1  /*
2   * Copyright © 2013 Intel Corporation
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice (including the next
12   * paragraph) shall be included in all copies or substantial portions of the
13   * Software.
14   *
15   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20   * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21   * IN THE SOFTWARE.
22   *
23   */
24 
25 #ifndef GEN_DEVICE_INFO_H
26 #define GEN_DEVICE_INFO_H
27 
28 #include <stdbool.h>
29 #include <stdint.h>
30 
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34 
35 /**
36  * Intel hardware information and quirks
37  */
38 struct gen_device_info
39 {
40    int gen; /**< Generation number: 4, 5, 6, 7, ... */
41    int gt;
42 
43    bool is_g4x;
44    bool is_ivybridge;
45    bool is_baytrail;
46    bool is_haswell;
47    bool is_broadwell;
48    bool is_cherryview;
49    bool is_skylake;
50    bool is_broxton;
51    bool is_kabylake;
52    bool is_geminilake;
53    bool is_coffeelake;
54    bool is_cannonlake;
55 
56    bool has_hiz_and_separate_stencil;
57    bool must_use_separate_stencil;
58 
59    bool has_llc;
60 
61    bool has_pln;
62    bool has_compr4;
63    bool has_surface_tile_offset;
64    bool supports_simd16_3src;
65    bool has_resource_streamer;
66 
67    /**
68     * \name Intel hardware quirks
69     *  @{
70     */
71    bool has_negative_rhw_bug;
72 
73    /**
74     * Some versions of Gen hardware don't do centroid interpolation correctly
75     * on unlit pixels, causing incorrect values for derivatives near triangle
76     * edges.  Enabling this flag causes the fragment shader to use
77     * non-centroid interpolation for unlit pixels, at the expense of two extra
78     * fragment shader instructions.
79     */
80    bool needs_unlit_centroid_workaround;
81    /** @} */
82 
83    /**
84     * \name GPU hardware limits
85     *
86     * In general, you can find shader thread maximums by looking at the "Maximum
87     * Number of Threads" field in the Intel PRM description of the 3DSTATE_VS,
88     * 3DSTATE_GS, 3DSTATE_HS, 3DSTATE_DS, and 3DSTATE_PS commands. URB entry
89     * limits come from the "Number of URB Entries" field in the
90     * 3DSTATE_URB_VS command and friends.
91     *
92     * These fields are used to calculate the scratch space to allocate.  The
93     * amount of scratch space can be larger without being harmful on modern
94     * GPUs, however, prior to Haswell, programming the maximum number of threads
95     * to greater than the hardware maximum would cause GPU performance to tank.
96     *
97     *  @{
98     */
99    /**
100     * Total number of slices present on the device whether or not they've been
101     * fused off.
102     *
103     * XXX: CS thread counts are limited by the inability to do cross subslice
104     * communication. It is the effectively the number of logical threads which
105     * can be executed in a subslice. Fuse configurations may cause this number
106     * to change, so we program @max_cs_threads as the lower maximum.
107     */
108    unsigned num_slices;
109 
110    /**
111     * Number of subslices for each slice (used to be uniform until CNL).
112     */
113    unsigned num_subslices[3];
114 
115    /**
116     * Number of threads per eu, varies between 4 and 8 between generations.
117     */
118    unsigned num_thread_per_eu;
119 
120    unsigned l3_banks;
121    unsigned max_vs_threads;   /**< Maximum Vertex Shader threads */
122    unsigned max_tcs_threads;  /**< Maximum Hull Shader threads */
123    unsigned max_tes_threads;  /**< Maximum Domain Shader threads */
124    unsigned max_gs_threads;   /**< Maximum Geometry Shader threads. */
125    /**
126     * Theoretical maximum number of Pixel Shader threads.
127     *
128     * PSD means Pixel Shader Dispatcher. On modern Intel GPUs, hardware will
129     * automatically scale pixel shader thread count, based on a single value
130     * programmed into 3DSTATE_PS.
131     *
132     * To calculate the maximum number of threads for Gen8 beyond (which have
133     * multiple Pixel Shader Dispatchers):
134     *
135     * - Look up 3DSTATE_PS and find "Maximum Number of Threads Per PSD"
136     * - Usually there's only one PSD per subslice, so use the number of
137     *   subslices for number of PSDs.
138     * - For max_wm_threads, the total should be PSD threads * #PSDs.
139     */
140    unsigned max_wm_threads;
141 
142    /**
143     * Maximum Compute Shader threads.
144     *
145     * Thread count * number of EUs per subslice
146     */
147    unsigned max_cs_threads;
148 
149    struct {
150       /**
151        * Hardware default URB size.
152        *
153        * The units this is expressed in are somewhat inconsistent: 512b units
154        * on Gen4-5, KB on Gen6-7, and KB times the slice count on Gen8+.
155        *
156        * Look up "URB Size" in the "Device Attributes" page, and take the
157        * maximum.  Look up the slice count for each GT SKU on the same page.
158        * urb.size = URB Size (kbytes) / slice count
159        */
160       unsigned size;
161 
162       /**
163        * The minimum number of URB entries.  See the 3DSTATE_URB_<XS> docs.
164        */
165       unsigned min_entries[4];
166 
167       /**
168        * The maximum number of URB entries.  See the 3DSTATE_URB_<XS> docs.
169        */
170       unsigned max_entries[4];
171    } urb;
172 
173    /**
174     * For the longest time the timestamp frequency for Gen's timestamp counter
175     * could be assumed to be 12.5MHz, where the least significant bit neatly
176     * corresponded to 80 nanoseconds.
177     *
178     * Since Gen9 the numbers aren't so round, with a a frequency of 12MHz for
179     * SKL (or scale factor of 83.33333333) and a frequency of 19200000Hz for
180     * BXT.
181     *
182     * For simplicty to fit with the current code scaling by a single constant
183     * to map from raw timestamps to nanoseconds we now do the conversion in
184     * floating point instead of integer arithmetic.
185     *
186     * In general it's probably worth noting that the documented constants we
187     * have for the per-platform timestamp frequencies aren't perfect and
188     * shouldn't be trusted for scaling and comparing timestamps with a large
189     * delta.
190     *
191     * E.g. with crude testing on my system using the 'correct' scale factor I'm
192     * seeing a drift of ~2 milliseconds per second.
193     */
194    uint64_t timestamp_frequency;
195 
196    /** @} */
197 };
198 
199 #define gen_device_info_is_9lp(devinfo) \
200    ((devinfo)->is_broxton || (devinfo)->is_geminilake)
201 
202 bool gen_get_device_info(int devid, struct gen_device_info *devinfo);
203 const char *gen_get_device_name(int devid);
204 
205 #ifdef __cplusplus
206 }
207 #endif
208 
209 #endif /* GEN_DEVICE_INFO_H */
210