1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetLoweringObjectFile.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
32 #include <cctype>
33 using namespace llvm;
34 
35 /// We are in the process of implementing a new TypeLegalization action
36 /// - the promotion of vector elements. This feature is disabled by default
37 /// and only enabled using this flag.
38 static cl::opt<bool>
39 AllowPromoteIntElem("promote-elements", cl::Hidden,
40   cl::desc("Allow promotion of integer vector element types"));
41 
42 namespace llvm {
getTLSModel(const GlobalValue * GV,Reloc::Model reloc)43 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
44   bool isLocal = GV->hasLocalLinkage();
45   bool isDeclaration = GV->isDeclaration();
46   // FIXME: what should we do for protected and internal visibility?
47   // For variables, is internal different from hidden?
48   bool isHidden = GV->hasHiddenVisibility();
49 
50   if (reloc == Reloc::PIC_) {
51     if (isLocal || isHidden)
52       return TLSModel::LocalDynamic;
53     else
54       return TLSModel::GeneralDynamic;
55   } else {
56     if (!isDeclaration || isHidden)
57       return TLSModel::LocalExec;
58     else
59       return TLSModel::InitialExec;
60   }
61 }
62 }
63 
64 /// InitLibcallNames - Set default libcall names.
65 ///
InitLibcallNames(const char ** Names)66 static void InitLibcallNames(const char **Names) {
67   Names[RTLIB::SHL_I16] = "__ashlhi3";
68   Names[RTLIB::SHL_I32] = "__ashlsi3";
69   Names[RTLIB::SHL_I64] = "__ashldi3";
70   Names[RTLIB::SHL_I128] = "__ashlti3";
71   Names[RTLIB::SRL_I16] = "__lshrhi3";
72   Names[RTLIB::SRL_I32] = "__lshrsi3";
73   Names[RTLIB::SRL_I64] = "__lshrdi3";
74   Names[RTLIB::SRL_I128] = "__lshrti3";
75   Names[RTLIB::SRA_I16] = "__ashrhi3";
76   Names[RTLIB::SRA_I32] = "__ashrsi3";
77   Names[RTLIB::SRA_I64] = "__ashrdi3";
78   Names[RTLIB::SRA_I128] = "__ashrti3";
79   Names[RTLIB::MUL_I8] = "__mulqi3";
80   Names[RTLIB::MUL_I16] = "__mulhi3";
81   Names[RTLIB::MUL_I32] = "__mulsi3";
82   Names[RTLIB::MUL_I64] = "__muldi3";
83   Names[RTLIB::MUL_I128] = "__multi3";
84   Names[RTLIB::MULO_I32] = "__mulosi4";
85   Names[RTLIB::MULO_I64] = "__mulodi4";
86   Names[RTLIB::MULO_I128] = "__muloti4";
87   Names[RTLIB::SDIV_I8] = "__divqi3";
88   Names[RTLIB::SDIV_I16] = "__divhi3";
89   Names[RTLIB::SDIV_I32] = "__divsi3";
90   Names[RTLIB::SDIV_I64] = "__divdi3";
91   Names[RTLIB::SDIV_I128] = "__divti3";
92   Names[RTLIB::UDIV_I8] = "__udivqi3";
93   Names[RTLIB::UDIV_I16] = "__udivhi3";
94   Names[RTLIB::UDIV_I32] = "__udivsi3";
95   Names[RTLIB::UDIV_I64] = "__udivdi3";
96   Names[RTLIB::UDIV_I128] = "__udivti3";
97   Names[RTLIB::SREM_I8] = "__modqi3";
98   Names[RTLIB::SREM_I16] = "__modhi3";
99   Names[RTLIB::SREM_I32] = "__modsi3";
100   Names[RTLIB::SREM_I64] = "__moddi3";
101   Names[RTLIB::SREM_I128] = "__modti3";
102   Names[RTLIB::UREM_I8] = "__umodqi3";
103   Names[RTLIB::UREM_I16] = "__umodhi3";
104   Names[RTLIB::UREM_I32] = "__umodsi3";
105   Names[RTLIB::UREM_I64] = "__umoddi3";
106   Names[RTLIB::UREM_I128] = "__umodti3";
107 
108   // These are generally not available.
109   Names[RTLIB::SDIVREM_I8] = 0;
110   Names[RTLIB::SDIVREM_I16] = 0;
111   Names[RTLIB::SDIVREM_I32] = 0;
112   Names[RTLIB::SDIVREM_I64] = 0;
113   Names[RTLIB::SDIVREM_I128] = 0;
114   Names[RTLIB::UDIVREM_I8] = 0;
115   Names[RTLIB::UDIVREM_I16] = 0;
116   Names[RTLIB::UDIVREM_I32] = 0;
117   Names[RTLIB::UDIVREM_I64] = 0;
118   Names[RTLIB::UDIVREM_I128] = 0;
119 
120   Names[RTLIB::NEG_I32] = "__negsi2";
121   Names[RTLIB::NEG_I64] = "__negdi2";
122   Names[RTLIB::ADD_F32] = "__addsf3";
123   Names[RTLIB::ADD_F64] = "__adddf3";
124   Names[RTLIB::ADD_F80] = "__addxf3";
125   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
126   Names[RTLIB::SUB_F32] = "__subsf3";
127   Names[RTLIB::SUB_F64] = "__subdf3";
128   Names[RTLIB::SUB_F80] = "__subxf3";
129   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
130   Names[RTLIB::MUL_F32] = "__mulsf3";
131   Names[RTLIB::MUL_F64] = "__muldf3";
132   Names[RTLIB::MUL_F80] = "__mulxf3";
133   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
134   Names[RTLIB::DIV_F32] = "__divsf3";
135   Names[RTLIB::DIV_F64] = "__divdf3";
136   Names[RTLIB::DIV_F80] = "__divxf3";
137   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
138   Names[RTLIB::REM_F32] = "fmodf";
139   Names[RTLIB::REM_F64] = "fmod";
140   Names[RTLIB::REM_F80] = "fmodl";
141   Names[RTLIB::REM_PPCF128] = "fmodl";
142   Names[RTLIB::FMA_F32] = "fmaf";
143   Names[RTLIB::FMA_F64] = "fma";
144   Names[RTLIB::FMA_F80] = "fmal";
145   Names[RTLIB::FMA_PPCF128] = "fmal";
146   Names[RTLIB::POWI_F32] = "__powisf2";
147   Names[RTLIB::POWI_F64] = "__powidf2";
148   Names[RTLIB::POWI_F80] = "__powixf2";
149   Names[RTLIB::POWI_PPCF128] = "__powitf2";
150   Names[RTLIB::SQRT_F32] = "sqrtf";
151   Names[RTLIB::SQRT_F64] = "sqrt";
152   Names[RTLIB::SQRT_F80] = "sqrtl";
153   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
154   Names[RTLIB::LOG_F32] = "logf";
155   Names[RTLIB::LOG_F64] = "log";
156   Names[RTLIB::LOG_F80] = "logl";
157   Names[RTLIB::LOG_PPCF128] = "logl";
158   Names[RTLIB::LOG2_F32] = "log2f";
159   Names[RTLIB::LOG2_F64] = "log2";
160   Names[RTLIB::LOG2_F80] = "log2l";
161   Names[RTLIB::LOG2_PPCF128] = "log2l";
162   Names[RTLIB::LOG10_F32] = "log10f";
163   Names[RTLIB::LOG10_F64] = "log10";
164   Names[RTLIB::LOG10_F80] = "log10l";
165   Names[RTLIB::LOG10_PPCF128] = "log10l";
166   Names[RTLIB::EXP_F32] = "expf";
167   Names[RTLIB::EXP_F64] = "exp";
168   Names[RTLIB::EXP_F80] = "expl";
169   Names[RTLIB::EXP_PPCF128] = "expl";
170   Names[RTLIB::EXP2_F32] = "exp2f";
171   Names[RTLIB::EXP2_F64] = "exp2";
172   Names[RTLIB::EXP2_F80] = "exp2l";
173   Names[RTLIB::EXP2_PPCF128] = "exp2l";
174   Names[RTLIB::SIN_F32] = "sinf";
175   Names[RTLIB::SIN_F64] = "sin";
176   Names[RTLIB::SIN_F80] = "sinl";
177   Names[RTLIB::SIN_PPCF128] = "sinl";
178   Names[RTLIB::COS_F32] = "cosf";
179   Names[RTLIB::COS_F64] = "cos";
180   Names[RTLIB::COS_F80] = "cosl";
181   Names[RTLIB::COS_PPCF128] = "cosl";
182   Names[RTLIB::POW_F32] = "powf";
183   Names[RTLIB::POW_F64] = "pow";
184   Names[RTLIB::POW_F80] = "powl";
185   Names[RTLIB::POW_PPCF128] = "powl";
186   Names[RTLIB::CEIL_F32] = "ceilf";
187   Names[RTLIB::CEIL_F64] = "ceil";
188   Names[RTLIB::CEIL_F80] = "ceill";
189   Names[RTLIB::CEIL_PPCF128] = "ceill";
190   Names[RTLIB::TRUNC_F32] = "truncf";
191   Names[RTLIB::TRUNC_F64] = "trunc";
192   Names[RTLIB::TRUNC_F80] = "truncl";
193   Names[RTLIB::TRUNC_PPCF128] = "truncl";
194   Names[RTLIB::RINT_F32] = "rintf";
195   Names[RTLIB::RINT_F64] = "rint";
196   Names[RTLIB::RINT_F80] = "rintl";
197   Names[RTLIB::RINT_PPCF128] = "rintl";
198   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
199   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
200   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
201   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
202   Names[RTLIB::FLOOR_F32] = "floorf";
203   Names[RTLIB::FLOOR_F64] = "floor";
204   Names[RTLIB::FLOOR_F80] = "floorl";
205   Names[RTLIB::FLOOR_PPCF128] = "floorl";
206   Names[RTLIB::COPYSIGN_F32] = "copysignf";
207   Names[RTLIB::COPYSIGN_F64] = "copysign";
208   Names[RTLIB::COPYSIGN_F80] = "copysignl";
209   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
210   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
211   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
212   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
213   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
214   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
215   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
216   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
217   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
218   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
219   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
220   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
221   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
222   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
223   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
224   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
225   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
226   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
227   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
228   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
229   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
230   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
231   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
232   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
233   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
234   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
235   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
236   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
237   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
238   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
239   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
240   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
241   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
242   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
243   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
244   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
245   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
246   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
247   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
248   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
249   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
250   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
251   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
252   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
253   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
254   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
255   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
256   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
257   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
258   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
259   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
260   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
261   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
262   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
263   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
264   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
265   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
266   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
267   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
268   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
269   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
270   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
271   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
272   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
273   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
274   Names[RTLIB::OEQ_F32] = "__eqsf2";
275   Names[RTLIB::OEQ_F64] = "__eqdf2";
276   Names[RTLIB::UNE_F32] = "__nesf2";
277   Names[RTLIB::UNE_F64] = "__nedf2";
278   Names[RTLIB::OGE_F32] = "__gesf2";
279   Names[RTLIB::OGE_F64] = "__gedf2";
280   Names[RTLIB::OLT_F32] = "__ltsf2";
281   Names[RTLIB::OLT_F64] = "__ltdf2";
282   Names[RTLIB::OLE_F32] = "__lesf2";
283   Names[RTLIB::OLE_F64] = "__ledf2";
284   Names[RTLIB::OGT_F32] = "__gtsf2";
285   Names[RTLIB::OGT_F64] = "__gtdf2";
286   Names[RTLIB::UO_F32] = "__unordsf2";
287   Names[RTLIB::UO_F64] = "__unorddf2";
288   Names[RTLIB::O_F32] = "__unordsf2";
289   Names[RTLIB::O_F64] = "__unorddf2";
290   Names[RTLIB::MEMCPY] = "memcpy";
291   Names[RTLIB::MEMMOVE] = "memmove";
292   Names[RTLIB::MEMSET] = "memset";
293   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
294   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
295   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
296   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
297   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
298   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
299   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
300   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
301   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
302   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
303   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
304   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
305   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
306   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
307   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
308   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
309   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
310   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
311   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
312   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
313   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
314   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
315   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
316   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
317   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
318   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
319   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
320   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
321   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
322   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
323   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
324   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
325   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
326 }
327 
328 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
329 ///
InitLibcallCallingConvs(CallingConv::ID * CCs)330 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
331   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
332     CCs[i] = CallingConv::C;
333   }
334 }
335 
336 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
337 /// UNKNOWN_LIBCALL if there is none.
getFPEXT(EVT OpVT,EVT RetVT)338 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
339   if (OpVT == MVT::f32) {
340     if (RetVT == MVT::f64)
341       return FPEXT_F32_F64;
342   }
343 
344   return UNKNOWN_LIBCALL;
345 }
346 
347 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
348 /// UNKNOWN_LIBCALL if there is none.
getFPROUND(EVT OpVT,EVT RetVT)349 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
350   if (RetVT == MVT::f32) {
351     if (OpVT == MVT::f64)
352       return FPROUND_F64_F32;
353     if (OpVT == MVT::f80)
354       return FPROUND_F80_F32;
355     if (OpVT == MVT::ppcf128)
356       return FPROUND_PPCF128_F32;
357   } else if (RetVT == MVT::f64) {
358     if (OpVT == MVT::f80)
359       return FPROUND_F80_F64;
360     if (OpVT == MVT::ppcf128)
361       return FPROUND_PPCF128_F64;
362   }
363 
364   return UNKNOWN_LIBCALL;
365 }
366 
367 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
368 /// UNKNOWN_LIBCALL if there is none.
getFPTOSINT(EVT OpVT,EVT RetVT)369 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
370   if (OpVT == MVT::f32) {
371     if (RetVT == MVT::i8)
372       return FPTOSINT_F32_I8;
373     if (RetVT == MVT::i16)
374       return FPTOSINT_F32_I16;
375     if (RetVT == MVT::i32)
376       return FPTOSINT_F32_I32;
377     if (RetVT == MVT::i64)
378       return FPTOSINT_F32_I64;
379     if (RetVT == MVT::i128)
380       return FPTOSINT_F32_I128;
381   } else if (OpVT == MVT::f64) {
382     if (RetVT == MVT::i8)
383       return FPTOSINT_F64_I8;
384     if (RetVT == MVT::i16)
385       return FPTOSINT_F64_I16;
386     if (RetVT == MVT::i32)
387       return FPTOSINT_F64_I32;
388     if (RetVT == MVT::i64)
389       return FPTOSINT_F64_I64;
390     if (RetVT == MVT::i128)
391       return FPTOSINT_F64_I128;
392   } else if (OpVT == MVT::f80) {
393     if (RetVT == MVT::i32)
394       return FPTOSINT_F80_I32;
395     if (RetVT == MVT::i64)
396       return FPTOSINT_F80_I64;
397     if (RetVT == MVT::i128)
398       return FPTOSINT_F80_I128;
399   } else if (OpVT == MVT::ppcf128) {
400     if (RetVT == MVT::i32)
401       return FPTOSINT_PPCF128_I32;
402     if (RetVT == MVT::i64)
403       return FPTOSINT_PPCF128_I64;
404     if (RetVT == MVT::i128)
405       return FPTOSINT_PPCF128_I128;
406   }
407   return UNKNOWN_LIBCALL;
408 }
409 
410 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
411 /// UNKNOWN_LIBCALL if there is none.
getFPTOUINT(EVT OpVT,EVT RetVT)412 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
413   if (OpVT == MVT::f32) {
414     if (RetVT == MVT::i8)
415       return FPTOUINT_F32_I8;
416     if (RetVT == MVT::i16)
417       return FPTOUINT_F32_I16;
418     if (RetVT == MVT::i32)
419       return FPTOUINT_F32_I32;
420     if (RetVT == MVT::i64)
421       return FPTOUINT_F32_I64;
422     if (RetVT == MVT::i128)
423       return FPTOUINT_F32_I128;
424   } else if (OpVT == MVT::f64) {
425     if (RetVT == MVT::i8)
426       return FPTOUINT_F64_I8;
427     if (RetVT == MVT::i16)
428       return FPTOUINT_F64_I16;
429     if (RetVT == MVT::i32)
430       return FPTOUINT_F64_I32;
431     if (RetVT == MVT::i64)
432       return FPTOUINT_F64_I64;
433     if (RetVT == MVT::i128)
434       return FPTOUINT_F64_I128;
435   } else if (OpVT == MVT::f80) {
436     if (RetVT == MVT::i32)
437       return FPTOUINT_F80_I32;
438     if (RetVT == MVT::i64)
439       return FPTOUINT_F80_I64;
440     if (RetVT == MVT::i128)
441       return FPTOUINT_F80_I128;
442   } else if (OpVT == MVT::ppcf128) {
443     if (RetVT == MVT::i32)
444       return FPTOUINT_PPCF128_I32;
445     if (RetVT == MVT::i64)
446       return FPTOUINT_PPCF128_I64;
447     if (RetVT == MVT::i128)
448       return FPTOUINT_PPCF128_I128;
449   }
450   return UNKNOWN_LIBCALL;
451 }
452 
453 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
454 /// UNKNOWN_LIBCALL if there is none.
getSINTTOFP(EVT OpVT,EVT RetVT)455 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
456   if (OpVT == MVT::i32) {
457     if (RetVT == MVT::f32)
458       return SINTTOFP_I32_F32;
459     else if (RetVT == MVT::f64)
460       return SINTTOFP_I32_F64;
461     else if (RetVT == MVT::f80)
462       return SINTTOFP_I32_F80;
463     else if (RetVT == MVT::ppcf128)
464       return SINTTOFP_I32_PPCF128;
465   } else if (OpVT == MVT::i64) {
466     if (RetVT == MVT::f32)
467       return SINTTOFP_I64_F32;
468     else if (RetVT == MVT::f64)
469       return SINTTOFP_I64_F64;
470     else if (RetVT == MVT::f80)
471       return SINTTOFP_I64_F80;
472     else if (RetVT == MVT::ppcf128)
473       return SINTTOFP_I64_PPCF128;
474   } else if (OpVT == MVT::i128) {
475     if (RetVT == MVT::f32)
476       return SINTTOFP_I128_F32;
477     else if (RetVT == MVT::f64)
478       return SINTTOFP_I128_F64;
479     else if (RetVT == MVT::f80)
480       return SINTTOFP_I128_F80;
481     else if (RetVT == MVT::ppcf128)
482       return SINTTOFP_I128_PPCF128;
483   }
484   return UNKNOWN_LIBCALL;
485 }
486 
487 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
488 /// UNKNOWN_LIBCALL if there is none.
getUINTTOFP(EVT OpVT,EVT RetVT)489 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
490   if (OpVT == MVT::i32) {
491     if (RetVT == MVT::f32)
492       return UINTTOFP_I32_F32;
493     else if (RetVT == MVT::f64)
494       return UINTTOFP_I32_F64;
495     else if (RetVT == MVT::f80)
496       return UINTTOFP_I32_F80;
497     else if (RetVT == MVT::ppcf128)
498       return UINTTOFP_I32_PPCF128;
499   } else if (OpVT == MVT::i64) {
500     if (RetVT == MVT::f32)
501       return UINTTOFP_I64_F32;
502     else if (RetVT == MVT::f64)
503       return UINTTOFP_I64_F64;
504     else if (RetVT == MVT::f80)
505       return UINTTOFP_I64_F80;
506     else if (RetVT == MVT::ppcf128)
507       return UINTTOFP_I64_PPCF128;
508   } else if (OpVT == MVT::i128) {
509     if (RetVT == MVT::f32)
510       return UINTTOFP_I128_F32;
511     else if (RetVT == MVT::f64)
512       return UINTTOFP_I128_F64;
513     else if (RetVT == MVT::f80)
514       return UINTTOFP_I128_F80;
515     else if (RetVT == MVT::ppcf128)
516       return UINTTOFP_I128_PPCF128;
517   }
518   return UNKNOWN_LIBCALL;
519 }
520 
521 /// InitCmpLibcallCCs - Set default comparison libcall CC.
522 ///
InitCmpLibcallCCs(ISD::CondCode * CCs)523 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
524   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
525   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
526   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
527   CCs[RTLIB::UNE_F32] = ISD::SETNE;
528   CCs[RTLIB::UNE_F64] = ISD::SETNE;
529   CCs[RTLIB::OGE_F32] = ISD::SETGE;
530   CCs[RTLIB::OGE_F64] = ISD::SETGE;
531   CCs[RTLIB::OLT_F32] = ISD::SETLT;
532   CCs[RTLIB::OLT_F64] = ISD::SETLT;
533   CCs[RTLIB::OLE_F32] = ISD::SETLE;
534   CCs[RTLIB::OLE_F64] = ISD::SETLE;
535   CCs[RTLIB::OGT_F32] = ISD::SETGT;
536   CCs[RTLIB::OGT_F64] = ISD::SETGT;
537   CCs[RTLIB::UO_F32] = ISD::SETNE;
538   CCs[RTLIB::UO_F64] = ISD::SETNE;
539   CCs[RTLIB::O_F32] = ISD::SETEQ;
540   CCs[RTLIB::O_F64] = ISD::SETEQ;
541 }
542 
543 /// NOTE: The constructor takes ownership of TLOF.
TargetLowering(const TargetMachine & tm,const TargetLoweringObjectFile * tlof)544 TargetLowering::TargetLowering(const TargetMachine &tm,
545                                const TargetLoweringObjectFile *tlof)
546   : TM(tm), TD(TM.getTargetData()), TLOF(*tlof),
547   mayPromoteElements(AllowPromoteIntElem) {
548   // All operations default to being supported.
549   memset(OpActions, 0, sizeof(OpActions));
550   memset(LoadExtActions, 0, sizeof(LoadExtActions));
551   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
552   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
553   memset(CondCodeActions, 0, sizeof(CondCodeActions));
554 
555   // Set default actions for various operations.
556   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
557     // Default all indexed load / store to expand.
558     for (unsigned IM = (unsigned)ISD::PRE_INC;
559          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
560       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
561       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
562     }
563 
564     // These operations default to expand.
565     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
566     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
567   }
568 
569   // Most targets ignore the @llvm.prefetch intrinsic.
570   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
571 
572   // ConstantFP nodes default to expand.  Targets can either change this to
573   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
574   // to optimize expansions for certain constants.
575   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
576   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
577   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
578 
579   // These library functions default to expand.
580   setOperationAction(ISD::FLOG , MVT::f64, Expand);
581   setOperationAction(ISD::FLOG2, MVT::f64, Expand);
582   setOperationAction(ISD::FLOG10,MVT::f64, Expand);
583   setOperationAction(ISD::FEXP , MVT::f64, Expand);
584   setOperationAction(ISD::FEXP2, MVT::f64, Expand);
585   setOperationAction(ISD::FLOG , MVT::f32, Expand);
586   setOperationAction(ISD::FLOG2, MVT::f32, Expand);
587   setOperationAction(ISD::FLOG10,MVT::f32, Expand);
588   setOperationAction(ISD::FEXP , MVT::f32, Expand);
589   setOperationAction(ISD::FEXP2, MVT::f32, Expand);
590 
591   // Default ISD::TRAP to expand (which turns it into abort).
592   setOperationAction(ISD::TRAP, MVT::Other, Expand);
593 
594   IsLittleEndian = TD->isLittleEndian();
595   PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
596   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
597   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
598   maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
599   maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
600     = maxStoresPerMemmoveOptSize = 4;
601   benefitFromCodePlacementOpt = false;
602   UseUnderscoreSetJmp = false;
603   UseUnderscoreLongJmp = false;
604   SelectIsExpensive = false;
605   IntDivIsCheap = false;
606   Pow2DivIsCheap = false;
607   JumpIsExpensive = false;
608   StackPointerRegisterToSaveRestore = 0;
609   ExceptionPointerRegister = 0;
610   ExceptionSelectorRegister = 0;
611   BooleanContents = UndefinedBooleanContent;
612   BooleanVectorContents = UndefinedBooleanContent;
613   SchedPreferenceInfo = Sched::Latency;
614   JumpBufSize = 0;
615   JumpBufAlignment = 0;
616   MinFunctionAlignment = 0;
617   PrefFunctionAlignment = 0;
618   PrefLoopAlignment = 0;
619   MinStackArgumentAlignment = 1;
620   ShouldFoldAtomicFences = false;
621   InsertFencesForAtomic = false;
622 
623   InitLibcallNames(LibcallRoutineNames);
624   InitCmpLibcallCCs(CmpLibcallCCs);
625   InitLibcallCallingConvs(LibcallCallingConvs);
626 }
627 
~TargetLowering()628 TargetLowering::~TargetLowering() {
629   delete &TLOF;
630 }
631 
getShiftAmountTy(EVT LHSTy) const632 MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
633   return MVT::getIntegerVT(8*TD->getPointerSize());
634 }
635 
636 /// canOpTrap - Returns true if the operation can trap for the value type.
637 /// VT must be a legal type.
canOpTrap(unsigned Op,EVT VT) const638 bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
639   assert(isTypeLegal(VT));
640   switch (Op) {
641   default:
642     return false;
643   case ISD::FDIV:
644   case ISD::FREM:
645   case ISD::SDIV:
646   case ISD::UDIV:
647   case ISD::SREM:
648   case ISD::UREM:
649     return true;
650   }
651 }
652 
653 
getVectorTypeBreakdownMVT(MVT VT,MVT & IntermediateVT,unsigned & NumIntermediates,EVT & RegisterVT,TargetLowering * TLI)654 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
655                                           unsigned &NumIntermediates,
656                                           EVT &RegisterVT,
657                                           TargetLowering *TLI) {
658   // Figure out the right, legal destination reg to copy into.
659   unsigned NumElts = VT.getVectorNumElements();
660   MVT EltTy = VT.getVectorElementType();
661 
662   unsigned NumVectorRegs = 1;
663 
664   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
665   // could break down into LHS/RHS like LegalizeDAG does.
666   if (!isPowerOf2_32(NumElts)) {
667     NumVectorRegs = NumElts;
668     NumElts = 1;
669   }
670 
671   // Divide the input until we get to a supported size.  This will always
672   // end with a scalar if the target doesn't support vectors.
673   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
674     NumElts >>= 1;
675     NumVectorRegs <<= 1;
676   }
677 
678   NumIntermediates = NumVectorRegs;
679 
680   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
681   if (!TLI->isTypeLegal(NewVT))
682     NewVT = EltTy;
683   IntermediateVT = NewVT;
684 
685   unsigned NewVTSize = NewVT.getSizeInBits();
686 
687   // Convert sizes such as i33 to i64.
688   if (!isPowerOf2_32(NewVTSize))
689     NewVTSize = NextPowerOf2(NewVTSize);
690 
691   EVT DestVT = TLI->getRegisterType(NewVT);
692   RegisterVT = DestVT;
693   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
694     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
695 
696   // Otherwise, promotion or legal types use the same number of registers as
697   // the vector decimated to the appropriate level.
698   return NumVectorRegs;
699 }
700 
701 /// isLegalRC - Return true if the value types that can be represented by the
702 /// specified register class are all legal.
isLegalRC(const TargetRegisterClass * RC) const703 bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
704   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
705        I != E; ++I) {
706     if (isTypeLegal(*I))
707       return true;
708   }
709   return false;
710 }
711 
712 /// hasLegalSuperRegRegClasses - Return true if the specified register class
713 /// has one or more super-reg register classes that are legal.
714 bool
hasLegalSuperRegRegClasses(const TargetRegisterClass * RC) const715 TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
716   if (*RC->superregclasses_begin() == 0)
717     return false;
718   for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
719          E = RC->superregclasses_end(); I != E; ++I) {
720     const TargetRegisterClass *RRC = *I;
721     if (isLegalRC(RRC))
722       return true;
723   }
724   return false;
725 }
726 
727 /// findRepresentativeClass - Return the largest legal super-reg register class
728 /// of the register class for the specified type and its associated "cost".
729 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(EVT VT) const730 TargetLowering::findRepresentativeClass(EVT VT) const {
731   const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
732   if (!RC)
733     return std::make_pair(RC, 0);
734   const TargetRegisterClass *BestRC = RC;
735   for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
736          E = RC->superregclasses_end(); I != E; ++I) {
737     const TargetRegisterClass *RRC = *I;
738     if (RRC->isASubClass() || !isLegalRC(RRC))
739       continue;
740     if (!hasLegalSuperRegRegClasses(RRC))
741       return std::make_pair(RRC, 1);
742     BestRC = RRC;
743   }
744   return std::make_pair(BestRC, 1);
745 }
746 
747 
748 /// computeRegisterProperties - Once all of the register classes are added,
749 /// this allows us to compute derived properties we expose.
computeRegisterProperties()750 void TargetLowering::computeRegisterProperties() {
751   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
752          "Too many value types for ValueTypeActions to hold!");
753 
754   // Everything defaults to needing one register.
755   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
756     NumRegistersForVT[i] = 1;
757     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
758   }
759   // ...except isVoid, which doesn't need any registers.
760   NumRegistersForVT[MVT::isVoid] = 0;
761 
762   // Find the largest integer register class.
763   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
764   for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
765     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
766 
767   // Every integer value type larger than this largest register takes twice as
768   // many registers to represent as the previous ValueType.
769   for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
770     EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
771     if (!ExpandedVT.isInteger())
772       break;
773     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
774     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
775     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
776     ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
777   }
778 
779   // Inspect all of the ValueType's smaller than the largest integer
780   // register to see which ones need promotion.
781   unsigned LegalIntReg = LargestIntReg;
782   for (unsigned IntReg = LargestIntReg - 1;
783        IntReg >= (unsigned)MVT::i1; --IntReg) {
784     EVT IVT = (MVT::SimpleValueType)IntReg;
785     if (isTypeLegal(IVT)) {
786       LegalIntReg = IntReg;
787     } else {
788       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
789         (MVT::SimpleValueType)LegalIntReg;
790       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
791     }
792   }
793 
794   // ppcf128 type is really two f64's.
795   if (!isTypeLegal(MVT::ppcf128)) {
796     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
797     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
798     TransformToType[MVT::ppcf128] = MVT::f64;
799     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
800   }
801 
802   // Decide how to handle f64. If the target does not have native f64 support,
803   // expand it to i64 and we will be generating soft float library calls.
804   if (!isTypeLegal(MVT::f64)) {
805     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
806     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
807     TransformToType[MVT::f64] = MVT::i64;
808     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
809   }
810 
811   // Decide how to handle f32. If the target does not have native support for
812   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
813   if (!isTypeLegal(MVT::f32)) {
814     if (isTypeLegal(MVT::f64)) {
815       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
816       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
817       TransformToType[MVT::f32] = MVT::f64;
818       ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
819     } else {
820       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
821       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
822       TransformToType[MVT::f32] = MVT::i32;
823       ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
824     }
825   }
826 
827   // Loop over all of the vector value types to see which need transformations.
828   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
829        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
830     MVT VT = (MVT::SimpleValueType)i;
831     if (isTypeLegal(VT)) continue;
832 
833     // Determine if there is a legal wider type.  If so, we should promote to
834     // that wider vector type.
835     EVT EltVT = VT.getVectorElementType();
836     unsigned NElts = VT.getVectorNumElements();
837     if (NElts != 1) {
838       bool IsLegalWiderType = false;
839       // If we allow the promotion of vector elements using a flag,
840       // then return TypePromoteInteger on vector elements.
841       // First try to promote the elements of integer vectors. If no legal
842       // promotion was found, fallback to the widen-vector method.
843       if (mayPromoteElements)
844       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
845         EVT SVT = (MVT::SimpleValueType)nVT;
846         // Promote vectors of integers to vectors with the same number
847         // of elements, with a wider element type.
848         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
849             && SVT.getVectorNumElements() == NElts &&
850             isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
851           TransformToType[i] = SVT;
852           RegisterTypeForVT[i] = SVT;
853           NumRegistersForVT[i] = 1;
854           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
855           IsLegalWiderType = true;
856           break;
857         }
858       }
859 
860       if (IsLegalWiderType) continue;
861 
862       // Try to widen the vector.
863       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
864         EVT SVT = (MVT::SimpleValueType)nVT;
865         if (SVT.getVectorElementType() == EltVT &&
866             SVT.getVectorNumElements() > NElts &&
867             isTypeLegal(SVT)) {
868           TransformToType[i] = SVT;
869           RegisterTypeForVT[i] = SVT;
870           NumRegistersForVT[i] = 1;
871           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
872           IsLegalWiderType = true;
873           break;
874         }
875       }
876       if (IsLegalWiderType) continue;
877     }
878 
879     MVT IntermediateVT;
880     EVT RegisterVT;
881     unsigned NumIntermediates;
882     NumRegistersForVT[i] =
883       getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
884                                 RegisterVT, this);
885     RegisterTypeForVT[i] = RegisterVT;
886 
887     EVT NVT = VT.getPow2VectorType();
888     if (NVT == VT) {
889       // Type is already a power of 2.  The default action is to split.
890       TransformToType[i] = MVT::Other;
891       unsigned NumElts = VT.getVectorNumElements();
892       ValueTypeActions.setTypeAction(VT,
893             NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
894     } else {
895       TransformToType[i] = NVT;
896       ValueTypeActions.setTypeAction(VT, TypeWidenVector);
897     }
898   }
899 
900   // Determine the 'representative' register class for each value type.
901   // An representative register class is the largest (meaning one which is
902   // not a sub-register class / subreg register class) legal register class for
903   // a group of value types. For example, on i386, i8, i16, and i32
904   // representative would be GR32; while on x86_64 it's GR64.
905   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
906     const TargetRegisterClass* RRC;
907     uint8_t Cost;
908     tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
909     RepRegClassForVT[i] = RRC;
910     RepRegClassCostForVT[i] = Cost;
911   }
912 }
913 
getTargetNodeName(unsigned Opcode) const914 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
915   return NULL;
916 }
917 
918 
getSetCCResultType(EVT VT) const919 EVT TargetLowering::getSetCCResultType(EVT VT) const {
920   assert(!VT.isVector() && "No default SetCC type for vectors!");
921   return PointerTy.SimpleTy;
922 }
923 
getCmpLibcallReturnType() const924 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
925   return MVT::i32; // return the default value
926 }
927 
928 /// getVectorTypeBreakdown - Vector types are broken down into some number of
929 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
930 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
931 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
932 ///
933 /// This method returns the number of registers needed, and the VT for each
934 /// register.  It also returns the VT and quantity of the intermediate values
935 /// before they are promoted/expanded.
936 ///
getVectorTypeBreakdown(LLVMContext & Context,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,EVT & RegisterVT) const937 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
938                                                 EVT &IntermediateVT,
939                                                 unsigned &NumIntermediates,
940                                                 EVT &RegisterVT) const {
941   unsigned NumElts = VT.getVectorNumElements();
942 
943   // If there is a wider vector type with the same element type as this one,
944   // we should widen to that legal vector type.  This handles things like
945   // <2 x float> -> <4 x float>.
946   if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) {
947     RegisterVT = getTypeToTransformTo(Context, VT);
948     if (isTypeLegal(RegisterVT)) {
949       IntermediateVT = RegisterVT;
950       NumIntermediates = 1;
951       return 1;
952     }
953   }
954 
955   // Figure out the right, legal destination reg to copy into.
956   EVT EltTy = VT.getVectorElementType();
957 
958   unsigned NumVectorRegs = 1;
959 
960   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
961   // could break down into LHS/RHS like LegalizeDAG does.
962   if (!isPowerOf2_32(NumElts)) {
963     NumVectorRegs = NumElts;
964     NumElts = 1;
965   }
966 
967   // Divide the input until we get to a supported size.  This will always
968   // end with a scalar if the target doesn't support vectors.
969   while (NumElts > 1 && !isTypeLegal(
970                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
971     NumElts >>= 1;
972     NumVectorRegs <<= 1;
973   }
974 
975   NumIntermediates = NumVectorRegs;
976 
977   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
978   if (!isTypeLegal(NewVT))
979     NewVT = EltTy;
980   IntermediateVT = NewVT;
981 
982   EVT DestVT = getRegisterType(Context, NewVT);
983   RegisterVT = DestVT;
984   unsigned NewVTSize = NewVT.getSizeInBits();
985 
986   // Convert sizes such as i33 to i64.
987   if (!isPowerOf2_32(NewVTSize))
988     NewVTSize = NextPowerOf2(NewVTSize);
989 
990   if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
991     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
992 
993   // Otherwise, promotion or legal types use the same number of registers as
994   // the vector decimated to the appropriate level.
995   return NumVectorRegs;
996 }
997 
998 /// Get the EVTs and ArgFlags collections that represent the legalized return
999 /// type of the given function.  This does not require a DAG or a return value,
1000 /// and is suitable for use before any DAGs for the function are constructed.
1001 /// TODO: Move this out of TargetLowering.cpp.
GetReturnInfo(Type * ReturnType,Attributes attr,SmallVectorImpl<ISD::OutputArg> & Outs,const TargetLowering & TLI,SmallVectorImpl<uint64_t> * Offsets)1002 void llvm::GetReturnInfo(Type* ReturnType, Attributes attr,
1003                          SmallVectorImpl<ISD::OutputArg> &Outs,
1004                          const TargetLowering &TLI,
1005                          SmallVectorImpl<uint64_t> *Offsets) {
1006   SmallVector<EVT, 4> ValueVTs;
1007   ComputeValueVTs(TLI, ReturnType, ValueVTs);
1008   unsigned NumValues = ValueVTs.size();
1009   if (NumValues == 0) return;
1010   unsigned Offset = 0;
1011 
1012   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1013     EVT VT = ValueVTs[j];
1014     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1015 
1016     if (attr & Attribute::SExt)
1017       ExtendKind = ISD::SIGN_EXTEND;
1018     else if (attr & Attribute::ZExt)
1019       ExtendKind = ISD::ZERO_EXTEND;
1020 
1021     // FIXME: C calling convention requires the return type to be promoted to
1022     // at least 32-bit. But this is not necessary for non-C calling
1023     // conventions. The frontend should mark functions whose return values
1024     // require promoting with signext or zeroext attributes.
1025     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1026       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1027       if (VT.bitsLT(MinVT))
1028         VT = MinVT;
1029     }
1030 
1031     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1032     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1033     unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
1034                         PartVT.getTypeForEVT(ReturnType->getContext()));
1035 
1036     // 'inreg' on function refers to return value
1037     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1038     if (attr & Attribute::InReg)
1039       Flags.setInReg();
1040 
1041     // Propagate extension type if any
1042     if (attr & Attribute::SExt)
1043       Flags.setSExt();
1044     else if (attr & Attribute::ZExt)
1045       Flags.setZExt();
1046 
1047     for (unsigned i = 0; i < NumParts; ++i) {
1048       Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
1049       if (Offsets) {
1050         Offsets->push_back(Offset);
1051         Offset += PartSize;
1052       }
1053     }
1054   }
1055 }
1056 
1057 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1058 /// function arguments in the caller parameter area.  This is the actual
1059 /// alignment, not its logarithm.
getByValTypeAlignment(Type * Ty) const1060 unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
1061   return TD->getCallFrameTypeAlignment(Ty);
1062 }
1063 
1064 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1065 /// current function.  The returned value is a member of the
1066 /// MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const1067 unsigned TargetLowering::getJumpTableEncoding() const {
1068   // In non-pic modes, just use the address of a block.
1069   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1070     return MachineJumpTableInfo::EK_BlockAddress;
1071 
1072   // In PIC mode, if the target supports a GPRel32 directive, use it.
1073   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1074     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1075 
1076   // Otherwise, use a label difference.
1077   return MachineJumpTableInfo::EK_LabelDifference32;
1078 }
1079 
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const1080 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1081                                                  SelectionDAG &DAG) const {
1082   // If our PIC model is GP relative, use the global offset table as the base.
1083   if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1084     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1085   return Table;
1086 }
1087 
1088 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1089 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1090 /// MCExpr.
1091 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const1092 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1093                                              unsigned JTI,MCContext &Ctx) const{
1094   // The normal PIC reloc base is the label at the start of the jump table.
1095   return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1096 }
1097 
1098 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const1099 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1100   // Assume that everything is safe in static mode.
1101   if (getTargetMachine().getRelocationModel() == Reloc::Static)
1102     return true;
1103 
1104   // In dynamic-no-pic mode, assume that known defined values are safe.
1105   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1106       GA &&
1107       !GA->getGlobal()->isDeclaration() &&
1108       !GA->getGlobal()->isWeakForLinker())
1109     return true;
1110 
1111   // Otherwise assume nothing is safe.
1112   return false;
1113 }
1114 
1115 //===----------------------------------------------------------------------===//
1116 //  Optimization Methods
1117 //===----------------------------------------------------------------------===//
1118 
1119 /// ShrinkDemandedConstant - Check to see if the specified operand of the
1120 /// specified instruction is a constant integer.  If so, check to see if there
1121 /// are any bits set in the constant that are not demanded.  If so, shrink the
1122 /// constant and return true.
ShrinkDemandedConstant(SDValue Op,const APInt & Demanded)1123 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1124                                                         const APInt &Demanded) {
1125   DebugLoc dl = Op.getDebugLoc();
1126 
1127   // FIXME: ISD::SELECT, ISD::SELECT_CC
1128   switch (Op.getOpcode()) {
1129   default: break;
1130   case ISD::XOR:
1131   case ISD::AND:
1132   case ISD::OR: {
1133     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1134     if (!C) return false;
1135 
1136     if (Op.getOpcode() == ISD::XOR &&
1137         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1138       return false;
1139 
1140     // if we can expand it to have all bits set, do it
1141     if (C->getAPIntValue().intersects(~Demanded)) {
1142       EVT VT = Op.getValueType();
1143       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1144                                 DAG.getConstant(Demanded &
1145                                                 C->getAPIntValue(),
1146                                                 VT));
1147       return CombineTo(Op, New);
1148     }
1149 
1150     break;
1151   }
1152   }
1153 
1154   return false;
1155 }
1156 
1157 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1158 /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1159 /// cast, but it could be generalized for targets with other types of
1160 /// implicit widening casts.
1161 bool
ShrinkDemandedOp(SDValue Op,unsigned BitWidth,const APInt & Demanded,DebugLoc dl)1162 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1163                                                     unsigned BitWidth,
1164                                                     const APInt &Demanded,
1165                                                     DebugLoc dl) {
1166   assert(Op.getNumOperands() == 2 &&
1167          "ShrinkDemandedOp only supports binary operators!");
1168   assert(Op.getNode()->getNumValues() == 1 &&
1169          "ShrinkDemandedOp only supports nodes with one result!");
1170 
1171   // Don't do this if the node has another user, which may require the
1172   // full value.
1173   if (!Op.getNode()->hasOneUse())
1174     return false;
1175 
1176   // Search for the smallest integer type with free casts to and from
1177   // Op's type. For expedience, just check power-of-2 integer types.
1178   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1179   unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1180   if (!isPowerOf2_32(SmallVTBits))
1181     SmallVTBits = NextPowerOf2(SmallVTBits);
1182   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1183     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1184     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1185         TLI.isZExtFree(SmallVT, Op.getValueType())) {
1186       // We found a type with free casts.
1187       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1188                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1189                                           Op.getNode()->getOperand(0)),
1190                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1191                                           Op.getNode()->getOperand(1)));
1192       SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1193       return CombineTo(Op, Z);
1194     }
1195   }
1196   return false;
1197 }
1198 
1199 /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1200 /// DemandedMask bits of the result of Op are ever used downstream.  If we can
1201 /// use this information to simplify Op, create a new simplified DAG node and
1202 /// return true, returning the original and new nodes in Old and New. Otherwise,
1203 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
1204 /// the expression (used to simplify the caller).  The KnownZero/One bits may
1205 /// only be accurate for those bits in the DemandedMask.
SimplifyDemandedBits(SDValue Op,const APInt & DemandedMask,APInt & KnownZero,APInt & KnownOne,TargetLoweringOpt & TLO,unsigned Depth) const1206 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1207                                           const APInt &DemandedMask,
1208                                           APInt &KnownZero,
1209                                           APInt &KnownOne,
1210                                           TargetLoweringOpt &TLO,
1211                                           unsigned Depth) const {
1212   unsigned BitWidth = DemandedMask.getBitWidth();
1213   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1214          "Mask size mismatches value type size!");
1215   APInt NewMask = DemandedMask;
1216   DebugLoc dl = Op.getDebugLoc();
1217 
1218   // Don't know anything.
1219   KnownZero = KnownOne = APInt(BitWidth, 0);
1220 
1221   // Other users may use these bits.
1222   if (!Op.getNode()->hasOneUse()) {
1223     if (Depth != 0) {
1224       // If not at the root, Just compute the KnownZero/KnownOne bits to
1225       // simplify things downstream.
1226       TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1227       return false;
1228     }
1229     // If this is the root being simplified, allow it to have multiple uses,
1230     // just set the NewMask to all bits.
1231     NewMask = APInt::getAllOnesValue(BitWidth);
1232   } else if (DemandedMask == 0) {
1233     // Not demanding any bits from Op.
1234     if (Op.getOpcode() != ISD::UNDEF)
1235       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1236     return false;
1237   } else if (Depth == 6) {        // Limit search depth.
1238     return false;
1239   }
1240 
1241   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1242   switch (Op.getOpcode()) {
1243   case ISD::Constant:
1244     // We know all of the bits for a constant!
1245     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1246     KnownZero = ~KnownOne & NewMask;
1247     return false;   // Don't fall through, will infinitely loop.
1248   case ISD::AND:
1249     // If the RHS is a constant, check to see if the LHS would be zero without
1250     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1251     // simplify the LHS, here we're using information from the LHS to simplify
1252     // the RHS.
1253     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1254       APInt LHSZero, LHSOne;
1255       // Do not increment Depth here; that can cause an infinite loop.
1256       TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1257                                 LHSZero, LHSOne, Depth);
1258       // If the LHS already has zeros where RHSC does, this and is dead.
1259       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1260         return TLO.CombineTo(Op, Op.getOperand(0));
1261       // If any of the set bits in the RHS are known zero on the LHS, shrink
1262       // the constant.
1263       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1264         return true;
1265     }
1266 
1267     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1268                              KnownOne, TLO, Depth+1))
1269       return true;
1270     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1271     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1272                              KnownZero2, KnownOne2, TLO, Depth+1))
1273       return true;
1274     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1275 
1276     // If all of the demanded bits are known one on one side, return the other.
1277     // These bits cannot contribute to the result of the 'and'.
1278     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1279       return TLO.CombineTo(Op, Op.getOperand(0));
1280     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1281       return TLO.CombineTo(Op, Op.getOperand(1));
1282     // If all of the demanded bits in the inputs are known zeros, return zero.
1283     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1284       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1285     // If the RHS is a constant, see if we can simplify it.
1286     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1287       return true;
1288     // If the operation can be done in a smaller type, do so.
1289     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1290       return true;
1291 
1292     // Output known-1 bits are only known if set in both the LHS & RHS.
1293     KnownOne &= KnownOne2;
1294     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1295     KnownZero |= KnownZero2;
1296     break;
1297   case ISD::OR:
1298     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1299                              KnownOne, TLO, Depth+1))
1300       return true;
1301     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1302     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1303                              KnownZero2, KnownOne2, TLO, Depth+1))
1304       return true;
1305     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1306 
1307     // If all of the demanded bits are known zero on one side, return the other.
1308     // These bits cannot contribute to the result of the 'or'.
1309     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1310       return TLO.CombineTo(Op, Op.getOperand(0));
1311     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1312       return TLO.CombineTo(Op, Op.getOperand(1));
1313     // If all of the potentially set bits on one side are known to be set on
1314     // the other side, just use the 'other' side.
1315     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1316       return TLO.CombineTo(Op, Op.getOperand(0));
1317     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1318       return TLO.CombineTo(Op, Op.getOperand(1));
1319     // If the RHS is a constant, see if we can simplify it.
1320     if (TLO.ShrinkDemandedConstant(Op, NewMask))
1321       return true;
1322     // If the operation can be done in a smaller type, do so.
1323     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1324       return true;
1325 
1326     // Output known-0 bits are only known if clear in both the LHS & RHS.
1327     KnownZero &= KnownZero2;
1328     // Output known-1 are known to be set if set in either the LHS | RHS.
1329     KnownOne |= KnownOne2;
1330     break;
1331   case ISD::XOR:
1332     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1333                              KnownOne, TLO, Depth+1))
1334       return true;
1335     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1336     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1337                              KnownOne2, TLO, Depth+1))
1338       return true;
1339     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1340 
1341     // If all of the demanded bits are known zero on one side, return the other.
1342     // These bits cannot contribute to the result of the 'xor'.
1343     if ((KnownZero & NewMask) == NewMask)
1344       return TLO.CombineTo(Op, Op.getOperand(0));
1345     if ((KnownZero2 & NewMask) == NewMask)
1346       return TLO.CombineTo(Op, Op.getOperand(1));
1347     // If the operation can be done in a smaller type, do so.
1348     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1349       return true;
1350 
1351     // If all of the unknown bits are known to be zero on one side or the other
1352     // (but not both) turn this into an *inclusive* or.
1353     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1354     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1355       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1356                                                Op.getOperand(0),
1357                                                Op.getOperand(1)));
1358 
1359     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1360     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1361     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1362     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1363 
1364     // If all of the demanded bits on one side are known, and all of the set
1365     // bits on that side are also known to be set on the other side, turn this
1366     // into an AND, as we know the bits will be cleared.
1367     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1368     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1369       if ((KnownOne & KnownOne2) == KnownOne) {
1370         EVT VT = Op.getValueType();
1371         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1372         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1373                                                  Op.getOperand(0), ANDC));
1374       }
1375     }
1376 
1377     // If the RHS is a constant, see if we can simplify it.
1378     // for XOR, we prefer to force bits to 1 if they will make a -1.
1379     // if we can't force bits, try to shrink constant
1380     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1381       APInt Expanded = C->getAPIntValue() | (~NewMask);
1382       // if we can expand it to have all bits set, do it
1383       if (Expanded.isAllOnesValue()) {
1384         if (Expanded != C->getAPIntValue()) {
1385           EVT VT = Op.getValueType();
1386           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1387                                           TLO.DAG.getConstant(Expanded, VT));
1388           return TLO.CombineTo(Op, New);
1389         }
1390         // if it already has all the bits set, nothing to change
1391         // but don't shrink either!
1392       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1393         return true;
1394       }
1395     }
1396 
1397     KnownZero = KnownZeroOut;
1398     KnownOne  = KnownOneOut;
1399     break;
1400   case ISD::SELECT:
1401     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1402                              KnownOne, TLO, Depth+1))
1403       return true;
1404     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1405                              KnownOne2, TLO, Depth+1))
1406       return true;
1407     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1408     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1409 
1410     // If the operands are constants, see if we can simplify them.
1411     if (TLO.ShrinkDemandedConstant(Op, NewMask))
1412       return true;
1413 
1414     // Only known if known in both the LHS and RHS.
1415     KnownOne &= KnownOne2;
1416     KnownZero &= KnownZero2;
1417     break;
1418   case ISD::SELECT_CC:
1419     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1420                              KnownOne, TLO, Depth+1))
1421       return true;
1422     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1423                              KnownOne2, TLO, Depth+1))
1424       return true;
1425     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1426     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1427 
1428     // If the operands are constants, see if we can simplify them.
1429     if (TLO.ShrinkDemandedConstant(Op, NewMask))
1430       return true;
1431 
1432     // Only known if known in both the LHS and RHS.
1433     KnownOne &= KnownOne2;
1434     KnownZero &= KnownZero2;
1435     break;
1436   case ISD::SHL:
1437     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1438       unsigned ShAmt = SA->getZExtValue();
1439       SDValue InOp = Op.getOperand(0);
1440 
1441       // If the shift count is an invalid immediate, don't do anything.
1442       if (ShAmt >= BitWidth)
1443         break;
1444 
1445       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1446       // single shift.  We can do this if the bottom bits (which are shifted
1447       // out) are never demanded.
1448       if (InOp.getOpcode() == ISD::SRL &&
1449           isa<ConstantSDNode>(InOp.getOperand(1))) {
1450         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1451           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1452           unsigned Opc = ISD::SHL;
1453           int Diff = ShAmt-C1;
1454           if (Diff < 0) {
1455             Diff = -Diff;
1456             Opc = ISD::SRL;
1457           }
1458 
1459           SDValue NewSA =
1460             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1461           EVT VT = Op.getValueType();
1462           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1463                                                    InOp.getOperand(0), NewSA));
1464         }
1465       }
1466 
1467       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1468                                KnownZero, KnownOne, TLO, Depth+1))
1469         return true;
1470 
1471       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1472       // are not demanded. This will likely allow the anyext to be folded away.
1473       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1474         SDValue InnerOp = InOp.getNode()->getOperand(0);
1475         EVT InnerVT = InnerOp.getValueType();
1476         if ((APInt::getHighBitsSet(BitWidth,
1477                                    BitWidth - InnerVT.getSizeInBits()) &
1478                DemandedMask) == 0 &&
1479             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1480           EVT ShTy = getShiftAmountTy(InnerVT);
1481           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1482             ShTy = InnerVT;
1483           SDValue NarrowShl =
1484             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1485                             TLO.DAG.getConstant(ShAmt, ShTy));
1486           return
1487             TLO.CombineTo(Op,
1488                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1489                                           NarrowShl));
1490         }
1491       }
1492 
1493       KnownZero <<= SA->getZExtValue();
1494       KnownOne  <<= SA->getZExtValue();
1495       // low bits known zero.
1496       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1497     }
1498     break;
1499   case ISD::SRL:
1500     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1501       EVT VT = Op.getValueType();
1502       unsigned ShAmt = SA->getZExtValue();
1503       unsigned VTSize = VT.getSizeInBits();
1504       SDValue InOp = Op.getOperand(0);
1505 
1506       // If the shift count is an invalid immediate, don't do anything.
1507       if (ShAmt >= BitWidth)
1508         break;
1509 
1510       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1511       // single shift.  We can do this if the top bits (which are shifted out)
1512       // are never demanded.
1513       if (InOp.getOpcode() == ISD::SHL &&
1514           isa<ConstantSDNode>(InOp.getOperand(1))) {
1515         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1516           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1517           unsigned Opc = ISD::SRL;
1518           int Diff = ShAmt-C1;
1519           if (Diff < 0) {
1520             Diff = -Diff;
1521             Opc = ISD::SHL;
1522           }
1523 
1524           SDValue NewSA =
1525             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1526           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1527                                                    InOp.getOperand(0), NewSA));
1528         }
1529       }
1530 
1531       // Compute the new bits that are at the top now.
1532       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1533                                KnownZero, KnownOne, TLO, Depth+1))
1534         return true;
1535       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1536       KnownZero = KnownZero.lshr(ShAmt);
1537       KnownOne  = KnownOne.lshr(ShAmt);
1538 
1539       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1540       KnownZero |= HighBits;  // High bits known zero.
1541     }
1542     break;
1543   case ISD::SRA:
1544     // If this is an arithmetic shift right and only the low-bit is set, we can
1545     // always convert this into a logical shr, even if the shift amount is
1546     // variable.  The low bit of the shift cannot be an input sign bit unless
1547     // the shift amount is >= the size of the datatype, which is undefined.
1548     if (DemandedMask == 1)
1549       return TLO.CombineTo(Op,
1550                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1551                                            Op.getOperand(0), Op.getOperand(1)));
1552 
1553     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1554       EVT VT = Op.getValueType();
1555       unsigned ShAmt = SA->getZExtValue();
1556 
1557       // If the shift count is an invalid immediate, don't do anything.
1558       if (ShAmt >= BitWidth)
1559         break;
1560 
1561       APInt InDemandedMask = (NewMask << ShAmt);
1562 
1563       // If any of the demanded bits are produced by the sign extension, we also
1564       // demand the input sign bit.
1565       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1566       if (HighBits.intersects(NewMask))
1567         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1568 
1569       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1570                                KnownZero, KnownOne, TLO, Depth+1))
1571         return true;
1572       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1573       KnownZero = KnownZero.lshr(ShAmt);
1574       KnownOne  = KnownOne.lshr(ShAmt);
1575 
1576       // Handle the sign bit, adjusted to where it is now in the mask.
1577       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1578 
1579       // If the input sign bit is known to be zero, or if none of the top bits
1580       // are demanded, turn this into an unsigned shift right.
1581       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1582         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1583                                                  Op.getOperand(0),
1584                                                  Op.getOperand(1)));
1585       } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1586         KnownOne |= HighBits;
1587       }
1588     }
1589     break;
1590   case ISD::SIGN_EXTEND_INREG: {
1591     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1592 
1593     // Sign extension.  Compute the demanded bits in the result that are not
1594     // present in the input.
1595     APInt NewBits =
1596       APInt::getHighBitsSet(BitWidth,
1597                             BitWidth - EVT.getScalarType().getSizeInBits());
1598 
1599     // If none of the extended bits are demanded, eliminate the sextinreg.
1600     if ((NewBits & NewMask) == 0)
1601       return TLO.CombineTo(Op, Op.getOperand(0));
1602 
1603     APInt InSignBit =
1604       APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1605     APInt InputDemandedBits =
1606       APInt::getLowBitsSet(BitWidth,
1607                            EVT.getScalarType().getSizeInBits()) &
1608       NewMask;
1609 
1610     // Since the sign extended bits are demanded, we know that the sign
1611     // bit is demanded.
1612     InputDemandedBits |= InSignBit;
1613 
1614     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1615                              KnownZero, KnownOne, TLO, Depth+1))
1616       return true;
1617     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1618 
1619     // If the sign bit of the input is known set or clear, then we know the
1620     // top bits of the result.
1621 
1622     // If the input sign bit is known zero, convert this into a zero extension.
1623     if (KnownZero.intersects(InSignBit))
1624       return TLO.CombineTo(Op,
1625                            TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1626 
1627     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1628       KnownOne |= NewBits;
1629       KnownZero &= ~NewBits;
1630     } else {                       // Input sign bit unknown
1631       KnownZero &= ~NewBits;
1632       KnownOne &= ~NewBits;
1633     }
1634     break;
1635   }
1636   case ISD::ZERO_EXTEND: {
1637     unsigned OperandBitWidth =
1638       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1639     APInt InMask = NewMask.trunc(OperandBitWidth);
1640 
1641     // If none of the top bits are demanded, convert this into an any_extend.
1642     APInt NewBits =
1643       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1644     if (!NewBits.intersects(NewMask))
1645       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1646                                                Op.getValueType(),
1647                                                Op.getOperand(0)));
1648 
1649     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1650                              KnownZero, KnownOne, TLO, Depth+1))
1651       return true;
1652     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1653     KnownZero = KnownZero.zext(BitWidth);
1654     KnownOne = KnownOne.zext(BitWidth);
1655     KnownZero |= NewBits;
1656     break;
1657   }
1658   case ISD::SIGN_EXTEND: {
1659     EVT InVT = Op.getOperand(0).getValueType();
1660     unsigned InBits = InVT.getScalarType().getSizeInBits();
1661     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1662     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1663     APInt NewBits   = ~InMask & NewMask;
1664 
1665     // If none of the top bits are demanded, convert this into an any_extend.
1666     if (NewBits == 0)
1667       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1668                                               Op.getValueType(),
1669                                               Op.getOperand(0)));
1670 
1671     // Since some of the sign extended bits are demanded, we know that the sign
1672     // bit is demanded.
1673     APInt InDemandedBits = InMask & NewMask;
1674     InDemandedBits |= InSignBit;
1675     InDemandedBits = InDemandedBits.trunc(InBits);
1676 
1677     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1678                              KnownOne, TLO, Depth+1))
1679       return true;
1680     KnownZero = KnownZero.zext(BitWidth);
1681     KnownOne = KnownOne.zext(BitWidth);
1682 
1683     // If the sign bit is known zero, convert this to a zero extend.
1684     if (KnownZero.intersects(InSignBit))
1685       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1686                                                Op.getValueType(),
1687                                                Op.getOperand(0)));
1688 
1689     // If the sign bit is known one, the top bits match.
1690     if (KnownOne.intersects(InSignBit)) {
1691       KnownOne  |= NewBits;
1692       KnownZero &= ~NewBits;
1693     } else {   // Otherwise, top bits aren't known.
1694       KnownOne  &= ~NewBits;
1695       KnownZero &= ~NewBits;
1696     }
1697     break;
1698   }
1699   case ISD::ANY_EXTEND: {
1700     unsigned OperandBitWidth =
1701       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1702     APInt InMask = NewMask.trunc(OperandBitWidth);
1703     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1704                              KnownZero, KnownOne, TLO, Depth+1))
1705       return true;
1706     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1707     KnownZero = KnownZero.zext(BitWidth);
1708     KnownOne = KnownOne.zext(BitWidth);
1709     break;
1710   }
1711   case ISD::TRUNCATE: {
1712     // Simplify the input, using demanded bit information, and compute the known
1713     // zero/one bits live out.
1714     unsigned OperandBitWidth =
1715       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1716     APInt TruncMask = NewMask.zext(OperandBitWidth);
1717     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1718                              KnownZero, KnownOne, TLO, Depth+1))
1719       return true;
1720     KnownZero = KnownZero.trunc(BitWidth);
1721     KnownOne = KnownOne.trunc(BitWidth);
1722 
1723     // If the input is only used by this truncate, see if we can shrink it based
1724     // on the known demanded bits.
1725     if (Op.getOperand(0).getNode()->hasOneUse()) {
1726       SDValue In = Op.getOperand(0);
1727       switch (In.getOpcode()) {
1728       default: break;
1729       case ISD::SRL:
1730         // Shrink SRL by a constant if none of the high bits shifted in are
1731         // demanded.
1732         if (TLO.LegalTypes() &&
1733             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1734           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1735           // undesirable.
1736           break;
1737         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1738         if (!ShAmt)
1739           break;
1740         SDValue Shift = In.getOperand(1);
1741         if (TLO.LegalTypes()) {
1742           uint64_t ShVal = ShAmt->getZExtValue();
1743           Shift =
1744             TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1745         }
1746 
1747         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1748                                                OperandBitWidth - BitWidth);
1749         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1750 
1751         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1752           // None of the shifted in bits are needed.  Add a truncate of the
1753           // shift input, then shift it.
1754           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1755                                              Op.getValueType(),
1756                                              In.getOperand(0));
1757           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1758                                                    Op.getValueType(),
1759                                                    NewTrunc,
1760                                                    Shift));
1761         }
1762         break;
1763       }
1764     }
1765 
1766     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1767     break;
1768   }
1769   case ISD::AssertZext: {
1770     // AssertZext demands all of the high bits, plus any of the low bits
1771     // demanded by its users.
1772     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1773     APInt InMask = APInt::getLowBitsSet(BitWidth,
1774                                         VT.getSizeInBits());
1775     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1776                              KnownZero, KnownOne, TLO, Depth+1))
1777       return true;
1778     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1779 
1780     KnownZero |= ~InMask & NewMask;
1781     break;
1782   }
1783   case ISD::BITCAST:
1784     // If this is an FP->Int bitcast and if the sign bit is the only
1785     // thing demanded, turn this into a FGETSIGN.
1786     if (!Op.getOperand(0).getValueType().isVector() &&
1787         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1788         Op.getOperand(0).getValueType().isFloatingPoint()) {
1789       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1790       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1791       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1792         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1793         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1794         // place.  We expect the SHL to be eliminated by other optimizations.
1795         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1796         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1797         if (!OpVTLegal && OpVTSizeInBits > 32)
1798           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1799         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1800         SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1801         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1802                                                  Op.getValueType(),
1803                                                  Sign, ShAmt));
1804       }
1805     }
1806     break;
1807   case ISD::ADD:
1808   case ISD::MUL:
1809   case ISD::SUB: {
1810     // Add, Sub, and Mul don't demand any bits in positions beyond that
1811     // of the highest bit demanded of them.
1812     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1813                                         BitWidth - NewMask.countLeadingZeros());
1814     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1815                              KnownOne2, TLO, Depth+1))
1816       return true;
1817     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1818                              KnownOne2, TLO, Depth+1))
1819       return true;
1820     // See if the operation should be performed at a smaller bit width.
1821     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1822       return true;
1823   }
1824   // FALL THROUGH
1825   default:
1826     // Just use ComputeMaskedBits to compute output bits.
1827     TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1828     break;
1829   }
1830 
1831   // If we know the value of all of the demanded bits, return this as a
1832   // constant.
1833   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1834     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1835 
1836   return false;
1837 }
1838 
1839 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1840 /// in Mask are known to be either zero or one and return them in the
1841 /// KnownZero/KnownOne bitsets.
computeMaskedBitsForTargetNode(const SDValue Op,const APInt & Mask,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const1842 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1843                                                     const APInt &Mask,
1844                                                     APInt &KnownZero,
1845                                                     APInt &KnownOne,
1846                                                     const SelectionDAG &DAG,
1847                                                     unsigned Depth) const {
1848   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1849           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1850           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1851           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1852          "Should use MaskedValueIsZero if you don't know whether Op"
1853          " is a target node!");
1854   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1855 }
1856 
1857 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1858 /// targets that want to expose additional information about sign bits to the
1859 /// DAG Combiner.
ComputeNumSignBitsForTargetNode(SDValue Op,unsigned Depth) const1860 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1861                                                          unsigned Depth) const {
1862   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1863           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1864           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1865           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1866          "Should use ComputeNumSignBits if you don't know whether Op"
1867          " is a target node!");
1868   return 1;
1869 }
1870 
1871 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1872 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1873 /// determine which bit is set.
1874 ///
ValueHasExactlyOneBitSet(SDValue Val,const SelectionDAG & DAG)1875 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1876   // A left-shift of a constant one will have exactly one bit set, because
1877   // shifting the bit off the end is undefined.
1878   if (Val.getOpcode() == ISD::SHL)
1879     if (ConstantSDNode *C =
1880          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1881       if (C->getAPIntValue() == 1)
1882         return true;
1883 
1884   // Similarly, a right-shift of a constant sign-bit will have exactly
1885   // one bit set.
1886   if (Val.getOpcode() == ISD::SRL)
1887     if (ConstantSDNode *C =
1888          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1889       if (C->getAPIntValue().isSignBit())
1890         return true;
1891 
1892   // More could be done here, though the above checks are enough
1893   // to handle some common cases.
1894 
1895   // Fall back to ComputeMaskedBits to catch other known cases.
1896   EVT OpVT = Val.getValueType();
1897   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1898   APInt Mask = APInt::getAllOnesValue(BitWidth);
1899   APInt KnownZero, KnownOne;
1900   DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1901   return (KnownZero.countPopulation() == BitWidth - 1) &&
1902          (KnownOne.countPopulation() == 1);
1903 }
1904 
1905 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1906 /// and cc. If it is unable to simplify it, return a null SDValue.
1907 SDValue
SimplifySetCC(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,bool foldBooleans,DAGCombinerInfo & DCI,DebugLoc dl) const1908 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1909                               ISD::CondCode Cond, bool foldBooleans,
1910                               DAGCombinerInfo &DCI, DebugLoc dl) const {
1911   SelectionDAG &DAG = DCI.DAG;
1912 
1913   // These setcc operations always fold.
1914   switch (Cond) {
1915   default: break;
1916   case ISD::SETFALSE:
1917   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1918   case ISD::SETTRUE:
1919   case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1920   }
1921 
1922   // Ensure that the constant occurs on the RHS, and fold constant
1923   // comparisons.
1924   if (isa<ConstantSDNode>(N0.getNode()))
1925     return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1926 
1927   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1928     const APInt &C1 = N1C->getAPIntValue();
1929 
1930     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1931     // equality comparison, then we're just comparing whether X itself is
1932     // zero.
1933     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1934         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1935         N0.getOperand(1).getOpcode() == ISD::Constant) {
1936       const APInt &ShAmt
1937         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1938       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1939           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1940         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1941           // (srl (ctlz x), 5) == 0  -> X != 0
1942           // (srl (ctlz x), 5) != 1  -> X != 0
1943           Cond = ISD::SETNE;
1944         } else {
1945           // (srl (ctlz x), 5) != 0  -> X == 0
1946           // (srl (ctlz x), 5) == 1  -> X == 0
1947           Cond = ISD::SETEQ;
1948         }
1949         SDValue Zero = DAG.getConstant(0, N0.getValueType());
1950         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1951                             Zero, Cond);
1952       }
1953     }
1954 
1955     SDValue CTPOP = N0;
1956     // Look through truncs that don't change the value of a ctpop.
1957     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1958       CTPOP = N0.getOperand(0);
1959 
1960     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1961         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1962                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1963       EVT CTVT = CTPOP.getValueType();
1964       SDValue CTOp = CTPOP.getOperand(0);
1965 
1966       // (ctpop x) u< 2 -> (x & x-1) == 0
1967       // (ctpop x) u> 1 -> (x & x-1) != 0
1968       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1969         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1970                                   DAG.getConstant(1, CTVT));
1971         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1972         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1973         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1974       }
1975 
1976       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1977     }
1978 
1979     // (zext x) == C --> x == (trunc C)
1980     if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1981         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1982       unsigned MinBits = N0.getValueSizeInBits();
1983       SDValue PreZExt;
1984       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1985         // ZExt
1986         MinBits = N0->getOperand(0).getValueSizeInBits();
1987         PreZExt = N0->getOperand(0);
1988       } else if (N0->getOpcode() == ISD::AND) {
1989         // DAGCombine turns costly ZExts into ANDs
1990         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1991           if ((C->getAPIntValue()+1).isPowerOf2()) {
1992             MinBits = C->getAPIntValue().countTrailingOnes();
1993             PreZExt = N0->getOperand(0);
1994           }
1995       } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1996         // ZEXTLOAD
1997         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1998           MinBits = LN0->getMemoryVT().getSizeInBits();
1999           PreZExt = N0;
2000         }
2001       }
2002 
2003       // Make sure we're not loosing bits from the constant.
2004       if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
2005         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2006         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2007           // Will get folded away.
2008           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
2009           SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
2010           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2011         }
2012       }
2013     }
2014 
2015     // If the LHS is '(and load, const)', the RHS is 0,
2016     // the test is for equality or unsigned, and all 1 bits of the const are
2017     // in the same partial word, see if we can shorten the load.
2018     if (DCI.isBeforeLegalize() &&
2019         N0.getOpcode() == ISD::AND && C1 == 0 &&
2020         N0.getNode()->hasOneUse() &&
2021         isa<LoadSDNode>(N0.getOperand(0)) &&
2022         N0.getOperand(0).getNode()->hasOneUse() &&
2023         isa<ConstantSDNode>(N0.getOperand(1))) {
2024       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2025       APInt bestMask;
2026       unsigned bestWidth = 0, bestOffset = 0;
2027       if (!Lod->isVolatile() && Lod->isUnindexed()) {
2028         unsigned origWidth = N0.getValueType().getSizeInBits();
2029         unsigned maskWidth = origWidth;
2030         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2031         // 8 bits, but have to be careful...
2032         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2033           origWidth = Lod->getMemoryVT().getSizeInBits();
2034         const APInt &Mask =
2035           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2036         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2037           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2038           for (unsigned offset=0; offset<origWidth/width; offset++) {
2039             if ((newMask & Mask) == Mask) {
2040               if (!TD->isLittleEndian())
2041                 bestOffset = (origWidth/width - offset - 1) * (width/8);
2042               else
2043                 bestOffset = (uint64_t)offset * (width/8);
2044               bestMask = Mask.lshr(offset * (width/8) * 8);
2045               bestWidth = width;
2046               break;
2047             }
2048             newMask = newMask << width;
2049           }
2050         }
2051       }
2052       if (bestWidth) {
2053         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2054         if (newVT.isRound()) {
2055           EVT PtrType = Lod->getOperand(1).getValueType();
2056           SDValue Ptr = Lod->getBasePtr();
2057           if (bestOffset != 0)
2058             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2059                               DAG.getConstant(bestOffset, PtrType));
2060           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2061           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2062                                 Lod->getPointerInfo().getWithOffset(bestOffset),
2063                                         false, false, NewAlign);
2064           return DAG.getSetCC(dl, VT,
2065                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2066                                       DAG.getConstant(bestMask.trunc(bestWidth),
2067                                                       newVT)),
2068                               DAG.getConstant(0LL, newVT), Cond);
2069         }
2070       }
2071     }
2072 
2073     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2074     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2075       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2076 
2077       // If the comparison constant has bits in the upper part, the
2078       // zero-extended value could never match.
2079       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2080                                               C1.getBitWidth() - InSize))) {
2081         switch (Cond) {
2082         case ISD::SETUGT:
2083         case ISD::SETUGE:
2084         case ISD::SETEQ: return DAG.getConstant(0, VT);
2085         case ISD::SETULT:
2086         case ISD::SETULE:
2087         case ISD::SETNE: return DAG.getConstant(1, VT);
2088         case ISD::SETGT:
2089         case ISD::SETGE:
2090           // True if the sign bit of C1 is set.
2091           return DAG.getConstant(C1.isNegative(), VT);
2092         case ISD::SETLT:
2093         case ISD::SETLE:
2094           // True if the sign bit of C1 isn't set.
2095           return DAG.getConstant(C1.isNonNegative(), VT);
2096         default:
2097           break;
2098         }
2099       }
2100 
2101       // Otherwise, we can perform the comparison with the low bits.
2102       switch (Cond) {
2103       case ISD::SETEQ:
2104       case ISD::SETNE:
2105       case ISD::SETUGT:
2106       case ISD::SETUGE:
2107       case ISD::SETULT:
2108       case ISD::SETULE: {
2109         EVT newVT = N0.getOperand(0).getValueType();
2110         if (DCI.isBeforeLegalizeOps() ||
2111             (isOperationLegal(ISD::SETCC, newVT) &&
2112               getCondCodeAction(Cond, newVT)==Legal))
2113           return DAG.getSetCC(dl, VT, N0.getOperand(0),
2114                               DAG.getConstant(C1.trunc(InSize), newVT),
2115                               Cond);
2116         break;
2117       }
2118       default:
2119         break;   // todo, be more careful with signed comparisons
2120       }
2121     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2122                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2123       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2124       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2125       EVT ExtDstTy = N0.getValueType();
2126       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2127 
2128       // If the constant doesn't fit into the number of bits for the source of
2129       // the sign extension, it is impossible for both sides to be equal.
2130       if (C1.getMinSignedBits() > ExtSrcTyBits)
2131         return DAG.getConstant(Cond == ISD::SETNE, VT);
2132 
2133       SDValue ZextOp;
2134       EVT Op0Ty = N0.getOperand(0).getValueType();
2135       if (Op0Ty == ExtSrcTy) {
2136         ZextOp = N0.getOperand(0);
2137       } else {
2138         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2139         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2140                               DAG.getConstant(Imm, Op0Ty));
2141       }
2142       if (!DCI.isCalledByLegalizer())
2143         DCI.AddToWorklist(ZextOp.getNode());
2144       // Otherwise, make this a use of a zext.
2145       return DAG.getSetCC(dl, VT, ZextOp,
2146                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2147                                                               ExtDstTyBits,
2148                                                               ExtSrcTyBits),
2149                                           ExtDstTy),
2150                           Cond);
2151     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2152                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2153       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2154       if (N0.getOpcode() == ISD::SETCC &&
2155           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2156         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2157         if (TrueWhenTrue)
2158           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2159         // Invert the condition.
2160         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2161         CC = ISD::getSetCCInverse(CC,
2162                                   N0.getOperand(0).getValueType().isInteger());
2163         return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2164       }
2165 
2166       if ((N0.getOpcode() == ISD::XOR ||
2167            (N0.getOpcode() == ISD::AND &&
2168             N0.getOperand(0).getOpcode() == ISD::XOR &&
2169             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2170           isa<ConstantSDNode>(N0.getOperand(1)) &&
2171           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2172         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2173         // can only do this if the top bits are known zero.
2174         unsigned BitWidth = N0.getValueSizeInBits();
2175         if (DAG.MaskedValueIsZero(N0,
2176                                   APInt::getHighBitsSet(BitWidth,
2177                                                         BitWidth-1))) {
2178           // Okay, get the un-inverted input value.
2179           SDValue Val;
2180           if (N0.getOpcode() == ISD::XOR)
2181             Val = N0.getOperand(0);
2182           else {
2183             assert(N0.getOpcode() == ISD::AND &&
2184                     N0.getOperand(0).getOpcode() == ISD::XOR);
2185             // ((X^1)&1)^1 -> X & 1
2186             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2187                               N0.getOperand(0).getOperand(0),
2188                               N0.getOperand(1));
2189           }
2190 
2191           return DAG.getSetCC(dl, VT, Val, N1,
2192                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2193         }
2194       } else if (N1C->getAPIntValue() == 1 &&
2195                  (VT == MVT::i1 ||
2196                   getBooleanContents(false) == ZeroOrOneBooleanContent)) {
2197         SDValue Op0 = N0;
2198         if (Op0.getOpcode() == ISD::TRUNCATE)
2199           Op0 = Op0.getOperand(0);
2200 
2201         if ((Op0.getOpcode() == ISD::XOR) &&
2202             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2203             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2204           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2205           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2206           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2207                               Cond);
2208         } else if (Op0.getOpcode() == ISD::AND &&
2209                 isa<ConstantSDNode>(Op0.getOperand(1)) &&
2210                 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2211           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2212           if (Op0.getValueType().bitsGT(VT))
2213             Op0 = DAG.getNode(ISD::AND, dl, VT,
2214                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2215                           DAG.getConstant(1, VT));
2216           else if (Op0.getValueType().bitsLT(VT))
2217             Op0 = DAG.getNode(ISD::AND, dl, VT,
2218                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2219                         DAG.getConstant(1, VT));
2220 
2221           return DAG.getSetCC(dl, VT, Op0,
2222                               DAG.getConstant(0, Op0.getValueType()),
2223                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2224         }
2225       }
2226     }
2227 
2228     APInt MinVal, MaxVal;
2229     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2230     if (ISD::isSignedIntSetCC(Cond)) {
2231       MinVal = APInt::getSignedMinValue(OperandBitSize);
2232       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2233     } else {
2234       MinVal = APInt::getMinValue(OperandBitSize);
2235       MaxVal = APInt::getMaxValue(OperandBitSize);
2236     }
2237 
2238     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2239     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2240       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2241       // X >= C0 --> X > (C0-1)
2242       return DAG.getSetCC(dl, VT, N0,
2243                           DAG.getConstant(C1-1, N1.getValueType()),
2244                           (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2245     }
2246 
2247     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2248       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2249       // X <= C0 --> X < (C0+1)
2250       return DAG.getSetCC(dl, VT, N0,
2251                           DAG.getConstant(C1+1, N1.getValueType()),
2252                           (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2253     }
2254 
2255     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2256       return DAG.getConstant(0, VT);      // X < MIN --> false
2257     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2258       return DAG.getConstant(1, VT);      // X >= MIN --> true
2259     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2260       return DAG.getConstant(0, VT);      // X > MAX --> false
2261     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2262       return DAG.getConstant(1, VT);      // X <= MAX --> true
2263 
2264     // Canonicalize setgt X, Min --> setne X, Min
2265     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2266       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2267     // Canonicalize setlt X, Max --> setne X, Max
2268     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2269       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2270 
2271     // If we have setult X, 1, turn it into seteq X, 0
2272     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2273       return DAG.getSetCC(dl, VT, N0,
2274                           DAG.getConstant(MinVal, N0.getValueType()),
2275                           ISD::SETEQ);
2276     // If we have setugt X, Max-1, turn it into seteq X, Max
2277     else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2278       return DAG.getSetCC(dl, VT, N0,
2279                           DAG.getConstant(MaxVal, N0.getValueType()),
2280                           ISD::SETEQ);
2281 
2282     // If we have "setcc X, C0", check to see if we can shrink the immediate
2283     // by changing cc.
2284 
2285     // SETUGT X, SINTMAX  -> SETLT X, 0
2286     if (Cond == ISD::SETUGT &&
2287         C1 == APInt::getSignedMaxValue(OperandBitSize))
2288       return DAG.getSetCC(dl, VT, N0,
2289                           DAG.getConstant(0, N1.getValueType()),
2290                           ISD::SETLT);
2291 
2292     // SETULT X, SINTMIN  -> SETGT X, -1
2293     if (Cond == ISD::SETULT &&
2294         C1 == APInt::getSignedMinValue(OperandBitSize)) {
2295       SDValue ConstMinusOne =
2296           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2297                           N1.getValueType());
2298       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2299     }
2300 
2301     // Fold bit comparisons when we can.
2302     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2303         (VT == N0.getValueType() ||
2304          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2305         N0.getOpcode() == ISD::AND)
2306       if (ConstantSDNode *AndRHS =
2307                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2308         EVT ShiftTy = DCI.isBeforeLegalize() ?
2309           getPointerTy() : getShiftAmountTy(N0.getValueType());
2310         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2311           // Perform the xform if the AND RHS is a single bit.
2312           if (AndRHS->getAPIntValue().isPowerOf2()) {
2313             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2314                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2315                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2316           }
2317         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2318           // (X & 8) == 8  -->  (X & 8) >> 3
2319           // Perform the xform if C1 is a single bit.
2320           if (C1.isPowerOf2()) {
2321             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2322                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2323                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
2324           }
2325         }
2326       }
2327   }
2328 
2329   if (isa<ConstantFPSDNode>(N0.getNode())) {
2330     // Constant fold or commute setcc.
2331     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2332     if (O.getNode()) return O;
2333   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2334     // If the RHS of an FP comparison is a constant, simplify it away in
2335     // some cases.
2336     if (CFP->getValueAPF().isNaN()) {
2337       // If an operand is known to be a nan, we can fold it.
2338       switch (ISD::getUnorderedFlavor(Cond)) {
2339       default: llvm_unreachable("Unknown flavor!");
2340       case 0:  // Known false.
2341         return DAG.getConstant(0, VT);
2342       case 1:  // Known true.
2343         return DAG.getConstant(1, VT);
2344       case 2:  // Undefined.
2345         return DAG.getUNDEF(VT);
2346       }
2347     }
2348 
2349     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2350     // constant if knowing that the operand is non-nan is enough.  We prefer to
2351     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2352     // materialize 0.0.
2353     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2354       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2355 
2356     // If the condition is not legal, see if we can find an equivalent one
2357     // which is legal.
2358     if (!isCondCodeLegal(Cond, N0.getValueType())) {
2359       // If the comparison was an awkward floating-point == or != and one of
2360       // the comparison operands is infinity or negative infinity, convert the
2361       // condition to a less-awkward <= or >=.
2362       if (CFP->getValueAPF().isInfinity()) {
2363         if (CFP->getValueAPF().isNegative()) {
2364           if (Cond == ISD::SETOEQ &&
2365               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2366             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2367           if (Cond == ISD::SETUEQ &&
2368               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2369             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2370           if (Cond == ISD::SETUNE &&
2371               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2372             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2373           if (Cond == ISD::SETONE &&
2374               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2375             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2376         } else {
2377           if (Cond == ISD::SETOEQ &&
2378               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2379             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2380           if (Cond == ISD::SETUEQ &&
2381               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2382             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2383           if (Cond == ISD::SETUNE &&
2384               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2385             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2386           if (Cond == ISD::SETONE &&
2387               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2388             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2389         }
2390       }
2391     }
2392   }
2393 
2394   if (N0 == N1) {
2395     // We can always fold X == X for integer setcc's.
2396     if (N0.getValueType().isInteger())
2397       return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2398     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2399     if (UOF == 2)   // FP operators that are undefined on NaNs.
2400       return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2401     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2402       return DAG.getConstant(UOF, VT);
2403     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2404     // if it is not already.
2405     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2406     if (NewCond != Cond)
2407       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2408   }
2409 
2410   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2411       N0.getValueType().isInteger()) {
2412     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2413         N0.getOpcode() == ISD::XOR) {
2414       // Simplify (X+Y) == (X+Z) -->  Y == Z
2415       if (N0.getOpcode() == N1.getOpcode()) {
2416         if (N0.getOperand(0) == N1.getOperand(0))
2417           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2418         if (N0.getOperand(1) == N1.getOperand(1))
2419           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2420         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2421           // If X op Y == Y op X, try other combinations.
2422           if (N0.getOperand(0) == N1.getOperand(1))
2423             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2424                                 Cond);
2425           if (N0.getOperand(1) == N1.getOperand(0))
2426             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2427                                 Cond);
2428         }
2429       }
2430 
2431       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2432         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2433           // Turn (X+C1) == C2 --> X == C2-C1
2434           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2435             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2436                                 DAG.getConstant(RHSC->getAPIntValue()-
2437                                                 LHSR->getAPIntValue(),
2438                                 N0.getValueType()), Cond);
2439           }
2440 
2441           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2442           if (N0.getOpcode() == ISD::XOR)
2443             // If we know that all of the inverted bits are zero, don't bother
2444             // performing the inversion.
2445             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2446               return
2447                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2448                              DAG.getConstant(LHSR->getAPIntValue() ^
2449                                                RHSC->getAPIntValue(),
2450                                              N0.getValueType()),
2451                              Cond);
2452         }
2453 
2454         // Turn (C1-X) == C2 --> X == C1-C2
2455         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2456           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2457             return
2458               DAG.getSetCC(dl, VT, N0.getOperand(1),
2459                            DAG.getConstant(SUBC->getAPIntValue() -
2460                                              RHSC->getAPIntValue(),
2461                                            N0.getValueType()),
2462                            Cond);
2463           }
2464         }
2465       }
2466 
2467       // Simplify (X+Z) == X -->  Z == 0
2468       if (N0.getOperand(0) == N1)
2469         return DAG.getSetCC(dl, VT, N0.getOperand(1),
2470                         DAG.getConstant(0, N0.getValueType()), Cond);
2471       if (N0.getOperand(1) == N1) {
2472         if (DAG.isCommutativeBinOp(N0.getOpcode()))
2473           return DAG.getSetCC(dl, VT, N0.getOperand(0),
2474                           DAG.getConstant(0, N0.getValueType()), Cond);
2475         else if (N0.getNode()->hasOneUse()) {
2476           assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2477           // (Z-X) == X  --> Z == X<<1
2478           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2479                                      N1,
2480                        DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2481           if (!DCI.isCalledByLegalizer())
2482             DCI.AddToWorklist(SH.getNode());
2483           return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2484         }
2485       }
2486     }
2487 
2488     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2489         N1.getOpcode() == ISD::XOR) {
2490       // Simplify  X == (X+Z) -->  Z == 0
2491       if (N1.getOperand(0) == N0) {
2492         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2493                         DAG.getConstant(0, N1.getValueType()), Cond);
2494       } else if (N1.getOperand(1) == N0) {
2495         if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2496           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2497                           DAG.getConstant(0, N1.getValueType()), Cond);
2498         } else if (N1.getNode()->hasOneUse()) {
2499           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2500           // X == (Z-X)  --> X<<1 == Z
2501           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2502                        DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2503           if (!DCI.isCalledByLegalizer())
2504             DCI.AddToWorklist(SH.getNode());
2505           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2506         }
2507       }
2508     }
2509 
2510     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2511     // Note that where y is variable and is known to have at most
2512     // one bit set (for example, if it is z&1) we cannot do this;
2513     // the expressions are not equivalent when y==0.
2514     if (N0.getOpcode() == ISD::AND)
2515       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2516         if (ValueHasExactlyOneBitSet(N1, DAG)) {
2517           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2518           SDValue Zero = DAG.getConstant(0, N1.getValueType());
2519           return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2520         }
2521       }
2522     if (N1.getOpcode() == ISD::AND)
2523       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2524         if (ValueHasExactlyOneBitSet(N0, DAG)) {
2525           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2526           SDValue Zero = DAG.getConstant(0, N0.getValueType());
2527           return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2528         }
2529       }
2530   }
2531 
2532   // Fold away ALL boolean setcc's.
2533   SDValue Temp;
2534   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2535     switch (Cond) {
2536     default: llvm_unreachable("Unknown integer setcc!");
2537     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2538       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2539       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2540       if (!DCI.isCalledByLegalizer())
2541         DCI.AddToWorklist(Temp.getNode());
2542       break;
2543     case ISD::SETNE:  // X != Y   -->  (X^Y)
2544       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2545       break;
2546     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2547     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2548       Temp = DAG.getNOT(dl, N0, MVT::i1);
2549       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2550       if (!DCI.isCalledByLegalizer())
2551         DCI.AddToWorklist(Temp.getNode());
2552       break;
2553     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2554     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2555       Temp = DAG.getNOT(dl, N1, MVT::i1);
2556       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2557       if (!DCI.isCalledByLegalizer())
2558         DCI.AddToWorklist(Temp.getNode());
2559       break;
2560     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2561     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2562       Temp = DAG.getNOT(dl, N0, MVT::i1);
2563       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2564       if (!DCI.isCalledByLegalizer())
2565         DCI.AddToWorklist(Temp.getNode());
2566       break;
2567     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2568     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2569       Temp = DAG.getNOT(dl, N1, MVT::i1);
2570       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2571       break;
2572     }
2573     if (VT != MVT::i1) {
2574       if (!DCI.isCalledByLegalizer())
2575         DCI.AddToWorklist(N0.getNode());
2576       // FIXME: If running after legalize, we probably can't do this.
2577       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2578     }
2579     return N0;
2580   }
2581 
2582   // Could not fold it.
2583   return SDValue();
2584 }
2585 
2586 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2587 /// node is a GlobalAddress + offset.
isGAPlusOffset(SDNode * N,const GlobalValue * & GA,int64_t & Offset) const2588 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2589                                     int64_t &Offset) const {
2590   if (isa<GlobalAddressSDNode>(N)) {
2591     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2592     GA = GASD->getGlobal();
2593     Offset += GASD->getOffset();
2594     return true;
2595   }
2596 
2597   if (N->getOpcode() == ISD::ADD) {
2598     SDValue N1 = N->getOperand(0);
2599     SDValue N2 = N->getOperand(1);
2600     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2601       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2602       if (V) {
2603         Offset += V->getSExtValue();
2604         return true;
2605       }
2606     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2607       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2608       if (V) {
2609         Offset += V->getSExtValue();
2610         return true;
2611       }
2612     }
2613   }
2614 
2615   return false;
2616 }
2617 
2618 
2619 SDValue TargetLowering::
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2620 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2621   // Default implementation: no optimization.
2622   return SDValue();
2623 }
2624 
2625 //===----------------------------------------------------------------------===//
2626 //  Inline Assembler Implementation Methods
2627 //===----------------------------------------------------------------------===//
2628 
2629 
2630 TargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const2631 TargetLowering::getConstraintType(const std::string &Constraint) const {
2632   if (Constraint.size() == 1) {
2633     switch (Constraint[0]) {
2634     default: break;
2635     case 'r': return C_RegisterClass;
2636     case 'm':    // memory
2637     case 'o':    // offsetable
2638     case 'V':    // not offsetable
2639       return C_Memory;
2640     case 'i':    // Simple Integer or Relocatable Constant
2641     case 'n':    // Simple Integer
2642     case 'E':    // Floating Point Constant
2643     case 'F':    // Floating Point Constant
2644     case 's':    // Relocatable Constant
2645     case 'p':    // Address.
2646     case 'X':    // Allow ANY value.
2647     case 'I':    // Target registers.
2648     case 'J':
2649     case 'K':
2650     case 'L':
2651     case 'M':
2652     case 'N':
2653     case 'O':
2654     case 'P':
2655     case '<':
2656     case '>':
2657       return C_Other;
2658     }
2659   }
2660 
2661   if (Constraint.size() > 1 && Constraint[0] == '{' &&
2662       Constraint[Constraint.size()-1] == '}')
2663     return C_Register;
2664   return C_Unknown;
2665 }
2666 
2667 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2668 /// with another that has more specific requirements based on the type of the
2669 /// corresponding operand.
LowerXConstraint(EVT ConstraintVT) const2670 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2671   if (ConstraintVT.isInteger())
2672     return "r";
2673   if (ConstraintVT.isFloatingPoint())
2674     return "f";      // works for many targets
2675   return 0;
2676 }
2677 
2678 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2679 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const2680 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2681                                                   std::string &Constraint,
2682                                                   std::vector<SDValue> &Ops,
2683                                                   SelectionDAG &DAG) const {
2684 
2685   if (Constraint.length() > 1) return;
2686 
2687   char ConstraintLetter = Constraint[0];
2688   switch (ConstraintLetter) {
2689   default: break;
2690   case 'X':     // Allows any operand; labels (basic block) use this.
2691     if (Op.getOpcode() == ISD::BasicBlock) {
2692       Ops.push_back(Op);
2693       return;
2694     }
2695     // fall through
2696   case 'i':    // Simple Integer or Relocatable Constant
2697   case 'n':    // Simple Integer
2698   case 's': {  // Relocatable Constant
2699     // These operands are interested in values of the form (GV+C), where C may
2700     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2701     // is possible and fine if either GV or C are missing.
2702     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2703     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2704 
2705     // If we have "(add GV, C)", pull out GV/C
2706     if (Op.getOpcode() == ISD::ADD) {
2707       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2708       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2709       if (C == 0 || GA == 0) {
2710         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2711         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2712       }
2713       if (C == 0 || GA == 0)
2714         C = 0, GA = 0;
2715     }
2716 
2717     // If we find a valid operand, map to the TargetXXX version so that the
2718     // value itself doesn't get selected.
2719     if (GA) {   // Either &GV   or   &GV+C
2720       if (ConstraintLetter != 'n') {
2721         int64_t Offs = GA->getOffset();
2722         if (C) Offs += C->getZExtValue();
2723         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2724                                                  C ? C->getDebugLoc() : DebugLoc(),
2725                                                  Op.getValueType(), Offs));
2726         return;
2727       }
2728     }
2729     if (C) {   // just C, no GV.
2730       // Simple constants are not allowed for 's'.
2731       if (ConstraintLetter != 's') {
2732         // gcc prints these as sign extended.  Sign extend value to 64 bits
2733         // now; without this it would get ZExt'd later in
2734         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2735         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2736                                             MVT::i64));
2737         return;
2738       }
2739     }
2740     break;
2741   }
2742   }
2743 }
2744 
2745 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
getRegForInlineAsmConstraint(const std::string & Constraint,EVT VT) const2746 getRegForInlineAsmConstraint(const std::string &Constraint,
2747                              EVT VT) const {
2748   if (Constraint[0] != '{')
2749     return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2750   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2751 
2752   // Remove the braces from around the name.
2753   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2754 
2755   // Figure out which register class contains this reg.
2756   const TargetRegisterInfo *RI = TM.getRegisterInfo();
2757   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2758        E = RI->regclass_end(); RCI != E; ++RCI) {
2759     const TargetRegisterClass *RC = *RCI;
2760 
2761     // If none of the value types for this register class are valid, we
2762     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2763     if (!isLegalRC(RC))
2764       continue;
2765 
2766     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2767          I != E; ++I) {
2768       if (RegName.equals_lower(RI->getName(*I)))
2769         return std::make_pair(*I, RC);
2770     }
2771   }
2772 
2773   return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2774 }
2775 
2776 //===----------------------------------------------------------------------===//
2777 // Constraint Selection.
2778 
2779 /// isMatchingInputConstraint - Return true of this is an input operand that is
2780 /// a matching constraint like "4".
isMatchingInputConstraint() const2781 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2782   assert(!ConstraintCode.empty() && "No known constraint!");
2783   return isdigit(ConstraintCode[0]);
2784 }
2785 
2786 /// getMatchedOperand - If this is an input matching constraint, this method
2787 /// returns the output operand it matches.
getMatchedOperand() const2788 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2789   assert(!ConstraintCode.empty() && "No known constraint!");
2790   return atoi(ConstraintCode.c_str());
2791 }
2792 
2793 
2794 /// ParseConstraints - Split up the constraint string from the inline
2795 /// assembly value into the specific constraints and their prefixes,
2796 /// and also tie in the associated operand values.
2797 /// If this returns an empty vector, and if the constraint string itself
2798 /// isn't empty, there was an error parsing.
ParseConstraints(ImmutableCallSite CS) const2799 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2800     ImmutableCallSite CS) const {
2801   /// ConstraintOperands - Information about all of the constraints.
2802   AsmOperandInfoVector ConstraintOperands;
2803   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2804   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2805 
2806   // Do a prepass over the constraints, canonicalizing them, and building up the
2807   // ConstraintOperands list.
2808   InlineAsm::ConstraintInfoVector
2809     ConstraintInfos = IA->ParseConstraints();
2810 
2811   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2812   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2813 
2814   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2815     ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2816     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2817 
2818     // Update multiple alternative constraint count.
2819     if (OpInfo.multipleAlternatives.size() > maCount)
2820       maCount = OpInfo.multipleAlternatives.size();
2821 
2822     OpInfo.ConstraintVT = MVT::Other;
2823 
2824     // Compute the value type for each operand.
2825     switch (OpInfo.Type) {
2826     case InlineAsm::isOutput:
2827       // Indirect outputs just consume an argument.
2828       if (OpInfo.isIndirect) {
2829         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2830         break;
2831       }
2832 
2833       // The return value of the call is this value.  As such, there is no
2834       // corresponding argument.
2835       assert(!CS.getType()->isVoidTy() &&
2836              "Bad inline asm!");
2837       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2838         OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2839       } else {
2840         assert(ResNo == 0 && "Asm only has one result!");
2841         OpInfo.ConstraintVT = getValueType(CS.getType());
2842       }
2843       ++ResNo;
2844       break;
2845     case InlineAsm::isInput:
2846       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2847       break;
2848     case InlineAsm::isClobber:
2849       // Nothing to do.
2850       break;
2851     }
2852 
2853     if (OpInfo.CallOperandVal) {
2854       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2855       if (OpInfo.isIndirect) {
2856         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2857         if (!PtrTy)
2858           report_fatal_error("Indirect operand for inline asm not a pointer!");
2859         OpTy = PtrTy->getElementType();
2860       }
2861 
2862       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2863       if (StructType *STy = dyn_cast<StructType>(OpTy))
2864         if (STy->getNumElements() == 1)
2865           OpTy = STy->getElementType(0);
2866 
2867       // If OpTy is not a single value, it may be a struct/union that we
2868       // can tile with integers.
2869       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2870         unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2871         switch (BitSize) {
2872         default: break;
2873         case 1:
2874         case 8:
2875         case 16:
2876         case 32:
2877         case 64:
2878         case 128:
2879           OpInfo.ConstraintVT =
2880               EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2881           break;
2882         }
2883       } else if (dyn_cast<PointerType>(OpTy)) {
2884         OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2885       } else {
2886         OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2887       }
2888     }
2889   }
2890 
2891   // If we have multiple alternative constraints, select the best alternative.
2892   if (ConstraintInfos.size()) {
2893     if (maCount) {
2894       unsigned bestMAIndex = 0;
2895       int bestWeight = -1;
2896       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2897       int weight = -1;
2898       unsigned maIndex;
2899       // Compute the sums of the weights for each alternative, keeping track
2900       // of the best (highest weight) one so far.
2901       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2902         int weightSum = 0;
2903         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2904             cIndex != eIndex; ++cIndex) {
2905           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2906           if (OpInfo.Type == InlineAsm::isClobber)
2907             continue;
2908 
2909           // If this is an output operand with a matching input operand,
2910           // look up the matching input. If their types mismatch, e.g. one
2911           // is an integer, the other is floating point, or their sizes are
2912           // different, flag it as an maCantMatch.
2913           if (OpInfo.hasMatchingInput()) {
2914             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2915             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2916               if ((OpInfo.ConstraintVT.isInteger() !=
2917                    Input.ConstraintVT.isInteger()) ||
2918                   (OpInfo.ConstraintVT.getSizeInBits() !=
2919                    Input.ConstraintVT.getSizeInBits())) {
2920                 weightSum = -1;  // Can't match.
2921                 break;
2922               }
2923             }
2924           }
2925           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2926           if (weight == -1) {
2927             weightSum = -1;
2928             break;
2929           }
2930           weightSum += weight;
2931         }
2932         // Update best.
2933         if (weightSum > bestWeight) {
2934           bestWeight = weightSum;
2935           bestMAIndex = maIndex;
2936         }
2937       }
2938 
2939       // Now select chosen alternative in each constraint.
2940       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2941           cIndex != eIndex; ++cIndex) {
2942         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2943         if (cInfo.Type == InlineAsm::isClobber)
2944           continue;
2945         cInfo.selectAlternative(bestMAIndex);
2946       }
2947     }
2948   }
2949 
2950   // Check and hook up tied operands, choose constraint code to use.
2951   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2952       cIndex != eIndex; ++cIndex) {
2953     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2954 
2955     // If this is an output operand with a matching input operand, look up the
2956     // matching input. If their types mismatch, e.g. one is an integer, the
2957     // other is floating point, or their sizes are different, flag it as an
2958     // error.
2959     if (OpInfo.hasMatchingInput()) {
2960       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2961 
2962       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2963 	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
2964 	  getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
2965 	std::pair<unsigned, const TargetRegisterClass*> InputRC =
2966 	  getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
2967         if ((OpInfo.ConstraintVT.isInteger() !=
2968              Input.ConstraintVT.isInteger()) ||
2969             (MatchRC.second != InputRC.second)) {
2970           report_fatal_error("Unsupported asm: input constraint"
2971                              " with a matching output constraint of"
2972                              " incompatible type!");
2973         }
2974       }
2975 
2976     }
2977   }
2978 
2979   return ConstraintOperands;
2980 }
2981 
2982 
2983 /// getConstraintGenerality - Return an integer indicating how general CT
2984 /// is.
getConstraintGenerality(TargetLowering::ConstraintType CT)2985 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2986   switch (CT) {
2987   default: llvm_unreachable("Unknown constraint type!");
2988   case TargetLowering::C_Other:
2989   case TargetLowering::C_Unknown:
2990     return 0;
2991   case TargetLowering::C_Register:
2992     return 1;
2993   case TargetLowering::C_RegisterClass:
2994     return 2;
2995   case TargetLowering::C_Memory:
2996     return 3;
2997   }
2998 }
2999 
3000 /// Examine constraint type and operand type and determine a weight value.
3001 /// This object must already have been set up with the operand type
3002 /// and the current alternative constraint selected.
3003 TargetLowering::ConstraintWeight
getMultipleConstraintMatchWeight(AsmOperandInfo & info,int maIndex) const3004   TargetLowering::getMultipleConstraintMatchWeight(
3005     AsmOperandInfo &info, int maIndex) const {
3006   InlineAsm::ConstraintCodeVector *rCodes;
3007   if (maIndex >= (int)info.multipleAlternatives.size())
3008     rCodes = &info.Codes;
3009   else
3010     rCodes = &info.multipleAlternatives[maIndex].Codes;
3011   ConstraintWeight BestWeight = CW_Invalid;
3012 
3013   // Loop over the options, keeping track of the most general one.
3014   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3015     ConstraintWeight weight =
3016       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3017     if (weight > BestWeight)
3018       BestWeight = weight;
3019   }
3020 
3021   return BestWeight;
3022 }
3023 
3024 /// Examine constraint type and operand type and determine a weight value.
3025 /// This object must already have been set up with the operand type
3026 /// and the current alternative constraint selected.
3027 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const3028   TargetLowering::getSingleConstraintMatchWeight(
3029     AsmOperandInfo &info, const char *constraint) const {
3030   ConstraintWeight weight = CW_Invalid;
3031   Value *CallOperandVal = info.CallOperandVal;
3032     // If we don't have a value, we can't do a match,
3033     // but allow it at the lowest weight.
3034   if (CallOperandVal == NULL)
3035     return CW_Default;
3036   // Look at the constraint type.
3037   switch (*constraint) {
3038     case 'i': // immediate integer.
3039     case 'n': // immediate integer with a known value.
3040       if (isa<ConstantInt>(CallOperandVal))
3041         weight = CW_Constant;
3042       break;
3043     case 's': // non-explicit intregal immediate.
3044       if (isa<GlobalValue>(CallOperandVal))
3045         weight = CW_Constant;
3046       break;
3047     case 'E': // immediate float if host format.
3048     case 'F': // immediate float.
3049       if (isa<ConstantFP>(CallOperandVal))
3050         weight = CW_Constant;
3051       break;
3052     case '<': // memory operand with autodecrement.
3053     case '>': // memory operand with autoincrement.
3054     case 'm': // memory operand.
3055     case 'o': // offsettable memory operand
3056     case 'V': // non-offsettable memory operand
3057       weight = CW_Memory;
3058       break;
3059     case 'r': // general register.
3060     case 'g': // general register, memory operand or immediate integer.
3061               // note: Clang converts "g" to "imr".
3062       if (CallOperandVal->getType()->isIntegerTy())
3063         weight = CW_Register;
3064       break;
3065     case 'X': // any operand.
3066     default:
3067       weight = CW_Default;
3068       break;
3069   }
3070   return weight;
3071 }
3072 
3073 /// ChooseConstraint - If there are multiple different constraints that we
3074 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3075 /// This is somewhat tricky: constraints fall into four classes:
3076 ///    Other         -> immediates and magic values
3077 ///    Register      -> one specific register
3078 ///    RegisterClass -> a group of regs
3079 ///    Memory        -> memory
3080 /// Ideally, we would pick the most specific constraint possible: if we have
3081 /// something that fits into a register, we would pick it.  The problem here
3082 /// is that if we have something that could either be in a register or in
3083 /// memory that use of the register could cause selection of *other*
3084 /// operands to fail: they might only succeed if we pick memory.  Because of
3085 /// this the heuristic we use is:
3086 ///
3087 ///  1) If there is an 'other' constraint, and if the operand is valid for
3088 ///     that constraint, use it.  This makes us take advantage of 'i'
3089 ///     constraints when available.
3090 ///  2) Otherwise, pick the most general constraint present.  This prefers
3091 ///     'm' over 'r', for example.
3092 ///
ChooseConstraint(TargetLowering::AsmOperandInfo & OpInfo,const TargetLowering & TLI,SDValue Op,SelectionDAG * DAG)3093 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3094                              const TargetLowering &TLI,
3095                              SDValue Op, SelectionDAG *DAG) {
3096   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3097   unsigned BestIdx = 0;
3098   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3099   int BestGenerality = -1;
3100 
3101   // Loop over the options, keeping track of the most general one.
3102   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3103     TargetLowering::ConstraintType CType =
3104       TLI.getConstraintType(OpInfo.Codes[i]);
3105 
3106     // If this is an 'other' constraint, see if the operand is valid for it.
3107     // For example, on X86 we might have an 'rI' constraint.  If the operand
3108     // is an integer in the range [0..31] we want to use I (saving a load
3109     // of a register), otherwise we must use 'r'.
3110     if (CType == TargetLowering::C_Other && Op.getNode()) {
3111       assert(OpInfo.Codes[i].size() == 1 &&
3112              "Unhandled multi-letter 'other' constraint");
3113       std::vector<SDValue> ResultOps;
3114       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3115                                        ResultOps, *DAG);
3116       if (!ResultOps.empty()) {
3117         BestType = CType;
3118         BestIdx = i;
3119         break;
3120       }
3121     }
3122 
3123     // Things with matching constraints can only be registers, per gcc
3124     // documentation.  This mainly affects "g" constraints.
3125     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3126       continue;
3127 
3128     // This constraint letter is more general than the previous one, use it.
3129     int Generality = getConstraintGenerality(CType);
3130     if (Generality > BestGenerality) {
3131       BestType = CType;
3132       BestIdx = i;
3133       BestGenerality = Generality;
3134     }
3135   }
3136 
3137   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3138   OpInfo.ConstraintType = BestType;
3139 }
3140 
3141 /// ComputeConstraintToUse - Determines the constraint code and constraint
3142 /// type to use for the specific AsmOperandInfo, setting
3143 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
ComputeConstraintToUse(AsmOperandInfo & OpInfo,SDValue Op,SelectionDAG * DAG) const3144 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3145                                             SDValue Op,
3146                                             SelectionDAG *DAG) const {
3147   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3148 
3149   // Single-letter constraints ('r') are very common.
3150   if (OpInfo.Codes.size() == 1) {
3151     OpInfo.ConstraintCode = OpInfo.Codes[0];
3152     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3153   } else {
3154     ChooseConstraint(OpInfo, *this, Op, DAG);
3155   }
3156 
3157   // 'X' matches anything.
3158   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3159     // Labels and constants are handled elsewhere ('X' is the only thing
3160     // that matches labels).  For Functions, the type here is the type of
3161     // the result, which is not what we want to look at; leave them alone.
3162     Value *v = OpInfo.CallOperandVal;
3163     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3164       OpInfo.CallOperandVal = v;
3165       return;
3166     }
3167 
3168     // Otherwise, try to resolve it to something we know about by looking at
3169     // the actual operand type.
3170     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3171       OpInfo.ConstraintCode = Repl;
3172       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3173     }
3174   }
3175 }
3176 
3177 //===----------------------------------------------------------------------===//
3178 //  Loop Strength Reduction hooks
3179 //===----------------------------------------------------------------------===//
3180 
3181 /// isLegalAddressingMode - Return true if the addressing mode represented
3182 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const3183 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3184                                            Type *Ty) const {
3185   // The default implementation of this implements a conservative RISCy, r+r and
3186   // r+i addr mode.
3187 
3188   // Allows a sign-extended 16-bit immediate field.
3189   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3190     return false;
3191 
3192   // No global is ever allowed as a base.
3193   if (AM.BaseGV)
3194     return false;
3195 
3196   // Only support r+r,
3197   switch (AM.Scale) {
3198   case 0:  // "r+i" or just "i", depending on HasBaseReg.
3199     break;
3200   case 1:
3201     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3202       return false;
3203     // Otherwise we have r+r or r+i.
3204     break;
3205   case 2:
3206     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3207       return false;
3208     // Allow 2*r as r+r.
3209     break;
3210   }
3211 
3212   return true;
3213 }
3214 
3215 /// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
3216 /// with the multiplicative inverse of the constant.
BuildExactSDIV(SDValue Op1,SDValue Op2,DebugLoc dl,SelectionDAG & DAG) const3217 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
3218                                        SelectionDAG &DAG) const {
3219   ConstantSDNode *C = cast<ConstantSDNode>(Op2);
3220   APInt d = C->getAPIntValue();
3221   assert(d != 0 && "Division by zero!");
3222 
3223   // Shift the value upfront if it is even, so the LSB is one.
3224   unsigned ShAmt = d.countTrailingZeros();
3225   if (ShAmt) {
3226     // TODO: For UDIV use SRL instead of SRA.
3227     SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
3228     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
3229     d = d.ashr(ShAmt);
3230   }
3231 
3232   // Calculate the multiplicative inverse, using Newton's method.
3233   APInt t, xn = d;
3234   while ((t = d*xn) != 1)
3235     xn *= APInt(d.getBitWidth(), 2) - t;
3236 
3237   Op2 = DAG.getConstant(xn, Op1.getValueType());
3238   return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
3239 }
3240 
3241 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3242 /// return a DAG expression to select that will generate the same value by
3243 /// multiplying by a magic number.  See:
3244 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
BuildSDIV(SDNode * N,SelectionDAG & DAG,std::vector<SDNode * > * Created) const3245 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3246                                   std::vector<SDNode*>* Created) const {
3247   EVT VT = N->getValueType(0);
3248   DebugLoc dl= N->getDebugLoc();
3249 
3250   // Check to see if we can do this.
3251   // FIXME: We should be more aggressive here.
3252   if (!isTypeLegal(VT))
3253     return SDValue();
3254 
3255   APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3256   APInt::ms magics = d.magic();
3257 
3258   // Multiply the numerator (operand 0) by the magic value
3259   // FIXME: We should support doing a MUL in a wider type
3260   SDValue Q;
3261   if (isOperationLegalOrCustom(ISD::MULHS, VT))
3262     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3263                     DAG.getConstant(magics.m, VT));
3264   else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3265     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3266                               N->getOperand(0),
3267                               DAG.getConstant(magics.m, VT)).getNode(), 1);
3268   else
3269     return SDValue();       // No mulhs or equvialent
3270   // If d > 0 and m < 0, add the numerator
3271   if (d.isStrictlyPositive() && magics.m.isNegative()) {
3272     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3273     if (Created)
3274       Created->push_back(Q.getNode());
3275   }
3276   // If d < 0 and m > 0, subtract the numerator.
3277   if (d.isNegative() && magics.m.isStrictlyPositive()) {
3278     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3279     if (Created)
3280       Created->push_back(Q.getNode());
3281   }
3282   // Shift right algebraic if shift value is nonzero
3283   if (magics.s > 0) {
3284     Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3285                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3286     if (Created)
3287       Created->push_back(Q.getNode());
3288   }
3289   // Extract the sign bit and add it to the quotient
3290   SDValue T =
3291     DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3292                                            getShiftAmountTy(Q.getValueType())));
3293   if (Created)
3294     Created->push_back(T.getNode());
3295   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3296 }
3297 
3298 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3299 /// return a DAG expression to select that will generate the same value by
3300 /// multiplying by a magic number.  See:
3301 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
BuildUDIV(SDNode * N,SelectionDAG & DAG,std::vector<SDNode * > * Created) const3302 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3303                                   std::vector<SDNode*>* Created) const {
3304   EVT VT = N->getValueType(0);
3305   DebugLoc dl = N->getDebugLoc();
3306 
3307   // Check to see if we can do this.
3308   // FIXME: We should be more aggressive here.
3309   if (!isTypeLegal(VT))
3310     return SDValue();
3311 
3312   // FIXME: We should use a narrower constant when the upper
3313   // bits are known to be zero.
3314   const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3315   APInt::mu magics = N1C.magicu();
3316 
3317   SDValue Q = N->getOperand(0);
3318 
3319   // If the divisor is even, we can avoid using the expensive fixup by shifting
3320   // the divided value upfront.
3321   if (magics.a != 0 && !N1C[0]) {
3322     unsigned Shift = N1C.countTrailingZeros();
3323     Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3324                     DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3325     if (Created)
3326       Created->push_back(Q.getNode());
3327 
3328     // Get magic number for the shifted divisor.
3329     magics = N1C.lshr(Shift).magicu(Shift);
3330     assert(magics.a == 0 && "Should use cheap fixup now");
3331   }
3332 
3333   // Multiply the numerator (operand 0) by the magic value
3334   // FIXME: We should support doing a MUL in a wider type
3335   if (isOperationLegalOrCustom(ISD::MULHU, VT))
3336     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3337   else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3338     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3339                             DAG.getConstant(magics.m, VT)).getNode(), 1);
3340   else
3341     return SDValue();       // No mulhu or equvialent
3342   if (Created)
3343     Created->push_back(Q.getNode());
3344 
3345   if (magics.a == 0) {
3346     assert(magics.s < N1C.getBitWidth() &&
3347            "We shouldn't generate an undefined shift!");
3348     return DAG.getNode(ISD::SRL, dl, VT, Q,
3349                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3350   } else {
3351     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3352     if (Created)
3353       Created->push_back(NPQ.getNode());
3354     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3355                       DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3356     if (Created)
3357       Created->push_back(NPQ.getNode());
3358     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3359     if (Created)
3360       Created->push_back(NPQ.getNode());
3361     return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3362              DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3363   }
3364 }
3365