1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3 
4 © Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6 
7  1.    INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18 
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28 
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33 
34 2.    COPYRIGHT LICENSE
35 
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39 
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42 
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48 
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51 
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54 
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60 
61 3.    NO PATENT LICENSE
62 
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67 
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70 
71 4.    DISCLAIMER
72 
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83 
84 5.    CONTACT INFORMATION
85 
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90 
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94 
95 /*********************** MPEG surround decoder library *************************
96 
97    Author(s):
98 
99    Description: SAC Dec parameter smoothing
100 
101 *******************************************************************************/
102 
103 #include "sac_dec.h"
104 #include "sac_bitdec.h"
105 #include "sac_smoothing.h"
106 #include "sac_rom.h"
107 
108 /*******************************************************************************
109  Functionname: calcFilterCoeff
110  *******************************************************************************
111 
112  Description:
113 
114  Arguments:
115 
116  Input:
117 
118  Output:
119 
120 
121 *******************************************************************************/
calcFilterCoeff__FDK(spatialDec * self,int ps,const SPATIAL_BS_FRAME * frame)122 static FIXP_DBL calcFilterCoeff__FDK(spatialDec *self, int ps,
123                                      const SPATIAL_BS_FRAME *frame) {
124   int dSlots;
125   FIXP_DBL delta;
126 
127   dSlots = frame->paramSlot[ps] - self->smoothState->prevParamSlot;
128 
129   if (dSlots <= 0) {
130     dSlots += self->timeSlots;
131   }
132 
133   delta = fDivNorm(dSlots, self->smgTime[ps]);
134 
135   return delta;
136 }
137 
138 /*******************************************************************************
139  Functionname: getSmoothOnOff
140  *******************************************************************************
141 
142  Description:
143 
144  Arguments:
145 
146  Input:
147 
148  Output:
149 
150 
151 *******************************************************************************/
getSmoothOnOff(spatialDec * self,int ps,int pb)152 static int getSmoothOnOff(spatialDec *self, int ps, int pb) {
153   int smoothBand = 0;
154 
155   smoothBand = self->smgData[ps][pb];
156 
157   return smoothBand;
158 }
159 
SpatialDecSmoothM1andM2(spatialDec * self,const SPATIAL_BS_FRAME * frame,int ps)160 void SpatialDecSmoothM1andM2(spatialDec *self, const SPATIAL_BS_FRAME *frame,
161                              int ps) {
162   FIXP_DBL delta__FDK;
163   FIXP_DBL one_minus_delta__FDK;
164 
165   int pb, row, col;
166   int residualBands = 0;
167 
168   if (self->residualCoding) {
169     int i;
170     int boxes = self->numOttBoxes;
171     for (i = 0; i < boxes; i++) {
172       if (self->residualBands[i] > residualBands) {
173         residualBands = self->residualBands[i];
174       }
175     }
176   }
177 
178   delta__FDK = calcFilterCoeff__FDK(self, ps, frame);
179   if (delta__FDK == /*FL2FXCONST_DBL(1.0f)*/ (FIXP_DBL)MAXVAL_DBL)
180     one_minus_delta__FDK = FL2FXCONST_DBL(0.0f);
181   else if (delta__FDK == FL2FXCONST_DBL(0.0f))
182     one_minus_delta__FDK = /*FL2FXCONST_DBL(1.0f)*/ (FIXP_DBL)MAXVAL_DBL;
183   else
184     one_minus_delta__FDK = (FL2FXCONST_DBL(0.5f) - (delta__FDK >> 1)) << 1;
185 
186   for (pb = 0; pb < self->numParameterBands; pb++) {
187     int smoothBand;
188 
189     smoothBand = getSmoothOnOff(self, ps, pb);
190 
191     if (smoothBand && (pb >= residualBands)) {
192       for (row = 0; row < self->numM2rows; row++) {
193         for (col = 0; col < self->numVChannels; col++) {
194           self->M2Real__FDK[row][col][pb] =
195               ((fMultDiv2(delta__FDK, self->M2Real__FDK[row][col][pb]) +
196                 fMultDiv2(one_minus_delta__FDK,
197                           self->M2RealPrev__FDK[row][col][pb]))
198                << 1);
199           if (0 || (self->phaseCoding == 3)) {
200             self->M2Imag__FDK[row][col][pb] =
201                 ((fMultDiv2(delta__FDK, self->M2Imag__FDK[row][col][pb]) +
202                   fMultDiv2(one_minus_delta__FDK,
203                             self->M2ImagPrev__FDK[row][col][pb]))
204                  << 1);
205           }
206         }
207       }
208     }
209   }
210   self->smoothState->prevParamSlot = frame->paramSlot[ps];
211 }
212 
213 /* init states */
initParameterSmoothing(spatialDec * self)214 void initParameterSmoothing(spatialDec *self) {
215   self->smoothState->prevParamSlot = 0;
216 }
217 
SpatialDecSmoothOPD(spatialDec * self,const SPATIAL_BS_FRAME * frame,int ps)218 void SpatialDecSmoothOPD(spatialDec *self, const SPATIAL_BS_FRAME *frame,
219                          int ps) {
220   int pb;
221   int dSlots;
222   FIXP_DBL delta__FDK;
223   FIXP_DBL one_minus_delta__FDK;
224   FIXP_DBL *phaseLeftSmooth__FDK = self->smoothState->opdLeftState__FDK;
225   FIXP_DBL *phaseRightSmooth__FDK = self->smoothState->opdRightState__FDK;
226   int quantCoarse;
227 
228   quantCoarse = frame->IPDLosslessData[0].bsQuantCoarseXXX[ps];
229 
230   if (frame->OpdSmoothingMode == 0) {
231     FDKmemcpy(phaseLeftSmooth__FDK, self->PhaseLeft__FDK,
232               self->numParameterBands * sizeof(FIXP_DBL));
233     FDKmemcpy(phaseRightSmooth__FDK, self->PhaseRight__FDK,
234               self->numParameterBands * sizeof(FIXP_DBL));
235   } else {
236     if (ps == 0) {
237       dSlots = frame->paramSlot[ps] + 1;
238     } else {
239       dSlots = frame->paramSlot[ps] - frame->paramSlot[ps - 1];
240     }
241 
242     delta__FDK = (FIXP_DBL)((INT)(FL2FXCONST_DBL(0.0078125f)) * dSlots);
243 
244     if (delta__FDK == (FIXP_DBL)MAXVAL_DBL /*FL2FXCONST_DBL(1.0f)*/)
245       one_minus_delta__FDK = FL2FXCONST_DBL(0.0f);
246     else if (delta__FDK == FL2FXCONST_DBL(0.0f))
247       one_minus_delta__FDK = (FIXP_DBL)MAXVAL_DBL /*FL2FXCONST_DBL(1.0f)*/;
248     else
249       one_minus_delta__FDK = (FL2FXCONST_DBL(0.5f) - (delta__FDK >> 1)) << 1;
250 
251     for (pb = 0; pb < self->numParameterBands; pb++) {
252       FIXP_DBL tmpL, tmpR, tmp;
253 
254       tmpL = self->PhaseLeft__FDK[pb];
255       tmpR = self->PhaseRight__FDK[pb];
256 
257       while (tmpL > phaseLeftSmooth__FDK[pb] + PI__IPD) tmpL -= PI__IPD << 1;
258       while (tmpL < phaseLeftSmooth__FDK[pb] - PI__IPD) tmpL += PI__IPD << 1;
259       while (tmpR > phaseRightSmooth__FDK[pb] + PI__IPD) tmpR -= PI__IPD << 1;
260       while (tmpR < phaseRightSmooth__FDK[pb] - PI__IPD) tmpR += PI__IPD << 1;
261 
262       phaseLeftSmooth__FDK[pb] =
263           fMult(delta__FDK, tmpL) +
264           fMult(one_minus_delta__FDK, phaseLeftSmooth__FDK[pb]);
265       phaseRightSmooth__FDK[pb] =
266           fMult(delta__FDK, tmpR) +
267           fMult(one_minus_delta__FDK, phaseRightSmooth__FDK[pb]);
268 
269       tmp = (((tmpL >> 1) - (tmpR >> 1)) - ((phaseLeftSmooth__FDK[pb] >> 1) -
270                                             (phaseRightSmooth__FDK[pb] >> 1)))
271             << 1;
272       while (tmp > PI__IPD) tmp -= PI__IPD << 1;
273       while (tmp < -PI__IPD) tmp += PI__IPD << 1;
274       if (fixp_abs(tmp) > fMult((quantCoarse ? FL2FXCONST_DBL(50.f / 180.f)
275                                              : FL2FXCONST_DBL(25.f / 180.f)),
276                                 PI__IPD)) {
277         phaseLeftSmooth__FDK[pb] = tmpL;
278         phaseRightSmooth__FDK[pb] = tmpR;
279       }
280 
281       while (phaseLeftSmooth__FDK[pb] > PI__IPD << 1)
282         phaseLeftSmooth__FDK[pb] -= PI__IPD << 1;
283       while (phaseLeftSmooth__FDK[pb] < (FIXP_DBL)0)
284         phaseLeftSmooth__FDK[pb] += PI__IPD << 1;
285       while (phaseRightSmooth__FDK[pb] > PI__IPD << 1)
286         phaseRightSmooth__FDK[pb] -= PI__IPD << 1;
287       while (phaseRightSmooth__FDK[pb] < (FIXP_DBL)0)
288         phaseRightSmooth__FDK[pb] += PI__IPD << 1;
289 
290       self->PhaseLeft__FDK[pb] = phaseLeftSmooth__FDK[pb];
291       self->PhaseRight__FDK[pb] = phaseRightSmooth__FDK[pb];
292     }
293   }
294   return;
295 }
296