1 /*
2  * Copyright (c) 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 /** @file hsw_queryobj.c
26  *
27  * Support for query buffer objects (GL_ARB_query_buffer_object) on Haswell+.
28  */
29 #include "main/imports.h"
30 
31 #include "brw_context.h"
32 #include "brw_defines.h"
33 #include "intel_batchbuffer.h"
34 #include "intel_buffer_objects.h"
35 
36 /*
37  * GPR0 = 80 * GPR0;
38  */
39 static void
mult_gpr0_by_80(struct brw_context * brw)40 mult_gpr0_by_80(struct brw_context *brw)
41 {
42    static const uint32_t maths[] = {
43       MI_MATH_ALU2(LOAD, SRCA, R0),
44       MI_MATH_ALU2(LOAD, SRCB, R0),
45       MI_MATH_ALU0(ADD),
46       MI_MATH_ALU2(STORE, R1, ACCU),
47       MI_MATH_ALU2(LOAD, SRCA, R1),
48       MI_MATH_ALU2(LOAD, SRCB, R1),
49       MI_MATH_ALU0(ADD),
50       MI_MATH_ALU2(STORE, R1, ACCU),
51       MI_MATH_ALU2(LOAD, SRCA, R1),
52       MI_MATH_ALU2(LOAD, SRCB, R1),
53       MI_MATH_ALU0(ADD),
54       MI_MATH_ALU2(STORE, R1, ACCU),
55       MI_MATH_ALU2(LOAD, SRCA, R1),
56       MI_MATH_ALU2(LOAD, SRCB, R1),
57       MI_MATH_ALU0(ADD),
58       /* GPR1 = 16 * GPR0 */
59       MI_MATH_ALU2(STORE, R1, ACCU),
60       MI_MATH_ALU2(LOAD, SRCA, R1),
61       MI_MATH_ALU2(LOAD, SRCB, R1),
62       MI_MATH_ALU0(ADD),
63       MI_MATH_ALU2(STORE, R2, ACCU),
64       MI_MATH_ALU2(LOAD, SRCA, R2),
65       MI_MATH_ALU2(LOAD, SRCB, R2),
66       MI_MATH_ALU0(ADD),
67       /* GPR2 = 64 * GPR0 */
68       MI_MATH_ALU2(STORE, R2, ACCU),
69       MI_MATH_ALU2(LOAD, SRCA, R1),
70       MI_MATH_ALU2(LOAD, SRCB, R2),
71       MI_MATH_ALU0(ADD),
72       /* GPR0 = 80 * GPR0 */
73       MI_MATH_ALU2(STORE, R0, ACCU),
74    };
75 
76    BEGIN_BATCH(1 + ARRAY_SIZE(maths));
77    OUT_BATCH(HSW_MI_MATH | (1 + ARRAY_SIZE(maths) - 2));
78 
79    for (int m = 0; m < ARRAY_SIZE(maths); m++)
80       OUT_BATCH(maths[m]);
81 
82    ADVANCE_BATCH();
83 }
84 
85 /*
86  * GPR0 = GPR0 & ((1ull << n) - 1);
87  */
88 static void
keep_gpr0_lower_n_bits(struct brw_context * brw,uint32_t n)89 keep_gpr0_lower_n_bits(struct brw_context *brw, uint32_t n)
90 {
91    static const uint32_t maths[] = {
92       MI_MATH_ALU2(LOAD, SRCA, R0),
93       MI_MATH_ALU2(LOAD, SRCB, R1),
94       MI_MATH_ALU0(AND),
95       MI_MATH_ALU2(STORE, R0, ACCU),
96    };
97 
98    assert(n < 64);
99    brw_load_register_imm64(brw, HSW_CS_GPR(1), (1ull << n) - 1);
100 
101    BEGIN_BATCH(1 + ARRAY_SIZE(maths));
102    OUT_BATCH(HSW_MI_MATH | (1 + ARRAY_SIZE(maths) - 2));
103 
104    for (int m = 0; m < ARRAY_SIZE(maths); m++)
105       OUT_BATCH(maths[m]);
106 
107    ADVANCE_BATCH();
108 }
109 
110 /*
111  * GPR0 = GPR0 << 30;
112  */
113 static void
shl_gpr0_by_30_bits(struct brw_context * brw)114 shl_gpr0_by_30_bits(struct brw_context *brw)
115 {
116    /* First we mask 34 bits of GPR0 to prevent overflow */
117    keep_gpr0_lower_n_bits(brw, 34);
118 
119    static const uint32_t shl_maths[] = {
120       MI_MATH_ALU2(LOAD, SRCA, R0),
121       MI_MATH_ALU2(LOAD, SRCB, R0),
122       MI_MATH_ALU0(ADD),
123       MI_MATH_ALU2(STORE, R0, ACCU),
124    };
125 
126    const uint32_t outer_count = 5;
127    const uint32_t inner_count = 6;
128    STATIC_ASSERT(outer_count * inner_count == 30);
129    const uint32_t cmd_len = 1 + inner_count * ARRAY_SIZE(shl_maths);
130    const uint32_t batch_len = cmd_len * outer_count;
131 
132    BEGIN_BATCH(batch_len);
133 
134    /* We'll emit 5 commands, each shifting GPR0 left by 6 bits, for a total of
135     * 30 left shifts.
136     */
137    for (int o = 0; o < outer_count; o++) {
138       /* Submit one MI_MATH to shift left by 6 bits */
139       OUT_BATCH(HSW_MI_MATH | (cmd_len - 2));
140       for (int i = 0; i < inner_count; i++)
141          for (int m = 0; m < ARRAY_SIZE(shl_maths); m++)
142             OUT_BATCH(shl_maths[m]);
143    }
144 
145    ADVANCE_BATCH();
146 }
147 
148 /*
149  * GPR0 = GPR0 >> 2;
150  *
151  * Note that the upper 30 bits of GPR0 are lost!
152  */
153 static void
shr_gpr0_by_2_bits(struct brw_context * brw)154 shr_gpr0_by_2_bits(struct brw_context *brw)
155 {
156    shl_gpr0_by_30_bits(brw);
157    brw_load_register_reg(brw, HSW_CS_GPR(0) + 4, HSW_CS_GPR(0));
158    brw_load_register_imm32(brw, HSW_CS_GPR(0) + 4, 0);
159 }
160 
161 /*
162  * GPR0 = (GPR0 == 0) ? 0 : 1;
163  */
164 static void
gpr0_to_bool(struct brw_context * brw)165 gpr0_to_bool(struct brw_context *brw)
166 {
167    static const uint32_t maths[] = {
168       MI_MATH_ALU2(LOAD, SRCA, R0),
169       MI_MATH_ALU1(LOAD0, SRCB),
170       MI_MATH_ALU0(ADD),
171       MI_MATH_ALU2(STOREINV, R0, ZF),
172       MI_MATH_ALU2(LOAD, SRCA, R0),
173       MI_MATH_ALU2(LOAD, SRCB, R1),
174       MI_MATH_ALU0(AND),
175       MI_MATH_ALU2(STORE, R0, ACCU),
176    };
177 
178    brw_load_register_imm64(brw, HSW_CS_GPR(1), 1ull);
179 
180    BEGIN_BATCH(1 + ARRAY_SIZE(maths));
181    OUT_BATCH(HSW_MI_MATH | (1 + ARRAY_SIZE(maths) - 2));
182 
183    for (int m = 0; m < ARRAY_SIZE(maths); m++)
184       OUT_BATCH(maths[m]);
185 
186    ADVANCE_BATCH();
187 }
188 
189 static void
load_overflow_data_to_cs_gprs(struct brw_context * brw,struct brw_query_object * query,int idx)190 load_overflow_data_to_cs_gprs(struct brw_context *brw,
191                               struct brw_query_object *query,
192                               int idx)
193 {
194    int offset = idx * sizeof(uint64_t) * 4;
195 
196    brw_load_register_mem64(brw, HSW_CS_GPR(1), query->bo, offset);
197 
198    offset += sizeof(uint64_t);
199    brw_load_register_mem64(brw, HSW_CS_GPR(2), query->bo, offset);
200 
201    offset += sizeof(uint64_t);
202    brw_load_register_mem64(brw, HSW_CS_GPR(3), query->bo, offset);
203 
204    offset += sizeof(uint64_t);
205    brw_load_register_mem64(brw, HSW_CS_GPR(4), query->bo, offset);
206 }
207 
208 /*
209  * R3 = R4 - R3;
210  * R1 = R2 - R1;
211  * R1 = R3 - R1;
212  * R0 = R0 | R1;
213  */
214 static void
calc_overflow_for_stream(struct brw_context * brw)215 calc_overflow_for_stream(struct brw_context *brw)
216 {
217    static const uint32_t maths[] = {
218       MI_MATH_ALU2(LOAD, SRCA, R4),
219       MI_MATH_ALU2(LOAD, SRCB, R3),
220       MI_MATH_ALU0(SUB),
221       MI_MATH_ALU2(STORE, R3, ACCU),
222       MI_MATH_ALU2(LOAD, SRCA, R2),
223       MI_MATH_ALU2(LOAD, SRCB, R1),
224       MI_MATH_ALU0(SUB),
225       MI_MATH_ALU2(STORE, R1, ACCU),
226       MI_MATH_ALU2(LOAD, SRCA, R3),
227       MI_MATH_ALU2(LOAD, SRCB, R1),
228       MI_MATH_ALU0(SUB),
229       MI_MATH_ALU2(STORE, R1, ACCU),
230       MI_MATH_ALU2(LOAD, SRCA, R1),
231       MI_MATH_ALU2(LOAD, SRCB, R0),
232       MI_MATH_ALU0(OR),
233       MI_MATH_ALU2(STORE, R0, ACCU),
234    };
235 
236    BEGIN_BATCH(1 + ARRAY_SIZE(maths));
237    OUT_BATCH(HSW_MI_MATH | (1 + ARRAY_SIZE(maths) - 2));
238 
239    for (int m = 0; m < ARRAY_SIZE(maths); m++)
240       OUT_BATCH(maths[m]);
241 
242    ADVANCE_BATCH();
243 }
244 
245 static void
calc_overflow_to_gpr0(struct brw_context * brw,struct brw_query_object * query,int count)246 calc_overflow_to_gpr0(struct brw_context *brw, struct brw_query_object *query,
247                        int count)
248 {
249    brw_load_register_imm64(brw, HSW_CS_GPR(0), 0ull);
250 
251    for (int i = 0; i < count; i++) {
252       load_overflow_data_to_cs_gprs(brw, query, i);
253       calc_overflow_for_stream(brw);
254    }
255 }
256 
257 /*
258  * Take a query and calculate whether there was overflow during transform
259  * feedback. Store the result in the gpr0 register.
260  */
261 void
hsw_overflow_result_to_gpr0(struct brw_context * brw,struct brw_query_object * query,int count)262 hsw_overflow_result_to_gpr0(struct brw_context *brw,
263                             struct brw_query_object *query,
264                             int count)
265 {
266    calc_overflow_to_gpr0(brw, query, count);
267    gpr0_to_bool(brw);
268 }
269 
270 static void
hsw_result_to_gpr0(struct gl_context * ctx,struct brw_query_object * query,struct gl_buffer_object * buf,intptr_t offset,GLenum pname,GLenum ptype)271 hsw_result_to_gpr0(struct gl_context *ctx, struct brw_query_object *query,
272                    struct gl_buffer_object *buf, intptr_t offset,
273                    GLenum pname, GLenum ptype)
274 {
275    struct brw_context *brw = brw_context(ctx);
276    const struct gen_device_info *devinfo = &brw->screen->devinfo;
277 
278    assert(query->bo);
279    assert(pname != GL_QUERY_TARGET);
280 
281    if (pname == GL_QUERY_RESULT_AVAILABLE) {
282       /* The query result availability is stored at offset 0 of the buffer. */
283       brw_load_register_mem64(brw,
284                               HSW_CS_GPR(0),
285                               query->bo,
286                               2 * sizeof(uint64_t));
287       return;
288    }
289 
290    if (pname == GL_QUERY_RESULT) {
291       /* Since GL_QUERY_RESULT_NO_WAIT wasn't used, they want us to stall to
292        * make sure the query is available.
293        */
294       brw_emit_pipe_control_flush(brw,
295                                   PIPE_CONTROL_CS_STALL |
296                                   PIPE_CONTROL_STALL_AT_SCOREBOARD);
297    }
298 
299    if (query->Base.Target == GL_TIMESTAMP) {
300       brw_load_register_mem64(brw,
301                               HSW_CS_GPR(0),
302                               query->bo,
303                               0 * sizeof(uint64_t));
304    } else if (query->Base.Target == GL_TRANSFORM_FEEDBACK_STREAM_OVERFLOW_ARB
305               || query->Base.Target == GL_TRANSFORM_FEEDBACK_OVERFLOW_ARB) {
306       /* Don't do anything in advance here, since the math for this is a little
307        * more complex.
308        */
309    } else {
310       brw_load_register_mem64(brw,
311                               HSW_CS_GPR(1),
312                               query->bo,
313                               0 * sizeof(uint64_t));
314       brw_load_register_mem64(brw,
315                               HSW_CS_GPR(2),
316                               query->bo,
317                               1 * sizeof(uint64_t));
318 
319       BEGIN_BATCH(5);
320       OUT_BATCH(HSW_MI_MATH | (5 - 2));
321 
322       OUT_BATCH(MI_MATH_ALU2(LOAD, SRCA, R2));
323       OUT_BATCH(MI_MATH_ALU2(LOAD, SRCB, R1));
324       OUT_BATCH(MI_MATH_ALU0(SUB));
325       OUT_BATCH(MI_MATH_ALU2(STORE, R0, ACCU));
326 
327       ADVANCE_BATCH();
328    }
329 
330    switch (query->Base.Target) {
331    case GL_FRAGMENT_SHADER_INVOCATIONS_ARB:
332       /* Implement the "WaDividePSInvocationCountBy4:HSW,BDW" workaround:
333        * "Invocation counter is 4 times actual.  WA: SW to divide HW reported
334        *  PS Invocations value by 4."
335        *
336        * Prior to Haswell, invocation count was counted by the WM, and it
337        * buggily counted invocations in units of subspans (2x2 unit). To get the
338        * correct value, the CS multiplied this by 4. With HSW the logic moved,
339        * and correctly emitted the number of pixel shader invocations, but,
340        * whomever forgot to undo the multiply by 4.
341        */
342       if (devinfo->gen == 8 || devinfo->is_haswell)
343          shr_gpr0_by_2_bits(brw);
344       break;
345    case GL_TIME_ELAPSED:
346    case GL_TIMESTAMP:
347       mult_gpr0_by_80(brw);
348       if (query->Base.Target == GL_TIMESTAMP) {
349          keep_gpr0_lower_n_bits(brw, 36);
350       }
351       break;
352    case GL_ANY_SAMPLES_PASSED:
353    case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
354       gpr0_to_bool(brw);
355       break;
356    case GL_TRANSFORM_FEEDBACK_STREAM_OVERFLOW_ARB:
357       hsw_overflow_result_to_gpr0(brw, query, 1);
358       break;
359    case GL_TRANSFORM_FEEDBACK_OVERFLOW_ARB:
360       hsw_overflow_result_to_gpr0(brw, query, MAX_VERTEX_STREAMS);
361       break;
362    }
363 }
364 
365 /*
366  * Store immediate data into the user buffer using the requested size.
367  */
368 static void
store_query_result_imm(struct brw_context * brw,struct brw_bo * bo,uint32_t offset,GLenum ptype,uint64_t imm)369 store_query_result_imm(struct brw_context *brw, struct brw_bo *bo,
370                        uint32_t offset, GLenum ptype, uint64_t imm)
371 {
372    switch (ptype) {
373    case GL_INT:
374    case GL_UNSIGNED_INT:
375       brw_store_data_imm32(brw, bo, offset, imm);
376       break;
377    case GL_INT64_ARB:
378    case GL_UNSIGNED_INT64_ARB:
379       brw_store_data_imm64(brw, bo, offset, imm);
380       break;
381    default:
382       unreachable("Unexpected result type");
383    }
384 }
385 
386 static void
set_predicate(struct brw_context * brw,struct brw_bo * query_bo)387 set_predicate(struct brw_context *brw, struct brw_bo *query_bo)
388 {
389    brw_load_register_imm64(brw, MI_PREDICATE_SRC1, 0ull);
390 
391    /* Load query availability into SRC0 */
392    brw_load_register_mem64(brw, MI_PREDICATE_SRC0, query_bo,
393                            2 * sizeof(uint64_t));
394 
395    /* predicate = !(query_availability == 0); */
396    BEGIN_BATCH(1);
397    OUT_BATCH(GEN7_MI_PREDICATE |
398              MI_PREDICATE_LOADOP_LOADINV |
399              MI_PREDICATE_COMBINEOP_SET |
400              MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
401    ADVANCE_BATCH();
402 }
403 
404 /*
405  * Store data from the register into the user buffer using the requested size.
406  * The write also enables the predication to prevent writing the result if the
407  * query has not finished yet.
408  */
409 static void
store_query_result_reg(struct brw_context * brw,struct brw_bo * bo,uint32_t offset,GLenum ptype,uint32_t reg,const bool pipelined)410 store_query_result_reg(struct brw_context *brw, struct brw_bo *bo,
411                        uint32_t offset, GLenum ptype, uint32_t reg,
412                        const bool pipelined)
413 {
414    const struct gen_device_info *devinfo = &brw->screen->devinfo;
415    uint32_t cmd_size = devinfo->gen >= 8 ? 4 : 3;
416    uint32_t dwords = (ptype == GL_INT || ptype == GL_UNSIGNED_INT) ? 1 : 2;
417    assert(devinfo->gen >= 6);
418 
419    BEGIN_BATCH(dwords * cmd_size);
420    for (int i = 0; i < dwords; i++) {
421       OUT_BATCH(MI_STORE_REGISTER_MEM |
422                 (pipelined ? MI_STORE_REGISTER_MEM_PREDICATE : 0) |
423                 (cmd_size - 2));
424       OUT_BATCH(reg + 4 * i);
425       if (devinfo->gen >= 8) {
426          OUT_RELOC64(bo, RELOC_WRITE, offset + 4 * i);
427       } else {
428          OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset + 4 * i);
429       }
430    }
431    ADVANCE_BATCH();
432 }
433 
434 static void
hsw_store_query_result(struct gl_context * ctx,struct gl_query_object * q,struct gl_buffer_object * buf,intptr_t offset,GLenum pname,GLenum ptype)435 hsw_store_query_result(struct gl_context *ctx, struct gl_query_object *q,
436                        struct gl_buffer_object *buf, intptr_t offset,
437                        GLenum pname, GLenum ptype)
438 {
439    struct brw_context *brw = brw_context(ctx);
440    struct brw_query_object *query = (struct brw_query_object *)q;
441    struct intel_buffer_object *bo = intel_buffer_object(buf);
442    const bool pipelined = brw_is_query_pipelined(query);
443 
444    if (pname == GL_QUERY_TARGET) {
445       store_query_result_imm(brw, bo->buffer, offset, ptype,
446                              query->Base.Target);
447       return;
448    } else if (pname == GL_QUERY_RESULT_AVAILABLE && !pipelined) {
449       store_query_result_imm(brw, bo->buffer, offset, ptype, 1ull);
450    } else if (query->bo) {
451       /* The query bo still around. Therefore, we:
452        *
453        *  1. Compute the current result in GPR0
454        *  2. Set the command streamer predicate based on query availability
455        *  3. (With predication) Write GPR0 to the requested buffer
456        */
457       hsw_result_to_gpr0(ctx, query, buf, offset, pname, ptype);
458       if (pipelined)
459          set_predicate(brw, query->bo);
460       store_query_result_reg(brw, bo->buffer, offset, ptype, HSW_CS_GPR(0),
461                              pipelined);
462    } else {
463       /* The query bo is gone, so the query must have been processed into
464        * client memory. In this case we can fill the buffer location with the
465        * requested data using MI_STORE_DATA_IMM.
466        */
467       switch (pname) {
468       case GL_QUERY_RESULT_AVAILABLE:
469          store_query_result_imm(brw, bo->buffer, offset, ptype, 1ull);
470          break;
471       case GL_QUERY_RESULT_NO_WAIT:
472       case GL_QUERY_RESULT:
473          store_query_result_imm(brw, bo->buffer, offset, ptype,
474                                 q->Result);
475          break;
476       default:
477          unreachable("Unexpected result type");
478       }
479    }
480 
481 }
482 
483 /* Initialize hsw+-specific query object functions. */
hsw_init_queryobj_functions(struct dd_function_table * functions)484 void hsw_init_queryobj_functions(struct dd_function_table *functions)
485 {
486    gen6_init_queryobj_functions(functions);
487    functions->StoreQueryResult = hsw_store_query_result;
488 }
489