1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2015-2016 Freescale Semiconductor, Inc.
4  * Copyright 2017 NXP
5  */
6 #include <net/pfe_eth/pfe_eth.h>
7 #include <net/pfe_eth/pfe/pfe_hw.h>
8 
9 static struct pe_info pe[MAX_PE];
10 
11 /*
12  * Initializes the PFE library.
13  * Must be called before using any of the library functions.
14  */
pfe_lib_init(void)15 void pfe_lib_init(void)
16 {
17 	int pfe_pe_id;
18 
19 	for (pfe_pe_id = CLASS0_ID; pfe_pe_id <= CLASS_MAX_ID; pfe_pe_id++) {
20 		pe[pfe_pe_id].dmem_base_addr =
21 			(u32)CLASS_DMEM_BASE_ADDR(pfe_pe_id);
22 		pe[pfe_pe_id].pmem_base_addr =
23 			(u32)CLASS_IMEM_BASE_ADDR(pfe_pe_id);
24 		pe[pfe_pe_id].pmem_size = (u32)CLASS_IMEM_SIZE;
25 		pe[pfe_pe_id].mem_access_wdata =
26 			(void *)CLASS_MEM_ACCESS_WDATA;
27 		pe[pfe_pe_id].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR;
28 		pe[pfe_pe_id].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA;
29 	}
30 
31 	for (pfe_pe_id = TMU0_ID; pfe_pe_id <= TMU_MAX_ID; pfe_pe_id++) {
32 		if (pfe_pe_id == TMU2_ID)
33 			continue;
34 		pe[pfe_pe_id].dmem_base_addr =
35 			(u32)TMU_DMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
36 		pe[pfe_pe_id].pmem_base_addr =
37 			(u32)TMU_IMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
38 		pe[pfe_pe_id].pmem_size = (u32)TMU_IMEM_SIZE;
39 		pe[pfe_pe_id].mem_access_wdata = (void *)TMU_MEM_ACCESS_WDATA;
40 		pe[pfe_pe_id].mem_access_addr = (void *)TMU_MEM_ACCESS_ADDR;
41 		pe[pfe_pe_id].mem_access_rdata = (void *)TMU_MEM_ACCESS_RDATA;
42 	}
43 }
44 
45 /*
46  * Writes a buffer to PE internal memory from the host
47  * through indirect access registers.
48  *
49  * @param[in] id	       PE identification (CLASS0_ID, ..., TMU0_ID,
50  *				..., UTIL_ID)
51  * @param[in] mem_access_addr	DMEM destination address (must be 32bit
52  *				aligned)
53  * @param[in] src		Buffer source address
54  * @param[in] len		Number of bytes to copy
55  */
pe_mem_memcpy_to32(int id,u32 mem_access_addr,const void * src,unsigned int len)56 static void pe_mem_memcpy_to32(int id, u32 mem_access_addr, const void *src,
57 			       unsigned int len)
58 {
59 	u32 offset = 0, val, addr;
60 	unsigned int len32 = len >> 2;
61 	int i;
62 
63 	addr = mem_access_addr | PE_MEM_ACCESS_WRITE |
64 		PE_MEM_ACCESS_BYTE_ENABLE(0, 4);
65 
66 	for (i = 0; i < len32; i++, offset += 4, src += 4) {
67 		val = *(u32 *)src;
68 		writel(cpu_to_be32(val), pe[id].mem_access_wdata);
69 		writel(addr + offset, pe[id].mem_access_addr);
70 	}
71 
72 	len = (len & 0x3);
73 	if (len) {
74 		val = 0;
75 
76 		addr = (mem_access_addr | PE_MEM_ACCESS_WRITE |
77 			PE_MEM_ACCESS_BYTE_ENABLE(0, len)) + offset;
78 
79 		for (i = 0; i < len; i++, src++)
80 			val |= (*(u8 *)src) << (8 * i);
81 
82 		writel(cpu_to_be32(val), pe[id].mem_access_wdata);
83 		writel(addr, pe[id].mem_access_addr);
84 	}
85 }
86 
87 /*
88  * Writes a buffer to PE internal data memory (DMEM) from the host
89  * through indirect access registers.
90  * @param[in] id	PE identification (CLASS0_ID, ..., TMU0_ID,
91  *			..., UTIL_ID)
92  * @param[in] dst	DMEM destination address (must be 32bit
93  *			aligned)
94  * @param[in] src	Buffer source address
95  * @param[in] len	Number of bytes to copy
96  */
pe_dmem_memcpy_to32(int id,u32 dst,const void * src,unsigned int len)97 static void pe_dmem_memcpy_to32(int id, u32 dst, const void *src,
98 				unsigned int len)
99 {
100 	pe_mem_memcpy_to32(id, pe[id].dmem_base_addr | dst | PE_MEM_ACCESS_DMEM,
101 			   src, len);
102 }
103 
104 /*
105  * Writes a buffer to PE internal program memory (PMEM) from the host
106  * through indirect access registers.
107  * @param[in] id	PE identification (CLASS0_ID, ..., TMU0_ID,
108  *			..., TMU3_ID)
109  * @param[in] dst	PMEM destination address (must be 32bit
110  *			aligned)
111  * @param[in] src	Buffer source address
112  * @param[in] len	Number of bytes to copy
113  */
pe_pmem_memcpy_to32(int id,u32 dst,const void * src,unsigned int len)114 static void pe_pmem_memcpy_to32(int id, u32 dst, const void *src,
115 				unsigned int len)
116 {
117 	pe_mem_memcpy_to32(id, pe[id].pmem_base_addr | (dst & (pe[id].pmem_size
118 				- 1)) | PE_MEM_ACCESS_IMEM, src, len);
119 }
120 
121 /*
122  * Reads PE internal program memory (IMEM) from the host
123  * through indirect access registers.
124  * @param[in] id		PE identification (CLASS0_ID, ..., TMU0_ID,
125  *				..., TMU3_ID)
126  * @param[in] addr		PMEM read address (must be aligned on size)
127  * @param[in] size		Number of bytes to read (maximum 4, must not
128  *				cross 32bit boundaries)
129  * @return			the data read (in PE endianness, i.e BE).
130  */
pe_pmem_read(int id,u32 addr,u8 size)131 u32 pe_pmem_read(int id, u32 addr, u8 size)
132 {
133 	u32 offset = addr & 0x3;
134 	u32 mask = 0xffffffff >> ((4 - size) << 3);
135 	u32 val;
136 
137 	addr = pe[id].pmem_base_addr | ((addr & ~0x3) & (pe[id].pmem_size - 1))
138 		| PE_MEM_ACCESS_READ | PE_MEM_ACCESS_IMEM |
139 		PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
140 
141 	writel(addr, pe[id].mem_access_addr);
142 	val = be32_to_cpu(readl(pe[id].mem_access_rdata));
143 
144 	return (val >> (offset << 3)) & mask;
145 }
146 
147 /*
148  * Writes PE internal data memory (DMEM) from the host
149  * through indirect access registers.
150  * @param[in] id	PE identification (CLASS0_ID, ..., TMU0_ID,
151  *			..., UTIL_ID)
152  * @param[in] val	Value to write (in PE endianness, i.e BE)
153  * @param[in] addr	DMEM write address (must be aligned on size)
154  * @param[in] size	Number of bytes to write (maximum 4, must not
155  *			cross 32bit boundaries)
156  */
pe_dmem_write(int id,u32 val,u32 addr,u8 size)157 void pe_dmem_write(int id, u32 val, u32 addr, u8 size)
158 {
159 	u32 offset = addr & 0x3;
160 
161 	addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_WRITE |
162 		PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
163 
164 	/* Indirect access interface is byte swapping data being written */
165 	writel(cpu_to_be32(val << (offset << 3)), pe[id].mem_access_wdata);
166 	writel(addr, pe[id].mem_access_addr);
167 }
168 
169 /*
170  * Reads PE internal data memory (DMEM) from the host
171  * through indirect access registers.
172  * @param[in] id		PE identification (CLASS0_ID, ..., TMU0_ID,
173  *				..., UTIL_ID)
174  * @param[in] addr		DMEM read address (must be aligned on size)
175  * @param[in] size		Number of bytes to read (maximum 4, must not
176  *				cross 32bit boundaries)
177  * @return			the data read (in PE endianness, i.e BE).
178  */
pe_dmem_read(int id,u32 addr,u8 size)179 u32 pe_dmem_read(int id, u32 addr, u8 size)
180 {
181 	u32 offset = addr & 0x3;
182 	u32 mask = 0xffffffff >> ((4 - size) << 3);
183 	u32 val;
184 
185 	addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_READ |
186 		PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
187 
188 	writel(addr, pe[id].mem_access_addr);
189 
190 	/* Indirect access interface is byte swapping data being read */
191 	val = be32_to_cpu(readl(pe[id].mem_access_rdata));
192 
193 	return (val >> (offset << 3)) & mask;
194 }
195 
196 /*
197  * This function is used to write to CLASS internal bus peripherals (ccu,
198  * pe-lem) from the host
199  * through indirect access registers.
200  * @param[in]	val	value to write
201  * @param[in]	addr	Address to write to (must be aligned on size)
202  * @param[in]	size	Number of bytes to write (1, 2 or 4)
203  *
204  */
class_bus_write(u32 val,u32 addr,u8 size)205 static void class_bus_write(u32 val, u32 addr, u8 size)
206 {
207 	u32 offset = addr & 0x3;
208 
209 	writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
210 
211 	addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | PE_MEM_ACCESS_WRITE |
212 		(size << 24);
213 
214 	writel(cpu_to_be32(val << (offset << 3)), CLASS_BUS_ACCESS_WDATA);
215 	writel(addr, CLASS_BUS_ACCESS_ADDR);
216 }
217 
218 /*
219  * Reads from CLASS internal bus peripherals (ccu, pe-lem) from the host
220  * through indirect access registers.
221  * @param[in] addr	Address to read from (must be aligned on size)
222  * @param[in] size	Number of bytes to read (1, 2 or 4)
223  * @return		the read data
224  */
class_bus_read(u32 addr,u8 size)225 static u32 class_bus_read(u32 addr, u8 size)
226 {
227 	u32 offset = addr & 0x3;
228 	u32 mask = 0xffffffff >> ((4 - size) << 3);
229 	u32 val;
230 
231 	writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
232 
233 	addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | (size << 24);
234 
235 	writel(addr, CLASS_BUS_ACCESS_ADDR);
236 	val = be32_to_cpu(readl(CLASS_BUS_ACCESS_RDATA));
237 
238 	return (val >> (offset << 3)) & mask;
239 }
240 
241 /*
242  * Writes data to the cluster memory (PE_LMEM)
243  * @param[in] dst	PE LMEM destination address (must be 32bit aligned)
244  * @param[in] src	Buffer source address
245  * @param[in] len	Number of bytes to copy
246  */
class_pe_lmem_memcpy_to32(u32 dst,const void * src,unsigned int len)247 static void class_pe_lmem_memcpy_to32(u32 dst, const void *src,
248 				      unsigned int len)
249 {
250 	u32 len32 = len >> 2;
251 	int i;
252 
253 	for (i = 0; i < len32; i++, src += 4, dst += 4)
254 		class_bus_write(*(u32 *)src, dst, 4);
255 
256 	if (len & 0x2) {
257 		class_bus_write(*(u16 *)src, dst, 2);
258 		src += 2;
259 		dst += 2;
260 	}
261 
262 	if (len & 0x1) {
263 		class_bus_write(*(u8 *)src, dst, 1);
264 		src++;
265 		dst++;
266 	}
267 }
268 
269 /*
270  * Writes value to the cluster memory (PE_LMEM)
271  * @param[in] dst	PE LMEM destination address (must be 32bit aligned)
272  * @param[in] val	Value to write
273  * @param[in] len	Number of bytes to write
274  */
class_pe_lmem_memset(u32 dst,int val,unsigned int len)275 static void class_pe_lmem_memset(u32 dst, int val, unsigned int len)
276 {
277 	u32 len32 = len >> 2;
278 	int i;
279 
280 	val = val | (val << 8) | (val << 16) | (val << 24);
281 
282 	for (i = 0; i < len32; i++, dst += 4)
283 		class_bus_write(val, dst, 4);
284 
285 	if (len & 0x2) {
286 		class_bus_write(val, dst, 2);
287 		dst += 2;
288 	}
289 
290 	if (len & 0x1) {
291 		class_bus_write(val, dst, 1);
292 		dst++;
293 	}
294 }
295 
296 /*
297  * Reads data from the cluster memory (PE_LMEM)
298  * @param[out] dst	pointer to the source buffer data are copied to
299  * @param[in] len	length in bytes of the amount of data to read
300  *			from cluster memory
301  * @param[in] offset	offset in bytes in the cluster memory where data are
302  *			read from
303  */
pe_lmem_read(u32 * dst,u32 len,u32 offset)304 void pe_lmem_read(u32 *dst, u32 len, u32 offset)
305 {
306 	u32 len32 = len >> 2;
307 	int i = 0;
308 
309 	for (i = 0; i < len32; dst++, i++, offset += 4)
310 		*dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, 4);
311 
312 	if (len & 0x03)
313 		*dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, (len & 0x03));
314 }
315 
316 /*
317  * Writes data to the cluster memory (PE_LMEM)
318  * @param[in] src	pointer to the source buffer data are copied from
319  * @param[in] len	length in bytes of the amount of data to write to the
320  *				cluster memory
321  * @param[in] offset	offset in bytes in the cluster memory where data are
322  *				written to
323  */
pe_lmem_write(u32 * src,u32 len,u32 offset)324 void pe_lmem_write(u32 *src, u32 len, u32 offset)
325 {
326 	u32 len32 = len >> 2;
327 	int i = 0;
328 
329 	for (i = 0; i < len32; src++, i++, offset += 4)
330 		class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, 4);
331 
332 	if (len & 0x03)
333 		class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, (len &
334 					0x03));
335 }
336 
337 /*
338  * Loads an elf section into pmem
339  * Code needs to be at least 16bit aligned and only PROGBITS sections are
340  * supported
341  *
342  * @param[in] id	PE identification (CLASS0_ID, ..., TMU0_ID, ...,
343  *					TMU3_ID)
344  * @param[in] data	pointer to the elf firmware
345  * @param[in] shdr	pointer to the elf section header
346  */
pe_load_pmem_section(int id,const void * data,Elf32_Shdr * shdr)347 static int pe_load_pmem_section(int id, const void *data, Elf32_Shdr *shdr)
348 {
349 	u32 offset = be32_to_cpu(shdr->sh_offset);
350 	u32 addr = be32_to_cpu(shdr->sh_addr);
351 	u32 size = be32_to_cpu(shdr->sh_size);
352 	u32 type = be32_to_cpu(shdr->sh_type);
353 
354 	if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
355 		printf(
356 			"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
357 			__func__, addr, (unsigned long)data + offset);
358 
359 		return -1;
360 	}
361 
362 	if (addr & 0x1) {
363 		printf("%s: load address(%x) is not 16bit aligned\n",
364 		       __func__, addr);
365 		return -1;
366 	}
367 
368 	if (size & 0x1) {
369 		printf("%s: load size(%x) is not 16bit aligned\n", __func__,
370 		       size);
371 		return -1;
372 	}
373 
374 		debug("pmem pe%d @%x len %d\n", id, addr, size);
375 	switch (type) {
376 	case SHT_PROGBITS:
377 		pe_pmem_memcpy_to32(id, addr, data + offset, size);
378 		break;
379 
380 	default:
381 		printf("%s: unsupported section type(%x)\n", __func__, type);
382 		return -1;
383 	}
384 
385 	return 0;
386 }
387 
388 /*
389  * Loads an elf section into dmem
390  * Data needs to be at least 32bit aligned, NOBITS sections are correctly
391  * initialized to 0
392  *
393  * @param[in] id	PE identification (CLASS0_ID, ..., TMU0_ID,
394  *			..., UTIL_ID)
395  * @param[in] data	pointer to the elf firmware
396  * @param[in] shdr	pointer to the elf section header
397  */
pe_load_dmem_section(int id,const void * data,Elf32_Shdr * shdr)398 static int pe_load_dmem_section(int id, const void *data, Elf32_Shdr *shdr)
399 {
400 	u32 offset = be32_to_cpu(shdr->sh_offset);
401 	u32 addr = be32_to_cpu(shdr->sh_addr);
402 	u32 size = be32_to_cpu(shdr->sh_size);
403 	u32 type = be32_to_cpu(shdr->sh_type);
404 	u32 size32 = size >> 2;
405 	int i;
406 
407 	if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
408 		printf(
409 			"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
410 			__func__, addr, (unsigned long)data + offset);
411 
412 		return -1;
413 	}
414 
415 	if (addr & 0x3) {
416 		printf("%s: load address(%x) is not 32bit aligned\n",
417 		       __func__, addr);
418 		return -1;
419 	}
420 
421 	switch (type) {
422 	case SHT_PROGBITS:
423 		debug("dmem pe%d @%x len %d\n", id, addr, size);
424 		pe_dmem_memcpy_to32(id, addr, data + offset, size);
425 		break;
426 
427 	case SHT_NOBITS:
428 		debug("dmem zero pe%d @%x len %d\n", id, addr, size);
429 		for (i = 0; i < size32; i++, addr += 4)
430 			pe_dmem_write(id, 0, addr, 4);
431 
432 		if (size & 0x3)
433 			pe_dmem_write(id, 0, addr, size & 0x3);
434 
435 		break;
436 
437 	default:
438 		printf("%s: unsupported section type(%x)\n", __func__, type);
439 		return -1;
440 	}
441 
442 	return 0;
443 }
444 
445 /*
446  * Loads an elf section into DDR
447  * Data needs to be at least 32bit aligned, NOBITS sections are correctly
448  *		initialized to 0
449  *
450  * @param[in] id	PE identification (CLASS0_ID, ..., TMU0_ID,
451  *			..., UTIL_ID)
452  * @param[in] data	pointer to the elf firmware
453  * @param[in] shdr	pointer to the elf section header
454  */
pe_load_ddr_section(int id,const void * data,Elf32_Shdr * shdr)455 static int pe_load_ddr_section(int id, const void *data, Elf32_Shdr *shdr)
456 {
457 	u32 offset = be32_to_cpu(shdr->sh_offset);
458 	u32 addr = be32_to_cpu(shdr->sh_addr);
459 	u32 size = be32_to_cpu(shdr->sh_size);
460 	u32 type = be32_to_cpu(shdr->sh_type);
461 	u32 flags = be32_to_cpu(shdr->sh_flags);
462 
463 	switch (type) {
464 	case SHT_PROGBITS:
465 		debug("ddr  pe%d @%x len %d\n", id, addr, size);
466 		if (flags & SHF_EXECINSTR) {
467 			if (id <= CLASS_MAX_ID) {
468 				/* DO the loading only once in DDR */
469 				if (id == CLASS0_ID) {
470 					debug(
471 						"%s: load address(%x) and elf file address(%lx) rcvd\n"
472 						, __func__, addr,
473 						(unsigned long)data + offset);
474 					if (((unsigned long)(data + offset)
475 						& 0x3) != (addr & 0x3)) {
476 						printf(
477 							"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
478 							__func__, addr,
479 							(unsigned long)data +
480 							offset);
481 
482 						return -1;
483 					}
484 
485 					if (addr & 0x1) {
486 						printf(
487 							"%s: load address(%x) is not 16bit aligned\n"
488 							, __func__, addr);
489 						return -1;
490 					}
491 
492 					if (size & 0x1) {
493 						printf(
494 							"%s: load length(%x) is not 16bit aligned\n"
495 							, __func__, size);
496 						return -1;
497 					}
498 
499 					memcpy((void *)DDR_PFE_TO_VIRT(addr),
500 					       data + offset, size);
501 				}
502 			} else {
503 				printf(
504 					"%s: unsupported ddr section type(%x) for PE(%d)\n"
505 					, __func__, type, id);
506 				return -1;
507 			}
508 
509 		} else {
510 			memcpy((void *)DDR_PFE_TO_VIRT(addr), data + offset,
511 			       size);
512 		}
513 
514 		break;
515 
516 	case SHT_NOBITS:
517 		debug("ddr zero pe%d @%x len %d\n", id, addr, size);
518 		memset((void *)DDR_PFE_TO_VIRT(addr), 0, size);
519 
520 		break;
521 
522 	default:
523 		printf("%s: unsupported section type(%x)\n", __func__, type);
524 		return -1;
525 	}
526 
527 	return 0;
528 }
529 
530 /*
531  * Loads an elf section into pe lmem
532  * Data needs to be at least 32bit aligned, NOBITS sections are correctly
533  * initialized to 0
534  *
535  * @param[in] id	PE identification (CLASS0_ID,..., CLASS5_ID)
536  * @param[in] data	pointer to the elf firmware
537  * @param[in] shdr	pointer to the elf section header
538  */
pe_load_pe_lmem_section(int id,const void * data,Elf32_Shdr * shdr)539 static int pe_load_pe_lmem_section(int id, const void *data, Elf32_Shdr *shdr)
540 {
541 	u32 offset = be32_to_cpu(shdr->sh_offset);
542 	u32 addr = be32_to_cpu(shdr->sh_addr);
543 	u32 size = be32_to_cpu(shdr->sh_size);
544 	u32 type = be32_to_cpu(shdr->sh_type);
545 
546 	if (id > CLASS_MAX_ID) {
547 		printf("%s: unsupported pe-lmem section type(%x) for PE(%d)\n",
548 		       __func__, type, id);
549 		return -1;
550 	}
551 
552 	if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
553 		printf(
554 			"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
555 			__func__, addr, (unsigned long)data + offset);
556 
557 		return -1;
558 	}
559 
560 	if (addr & 0x3) {
561 		printf("%s: load address(%x) is not 32bit aligned\n",
562 		       __func__, addr);
563 		return -1;
564 	}
565 
566 	debug("lmem  pe%d @%x len %d\n", id, addr, size);
567 
568 	switch (type) {
569 	case SHT_PROGBITS:
570 		class_pe_lmem_memcpy_to32(addr, data + offset, size);
571 		break;
572 
573 	case SHT_NOBITS:
574 		class_pe_lmem_memset(addr, 0, size);
575 		break;
576 
577 	default:
578 		printf("%s: unsupported section type(%x)\n", __func__, type);
579 		return -1;
580 	}
581 
582 	return 0;
583 }
584 
585 /*
586  * Loads an elf section into a PE
587  * For now only supports loading a section to dmem (all PE's), pmem (class and
588  * tmu PE's), DDDR (util PE code)
589  * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
590  * ..., UTIL_ID)
591  * @param[in] data	pointer to the elf firmware
592  * @param[in] shdr	pointer to the elf section header
593  */
pe_load_elf_section(int id,const void * data,Elf32_Shdr * shdr)594 int pe_load_elf_section(int id, const void *data, Elf32_Shdr *shdr)
595 {
596 	u32 addr = be32_to_cpu(shdr->sh_addr);
597 	u32 size = be32_to_cpu(shdr->sh_size);
598 
599 	if (IS_DMEM(addr, size))
600 		return pe_load_dmem_section(id, data, shdr);
601 	else if (IS_PMEM(addr, size))
602 		return pe_load_pmem_section(id, data, shdr);
603 	else if (IS_PFE_LMEM(addr, size))
604 		return 0;
605 	else if (IS_PHYS_DDR(addr, size))
606 		return pe_load_ddr_section(id, data, shdr);
607 	else if (IS_PE_LMEM(addr, size))
608 		return pe_load_pe_lmem_section(id, data, shdr);
609 
610 	printf("%s: unsupported memory range(%x)\n", __func__, addr);
611 
612 	return 0;
613 }
614 
615 /**************************** BMU ***************************/
616 /*
617  * Resets a BMU block.
618  * @param[in] base	BMU block base address
619  */
bmu_reset(void * base)620 static inline void bmu_reset(void *base)
621 {
622 	writel(CORE_SW_RESET, base + BMU_CTRL);
623 
624 	/* Wait for self clear */
625 	while (readl(base + BMU_CTRL) & CORE_SW_RESET)
626 		;
627 }
628 
629 /*
630  * Enabled a BMU block.
631  * @param[in] base	BMU block base address
632  */
bmu_enable(void * base)633 void bmu_enable(void *base)
634 {
635 	writel(CORE_ENABLE, base + BMU_CTRL);
636 }
637 
638 /*
639  * Disables a BMU block.
640  * @param[in] base	BMU block base address
641  */
bmu_disable(void * base)642 static inline void bmu_disable(void *base)
643 {
644 	writel(CORE_DISABLE, base + BMU_CTRL);
645 }
646 
647 /*
648  * Sets the configuration of a BMU block.
649  * @param[in] base	BMU block base address
650  * @param[in] cfg	BMU configuration
651  */
bmu_set_config(void * base,struct bmu_cfg * cfg)652 static inline void bmu_set_config(void *base, struct bmu_cfg *cfg)
653 {
654 	writel(cfg->baseaddr, base + BMU_UCAST_BASE_ADDR);
655 	writel(cfg->count & 0xffff, base + BMU_UCAST_CONFIG);
656 	writel(cfg->size & 0xffff, base + BMU_BUF_SIZE);
657 
658 	/* Interrupts are never used */
659 	writel(0x0, base + BMU_INT_ENABLE);
660 }
661 
662 /*
663  * Initializes a BMU block.
664  * @param[in] base	BMU block base address
665  * @param[in] cfg	BMU configuration
666  */
bmu_init(void * base,struct bmu_cfg * cfg)667 void bmu_init(void *base, struct bmu_cfg *cfg)
668 {
669 	bmu_disable(base);
670 
671 	bmu_set_config(base, cfg);
672 
673 	bmu_reset(base);
674 }
675 
676 /**************************** GPI ***************************/
677 /*
678  * Resets a GPI block.
679  * @param[in] base	GPI base address
680  */
gpi_reset(void * base)681 static inline void gpi_reset(void *base)
682 {
683 	writel(CORE_SW_RESET, base + GPI_CTRL);
684 }
685 
686 /*
687  * Enables a GPI block.
688  * @param[in] base	GPI base address
689  */
gpi_enable(void * base)690 void gpi_enable(void *base)
691 {
692 	writel(CORE_ENABLE, base + GPI_CTRL);
693 }
694 
695 /*
696  * Disables a GPI block.
697  * @param[in] base	GPI base address
698  */
gpi_disable(void * base)699 void gpi_disable(void *base)
700 {
701 	writel(CORE_DISABLE, base + GPI_CTRL);
702 }
703 
704 /*
705  * Sets the configuration of a GPI block.
706  * @param[in] base	GPI base address
707  * @param[in] cfg	GPI configuration
708  */
gpi_set_config(void * base,struct gpi_cfg * cfg)709 static inline void gpi_set_config(void *base, struct gpi_cfg *cfg)
710 {
711 	writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_ALLOC_CTRL), base
712 	       + GPI_LMEM_ALLOC_ADDR);
713 	writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_FREE_CTRL), base
714 	       + GPI_LMEM_FREE_ADDR);
715 	writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_ALLOC_CTRL), base
716 	       + GPI_DDR_ALLOC_ADDR);
717 	writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL), base
718 	       + GPI_DDR_FREE_ADDR);
719 	writel(CBUS_VIRT_TO_PFE(CLASS_INQ_PKTPTR), base + GPI_CLASS_ADDR);
720 	writel(DDR_HDR_SIZE, base + GPI_DDR_DATA_OFFSET);
721 	writel(LMEM_HDR_SIZE, base + GPI_LMEM_DATA_OFFSET);
722 	writel(0, base + GPI_LMEM_SEC_BUF_DATA_OFFSET);
723 	writel(0, base + GPI_DDR_SEC_BUF_DATA_OFFSET);
724 	writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, base + GPI_HDR_SIZE);
725 	writel((DDR_BUF_SIZE << 16) | LMEM_BUF_SIZE, base + GPI_BUF_SIZE);
726 
727 	writel(((cfg->lmem_rtry_cnt << 16) | (GPI_DDR_BUF_EN << 1) |
728 		GPI_LMEM_BUF_EN), base + GPI_RX_CONFIG);
729 	writel(cfg->tmlf_txthres, base + GPI_TMLF_TX);
730 	writel(cfg->aseq_len, base + GPI_DTX_ASEQ);
731 
732 	/*Make GPI AXI transactions non-bufferable */
733 	writel(0x1, base + GPI_AXI_CTRL);
734 }
735 
736 /*
737  * Initializes a GPI block.
738  * @param[in] base	GPI base address
739  * @param[in] cfg	GPI configuration
740  */
gpi_init(void * base,struct gpi_cfg * cfg)741 void gpi_init(void *base, struct gpi_cfg *cfg)
742 {
743 	gpi_reset(base);
744 
745 	gpi_disable(base);
746 
747 	gpi_set_config(base, cfg);
748 }
749 
750 /**************************** CLASSIFIER ***************************/
751 /*
752  * Resets CLASSIFIER block.
753  */
class_reset(void)754 static inline void class_reset(void)
755 {
756 	writel(CORE_SW_RESET, CLASS_TX_CTRL);
757 }
758 
759 /*
760  * Enables all CLASS-PE's cores.
761  */
class_enable(void)762 void class_enable(void)
763 {
764 	writel(CORE_ENABLE, CLASS_TX_CTRL);
765 }
766 
767 /*
768  * Disables all CLASS-PE's cores.
769  */
class_disable(void)770 void class_disable(void)
771 {
772 	writel(CORE_DISABLE, CLASS_TX_CTRL);
773 }
774 
775 /*
776  * Sets the configuration of the CLASSIFIER block.
777  * @param[in] cfg	CLASSIFIER configuration
778  */
class_set_config(struct class_cfg * cfg)779 static inline void class_set_config(struct class_cfg *cfg)
780 {
781 	if (PLL_CLK_EN == 0) {
782 		/* Clock ratio: for 1:1 the value is 0 */
783 		writel(0x0, CLASS_PE_SYS_CLK_RATIO);
784 	} else {
785 		/* Clock ratio: for 1:2 the value is 1 */
786 		writel(0x1, CLASS_PE_SYS_CLK_RATIO);
787 	}
788 	writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, CLASS_HDR_SIZE);
789 	writel(LMEM_BUF_SIZE, CLASS_LMEM_BUF_SIZE);
790 	writel(CLASS_ROUTE_ENTRY_SIZE(CLASS_ROUTE_SIZE) |
791 		CLASS_ROUTE_HASH_SIZE(cfg->route_table_hash_bits),
792 		CLASS_ROUTE_HASH_ENTRY_SIZE);
793 	writel(HASH_CRC_PORT_IP | QB2BUS_LE, CLASS_ROUTE_MULTI);
794 
795 	writel(cfg->route_table_baseaddr, CLASS_ROUTE_TABLE_BASE);
796 	memset((void *)DDR_PFE_TO_VIRT(cfg->route_table_baseaddr), 0,
797 	       ROUTE_TABLE_SIZE);
798 
799 	writel(CLASS_PE0_RO_DM_ADDR0_VAL, CLASS_PE0_RO_DM_ADDR0);
800 	writel(CLASS_PE0_RO_DM_ADDR1_VAL, CLASS_PE0_RO_DM_ADDR1);
801 	writel(CLASS_PE0_QB_DM_ADDR0_VAL, CLASS_PE0_QB_DM_ADDR0);
802 	writel(CLASS_PE0_QB_DM_ADDR1_VAL, CLASS_PE0_QB_DM_ADDR1);
803 	writel(CBUS_VIRT_TO_PFE(TMU_PHY_INQ_PKTPTR), CLASS_TM_INQ_ADDR);
804 
805 	writel(23, CLASS_AFULL_THRES);
806 	writel(23, CLASS_TSQ_FIFO_THRES);
807 
808 	writel(24, CLASS_MAX_BUF_CNT);
809 	writel(24, CLASS_TSQ_MAX_CNT);
810 
811 	/*Make Class AXI transactions non-bufferable */
812 	writel(0x1, CLASS_AXI_CTRL);
813 
814 	/*Make Util AXI transactions non-bufferable */
815 	/*Util is disabled in U-boot, do it from here */
816 	writel(0x1, UTIL_AXI_CTRL);
817 }
818 
819 /*
820  * Initializes CLASSIFIER block.
821  * @param[in] cfg	CLASSIFIER configuration
822  */
class_init(struct class_cfg * cfg)823 void class_init(struct class_cfg *cfg)
824 {
825 	class_reset();
826 
827 	class_disable();
828 
829 	class_set_config(cfg);
830 }
831 
832 /**************************** TMU ***************************/
833 /*
834  * Enables TMU-PE cores.
835  * @param[in] pe_mask	TMU PE mask
836  */
tmu_enable(u32 pe_mask)837 void tmu_enable(u32 pe_mask)
838 {
839 	writel(readl(TMU_TX_CTRL) | (pe_mask & 0xF), TMU_TX_CTRL);
840 }
841 
842 /*
843  * Disables TMU cores.
844  * @param[in] pe_mask	TMU PE mask
845  */
tmu_disable(u32 pe_mask)846 void tmu_disable(u32 pe_mask)
847 {
848 	writel(readl(TMU_TX_CTRL) & ~(pe_mask & 0xF), TMU_TX_CTRL);
849 }
850 
851 /*
852  * Initializes TMU block.
853  * @param[in] cfg	TMU configuration
854  */
tmu_init(struct tmu_cfg * cfg)855 void tmu_init(struct tmu_cfg *cfg)
856 {
857 	int q, phyno;
858 
859 	/* keep in soft reset */
860 	writel(SW_RESET, TMU_CTRL);
861 
862 	/*Make Class AXI transactions non-bufferable */
863 	writel(0x1, TMU_AXI_CTRL);
864 
865 	/* enable EMAC PHY ports */
866 	writel(0x3, TMU_SYS_GENERIC_CONTROL);
867 
868 	writel(750, TMU_INQ_WATERMARK);
869 
870 	writel(CBUS_VIRT_TO_PFE(EGPI1_BASE_ADDR + GPI_INQ_PKTPTR),
871 	       TMU_PHY0_INQ_ADDR);
872 	writel(CBUS_VIRT_TO_PFE(EGPI2_BASE_ADDR + GPI_INQ_PKTPTR),
873 	       TMU_PHY1_INQ_ADDR);
874 
875 	writel(CBUS_VIRT_TO_PFE(HGPI_BASE_ADDR + GPI_INQ_PKTPTR),
876 	       TMU_PHY3_INQ_ADDR);
877 	writel(CBUS_VIRT_TO_PFE(HIF_NOCPY_RX_INQ0_PKTPTR), TMU_PHY4_INQ_ADDR);
878 	writel(CBUS_VIRT_TO_PFE(UTIL_INQ_PKTPTR), TMU_PHY5_INQ_ADDR);
879 	writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL),
880 	       TMU_BMU_INQ_ADDR);
881 
882 	/* enabling all 10 schedulers [9:0] of each TDQ  */
883 	writel(0x3FF, TMU_TDQ0_SCH_CTRL);
884 	writel(0x3FF, TMU_TDQ1_SCH_CTRL);
885 	writel(0x3FF, TMU_TDQ3_SCH_CTRL);
886 
887 	if (PLL_CLK_EN == 0) {
888 		/* Clock ratio: for 1:1 the value is 0 */
889 		writel(0x0, TMU_PE_SYS_CLK_RATIO);
890 	} else {
891 		/* Clock ratio: for 1:2 the value is 1 */
892 		writel(0x1, TMU_PE_SYS_CLK_RATIO);
893 	}
894 
895 	/* Extra packet pointers will be stored from this address onwards */
896 	debug("TMU_LLM_BASE_ADDR %x\n", cfg->llm_base_addr);
897 	writel(cfg->llm_base_addr, TMU_LLM_BASE_ADDR);
898 
899 	debug("TMU_LLM_QUE_LEN %x\n", cfg->llm_queue_len);
900 	writel(cfg->llm_queue_len,	TMU_LLM_QUE_LEN);
901 
902 	writel(5, TMU_TDQ_IIFG_CFG);
903 	writel(DDR_BUF_SIZE, TMU_BMU_BUF_SIZE);
904 
905 	writel(0x0, TMU_CTRL);
906 
907 	/* MEM init */
908 	writel(MEM_INIT, TMU_CTRL);
909 
910 	while (!(readl(TMU_CTRL) & MEM_INIT_DONE))
911 		;
912 
913 	/* LLM init */
914 	writel(LLM_INIT, TMU_CTRL);
915 
916 	while (!(readl(TMU_CTRL) & LLM_INIT_DONE))
917 		;
918 
919 	/* set up each queue for tail drop */
920 	for (phyno = 0; phyno < 4; phyno++) {
921 		if (phyno == 2)
922 			continue;
923 		for (q = 0; q < 16; q++) {
924 			u32 qmax;
925 
926 			writel((phyno << 8) | q, TMU_TEQ_CTRL);
927 			writel(BIT(22), TMU_TEQ_QCFG);
928 
929 			if (phyno == 3)
930 				qmax = DEFAULT_TMU3_QDEPTH;
931 			else
932 				qmax = (q == 0) ? DEFAULT_Q0_QDEPTH :
933 					DEFAULT_MAX_QDEPTH;
934 
935 			writel(qmax << 18, TMU_TEQ_HW_PROB_CFG2);
936 			writel(qmax >> 14, TMU_TEQ_HW_PROB_CFG3);
937 		}
938 	}
939 	writel(0x05, TMU_TEQ_DISABLE_DROPCHK);
940 	writel(0, TMU_CTRL);
941 }
942 
943 /**************************** HIF ***************************/
944 /*
945  * Enable hif tx DMA and interrupt
946  */
hif_tx_enable(void)947 void hif_tx_enable(void)
948 {
949 	writel(HIF_CTRL_DMA_EN, HIF_TX_CTRL);
950 }
951 
952 /*
953  * Disable hif tx DMA and interrupt
954  */
hif_tx_disable(void)955 void hif_tx_disable(void)
956 {
957 	u32 hif_int;
958 
959 	writel(0, HIF_TX_CTRL);
960 
961 	hif_int = readl(HIF_INT_ENABLE);
962 	hif_int &= HIF_TXPKT_INT_EN;
963 	writel(hif_int, HIF_INT_ENABLE);
964 }
965 
966 /*
967  * Enable hif rx DMA and interrupt
968  */
hif_rx_enable(void)969 void hif_rx_enable(void)
970 {
971 	writel((HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL);
972 }
973 
974 /*
975  * Disable hif rx DMA and interrupt
976  */
hif_rx_disable(void)977 void hif_rx_disable(void)
978 {
979 	u32 hif_int;
980 
981 	writel(0, HIF_RX_CTRL);
982 
983 	hif_int = readl(HIF_INT_ENABLE);
984 	hif_int &= HIF_RXPKT_INT_EN;
985 	writel(hif_int, HIF_INT_ENABLE);
986 }
987 
988 /*
989  * Initializes HIF copy block.
990  */
hif_init(void)991 void hif_init(void)
992 {
993 	/* Initialize HIF registers */
994 	writel(HIF_RX_POLL_CTRL_CYCLE << 16 | HIF_TX_POLL_CTRL_CYCLE,
995 	       HIF_POLL_CTRL);
996 	/* Make HIF AXI transactions non-bufferable */
997 	writel(0x1, HIF_AXI_CTRL);
998 }
999