args and **kwargs.
1546
1547    Args:
1548      call_args: The positional arguments passed to __call__.
1549      call_kwargs: The keyword argument dict passed to __call__.
1550
1551    Returns:
1552      A tuple of (inputs, non_input_kwargs). These may be the same objects as
1553      were passed in (call_args and call_kwargs).
1554    """
1555    call_convention = getattr(
1556        self, '_call_convention',
1557        base_layer_utils.CallConvention.EXPLICIT_INPUTS_ARGUMENT)
1558    if (call_convention in (
1559        base_layer_utils.CallConvention.EXPLICIT_INPUTS_ARGUMENT,
1560        base_layer_utils.CallConvention.SINGLE_POSITIONAL_ARGUMENT)):
1561      assert len(call_args) == 1  # TypeError raised earlier in __call__.
1562      return call_args[0], call_kwargs
1563    else:
1564      call_arg_spec = tf_inspect.getfullargspec(self.call)
1565      # There is no explicit "inputs" argument expected or provided to
1566      # call(). Arguments which have default values are considered non-inputs,
1567      # and arguments without are considered inputs.
1568      if call_arg_spec.defaults:
1569        if call_arg_spec.varargs is not None:
1570          raise TypeError(
1571              'Layers may not accept both positional arguments and '
1572              'arguments with default values (unable to determine which '
1573              'are inputs to the layer). '
1574              'Issue occurred with layer "%s"' % (self.name))
1575        keyword_arg_names = set(
1576            call_arg_spec.args[-len(call_arg_spec.defaults):])
1577      else:
1578        keyword_arg_names = set()
1579        # Training is never an input argument name, to allow signatures like
1580        # call(x, training).
1581      keyword_arg_names.add('training')
1582      _, unwrapped_call = tf_decorator.unwrap(self.call)
1583      bound_args = inspect.getcallargs(
1584          unwrapped_call, *call_args, **call_kwargs)
1585      if call_arg_spec.varkw is not None:
1586        var_kwargs = bound_args.pop(call_arg_spec.varkw)
1587        bound_args.update(var_kwargs)
1588        keyword_arg_names = keyword_arg_names.union(var_kwargs.keys())
1589      all_args = call_arg_spec.args
1590      if all_args and bound_args[all_args[0]] is self:
1591        # Ignore the 'self' argument of methods
1592        bound_args.pop(call_arg_spec.args[0])
1593        all_args = all_args[1:]
1594      non_input_arg_values = {}
1595      input_arg_values = []
1596      remaining_args_are_keyword = False
1597      for argument_name in all_args:
1598        if argument_name in keyword_arg_names:
1599          remaining_args_are_keyword = True
1600        else:
1601          if remaining_args_are_keyword:
1602            raise TypeError(
1603                'Found a positional argument in a layer call after a non-input '
1604                'argument. All arguments after "training" must be keyword '
1605                'arguments, and are not tracked as inputs to the layer. '
1606                'Issue occurred with layer "%s"' % (self.name))
1607        if remaining_args_are_keyword:
1608          non_input_arg_values[argument_name] = bound_args[argument_name]
1609        else:
1610          input_arg_values.append(bound_args[argument_name])
1611      if call_arg_spec.varargs is not None:
1612        input_arg_values.extend(bound_args[call_arg_spec.varargs])
1613      return input_arg_values, non_input_arg_values
1614
1615  def _add_inbound_node(self,
1616                        input_tensors,
1617                        output_tensors,
1618                        arguments=None):
1619    """Internal method to create an inbound node for the layer.
1620
1621    Arguments:
1622        input_tensors: list of input tensors.
1623        output_tensors: list of output tensors.
1624        arguments: dictionary of keyword arguments that were passed to the
1625            `call` method of the layer at the call that created the node.
1626    """
1627    inbound_layers = nest.map_structure(lambda t: t._keras_history[0],
1628                                        input_tensors)
1629    node_indices = nest.map_structure(lambda t: t._keras_history[1],
1630                                      input_tensors)
1631    tensor_indices = nest.map_structure(lambda t: t._keras_history[2],
1632                                        input_tensors)
1633
1634    # Create node, add it to inbound nodes.
1635    Node(
1636        self,
1637        inbound_layers=inbound_layers,
1638        node_indices=node_indices,
1639        tensor_indices=tensor_indices,
1640        input_tensors=input_tensors,
1641        output_tensors=output_tensors,
1642        arguments=arguments)
1643
1644    # Update tensor history metadata.
1645    # The metadata attribute consists of
1646    # 1) a layer instance
1647    # 2) a node index for the layer
1648    # 3) a tensor index for the node.
1649    # The allows layer reuse (multiple nodes per layer) and multi-output
1650    # or multi-input layers (e.g. a layer can return multiple tensors,
1651    # and each can be sent to a different layer).
1652    for i, tensor in enumerate(nest.flatten(output_tensors)):
1653      tensor._keras_history = (self, len(self._inbound_nodes) - 1, i)  # pylint: disable=protected-access
1654
1655  def _get_node_attribute_at_index(self, node_index, attr, attr_name):
1656    """Private utility to retrieves an attribute (e.g. inputs) from a node.
1657
1658    This is used to implement the methods:
1659        - get_input_shape_at
1660        - get_output_shape_at
1661        - get_input_at
1662        etc...
1663
1664    Arguments:
1665        node_index: Integer index of the node from which
1666            to retrieve the attribute.
1667        attr: Exact node attribute name.
1668        attr_name: Human-readable attribute name, for error messages.
1669
1670    Returns:
1671        The layer's attribute `attr` at the node of index `node_index`.
1672
1673    Raises:
1674        RuntimeError: If the layer has no inbound nodes, or if called in Eager
1675        mode.
1676        ValueError: If the index provided does not match any node.
1677    """
1678    if not self._inbound_nodes:
1679      raise RuntimeError('The layer has never been called '
1680                         'and thus has no defined ' + attr_name + '.')
1681    if not len(self._inbound_nodes) > node_index:
1682      raise ValueError('Asked to get ' + attr_name + ' at node ' +
1683                       str(node_index) + ', but the layer has only ' +
1684                       str(len(self._inbound_nodes)) + ' inbound nodes.')
1685    values = getattr(self._inbound_nodes[node_index], attr)
1686    if isinstance(values, list) and len(values) == 1:
1687      return values[0]
1688    else:
1689      return values
1690
1691  def _maybe_build(self, inputs):
1692    # Check input assumptions set before layer building, e.g. input rank.
1693    if self.built:
1694      return
1695
1696    input_spec.assert_input_compatibility(
1697        self.input_spec, inputs, self.name)
1698    input_list = nest.flatten(inputs)
1699    if input_list and self._dtype is None:
1700      try:
1701        self._dtype = input_list[0].dtype.base_dtype.name
1702      except AttributeError:
1703        pass
1704    input_shapes = None
1705    if all(hasattr(x, 'shape') for x in input_list):
1706      input_shapes = nest.map_structure(lambda x: x.shape, inputs)
1707    # Only call `build` if the user has manually overridden the build method.
1708    if not hasattr(self.build, '_is_default'):
1709      self.build(input_shapes)
1710    # We must set self.built since user defined build functions are not
1711    # constrained to set self.built.
1712    self.built = True
1713
1714  def _symbolic_call(self, inputs):
1715    input_shapes = nest.map_structure(lambda x: x.shape, inputs)
1716    output_shapes = self.compute_output_shape(input_shapes)
1717
1718    def _make_placeholder_like(shape):
1719      ph = backend.placeholder(shape=shape, dtype=self.dtype)
1720      ph._keras_mask = None
1721      return ph
1722
1723    return nest.map_structure(_make_placeholder_like, output_shapes)
1724
1725  @property
1726  def _obj_reference_counts(self):
1727    """A dictionary counting the number of attributes referencing an object."""
1728    if not hasattr(self, '_obj_reference_counts_dict'):
1729      super(Layer, self).__setattr__(
1730          '_obj_reference_counts_dict',
1731          object_identity.ObjectIdentityDictionary())
1732    return self._obj_reference_counts_dict
1733
1734  def __delattr__(self, name):
1735    existing_value = getattr(self, name, None)
1736
1737    # If this value is replacing an existing object assigned to an attribute, we
1738    # should clean it out to avoid leaking memory. First we check if there are
1739    # other attributes referencing it.
1740    reference_counts = self._obj_reference_counts
1741    if existing_value not in reference_counts:
1742      super(Layer, self).__delattr__(name)
1743      return
1744
1745    reference_count = reference_counts[existing_value]
1746    if reference_count > 1:
1747      # There are other remaining references. We can't remove this object from
1748      # _layers etc.
1749      reference_counts[existing_value] = reference_count - 1
1750      super(Layer, self).__delattr__(name)
1751      return
1752    else:
1753      # This is the last remaining reference.
1754      del reference_counts[existing_value]
1755
1756    super(Layer, self).__delattr__(name)
1757
1758    if (isinstance(existing_value, Layer)
1759        or trackable_layer_utils.has_weights(existing_value)):
1760      super(Layer, self).__setattr__(
1761          '_layers',
1762          [l for l in self._layers if l is not existing_value])
1763    if isinstance(existing_value, tf_variables.Variable):
1764      super(Layer, self).__setattr__(
1765          '_trainable_weights',
1766          [w for w in self._trainable_weights if w is not existing_value])
1767      super(Layer, self).__setattr__(
1768          '_non_trainable_weights',
1769          [w for w in self._non_trainable_weights if w is not existing_value])
1770
1771  def __setattr__(self, name, value):
1772    if (not getattr(self, '_setattr_tracking', True) or
1773        getattr(self, '_is_graph_network', False) or
1774        # Exclude @property.setters from tracking
1775        hasattr(self.__class__, name)):
1776      super(Layer, self).__setattr__(name, value)
1777      return
1778
1779    # Keep track of trackable objects, for the needs of `Network.save_weights`.
1780    value = data_structures.sticky_attribute_assignment(
1781        trackable=self, value=value, name=name)
1782
1783    reference_counts = self._obj_reference_counts
1784    reference_counts[value] = reference_counts.get(value, 0) + 1
1785
1786    # Clean out the old attribute, which clears _layers and _trainable_weights
1787    # if necessary.
1788    try:
1789      self.__delattr__(name)
1790    except AttributeError:
1791      pass
1792
1793    # Append value to self._layers if relevant
1794    if (isinstance(value, Layer) or
1795        trackable_layer_utils.has_weights(value)):
1796      # Initialize `_layers` here in case `__init__` has not yet been called.
1797      if not hasattr(self, '_layers'):
1798        super(Layer, self).__setattr__('_layers', [])
1799      # We need to check object identity to avoid de-duplicating empty
1800      # container types which compare equal.
1801      if not any((layer is value for layer in self._layers)):
1802        self._layers.append(value)
1803        if hasattr(value, '_use_resource_variables'):
1804          # Legacy layers (V1 tf.layers) must always use
1805          # resource variables.
1806          value._use_resource_variables = True
1807
1808    # Append value to list of trainable / non-trainable weights if relevant
1809    # TODO(b/125122625): This won't pick up on any variables added to a
1810    # list/dict after creation.
1811    for val in nest.flatten(value):
1812      # TODO(b/126450014): Remove `_UnreadVariable` check here when assign ops
1813      # no longer return True for isinstance Variable checks.
1814      if (isinstance(val, tf_variables.Variable) and
1815          not isinstance(val, resource_variable_ops._UnreadVariable)):  # pylint: disable=protected-access
1816        # Users may add extra weights/variables
1817        # simply by assigning them to attributes (invalid for graph networks)
1818        if not hasattr(self, '_trainable_weights'):
1819          super(Layer, self).__setattr__('_trainable_weights', [])
1820        if not hasattr(self, '_non_trainable_weights'):
1821          super(Layer, self).__setattr__('_non_trainable_weights', [])
1822        if val not in self._trainable_weights + self._non_trainable_weights:
1823          if val.trainable:
1824            self._trainable_weights.append(val)
1825          else:
1826            self._non_trainable_weights.append(val)
1827          backend.track_variable(val)
1828
1829    super(Layer, self).__setattr__(name, value)
1830
1831  def _gather_children_attribute(self, attribute):
1832    assert attribute in {
1833        'weights', 'trainable_weights', 'non_trainable_weights', 'updates',
1834        'losses'
1835    }
1836    if hasattr(self, '_layers'):
1837      nested_layers = trackable_layer_utils.filter_empty_layer_containers(
1838          self._layers)
1839      return list(
1840          itertools.chain.from_iterable(
1841              getattr(layer, attribute) for layer in nested_layers))
1842    return []
1843
1844  # This is a hack so that the is_layer (within
1845  # training/trackable/layer_utils.py) check doesn't get the weights attr.
1846  # TODO(b/110718070): Remove when fixed.
1847  def _is_layer(self):
1848    return True
1849
1850  def _get_unfiltered_updates(self, check_trainable=True):
1851    if check_trainable and not self.trainable and not self.stateful:
1852      return []
1853    return self._updates + self._gather_children_attribute('updates')
1854
1855
1856class Node(object):
1857  """A `Node` describes the connectivity between two layers.
1858
1859  Each time a layer is connected to some new input,
1860  a node is added to `layer._inbound_nodes`.
1861  Each time the output of a layer is used by another layer,
1862  a node is added to `layer._outbound_nodes`.
1863
1864  Arguments:
1865      outbound_layer: the layer that takes
1866          `input_tensors` and turns them into `output_tensors`
1867          (the node gets created when the `call`
1868          method of the layer was called).
1869      inbound_layers: a list of layers, the same length as `input_tensors`,
1870          the layers from where `input_tensors` originate.
1871      node_indices: a list of integers, the same length as `inbound_layers`.
1872          `node_indices[i]` is the origin node of `input_tensors[i]`
1873          (necessary since each inbound layer might have several nodes,
1874          e.g. if the layer is being shared with a different data stream).
1875      tensor_indices: a list of integers,
1876          the same length as `inbound_layers`.
1877          `tensor_indices[i]` is the index of `input_tensors[i]` within the
1878          output of the inbound layer
1879          (necessary since each inbound layer might
1880          have multiple tensor outputs, with each one being
1881          independently manipulable).
1882      input_tensors: list of input tensors.
1883      output_tensors: list of output tensors.
1884      arguments: dictionary of keyword arguments that were passed to the
1885          `call` method of the layer at the call that created the node.
1886
1887  `node_indices` and `tensor_indices` are basically fine-grained coordinates
1888  describing the origin of the `input_tensors`.
1889
1890  A node from layer A to layer B is added to:
1891    - A._outbound_nodes
1892    - B._inbound_nodes
1893  """
1894
1895  def __init__(self,
1896               outbound_layer,
1897               inbound_layers,
1898               node_indices,
1899               tensor_indices,
1900               input_tensors,
1901               output_tensors,
1902               arguments=None):
1903    # Layer instance (NOT a sequence)
1904    if isinstance(outbound_layer, (list, tuple, dict)):
1905      raise ValueError('`outbound_layer` should be a layer instance, '
1906                       'not a list, tuple, or, dict.')
1907
1908    # this is the layer that takes a nested structure of input tensors
1909    # and turns them into a nested structure of output tensors.
1910    # the current node will be added to
1911    # the inbound_nodes of outbound_layer.
1912    self.outbound_layer = outbound_layer
1913
1914    # The following 3 properties describe where
1915    # the input tensors come from: which layers,
1916    # and for each layer, which node and which
1917    # tensor output of each node.
1918
1919    # Nested structure of layer instances.
1920    self.inbound_layers = inbound_layers
1921    # Nested structure of integers, 1:1 mapping with inbound_layers.
1922    self.node_indices = node_indices
1923    # Nested of integers, 1:1 mapping with inbound_layers.
1924    self.tensor_indices = tensor_indices
1925
1926    # Following 2 properties:
1927    # tensor inputs and outputs of outbound_layer.
1928
1929    # Nested structure of tensors. 1:1 mapping with inbound_layers.
1930    self.input_tensors = input_tensors
1931    # Nested structure of tensors, created by outbound_layer.call().
1932    self.output_tensors = output_tensors
1933
1934    # Following 2 properties: input and output shapes.
1935
1936    # Nested structure of shape tuples, shapes of input_tensors.
1937    self.input_shapes = nest.map_structure(backend.int_shape, input_tensors)
1938    # Nested structure of shape tuples, shapes of output_tensors.
1939    self.output_shapes = nest.map_structure(backend.int_shape, output_tensors)
1940
1941    # Optional keyword arguments to layer's `call`.
1942    self.arguments = arguments
1943
1944    # Add nodes to all layers involved.
1945    for layer in nest.flatten(inbound_layers):
1946      if layer is not None:
1947        # For compatibility with external Keras, we use the deprecated
1948        # accessor here.
1949        layer.outbound_nodes.append(self)
1950    # For compatibility with external Keras, we use the deprecated
1951    # accessor here.
1952    outbound_layer.inbound_nodes.append(self)
1953
1954  def iterate_inbound(self):
1955    """Returns a list of tuples representing the inbound data.
1956
1957    Returns:
1958      List of tuples like: (inbound_layer, node_index, tensor_index, tensor).
1959    """
1960    return zip(
1961        nest.flatten(self.inbound_layers), nest.flatten(self.node_indices),
1962        nest.flatten(self.tensor_indices), nest.flatten(self.input_tensors))
1963
1964  def get_config(self):
1965    inbound_names = nest.map_structure(
1966        lambda layer: layer.name if layer else None, self.inbound_layers)
1967    return {
1968        'outbound_layer': self.outbound_layer.name,
1969        'inbound_layers': inbound_names,
1970        'node_indices': self.node_indices,
1971        'tensor_indices': self.tensor_indices
1972    }
1973
1974
1975class TensorFlowOpLayer(Layer):
1976  """Wraps a TensorFlow Operation in a Layer.
1977
1978  This class is used internally by the Functional API. When a user
1979  uses a raw TensorFlow Operation on symbolic tensors originating
1980  from an `Input` Layer, the resultant operation will be wrapped
1981  with this Layer object in order to make the operation compatible
1982  with the Keras API.
1983
1984  This Layer will create a new, identical operation (except for inputs
1985  and outputs) every time it is called. If `run_eagerly` is `True`,
1986  the op creation and calculation will happen inside an Eager function.
1987
1988  Instances of this Layer are created when `autolambda` is called, which
1989  is whenever a Layer's `__call__` encounters symbolic inputs that do
1990  not have Keras metadata, or when a Network's `__init__` encounters
1991  outputs that do not have Keras metadata.
1992
1993  Attributes:
1994    node_def: String, the serialized NodeDef of the Op this layer will wrap.
1995    constants: Dict of NumPy arrays, the values of any Tensors needed for this
1996      Operation that do not originate from a Keras `Input` Layer. Since all
1997      placeholders must come from Keras `Input` Layers, these Tensors must be
1998      treated as constant in the Functional API.
1999    name: String, the name of the Layer.
2000    trainable: Bool, whether this Layer is trainable. Currently Variables are
2001      not supported, and so this parameter has no effect.
2002    dtype: The default dtype of this Layer. Inherited from `Layer` and has no
2003      effect on this class, however is used in `get_config`.
2004  """
2005
2006  def __init__(self,
2007               node_def,
2008               constants=None,
2009               name=None,
2010               trainable=True,
2011               dtype=None):
2012    super(TensorFlowOpLayer, self).__init__(
2013        name=name, trainable=trainable, dtype=dtype)
2014    self.node_def = node_def_pb2.NodeDef.FromString(node_def)
2015    self.constants = constants or {}
2016    # Layer uses original op unless it is called on new inputs.
2017    # This means `built` is not set in `__call__`.
2018    self.built = True
2019
2020  def call(self, inputs):
2021    if context.executing_eagerly():
2022      return self._defun_call(inputs)
2023    return self._make_op(inputs)
2024
2025  def _make_op(self, inputs):
2026    inputs = nest.flatten(inputs)
2027    graph = inputs[0].graph
2028    with graph.as_default():
2029      for index, constant in self.constants.items():
2030        constant = ops.convert_to_tensor(constant)
2031        inputs.insert(index, constant)
2032
2033      self.node_def.name = graph.unique_name(self.node_def.name)
2034      # Check for case where first input should be a list of Tensors.
2035      if 'N' in self.node_def.attr:
2036        num_tensors = self.node_def.attr['N'].i
2037        inputs = [inputs[:num_tensors]] + inputs[num_tensors:]
2038      c_op = ops._create_c_op(graph, self.node_def, inputs, control_inputs=[])
2039      op = graph._create_op_from_tf_operation(c_op)
2040
2041      if len(op.outputs) == 1:
2042        return op.outputs[0]
2043      return op.outputs
2044
2045  @function.defun
2046  def _defun_call(self, inputs):
2047    """Wraps the op creation method in an Eager function for `run_eagerly`."""
2048    return self._make_op(inputs)
2049
2050  def get_config(self):
2051    config = super(TensorFlowOpLayer, self).get_config()
2052    config.update({
2053        'node_def': self.node_def.SerializeToString(),
2054        'constants': self.constants
2055    })
2056    return config
2057
2058
2059def default(method):
2060  """Decorates a method to detect overrides in subclasses."""
2061  method._is_default = True
2062  return method
2063
2064
2065# Avoid breaking users who directly import this symbol from this file.
2066# TODO(fchollet): remove this.
2067InputSpec = input_spec.InputSpec  # pylint:disable=invalid-name
2068