1 /*
2  * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #ifndef IR3_H_
25 #define IR3_H_
26 
27 #include <stdint.h>
28 #include <stdbool.h>
29 
30 #include "util/u_debug.h"
31 #include "util/list.h"
32 
33 #include "instr-a3xx.h"
34 #include "disasm.h"  /* TODO move 'enum shader_t' somewhere else.. */
35 
36 /* low level intermediate representation of an adreno shader program */
37 
38 struct ir3_compiler;
39 struct ir3;
40 struct ir3_instruction;
41 struct ir3_block;
42 
43 struct ir3_info {
44 	uint32_t gpu_id;
45 	uint16_t sizedwords;
46 	uint16_t instrs_count;   /* expanded to account for rpt's */
47 	/* NOTE: max_reg, etc, does not include registers not touched
48 	 * by the shader (ie. vertex fetched via VFD_DECODE but not
49 	 * touched by shader)
50 	 */
51 	int8_t   max_reg;   /* highest GPR # used by shader */
52 	int8_t   max_half_reg;
53 	int16_t  max_const;
54 };
55 
56 struct ir3_register {
57 	enum {
58 		IR3_REG_CONST  = 0x001,
59 		IR3_REG_IMMED  = 0x002,
60 		IR3_REG_HALF   = 0x004,
61 		/* high registers are used for some things in compute shaders,
62 		 * for example.  Seems to be for things that are global to all
63 		 * threads in a wave, so possibly these are global/shared by
64 		 * all the threads in the wave?
65 		 */
66 		IR3_REG_HIGH   = 0x008,
67 		IR3_REG_RELATIV= 0x010,
68 		IR3_REG_R      = 0x020,
69 		/* Most instructions, it seems, can do float abs/neg but not
70 		 * integer.  The CP pass needs to know what is intended (int or
71 		 * float) in order to do the right thing.  For this reason the
72 		 * abs/neg flags are split out into float and int variants.  In
73 		 * addition, .b (bitwise) operations, the negate is actually a
74 		 * bitwise not, so split that out into a new flag to make it
75 		 * more clear.
76 		 */
77 		IR3_REG_FNEG   = 0x040,
78 		IR3_REG_FABS   = 0x080,
79 		IR3_REG_SNEG   = 0x100,
80 		IR3_REG_SABS   = 0x200,
81 		IR3_REG_BNOT   = 0x400,
82 		IR3_REG_EVEN   = 0x800,
83 		IR3_REG_POS_INF= 0x1000,
84 		/* (ei) flag, end-input?  Set on last bary, presumably to signal
85 		 * that the shader needs no more input:
86 		 */
87 		IR3_REG_EI     = 0x2000,
88 		/* meta-flags, for intermediate stages of IR, ie.
89 		 * before register assignment is done:
90 		 */
91 		IR3_REG_SSA    = 0x4000,   /* 'instr' is ptr to assigning instr */
92 		IR3_REG_ARRAY  = 0x8000,
93 		IR3_REG_PHI_SRC= 0x10000,  /* phi src, regs[0]->instr points to phi */
94 
95 	} flags;
96 	union {
97 		/* normal registers:
98 		 * the component is in the low two bits of the reg #, so
99 		 * rN.x becomes: (N << 2) | x
100 		 */
101 		int   num;
102 		/* immediate: */
103 		int32_t  iim_val;
104 		uint32_t uim_val;
105 		float    fim_val;
106 		/* relative: */
107 		struct {
108 			uint16_t id;
109 			int16_t offset;
110 		} array;
111 	};
112 
113 	/* For IR3_REG_SSA, src registers contain ptr back to assigning
114 	 * instruction.
115 	 *
116 	 * For IR3_REG_ARRAY, the pointer is back to the last dependent
117 	 * array access (although the net effect is the same, it points
118 	 * back to a previous instruction that we depend on).
119 	 */
120 	struct ir3_instruction *instr;
121 
122 	union {
123 		/* used for cat5 instructions, but also for internal/IR level
124 		 * tracking of what registers are read/written by an instruction.
125 		 * wrmask may be a bad name since it is used to represent both
126 		 * src and dst that touch multiple adjacent registers.
127 		 */
128 		unsigned wrmask;
129 		/* for relative addressing, 32bits for array size is too small,
130 		 * but otoh we don't need to deal with disjoint sets, so instead
131 		 * use a simple size field (number of scalar components).
132 		 */
133 		unsigned size;
134 	};
135 };
136 
137 /*
138  * Stupid/simple growable array implementation:
139  */
140 #define DECLARE_ARRAY(type, name) \
141 	unsigned name ## _count, name ## _sz; \
142 	type * name;
143 
144 #define array_insert(ctx, arr, val) do { \
145 		if (arr ## _count == arr ## _sz) { \
146 			arr ## _sz = MAX2(2 * arr ## _sz, 16); \
147 			arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
148 		} \
149 		arr[arr ##_count++] = val; \
150 	} while (0)
151 
152 struct ir3_instruction {
153 	struct ir3_block *block;
154 	opc_t opc;
155 	enum {
156 		/* (sy) flag is set on first instruction, and after sample
157 		 * instructions (probably just on RAW hazard).
158 		 */
159 		IR3_INSTR_SY    = 0x001,
160 		/* (ss) flag is set on first instruction, and first instruction
161 		 * to depend on the result of "long" instructions (RAW hazard):
162 		 *
163 		 *   rcp, rsq, log2, exp2, sin, cos, sqrt
164 		 *
165 		 * It seems to synchronize until all in-flight instructions are
166 		 * completed, for example:
167 		 *
168 		 *   rsq hr1.w, hr1.w
169 		 *   add.f hr2.z, (neg)hr2.z, hc0.y
170 		 *   mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
171 		 *   rsq hr2.x, hr2.x
172 		 *   (rpt1)nop
173 		 *   mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
174 		 *   nop
175 		 *   mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
176 		 *   (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
177 		 *   (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
178 		 *
179 		 * The last mul.f does not have (ss) set, presumably because the
180 		 * (ss) on the previous instruction does the job.
181 		 *
182 		 * The blob driver also seems to set it on WAR hazards, although
183 		 * not really clear if this is needed or just blob compiler being
184 		 * sloppy.  So far I haven't found a case where removing the (ss)
185 		 * causes problems for WAR hazard, but I could just be getting
186 		 * lucky:
187 		 *
188 		 *   rcp r1.y, r3.y
189 		 *   (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
190 		 *
191 		 */
192 		IR3_INSTR_SS    = 0x002,
193 		/* (jp) flag is set on jump targets:
194 		 */
195 		IR3_INSTR_JP    = 0x004,
196 		IR3_INSTR_UL    = 0x008,
197 		IR3_INSTR_3D    = 0x010,
198 		IR3_INSTR_A     = 0x020,
199 		IR3_INSTR_O     = 0x040,
200 		IR3_INSTR_P     = 0x080,
201 		IR3_INSTR_S     = 0x100,
202 		IR3_INSTR_S2EN  = 0x200,
203 		IR3_INSTR_G     = 0x400,
204 		/* meta-flags, for intermediate stages of IR, ie.
205 		 * before register assignment is done:
206 		 */
207 		IR3_INSTR_MARK  = 0x1000,
208 		IR3_INSTR_UNUSED= 0x2000,
209 	} flags;
210 	int repeat;
211 #ifdef DEBUG
212 	unsigned regs_max;
213 #endif
214 	unsigned regs_count;
215 	struct ir3_register **regs;
216 	union {
217 		struct {
218 			char inv;
219 			char comp;
220 			int  immed;
221 			struct ir3_block *target;
222 		} cat0;
223 		struct {
224 			type_t src_type, dst_type;
225 		} cat1;
226 		struct {
227 			enum {
228 				IR3_COND_LT = 0,
229 				IR3_COND_LE = 1,
230 				IR3_COND_GT = 2,
231 				IR3_COND_GE = 3,
232 				IR3_COND_EQ = 4,
233 				IR3_COND_NE = 5,
234 			} condition;
235 		} cat2;
236 		struct {
237 			unsigned samp, tex;
238 			type_t type;
239 		} cat5;
240 		struct {
241 			type_t type;
242 			int src_offset;
243 			int dst_offset;
244 			int iim_val : 3;      /* for ldgb/stgb, # of components */
245 			int d : 3;
246 			bool typed : 1;
247 		} cat6;
248 		struct {
249 			unsigned w : 1;       /* write */
250 			unsigned r : 1;       /* read */
251 			unsigned l : 1;       /* local */
252 			unsigned g : 1;       /* global */
253 		} cat7;
254 		/* for meta-instructions, just used to hold extra data
255 		 * before instruction scheduling, etc
256 		 */
257 		struct {
258 			int off;              /* component/offset */
259 		} fo;
260 		struct {
261 			/* used to temporarily hold reference to nir_phi_instr
262 			 * until we resolve the phi srcs
263 			 */
264 			void *nphi;
265 		} phi;
266 		struct {
267 			struct ir3_block *block;
268 		} inout;
269 	};
270 
271 	/* transient values used during various algorithms: */
272 	union {
273 		/* The instruction depth is the max dependency distance to output.
274 		 *
275 		 * You can also think of it as the "cost", if we did any sort of
276 		 * optimization for register footprint.  Ie. a value that is  just
277 		 * result of moving a const to a reg would have a low cost,  so to
278 		 * it could make sense to duplicate the instruction at various
279 		 * points where the result is needed to reduce register footprint.
280 		 */
281 		unsigned depth;
282 		/* When we get to the RA stage, we no longer need depth, but
283 		 * we do need instruction's position/name:
284 		 */
285 		struct {
286 			uint16_t ip;
287 			uint16_t name;
288 		};
289 	};
290 
291 	/* used for per-pass extra instruction data.
292 	 */
293 	void *data;
294 
295 	/* Used during CP and RA stages.  For fanin and shader inputs/
296 	 * outputs where we need a sequence of consecutive registers,
297 	 * keep track of each src instructions left (ie 'n-1') and right
298 	 * (ie 'n+1') neighbor.  The front-end must insert enough mov's
299 	 * to ensure that each instruction has at most one left and at
300 	 * most one right neighbor.  During the copy-propagation pass,
301 	 * we only remove mov's when we can preserve this constraint.
302 	 * And during the RA stage, we use the neighbor information to
303 	 * allocate a block of registers in one shot.
304 	 *
305 	 * TODO: maybe just add something like:
306 	 *   struct ir3_instruction_ref {
307 	 *       struct ir3_instruction *instr;
308 	 *       unsigned cnt;
309 	 *   }
310 	 *
311 	 * Or can we get away without the refcnt stuff?  It seems like
312 	 * it should be overkill..  the problem is if, potentially after
313 	 * already eliminating some mov's, if you have a single mov that
314 	 * needs to be grouped with it's neighbors in two different
315 	 * places (ex. shader output and a fanin).
316 	 */
317 	struct {
318 		struct ir3_instruction *left, *right;
319 		uint16_t left_cnt, right_cnt;
320 	} cp;
321 
322 	/* an instruction can reference at most one address register amongst
323 	 * it's src/dst registers.  Beyond that, you need to insert mov's.
324 	 *
325 	 * NOTE: do not write this directly, use ir3_instr_set_address()
326 	 */
327 	struct ir3_instruction *address;
328 
329 	/* Tracking for additional dependent instructions.  Used to handle
330 	 * barriers, WAR hazards for arrays/SSBOs/etc.
331 	 */
332 	DECLARE_ARRAY(struct ir3_instruction *, deps);
333 
334 	/*
335 	 * From PoV of instruction scheduling, not execution (ie. ignores global/
336 	 * local distinction):
337 	 *                            shared  image  atomic  SSBO  everything
338 	 *   barrier()/            -   R/W     R/W    R/W     R/W       X
339 	 *     groupMemoryBarrier()
340 	 *   memoryBarrier()       -           R/W    R/W
341 	 *     (but only images declared coherent?)
342 	 *   memoryBarrierAtomic() -                  R/W
343 	 *   memoryBarrierBuffer() -                          R/W
344 	 *   memoryBarrierImage()  -           R/W
345 	 *   memoryBarrierShared() -   R/W
346 	 *
347 	 * TODO I think for SSBO/image/shared, in cases where we can determine
348 	 * which variable is accessed, we don't need to care about accesses to
349 	 * different variables (unless declared coherent??)
350 	 */
351 	enum {
352 		IR3_BARRIER_EVERYTHING = 1 << 0,
353 		IR3_BARRIER_SHARED_R   = 1 << 1,
354 		IR3_BARRIER_SHARED_W   = 1 << 2,
355 		IR3_BARRIER_IMAGE_R    = 1 << 3,
356 		IR3_BARRIER_IMAGE_W    = 1 << 4,
357 		IR3_BARRIER_BUFFER_R   = 1 << 5,
358 		IR3_BARRIER_BUFFER_W   = 1 << 6,
359 		IR3_BARRIER_ARRAY_R    = 1 << 7,
360 		IR3_BARRIER_ARRAY_W    = 1 << 8,
361 	} barrier_class, barrier_conflict;
362 
363 	/* Entry in ir3_block's instruction list: */
364 	struct list_head node;
365 
366 #ifdef DEBUG
367 	uint32_t serialno;
368 #endif
369 };
370 
371 static inline struct ir3_instruction *
ir3_neighbor_first(struct ir3_instruction * instr)372 ir3_neighbor_first(struct ir3_instruction *instr)
373 {
374 	int cnt = 0;
375 	while (instr->cp.left) {
376 		instr = instr->cp.left;
377 		if (++cnt > 0xffff) {
378 			debug_assert(0);
379 			break;
380 		}
381 	}
382 	return instr;
383 }
384 
ir3_neighbor_count(struct ir3_instruction * instr)385 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
386 {
387 	int num = 1;
388 
389 	debug_assert(!instr->cp.left);
390 
391 	while (instr->cp.right) {
392 		num++;
393 		instr = instr->cp.right;
394 		if (num > 0xffff) {
395 			debug_assert(0);
396 			break;
397 		}
398 	}
399 
400 	return num;
401 }
402 
403 struct ir3 {
404 	struct ir3_compiler *compiler;
405 
406 	unsigned ninputs, noutputs;
407 	struct ir3_instruction **inputs;
408 	struct ir3_instruction **outputs;
409 
410 	/* Track bary.f (and ldlv) instructions.. this is needed in
411 	 * scheduling to ensure that all varying fetches happen before
412 	 * any potential kill instructions.  The hw gets grumpy if all
413 	 * threads in a group are killed before the last bary.f gets
414 	 * a chance to signal end of input (ei).
415 	 */
416 	DECLARE_ARRAY(struct ir3_instruction *, baryfs);
417 
418 	/* Track all indirect instructions (read and write).  To avoid
419 	 * deadlock scenario where an address register gets scheduled,
420 	 * but other dependent src instructions cannot be scheduled due
421 	 * to dependency on a *different* address register value, the
422 	 * scheduler needs to ensure that all dependencies other than
423 	 * the instruction other than the address register are scheduled
424 	 * before the one that writes the address register.  Having a
425 	 * convenient list of instructions that reference some address
426 	 * register simplifies this.
427 	 */
428 	DECLARE_ARRAY(struct ir3_instruction *, indirects);
429 
430 	/* and same for instructions that consume predicate register: */
431 	DECLARE_ARRAY(struct ir3_instruction *, predicates);
432 
433 	/* Track texture sample instructions which need texture state
434 	 * patched in (for astc-srgb workaround):
435 	 */
436 	DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
437 
438 	/* List of blocks: */
439 	struct list_head block_list;
440 
441 	/* List of ir3_array's: */
442 	struct list_head array_list;
443 };
444 
445 typedef struct nir_register nir_register;
446 
447 struct ir3_array {
448 	struct list_head node;
449 	unsigned length;
450 	unsigned id;
451 
452 	nir_register *r;
453 
454 	/* To avoid array write's from getting DCE'd, keep track of the
455 	 * most recent write.  Any array access depends on the most
456 	 * recent write.  This way, nothing depends on writes after the
457 	 * last read.  But all the writes that happen before that have
458 	 * something depending on them
459 	 */
460 	struct ir3_instruction *last_write;
461 
462 	/* extra stuff used in RA pass: */
463 	unsigned base;      /* base vreg name */
464 	unsigned reg;       /* base physical reg */
465 	uint16_t start_ip, end_ip;
466 };
467 
468 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
469 
470 typedef struct nir_block nir_block;
471 
472 struct ir3_block {
473 	struct list_head node;
474 	struct ir3 *shader;
475 
476 	nir_block *nblock;
477 
478 	struct list_head instr_list;  /* list of ir3_instruction */
479 
480 	/* each block has either one or two successors.. in case of
481 	 * two successors, 'condition' decides which one to follow.
482 	 * A block preceding an if/else has two successors.
483 	 */
484 	struct ir3_instruction *condition;
485 	struct ir3_block *successors[2];
486 
487 	uint16_t start_ip, end_ip;
488 
489 	/* Track instructions which do not write a register but other-
490 	 * wise must not be discarded (such as kill, stg, etc)
491 	 */
492 	DECLARE_ARRAY(struct ir3_instruction *, keeps);
493 
494 	/* used for per-pass extra block data.  Mainly used right
495 	 * now in RA step to track livein/liveout.
496 	 */
497 	void *data;
498 
499 #ifdef DEBUG
500 	uint32_t serialno;
501 #endif
502 };
503 
504 static inline uint32_t
block_id(struct ir3_block * block)505 block_id(struct ir3_block *block)
506 {
507 #ifdef DEBUG
508 	return block->serialno;
509 #else
510 	return (uint32_t)(unsigned long)block;
511 #endif
512 }
513 
514 struct ir3 * ir3_create(struct ir3_compiler *compiler,
515 		unsigned nin, unsigned nout);
516 void ir3_destroy(struct ir3 *shader);
517 void * ir3_assemble(struct ir3 *shader,
518 		struct ir3_info *info, uint32_t gpu_id);
519 void * ir3_alloc(struct ir3 *shader, int sz);
520 
521 struct ir3_block * ir3_block_create(struct ir3 *shader);
522 
523 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
524 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
525 		opc_t opc, int nreg);
526 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
527 void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
528 const char *ir3_instr_name(struct ir3_instruction *instr);
529 
530 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
531 		int num, int flags);
532 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
533 		struct ir3_register *reg);
534 
535 void ir3_instr_set_address(struct ir3_instruction *instr,
536 		struct ir3_instruction *addr);
537 
ir3_instr_check_mark(struct ir3_instruction * instr)538 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
539 {
540 	if (instr->flags & IR3_INSTR_MARK)
541 		return true;  /* already visited */
542 	instr->flags |= IR3_INSTR_MARK;
543 	return false;
544 }
545 
546 void ir3_block_clear_mark(struct ir3_block *block);
547 void ir3_clear_mark(struct ir3 *shader);
548 
549 unsigned ir3_count_instructions(struct ir3 *ir);
550 
ir3_instr_regno(struct ir3_instruction * instr,struct ir3_register * reg)551 static inline int ir3_instr_regno(struct ir3_instruction *instr,
552 		struct ir3_register *reg)
553 {
554 	unsigned i;
555 	for (i = 0; i < instr->regs_count; i++)
556 		if (reg == instr->regs[i])
557 			return i;
558 	return -1;
559 }
560 
561 
562 #define MAX_ARRAYS 16
563 
564 /* comp:
565  *   0 - x
566  *   1 - y
567  *   2 - z
568  *   3 - w
569  */
regid(int num,int comp)570 static inline uint32_t regid(int num, int comp)
571 {
572 	return (num << 2) | (comp & 0x3);
573 }
574 
reg_num(struct ir3_register * reg)575 static inline uint32_t reg_num(struct ir3_register *reg)
576 {
577 	return reg->num >> 2;
578 }
579 
reg_comp(struct ir3_register * reg)580 static inline uint32_t reg_comp(struct ir3_register *reg)
581 {
582 	return reg->num & 0x3;
583 }
584 
is_flow(struct ir3_instruction * instr)585 static inline bool is_flow(struct ir3_instruction *instr)
586 {
587 	return (opc_cat(instr->opc) == 0);
588 }
589 
is_kill(struct ir3_instruction * instr)590 static inline bool is_kill(struct ir3_instruction *instr)
591 {
592 	return instr->opc == OPC_KILL;
593 }
594 
is_nop(struct ir3_instruction * instr)595 static inline bool is_nop(struct ir3_instruction *instr)
596 {
597 	return instr->opc == OPC_NOP;
598 }
599 
600 /* Is it a non-transformative (ie. not type changing) mov?  This can
601  * also include absneg.s/absneg.f, which for the most part can be
602  * treated as a mov (single src argument).
603  */
is_same_type_mov(struct ir3_instruction * instr)604 static inline bool is_same_type_mov(struct ir3_instruction *instr)
605 {
606 	struct ir3_register *dst;
607 
608 	switch (instr->opc) {
609 	case OPC_MOV:
610 		if (instr->cat1.src_type != instr->cat1.dst_type)
611 			return false;
612 		break;
613 	case OPC_ABSNEG_F:
614 	case OPC_ABSNEG_S:
615 		break;
616 	default:
617 		return false;
618 	}
619 
620 	dst = instr->regs[0];
621 
622 	/* mov's that write to a0.x or p0.x are special: */
623 	if (dst->num == regid(REG_P0, 0))
624 		return false;
625 	if (dst->num == regid(REG_A0, 0))
626 		return false;
627 
628 	if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
629 		return false;
630 
631 	return true;
632 }
633 
is_alu(struct ir3_instruction * instr)634 static inline bool is_alu(struct ir3_instruction *instr)
635 {
636 	return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
637 }
638 
is_sfu(struct ir3_instruction * instr)639 static inline bool is_sfu(struct ir3_instruction *instr)
640 {
641 	return (opc_cat(instr->opc) == 4);
642 }
643 
is_tex(struct ir3_instruction * instr)644 static inline bool is_tex(struct ir3_instruction *instr)
645 {
646 	return (opc_cat(instr->opc) == 5);
647 }
648 
is_mem(struct ir3_instruction * instr)649 static inline bool is_mem(struct ir3_instruction *instr)
650 {
651 	return (opc_cat(instr->opc) == 6);
652 }
653 
is_barrier(struct ir3_instruction * instr)654 static inline bool is_barrier(struct ir3_instruction *instr)
655 {
656 	return (opc_cat(instr->opc) == 7);
657 }
658 
659 static inline bool
is_store(struct ir3_instruction * instr)660 is_store(struct ir3_instruction *instr)
661 {
662 	/* these instructions, the "destination" register is
663 	 * actually a source, the address to store to.
664 	 */
665 	switch (instr->opc) {
666 	case OPC_STG:
667 	case OPC_STGB:
668 	case OPC_STIB:
669 	case OPC_STP:
670 	case OPC_STL:
671 	case OPC_STLW:
672 	case OPC_L2G:
673 	case OPC_G2L:
674 		return true;
675 	default:
676 		return false;
677 	}
678 }
679 
is_load(struct ir3_instruction * instr)680 static inline bool is_load(struct ir3_instruction *instr)
681 {
682 	switch (instr->opc) {
683 	case OPC_LDG:
684 	case OPC_LDGB:
685 	case OPC_LDL:
686 	case OPC_LDP:
687 	case OPC_L2G:
688 	case OPC_LDLW:
689 	case OPC_LDC:
690 	case OPC_LDLV:
691 		/* probably some others too.. */
692 		return true;
693 	default:
694 		return false;
695 	}
696 }
697 
is_input(struct ir3_instruction * instr)698 static inline bool is_input(struct ir3_instruction *instr)
699 {
700 	/* in some cases, ldlv is used to fetch varying without
701 	 * interpolation.. fortunately inloc is the first src
702 	 * register in either case
703 	 */
704 	switch (instr->opc) {
705 	case OPC_LDLV:
706 	case OPC_BARY_F:
707 		return true;
708 	default:
709 		return false;
710 	}
711 }
712 
is_bool(struct ir3_instruction * instr)713 static inline bool is_bool(struct ir3_instruction *instr)
714 {
715 	switch (instr->opc) {
716 	case OPC_CMPS_F:
717 	case OPC_CMPS_S:
718 	case OPC_CMPS_U:
719 		return true;
720 	default:
721 		return false;
722 	}
723 }
724 
is_meta(struct ir3_instruction * instr)725 static inline bool is_meta(struct ir3_instruction *instr)
726 {
727 	/* TODO how should we count PHI (and maybe fan-in/out) which
728 	 * might actually contribute some instructions to the final
729 	 * result?
730 	 */
731 	return (opc_cat(instr->opc) == -1);
732 }
733 
writes_addr(struct ir3_instruction * instr)734 static inline bool writes_addr(struct ir3_instruction *instr)
735 {
736 	if (instr->regs_count > 0) {
737 		struct ir3_register *dst = instr->regs[0];
738 		return reg_num(dst) == REG_A0;
739 	}
740 	return false;
741 }
742 
writes_pred(struct ir3_instruction * instr)743 static inline bool writes_pred(struct ir3_instruction *instr)
744 {
745 	if (instr->regs_count > 0) {
746 		struct ir3_register *dst = instr->regs[0];
747 		return reg_num(dst) == REG_P0;
748 	}
749 	return false;
750 }
751 
752 /* returns defining instruction for reg */
753 /* TODO better name */
ssa(struct ir3_register * reg)754 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
755 {
756 	if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
757 		debug_assert(!(reg->instr && (reg->instr->flags & IR3_INSTR_UNUSED)));
758 		return reg->instr;
759 	}
760 	return NULL;
761 }
762 
conflicts(struct ir3_instruction * a,struct ir3_instruction * b)763 static inline bool conflicts(struct ir3_instruction *a,
764 		struct ir3_instruction *b)
765 {
766 	return (a && b) && (a != b);
767 }
768 
reg_gpr(struct ir3_register * r)769 static inline bool reg_gpr(struct ir3_register *r)
770 {
771 	if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
772 		return false;
773 	if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
774 		return false;
775 	return true;
776 }
777 
half_type(type_t type)778 static inline type_t half_type(type_t type)
779 {
780 	switch (type) {
781 	case TYPE_F32: return TYPE_F16;
782 	case TYPE_U32: return TYPE_U16;
783 	case TYPE_S32: return TYPE_S16;
784 	case TYPE_F16:
785 	case TYPE_U16:
786 	case TYPE_S16:
787 		return type;
788 	default:
789 		assert(0);
790 		return ~0;
791 	}
792 }
793 
794 /* some cat2 instructions (ie. those which are not float) can embed an
795  * immediate:
796  */
ir3_cat2_int(opc_t opc)797 static inline bool ir3_cat2_int(opc_t opc)
798 {
799 	switch (opc) {
800 	case OPC_ADD_U:
801 	case OPC_ADD_S:
802 	case OPC_SUB_U:
803 	case OPC_SUB_S:
804 	case OPC_CMPS_U:
805 	case OPC_CMPS_S:
806 	case OPC_MIN_U:
807 	case OPC_MIN_S:
808 	case OPC_MAX_U:
809 	case OPC_MAX_S:
810 	case OPC_CMPV_U:
811 	case OPC_CMPV_S:
812 	case OPC_MUL_U:
813 	case OPC_MUL_S:
814 	case OPC_MULL_U:
815 	case OPC_CLZ_S:
816 	case OPC_ABSNEG_S:
817 	case OPC_AND_B:
818 	case OPC_OR_B:
819 	case OPC_NOT_B:
820 	case OPC_XOR_B:
821 	case OPC_BFREV_B:
822 	case OPC_CLZ_B:
823 	case OPC_SHL_B:
824 	case OPC_SHR_B:
825 	case OPC_ASHR_B:
826 	case OPC_MGEN_B:
827 	case OPC_GETBIT_B:
828 	case OPC_CBITS_B:
829 	case OPC_BARY_F:
830 		return true;
831 
832 	default:
833 		return false;
834 	}
835 }
836 
837 
838 /* map cat2 instruction to valid abs/neg flags: */
ir3_cat2_absneg(opc_t opc)839 static inline unsigned ir3_cat2_absneg(opc_t opc)
840 {
841 	switch (opc) {
842 	case OPC_ADD_F:
843 	case OPC_MIN_F:
844 	case OPC_MAX_F:
845 	case OPC_MUL_F:
846 	case OPC_SIGN_F:
847 	case OPC_CMPS_F:
848 	case OPC_ABSNEG_F:
849 	case OPC_CMPV_F:
850 	case OPC_FLOOR_F:
851 	case OPC_CEIL_F:
852 	case OPC_RNDNE_F:
853 	case OPC_RNDAZ_F:
854 	case OPC_TRUNC_F:
855 	case OPC_BARY_F:
856 		return IR3_REG_FABS | IR3_REG_FNEG;
857 
858 	case OPC_ADD_U:
859 	case OPC_ADD_S:
860 	case OPC_SUB_U:
861 	case OPC_SUB_S:
862 	case OPC_CMPS_U:
863 	case OPC_CMPS_S:
864 	case OPC_MIN_U:
865 	case OPC_MIN_S:
866 	case OPC_MAX_U:
867 	case OPC_MAX_S:
868 	case OPC_CMPV_U:
869 	case OPC_CMPV_S:
870 	case OPC_MUL_U:
871 	case OPC_MUL_S:
872 	case OPC_MULL_U:
873 	case OPC_CLZ_S:
874 		return 0;
875 
876 	case OPC_ABSNEG_S:
877 		return IR3_REG_SABS | IR3_REG_SNEG;
878 
879 	case OPC_AND_B:
880 	case OPC_OR_B:
881 	case OPC_NOT_B:
882 	case OPC_XOR_B:
883 	case OPC_BFREV_B:
884 	case OPC_CLZ_B:
885 	case OPC_SHL_B:
886 	case OPC_SHR_B:
887 	case OPC_ASHR_B:
888 	case OPC_MGEN_B:
889 	case OPC_GETBIT_B:
890 	case OPC_CBITS_B:
891 		return IR3_REG_BNOT;
892 
893 	default:
894 		return 0;
895 	}
896 }
897 
898 /* map cat3 instructions to valid abs/neg flags: */
ir3_cat3_absneg(opc_t opc)899 static inline unsigned ir3_cat3_absneg(opc_t opc)
900 {
901 	switch (opc) {
902 	case OPC_MAD_F16:
903 	case OPC_MAD_F32:
904 	case OPC_SEL_F16:
905 	case OPC_SEL_F32:
906 		return IR3_REG_FNEG;
907 
908 	case OPC_MAD_U16:
909 	case OPC_MADSH_U16:
910 	case OPC_MAD_S16:
911 	case OPC_MADSH_M16:
912 	case OPC_MAD_U24:
913 	case OPC_MAD_S24:
914 	case OPC_SEL_S16:
915 	case OPC_SEL_S32:
916 	case OPC_SAD_S16:
917 	case OPC_SAD_S32:
918 		/* neg *may* work on 3rd src.. */
919 
920 	case OPC_SEL_B16:
921 	case OPC_SEL_B32:
922 
923 	default:
924 		return 0;
925 	}
926 }
927 
928 #define MASK(n) ((1 << (n)) - 1)
929 
930 /* iterator for an instructions's sources (reg), also returns src #: */
931 #define foreach_src_n(__srcreg, __n, __instr) \
932 	if ((__instr)->regs_count) \
933 		for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
934 			if ((__srcreg = (__instr)->regs[__n + 1]))
935 
936 /* iterator for an instructions's sources (reg): */
937 #define foreach_src(__srcreg, __instr) \
938 	foreach_src_n(__srcreg, __i, __instr)
939 
__ssa_src_cnt(struct ir3_instruction * instr)940 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
941 {
942 	unsigned cnt = instr->regs_count + instr->deps_count;
943 	if (instr->address)
944 		cnt++;
945 	return cnt;
946 }
947 
__ssa_src_n(struct ir3_instruction * instr,unsigned n)948 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
949 {
950 	if (n == (instr->regs_count + instr->deps_count))
951 		return instr->address;
952 	if (n >= instr->regs_count)
953 		return instr->deps[n - instr->regs_count];
954 	return ssa(instr->regs[n]);
955 }
956 
__is_false_dep(struct ir3_instruction * instr,unsigned n)957 static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
958 {
959 	if (n == (instr->regs_count + instr->deps_count))
960 		return false;
961 	if (n >= instr->regs_count)
962 		return true;
963 	return false;
964 }
965 
966 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
967 
968 /* iterator for an instruction's SSA sources (instr), also returns src #: */
969 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
970 	for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
971 		if ((__srcinst = __ssa_src_n(__instr, __n)))
972 
973 /* iterator for an instruction's SSA sources (instr): */
974 #define foreach_ssa_src(__srcinst, __instr) \
975 	foreach_ssa_src_n(__srcinst, __i, __instr)
976 
977 
978 /* dump: */
979 void ir3_print(struct ir3 *ir);
980 void ir3_print_instr(struct ir3_instruction *instr);
981 
982 /* depth calculation: */
983 int ir3_delayslots(struct ir3_instruction *assigner,
984 		struct ir3_instruction *consumer, unsigned n);
985 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
986 void ir3_depth(struct ir3 *ir);
987 
988 /* copy-propagate: */
989 struct ir3_shader_variant;
990 void ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
991 
992 /* group neighbors and insert mov's to resolve conflicts: */
993 void ir3_group(struct ir3 *ir);
994 
995 /* scheduling: */
996 void ir3_sched_add_deps(struct ir3 *ir);
997 int ir3_sched(struct ir3 *ir);
998 
999 /* register assignment: */
1000 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(void *memctx);
1001 int ir3_ra(struct ir3 *ir3, enum shader_t type,
1002 		bool frag_coord, bool frag_face);
1003 
1004 /* legalize: */
1005 void ir3_legalize(struct ir3 *ir, bool *has_samp, bool *has_ssbo, int *max_bary);
1006 
1007 /* ************************************************************************* */
1008 /* instruction helpers */
1009 
1010 static inline struct ir3_instruction *
ir3_MOV(struct ir3_block * block,struct ir3_instruction * src,type_t type)1011 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
1012 {
1013 	struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1014 	ir3_reg_create(instr, 0, 0);   /* dst */
1015 	if (src->regs[0]->flags & IR3_REG_ARRAY) {
1016 		struct ir3_register *src_reg =
1017 			ir3_reg_create(instr, 0, IR3_REG_ARRAY);
1018 		src_reg->array = src->regs[0]->array;
1019 		src_reg->instr = src;
1020 	} else {
1021 		ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
1022 	}
1023 	debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
1024 	instr->cat1.src_type = type;
1025 	instr->cat1.dst_type = type;
1026 	return instr;
1027 }
1028 
1029 static inline struct ir3_instruction *
ir3_COV(struct ir3_block * block,struct ir3_instruction * src,type_t src_type,type_t dst_type)1030 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
1031 		type_t src_type, type_t dst_type)
1032 {
1033 	struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1034 	ir3_reg_create(instr, 0, 0);   /* dst */
1035 	ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
1036 	instr->cat1.src_type = src_type;
1037 	instr->cat1.dst_type = dst_type;
1038 	debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
1039 	return instr;
1040 }
1041 
1042 static inline struct ir3_instruction *
ir3_NOP(struct ir3_block * block)1043 ir3_NOP(struct ir3_block *block)
1044 {
1045 	return ir3_instr_create(block, OPC_NOP);
1046 }
1047 
1048 #define INSTR0(name)                                                     \
1049 static inline struct ir3_instruction *                                   \
1050 ir3_##name(struct ir3_block *block)                                      \
1051 {                                                                        \
1052 	struct ir3_instruction *instr =                                      \
1053 		ir3_instr_create(block, OPC_##name);                             \
1054 	return instr;                                                        \
1055 }
1056 
1057 #define INSTR1(name)                                                     \
1058 static inline struct ir3_instruction *                                   \
1059 ir3_##name(struct ir3_block *block,                                      \
1060 		struct ir3_instruction *a, unsigned aflags)                      \
1061 {                                                                        \
1062 	struct ir3_instruction *instr =                                      \
1063 		ir3_instr_create(block, OPC_##name);                             \
1064 	ir3_reg_create(instr, 0, 0);   /* dst */                             \
1065 	ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a;           \
1066 	return instr;                                                        \
1067 }
1068 
1069 #define INSTR2(name)                                                     \
1070 static inline struct ir3_instruction *                                   \
1071 ir3_##name(struct ir3_block *block,                                      \
1072 		struct ir3_instruction *a, unsigned aflags,                      \
1073 		struct ir3_instruction *b, unsigned bflags)                      \
1074 {                                                                        \
1075 	struct ir3_instruction *instr =                                      \
1076 		ir3_instr_create(block, OPC_##name);                             \
1077 	ir3_reg_create(instr, 0, 0);   /* dst */                             \
1078 	ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a;           \
1079 	ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b;           \
1080 	return instr;                                                        \
1081 }
1082 
1083 #define INSTR3(name)                                                     \
1084 static inline struct ir3_instruction *                                   \
1085 ir3_##name(struct ir3_block *block,                                      \
1086 		struct ir3_instruction *a, unsigned aflags,                      \
1087 		struct ir3_instruction *b, unsigned bflags,                      \
1088 		struct ir3_instruction *c, unsigned cflags)                      \
1089 {                                                                        \
1090 	struct ir3_instruction *instr =                                      \
1091 		ir3_instr_create(block, OPC_##name);                             \
1092 	ir3_reg_create(instr, 0, 0);   /* dst */                             \
1093 	ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a;           \
1094 	ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b;           \
1095 	ir3_reg_create(instr, 0, IR3_REG_SSA | cflags)->instr = c;           \
1096 	return instr;                                                        \
1097 }
1098 
1099 #define INSTR4(name)                                                     \
1100 static inline struct ir3_instruction *                                   \
1101 ir3_##name(struct ir3_block *block,                                      \
1102 		struct ir3_instruction *a, unsigned aflags,                      \
1103 		struct ir3_instruction *b, unsigned bflags,                      \
1104 		struct ir3_instruction *c, unsigned cflags,                      \
1105 		struct ir3_instruction *d, unsigned dflags)                      \
1106 {                                                                        \
1107 	struct ir3_instruction *instr =                                      \
1108 		ir3_instr_create2(block, OPC_##name, 5);                         \
1109 	ir3_reg_create(instr, 0, 0);   /* dst */                             \
1110 	ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a;           \
1111 	ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b;           \
1112 	ir3_reg_create(instr, 0, IR3_REG_SSA | cflags)->instr = c;           \
1113 	ir3_reg_create(instr, 0, IR3_REG_SSA | dflags)->instr = d;           \
1114 	return instr;                                                        \
1115 }
1116 
1117 #define INSTR4F(f, name)                                                 \
1118 static inline struct ir3_instruction *                                   \
1119 ir3_##name##_##f(struct ir3_block *block,                                \
1120 		struct ir3_instruction *a, unsigned aflags,                      \
1121 		struct ir3_instruction *b, unsigned bflags,                      \
1122 		struct ir3_instruction *c, unsigned cflags,                      \
1123 		struct ir3_instruction *d, unsigned dflags)                      \
1124 {                                                                        \
1125 	struct ir3_instruction *instr =                                      \
1126 		ir3_instr_create2(block, OPC_##name, 5);                         \
1127 	ir3_reg_create(instr, 0, 0);   /* dst */                             \
1128 	ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a;           \
1129 	ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b;           \
1130 	ir3_reg_create(instr, 0, IR3_REG_SSA | cflags)->instr = c;           \
1131 	ir3_reg_create(instr, 0, IR3_REG_SSA | dflags)->instr = d;           \
1132 	instr->flags |= IR3_INSTR_##f;                                       \
1133 	return instr;                                                        \
1134 }
1135 
1136 /* cat0 instructions: */
1137 INSTR0(BR)
INSTR0(JUMP)1138 INSTR0(JUMP)
1139 INSTR1(KILL)
1140 INSTR0(END)
1141 
1142 /* cat2 instructions, most 2 src but some 1 src: */
1143 INSTR2(ADD_F)
1144 INSTR2(MIN_F)
1145 INSTR2(MAX_F)
1146 INSTR2(MUL_F)
1147 INSTR1(SIGN_F)
1148 INSTR2(CMPS_F)
1149 INSTR1(ABSNEG_F)
1150 INSTR2(CMPV_F)
1151 INSTR1(FLOOR_F)
1152 INSTR1(CEIL_F)
1153 INSTR1(RNDNE_F)
1154 INSTR1(RNDAZ_F)
1155 INSTR1(TRUNC_F)
1156 INSTR2(ADD_U)
1157 INSTR2(ADD_S)
1158 INSTR2(SUB_U)
1159 INSTR2(SUB_S)
1160 INSTR2(CMPS_U)
1161 INSTR2(CMPS_S)
1162 INSTR2(MIN_U)
1163 INSTR2(MIN_S)
1164 INSTR2(MAX_U)
1165 INSTR2(MAX_S)
1166 INSTR1(ABSNEG_S)
1167 INSTR2(AND_B)
1168 INSTR2(OR_B)
1169 INSTR1(NOT_B)
1170 INSTR2(XOR_B)
1171 INSTR2(CMPV_U)
1172 INSTR2(CMPV_S)
1173 INSTR2(MUL_U)
1174 INSTR2(MUL_S)
1175 INSTR2(MULL_U)
1176 INSTR1(BFREV_B)
1177 INSTR1(CLZ_S)
1178 INSTR1(CLZ_B)
1179 INSTR2(SHL_B)
1180 INSTR2(SHR_B)
1181 INSTR2(ASHR_B)
1182 INSTR2(BARY_F)
1183 INSTR2(MGEN_B)
1184 INSTR2(GETBIT_B)
1185 INSTR1(SETRM)
1186 INSTR1(CBITS_B)
1187 INSTR2(SHB)
1188 INSTR2(MSAD)
1189 
1190 /* cat3 instructions: */
1191 INSTR3(MAD_U16)
1192 INSTR3(MADSH_U16)
1193 INSTR3(MAD_S16)
1194 INSTR3(MADSH_M16)
1195 INSTR3(MAD_U24)
1196 INSTR3(MAD_S24)
1197 INSTR3(MAD_F16)
1198 INSTR3(MAD_F32)
1199 INSTR3(SEL_B16)
1200 INSTR3(SEL_B32)
1201 INSTR3(SEL_S16)
1202 INSTR3(SEL_S32)
1203 INSTR3(SEL_F16)
1204 INSTR3(SEL_F32)
1205 INSTR3(SAD_S16)
1206 INSTR3(SAD_S32)
1207 
1208 /* cat4 instructions: */
1209 INSTR1(RCP)
1210 INSTR1(RSQ)
1211 INSTR1(LOG2)
1212 INSTR1(EXP2)
1213 INSTR1(SIN)
1214 INSTR1(COS)
1215 INSTR1(SQRT)
1216 
1217 /* cat5 instructions: */
1218 INSTR1(DSX)
1219 INSTR1(DSY)
1220 
1221 static inline struct ir3_instruction *
1222 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1223 		unsigned wrmask, unsigned flags, unsigned samp, unsigned tex,
1224 		struct ir3_instruction *src0, struct ir3_instruction *src1)
1225 {
1226 	struct ir3_instruction *sam;
1227 	struct ir3_register *reg;
1228 
1229 	sam = ir3_instr_create(block, opc);
1230 	sam->flags |= flags;
1231 	ir3_reg_create(sam, 0, 0)->wrmask = wrmask;
1232 	if (src0) {
1233 		reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1234 		reg->wrmask = (1 << (src0->regs_count - 1)) - 1;
1235 		reg->instr = src0;
1236 	}
1237 	if (src1) {
1238 		reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1239 		reg->instr = src1;
1240 		reg->wrmask = (1 << (src1->regs_count - 1)) - 1;
1241 	}
1242 	sam->cat5.samp = samp;
1243 	sam->cat5.tex  = tex;
1244 	sam->cat5.type  = type;
1245 
1246 	return sam;
1247 }
1248 
1249 /* cat6 instructions: */
1250 INSTR2(LDLV)
1251 INSTR2(LDG)
1252 INSTR2(LDL)
1253 INSTR3(STG)
1254 INSTR3(STL)
1255 INSTR3(LDGB)
1256 INSTR4(STGB)
1257 INSTR4(STIB)
1258 INSTR1(RESINFO)
1259 INSTR1(RESFMT)
1260 INSTR2(ATOMIC_ADD)
1261 INSTR2(ATOMIC_SUB)
1262 INSTR2(ATOMIC_XCHG)
1263 INSTR2(ATOMIC_INC)
1264 INSTR2(ATOMIC_DEC)
1265 INSTR2(ATOMIC_CMPXCHG)
1266 INSTR2(ATOMIC_MIN)
1267 INSTR2(ATOMIC_MAX)
1268 INSTR2(ATOMIC_AND)
1269 INSTR2(ATOMIC_OR)
1270 INSTR2(ATOMIC_XOR)
1271 INSTR4F(G, ATOMIC_ADD)
1272 INSTR4F(G, ATOMIC_SUB)
1273 INSTR4F(G, ATOMIC_XCHG)
1274 INSTR4F(G, ATOMIC_INC)
1275 INSTR4F(G, ATOMIC_DEC)
1276 INSTR4F(G, ATOMIC_CMPXCHG)
1277 INSTR4F(G, ATOMIC_MIN)
1278 INSTR4F(G, ATOMIC_MAX)
1279 INSTR4F(G, ATOMIC_AND)
1280 INSTR4F(G, ATOMIC_OR)
1281 INSTR4F(G, ATOMIC_XOR)
1282 
1283 /* cat7 instructions: */
1284 INSTR0(BAR)
1285 INSTR0(FENCE)
1286 
1287 /* ************************************************************************* */
1288 /* split this out or find some helper to use.. like main/bitset.h.. */
1289 
1290 #include <string.h>
1291 
1292 #define MAX_REG 256
1293 
1294 typedef uint8_t regmask_t[2 * MAX_REG / 8];
1295 
regmask_idx(struct ir3_register * reg)1296 static inline unsigned regmask_idx(struct ir3_register *reg)
1297 {
1298 	unsigned num = (reg->flags & IR3_REG_RELATIV) ? reg->array.offset : reg->num;
1299 	debug_assert(num < MAX_REG);
1300 	if (reg->flags & IR3_REG_HALF)
1301 		num += MAX_REG;
1302 	return num;
1303 }
1304 
regmask_init(regmask_t * regmask)1305 static inline void regmask_init(regmask_t *regmask)
1306 {
1307 	memset(regmask, 0, sizeof(*regmask));
1308 }
1309 
regmask_set(regmask_t * regmask,struct ir3_register * reg)1310 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1311 {
1312 	unsigned idx = regmask_idx(reg);
1313 	if (reg->flags & IR3_REG_RELATIV) {
1314 		unsigned i;
1315 		for (i = 0; i < reg->size; i++, idx++)
1316 			(*regmask)[idx / 8] |= 1 << (idx % 8);
1317 	} else {
1318 		unsigned mask;
1319 		for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1320 			if (mask & 1)
1321 				(*regmask)[idx / 8] |= 1 << (idx % 8);
1322 	}
1323 }
1324 
regmask_or(regmask_t * dst,regmask_t * a,regmask_t * b)1325 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1326 {
1327 	unsigned i;
1328 	for (i = 0; i < ARRAY_SIZE(*dst); i++)
1329 		(*dst)[i] = (*a)[i] | (*b)[i];
1330 }
1331 
1332 /* set bits in a if not set in b, conceptually:
1333  *   a |= (reg & ~b)
1334  */
regmask_set_if_not(regmask_t * a,struct ir3_register * reg,regmask_t * b)1335 static inline void regmask_set_if_not(regmask_t *a,
1336 		struct ir3_register *reg, regmask_t *b)
1337 {
1338 	unsigned idx = regmask_idx(reg);
1339 	if (reg->flags & IR3_REG_RELATIV) {
1340 		unsigned i;
1341 		for (i = 0; i < reg->size; i++, idx++)
1342 			if (!((*b)[idx / 8] & (1 << (idx % 8))))
1343 				(*a)[idx / 8] |= 1 << (idx % 8);
1344 	} else {
1345 		unsigned mask;
1346 		for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1347 			if (mask & 1)
1348 				if (!((*b)[idx / 8] & (1 << (idx % 8))))
1349 					(*a)[idx / 8] |= 1 << (idx % 8);
1350 	}
1351 }
1352 
regmask_get(regmask_t * regmask,struct ir3_register * reg)1353 static inline bool regmask_get(regmask_t *regmask,
1354 		struct ir3_register *reg)
1355 {
1356 	unsigned idx = regmask_idx(reg);
1357 	if (reg->flags & IR3_REG_RELATIV) {
1358 		unsigned i;
1359 		for (i = 0; i < reg->size; i++, idx++)
1360 			if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1361 				return true;
1362 	} else {
1363 		unsigned mask;
1364 		for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1365 			if (mask & 1)
1366 				if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1367 					return true;
1368 	}
1369 	return false;
1370 }
1371 
1372 /* ************************************************************************* */
1373 
1374 #endif /* IR3_H_ */
1375