1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_RECONINTER_H_
13 #define AOM_AV1_COMMON_RECONINTER_H_
14 
15 #include "av1/common/filter.h"
16 #include "av1/common/onyxc_int.h"
17 #include "av1/common/convolve.h"
18 #include "av1/common/warped_motion.h"
19 #include "aom/aom_integer.h"
20 
21 // Work out how many pixels off the edge of a reference frame we're allowed
22 // to go when forming an inter prediction.
23 // The outermost row/col of each referernce frame is extended by
24 // (AOM_BORDER_IN_PIXELS >> subsampling) pixels, but we need to keep
25 // at least AOM_INTERP_EXTEND pixels within that to account for filtering.
26 //
27 // We have to break this up into two macros to keep both clang-format and
28 // tools/lint-hunks.py happy.
29 #define AOM_LEFT_TOP_MARGIN_PX(subsampling) \
30   ((AOM_BORDER_IN_PIXELS >> subsampling) - AOM_INTERP_EXTEND)
31 #define AOM_LEFT_TOP_MARGIN_SCALED(subsampling) \
32   (AOM_LEFT_TOP_MARGIN_PX(subsampling) << SCALE_SUBPEL_BITS)
33 
34 #ifdef __cplusplus
35 extern "C" {
36 #endif
37 
38 // Set to (1 << 5) if the 32-ary codebooks are used for any bock size
39 #define MAX_WEDGE_TYPES (1 << 4)
40 
41 #define MAX_WEDGE_SIZE_LOG2 5  // 32x32
42 #define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2)
43 #define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE)
44 
45 #define WEDGE_WEIGHT_BITS 6
46 
47 #define WEDGE_NONE -1
48 
49 // Angles are with respect to horizontal anti-clockwise
50 enum {
51   WEDGE_HORIZONTAL = 0,
52   WEDGE_VERTICAL = 1,
53   WEDGE_OBLIQUE27 = 2,
54   WEDGE_OBLIQUE63 = 3,
55   WEDGE_OBLIQUE117 = 4,
56   WEDGE_OBLIQUE153 = 5,
57   WEDGE_DIRECTIONS
58 } UENUM1BYTE(WedgeDirectionType);
59 
60 // 3-tuple: {direction, x_offset, y_offset}
61 typedef struct {
62   WedgeDirectionType direction;
63   int x_offset;
64   int y_offset;
65 } wedge_code_type;
66 
67 typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES];
68 
69 typedef struct {
70   int bits;
71   const wedge_code_type *codebook;
72   uint8_t *signflip;
73   wedge_masks_type *masks;
74 } wedge_params_type;
75 
76 extern const wedge_params_type wedge_params_lookup[BLOCK_SIZES_ALL];
77 
78 typedef struct SubpelParams {
79   int xs;
80   int ys;
81   int subpel_x;
82   int subpel_y;
83 } SubpelParams;
84 
85 struct build_prediction_ctxt {
86   const AV1_COMMON *cm;
87   int mi_row;
88   int mi_col;
89   uint8_t **tmp_buf;
90   int *tmp_width;
91   int *tmp_height;
92   int *tmp_stride;
93   int mb_to_far_edge;
94 };
95 
has_scale(int xs,int ys)96 static INLINE int has_scale(int xs, int ys) {
97   return xs != SCALE_SUBPEL_SHIFTS || ys != SCALE_SUBPEL_SHIFTS;
98 }
99 
revert_scale_extra_bits(SubpelParams * sp)100 static INLINE void revert_scale_extra_bits(SubpelParams *sp) {
101   sp->subpel_x >>= SCALE_EXTRA_BITS;
102   sp->subpel_y >>= SCALE_EXTRA_BITS;
103   sp->xs >>= SCALE_EXTRA_BITS;
104   sp->ys >>= SCALE_EXTRA_BITS;
105   assert(sp->subpel_x < SUBPEL_SHIFTS);
106   assert(sp->subpel_y < SUBPEL_SHIFTS);
107   assert(sp->xs <= SUBPEL_SHIFTS);
108   assert(sp->ys <= SUBPEL_SHIFTS);
109 }
110 
inter_predictor(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,const SubpelParams * subpel_params,const struct scale_factors * sf,int w,int h,ConvolveParams * conv_params,InterpFilters interp_filters,int is_intrabc)111 static INLINE void inter_predictor(const uint8_t *src, int src_stride,
112                                    uint8_t *dst, int dst_stride,
113                                    const SubpelParams *subpel_params,
114                                    const struct scale_factors *sf, int w, int h,
115                                    ConvolveParams *conv_params,
116                                    InterpFilters interp_filters,
117                                    int is_intrabc) {
118   assert(conv_params->do_average == 0 || conv_params->do_average == 1);
119   assert(sf);
120   const int is_scaled = has_scale(subpel_params->xs, subpel_params->ys);
121   assert(IMPLIES(is_intrabc, !is_scaled));
122   if (is_scaled) {
123     av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h,
124                            interp_filters, subpel_params->subpel_x,
125                            subpel_params->xs, subpel_params->subpel_y,
126                            subpel_params->ys, 1, conv_params, sf, is_intrabc);
127   } else {
128     SubpelParams sp = *subpel_params;
129     revert_scale_extra_bits(&sp);
130     av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h,
131                            interp_filters, sp.subpel_x, sp.xs, sp.subpel_y,
132                            sp.ys, 0, conv_params, sf, is_intrabc);
133   }
134 }
135 
highbd_inter_predictor(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,const SubpelParams * subpel_params,const struct scale_factors * sf,int w,int h,ConvolveParams * conv_params,InterpFilters interp_filters,int is_intrabc,int bd)136 static INLINE void highbd_inter_predictor(const uint8_t *src, int src_stride,
137                                           uint8_t *dst, int dst_stride,
138                                           const SubpelParams *subpel_params,
139                                           const struct scale_factors *sf, int w,
140                                           int h, ConvolveParams *conv_params,
141                                           InterpFilters interp_filters,
142                                           int is_intrabc, int bd) {
143   assert(conv_params->do_average == 0 || conv_params->do_average == 1);
144   assert(sf);
145   const int is_scaled = has_scale(subpel_params->xs, subpel_params->ys);
146   assert(IMPLIES(is_intrabc, !is_scaled));
147   if (is_scaled) {
148     av1_highbd_convolve_2d_facade(
149         src, src_stride, dst, dst_stride, w, h, interp_filters,
150         subpel_params->subpel_x, subpel_params->xs, subpel_params->subpel_y,
151         subpel_params->ys, 1, conv_params, sf, is_intrabc, bd);
152   } else {
153     SubpelParams sp = *subpel_params;
154     revert_scale_extra_bits(&sp);
155     av1_highbd_convolve_2d_facade(
156         src, src_stride, dst, dst_stride, w, h, interp_filters, sp.subpel_x,
157         sp.xs, sp.subpel_y, sp.ys, 0, conv_params, sf, is_intrabc, bd);
158   }
159 }
160 
161 void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi);
162 int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize,
163                                const struct macroblockd_plane *pd, int dir);
164 
is_interinter_compound_used(COMPOUND_TYPE type,BLOCK_SIZE sb_type)165 static INLINE int is_interinter_compound_used(COMPOUND_TYPE type,
166                                               BLOCK_SIZE sb_type) {
167   const int comp_allowed = is_comp_ref_allowed(sb_type);
168   switch (type) {
169     case COMPOUND_AVERAGE:
170     case COMPOUND_DISTWTD:
171     case COMPOUND_DIFFWTD: return comp_allowed;
172     case COMPOUND_WEDGE:
173       return comp_allowed && wedge_params_lookup[sb_type].bits > 0;
174     default: assert(0); return 0;
175   }
176 }
177 
is_any_masked_compound_used(BLOCK_SIZE sb_type)178 static INLINE int is_any_masked_compound_used(BLOCK_SIZE sb_type) {
179   COMPOUND_TYPE comp_type;
180   int i;
181   if (!is_comp_ref_allowed(sb_type)) return 0;
182   for (i = 0; i < COMPOUND_TYPES; i++) {
183     comp_type = (COMPOUND_TYPE)i;
184     if (is_masked_compound_type(comp_type) &&
185         is_interinter_compound_used(comp_type, sb_type))
186       return 1;
187   }
188   return 0;
189 }
190 
get_wedge_bits_lookup(BLOCK_SIZE sb_type)191 static INLINE int get_wedge_bits_lookup(BLOCK_SIZE sb_type) {
192   return wedge_params_lookup[sb_type].bits;
193 }
194 
get_interinter_wedge_bits(BLOCK_SIZE sb_type)195 static INLINE int get_interinter_wedge_bits(BLOCK_SIZE sb_type) {
196   const int wbits = wedge_params_lookup[sb_type].bits;
197   return (wbits > 0) ? wbits + 1 : 0;
198 }
199 
is_interintra_wedge_used(BLOCK_SIZE sb_type)200 static INLINE int is_interintra_wedge_used(BLOCK_SIZE sb_type) {
201   return wedge_params_lookup[sb_type].bits > 0;
202 }
203 
get_interintra_wedge_bits(BLOCK_SIZE sb_type)204 static INLINE int get_interintra_wedge_bits(BLOCK_SIZE sb_type) {
205   return wedge_params_lookup[sb_type].bits;
206 }
207 
208 void av1_make_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
209                               int dst_stride, const SubpelParams *subpel_params,
210                               const struct scale_factors *sf, int w, int h,
211                               ConvolveParams *conv_params,
212                               InterpFilters interp_filters,
213                               const WarpTypesAllowed *warp_types, int p_col,
214                               int p_row, int plane, int ref,
215                               const MB_MODE_INFO *mi, int build_for_obmc,
216                               const MACROBLOCKD *xd, int can_use_previous);
217 
218 void av1_make_masked_inter_predictor(
219     const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride,
220     const SubpelParams *subpel_params, const struct scale_factors *sf, int w,
221     int h, ConvolveParams *conv_params, InterpFilters interp_filters, int plane,
222     const WarpTypesAllowed *warp_types, int p_col, int p_row, int ref,
223     MACROBLOCKD *xd, int can_use_previous);
224 
225 // TODO(jkoleszar): yet another mv clamping function :-(
clamp_mv_to_umv_border_sb(const MACROBLOCKD * xd,const MV * src_mv,int bw,int bh,int ss_x,int ss_y)226 static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd,
227                                            const MV *src_mv, int bw, int bh,
228                                            int ss_x, int ss_y) {
229   // If the MV points so far into the UMV border that no visible pixels
230   // are used for reconstruction, the subpel part of the MV can be
231   // discarded and the MV limited to 16 pixels with equivalent results.
232   const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS;
233   const int spel_right = spel_left - SUBPEL_SHIFTS;
234   const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS;
235   const int spel_bottom = spel_top - SUBPEL_SHIFTS;
236   MV clamped_mv = { (int16_t)(src_mv->row * (1 << (1 - ss_y))),
237                     (int16_t)(src_mv->col * (1 << (1 - ss_x))) };
238   assert(ss_x <= 1);
239   assert(ss_y <= 1);
240 
241   clamp_mv(&clamped_mv, xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
242            xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
243            xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
244            xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom);
245 
246   return clamped_mv;
247 }
248 
scaled_buffer_offset(int x_offset,int y_offset,int stride,const struct scale_factors * sf)249 static INLINE int64_t scaled_buffer_offset(int x_offset, int y_offset,
250                                            int stride,
251                                            const struct scale_factors *sf) {
252   const int x =
253       sf ? sf->scale_value_x(x_offset, sf) >> SCALE_EXTRA_BITS : x_offset;
254   const int y =
255       sf ? sf->scale_value_y(y_offset, sf) >> SCALE_EXTRA_BITS : y_offset;
256   return (int64_t)y * stride + x;
257 }
258 
setup_pred_plane(struct buf_2d * dst,BLOCK_SIZE bsize,uint8_t * src,int width,int height,int stride,int mi_row,int mi_col,const struct scale_factors * scale,int subsampling_x,int subsampling_y)259 static INLINE void setup_pred_plane(struct buf_2d *dst, BLOCK_SIZE bsize,
260                                     uint8_t *src, int width, int height,
261                                     int stride, int mi_row, int mi_col,
262                                     const struct scale_factors *scale,
263                                     int subsampling_x, int subsampling_y) {
264   // Offset the buffer pointer
265   if (subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
266     mi_row -= 1;
267   if (subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
268     mi_col -= 1;
269 
270   const int x = (MI_SIZE * mi_col) >> subsampling_x;
271   const int y = (MI_SIZE * mi_row) >> subsampling_y;
272   dst->buf = src + scaled_buffer_offset(x, y, stride, scale);
273   dst->buf0 = src;
274   dst->width = width;
275   dst->height = height;
276   dst->stride = stride;
277 }
278 
279 void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize,
280                           const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
281                           const int plane_start, const int plane_end);
282 
283 void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
284                           const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
285                           const struct scale_factors *sf, const int num_planes);
286 
set_default_interp_filters(MB_MODE_INFO * const mbmi,InterpFilter frame_interp_filter)287 static INLINE void set_default_interp_filters(
288     MB_MODE_INFO *const mbmi, InterpFilter frame_interp_filter) {
289   mbmi->interp_filters =
290       av1_broadcast_interp_filter(av1_unswitchable_filter(frame_interp_filter));
291 }
292 
av1_is_interp_needed(const MACROBLOCKD * const xd)293 static INLINE int av1_is_interp_needed(const MACROBLOCKD *const xd) {
294   const MB_MODE_INFO *const mbmi = xd->mi[0];
295   if (mbmi->skip_mode) return 0;
296   if (mbmi->motion_mode == WARPED_CAUSAL) return 0;
297   if (is_nontrans_global_motion(xd, xd->mi[0])) return 0;
298   return 1;
299 }
300 
301 void av1_setup_build_prediction_by_above_pred(
302     MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width,
303     MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt,
304     const int num_planes);
305 void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row,
306                                              uint8_t left_mi_height,
307                                              MB_MODE_INFO *left_mbmi,
308                                              struct build_prediction_ctxt *ctxt,
309                                              const int num_planes);
310 void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
311                                      int mi_row, int mi_col,
312                                      uint8_t *above[MAX_MB_PLANE],
313                                      int above_stride[MAX_MB_PLANE],
314                                      uint8_t *left[MAX_MB_PLANE],
315                                      int left_stride[MAX_MB_PLANE]);
316 
317 const uint8_t *av1_get_obmc_mask(int length);
318 void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd,
319                                       int mi_row, int mi_col);
320 
321 #define MASK_MASTER_SIZE ((MAX_WEDGE_SIZE) << 1)
322 #define MASK_MASTER_STRIDE (MASK_MASTER_SIZE)
323 
324 void av1_init_wedge_masks();
325 
av1_get_contiguous_soft_mask(int wedge_index,int wedge_sign,BLOCK_SIZE sb_type)326 static INLINE const uint8_t *av1_get_contiguous_soft_mask(int wedge_index,
327                                                           int wedge_sign,
328                                                           BLOCK_SIZE sb_type) {
329   return wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index];
330 }
331 
332 const uint8_t *av1_get_compound_type_mask(
333     const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type);
334 
335 // build interintra_predictors for one plane
336 void av1_build_interintra_predictors_sbp(const AV1_COMMON *cm, MACROBLOCKD *xd,
337                                          uint8_t *pred, int stride,
338                                          const BUFFER_SET *ctx, int plane,
339                                          BLOCK_SIZE bsize);
340 
341 void av1_build_interintra_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd,
342                                           uint8_t *upred, uint8_t *vpred,
343                                           int ustride, int vstride,
344                                           const BUFFER_SET *ctx,
345                                           BLOCK_SIZE bsize);
346 
347 void av1_build_intra_predictors_for_interintra(
348     const AV1_COMMON *cm, MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
349     const BUFFER_SET *ctx, uint8_t *intra_pred, int intra_stride);
350 
351 void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
352                             const uint8_t *inter_pred, int inter_stride,
353                             const uint8_t *intra_pred, int intra_stride);
354 
355 void av1_dist_wtd_comp_weight_assign(const AV1_COMMON *cm,
356                                      const MB_MODE_INFO *mbmi, int order_idx,
357                                      int *fwd_offset, int *bck_offset,
358                                      int *use_dist_wtd_comp_avg,
359                                      int is_compound);
360 int av1_allow_warp(const MB_MODE_INFO *const mbmi,
361                    const WarpTypesAllowed *const warp_types,
362                    const WarpedMotionParams *const gm_params,
363                    int build_for_obmc, const struct scale_factors *const sf,
364                    WarpedMotionParams *final_warp_params);
365 
366 #ifdef __cplusplus
367 }  // extern "C"
368 #endif
369 
370 #endif  // AOM_AV1_COMMON_RECONINTER_H_
371