1 /* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
2 
3 /*
4  * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Rob Clark <robclark@freedesktop.org>
27  */
28 
29 #include "util/u_math.h"
30 
31 #include "freedreno_util.h"
32 
33 #include "ir3.h"
34 
35 /*
36  * Legalize:
37  *
38  * We currently require that scheduling ensures that we have enough nop's
39  * in all the right places.  The legalize step mostly handles fixing up
40  * instruction flags ((ss)/(sy)/(ei)), and collapses sequences of nop's
41  * into fewer nop's w/ rpt flag.
42  */
43 
44 struct ir3_legalize_ctx {
45 	bool has_samp;
46 	bool has_ssbo;
47 	int max_bary;
48 };
49 
50 /* We want to evaluate each block from the position of any other
51  * predecessor block, in order that the flags set are the union
52  * of all possible program paths.  For stopping condition, we
53  * want to stop when the pair of <pred-block, current-block> has
54  * been visited already.
55  *
56  * XXX is that completely true?  We could have different needs_xyz
57  * flags set depending on path leading to pred-block.. we could
58  * do *most* of this based on chasing src instructions ptrs (and
59  * following all phi srcs).. except the write-after-read hazzard.
60  *
61  * For now we just set ss/sy flag on first instruction on block,
62  * and handle everything within the block as before.
63  */
64 
65 static void
legalize_block(struct ir3_legalize_ctx * ctx,struct ir3_block * block)66 legalize_block(struct ir3_legalize_ctx *ctx, struct ir3_block *block)
67 {
68 	struct ir3_instruction *last_input = NULL;
69 	struct ir3_instruction *last_rel = NULL;
70 	struct ir3_instruction *last_n = NULL;
71 	struct list_head instr_list;
72 	regmask_t needs_ss_war;       /* write after read */
73 	regmask_t needs_ss;
74 	regmask_t needs_sy;
75 
76 	regmask_init(&needs_ss_war);
77 	regmask_init(&needs_ss);
78 	regmask_init(&needs_sy);
79 
80 	/* remove all the instructions from the list, we'll be adding
81 	 * them back in as we go
82 	 */
83 	list_replace(&block->instr_list, &instr_list);
84 	list_inithead(&block->instr_list);
85 
86 	list_for_each_entry_safe (struct ir3_instruction, n, &instr_list, node) {
87 		struct ir3_register *reg;
88 		unsigned i;
89 
90 		if (is_meta(n))
91 			continue;
92 
93 		if (is_input(n)) {
94 			struct ir3_register *inloc = n->regs[1];
95 			assert(inloc->flags & IR3_REG_IMMED);
96 			ctx->max_bary = MAX2(ctx->max_bary, inloc->iim_val);
97 		}
98 
99 		if (last_n && is_barrier(last_n))
100 			n->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
101 
102 		/* NOTE: consider dst register too.. it could happen that
103 		 * texture sample instruction (for example) writes some
104 		 * components which are unused.  A subsequent instruction
105 		 * that writes the same register can race w/ the sam instr
106 		 * resulting in undefined results:
107 		 */
108 		for (i = 0; i < n->regs_count; i++) {
109 			reg = n->regs[i];
110 
111 			if (reg_gpr(reg)) {
112 
113 				/* TODO: we probably only need (ss) for alu
114 				 * instr consuming sfu result.. need to make
115 				 * some tests for both this and (sy)..
116 				 */
117 				if (regmask_get(&needs_ss, reg)) {
118 					n->flags |= IR3_INSTR_SS;
119 					regmask_init(&needs_ss);
120 				}
121 
122 				if (regmask_get(&needs_sy, reg)) {
123 					n->flags |= IR3_INSTR_SY;
124 					regmask_init(&needs_sy);
125 				}
126 			}
127 
128 			/* TODO: is it valid to have address reg loaded from a
129 			 * relative src (ie. mova a0, c<a0.x+4>)?  If so, the
130 			 * last_rel check below should be moved ahead of this:
131 			 */
132 			if (reg->flags & IR3_REG_RELATIV)
133 				last_rel = n;
134 		}
135 
136 		if (n->regs_count > 0) {
137 			reg = n->regs[0];
138 			if (regmask_get(&needs_ss_war, reg)) {
139 				n->flags |= IR3_INSTR_SS;
140 				regmask_init(&needs_ss_war); // ??? I assume?
141 			}
142 
143 			if (last_rel && (reg->num == regid(REG_A0, 0))) {
144 				last_rel->flags |= IR3_INSTR_UL;
145 				last_rel = NULL;
146 			}
147 		}
148 
149 		/* cat5+ does not have an (ss) bit, if needed we need to
150 		 * insert a nop to carry the sync flag.  Would be kinda
151 		 * clever if we were aware of this during scheduling, but
152 		 * this should be a pretty rare case:
153 		 */
154 		if ((n->flags & IR3_INSTR_SS) && (opc_cat(n->opc) >= 5)) {
155 			struct ir3_instruction *nop;
156 			nop = ir3_NOP(block);
157 			nop->flags |= IR3_INSTR_SS;
158 			n->flags &= ~IR3_INSTR_SS;
159 		}
160 
161 		/* need to be able to set (ss) on first instruction: */
162 		if (list_empty(&block->instr_list) && (opc_cat(n->opc) >= 5))
163 			ir3_NOP(block);
164 
165 		if (is_nop(n) && !list_empty(&block->instr_list)) {
166 			struct ir3_instruction *last = list_last_entry(&block->instr_list,
167 					struct ir3_instruction, node);
168 			if (is_nop(last) && (last->repeat < 5)) {
169 				last->repeat++;
170 				last->flags |= n->flags;
171 				continue;
172 			}
173 		}
174 
175 		list_addtail(&n->node, &block->instr_list);
176 
177 		if (is_sfu(n))
178 			regmask_set(&needs_ss, n->regs[0]);
179 
180 		if (is_tex(n)) {
181 			/* this ends up being the # of samp instructions.. but that
182 			 * is ok, everything else only cares whether it is zero or
183 			 * not.  We do this here, rather than when we encounter a
184 			 * SAMP decl, because (especially in binning pass shader)
185 			 * the samp instruction(s) could get eliminated if the
186 			 * result is not used.
187 			 */
188 			ctx->has_samp = true;
189 			regmask_set(&needs_sy, n->regs[0]);
190 		} else if (n->opc == OPC_RESINFO) {
191 			regmask_set(&needs_ss, n->regs[0]);
192 			ir3_NOP(block)->flags |= IR3_INSTR_SS;
193 		} else if (is_load(n)) {
194 			/* seems like ldlv needs (ss) bit instead??  which is odd but
195 			 * makes a bunch of flat-varying tests start working on a4xx.
196 			 */
197 			if ((n->opc == OPC_LDLV) || (n->opc == OPC_LDL))
198 				regmask_set(&needs_ss, n->regs[0]);
199 			else
200 				regmask_set(&needs_sy, n->regs[0]);
201 		} else if (is_atomic(n->opc)) {
202 			if (n->flags & IR3_INSTR_G)
203 				regmask_set(&needs_sy, n->regs[0]);
204 			else
205 				regmask_set(&needs_ss, n->regs[0]);
206 		}
207 
208 		if (is_ssbo(n->opc) || (is_atomic(n->opc) && (n->flags & IR3_INSTR_G)))
209 			ctx->has_ssbo = true;
210 
211 		/* both tex/sfu appear to not always immediately consume
212 		 * their src register(s):
213 		 */
214 		if (is_tex(n) || is_sfu(n) || is_mem(n)) {
215 			foreach_src(reg, n) {
216 				if (reg_gpr(reg))
217 					regmask_set(&needs_ss_war, reg);
218 			}
219 		}
220 
221 		if (is_input(n))
222 			last_input = n;
223 
224 		last_n = n;
225 	}
226 
227 	if (last_input) {
228 		/* special hack.. if using ldlv to bypass interpolation,
229 		 * we need to insert a dummy bary.f on which we can set
230 		 * the (ei) flag:
231 		 */
232 		if (is_mem(last_input) && (last_input->opc == OPC_LDLV)) {
233 			struct ir3_instruction *baryf;
234 
235 			/* (ss)bary.f (ei)r63.x, 0, r0.x */
236 			baryf = ir3_instr_create(block, OPC_BARY_F);
237 			baryf->flags |= IR3_INSTR_SS;
238 			ir3_reg_create(baryf, regid(63, 0), 0);
239 			ir3_reg_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
240 			ir3_reg_create(baryf, regid(0, 0), 0);
241 
242 			/* insert the dummy bary.f after last_input: */
243 			list_delinit(&baryf->node);
244 			list_add(&baryf->node, &last_input->node);
245 
246 			last_input = baryf;
247 		}
248 		last_input->regs[0]->flags |= IR3_REG_EI;
249 	}
250 
251 	if (last_rel)
252 		last_rel->flags |= IR3_INSTR_UL;
253 
254 	list_first_entry(&block->instr_list, struct ir3_instruction, node)
255 		->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
256 }
257 
258 /* NOTE: branch instructions are always the last instruction(s)
259  * in the block.  We take advantage of this as we resolve the
260  * branches, since "if (foo) break;" constructs turn into
261  * something like:
262  *
263  *   block3 {
264  *   	...
265  *   	0029:021: mov.s32s32 r62.x, r1.y
266  *   	0082:022: br !p0.x, target=block5
267  *   	0083:023: br p0.x, target=block4
268  *   	// succs: if _[0029:021: mov.s32s32] block4; else block5;
269  *   }
270  *   block4 {
271  *   	0084:024: jump, target=block6
272  *   	// succs: block6;
273  *   }
274  *   block5 {
275  *   	0085:025: jump, target=block7
276  *   	// succs: block7;
277  *   }
278  *
279  * ie. only instruction in block4/block5 is a jump, so when
280  * resolving branches we can easily detect this by checking
281  * that the first instruction in the target block is itself
282  * a jump, and setup the br directly to the jump's target
283  * (and strip back out the now unreached jump)
284  *
285  * TODO sometimes we end up with things like:
286  *
287  *    br !p0.x, #2
288  *    br p0.x, #12
289  *    add.u r0.y, r0.y, 1
290  *
291  * If we swapped the order of the branches, we could drop one.
292  */
293 static struct ir3_block *
resolve_dest_block(struct ir3_block * block)294 resolve_dest_block(struct ir3_block *block)
295 {
296 	/* special case for last block: */
297 	if (!block->successors[0])
298 		return block;
299 
300 	/* NOTE that we may or may not have inserted the jump
301 	 * in the target block yet, so conditions to resolve
302 	 * the dest to the dest block's successor are:
303 	 *
304 	 *   (1) successor[1] == NULL &&
305 	 *   (2) (block-is-empty || only-instr-is-jump)
306 	 */
307 	if (block->successors[1] == NULL) {
308 		if (list_empty(&block->instr_list)) {
309 			return block->successors[0];
310 		} else if (list_length(&block->instr_list) == 1) {
311 			struct ir3_instruction *instr = list_first_entry(
312 					&block->instr_list, struct ir3_instruction, node);
313 			if (instr->opc == OPC_JUMP)
314 				return block->successors[0];
315 		}
316 	}
317 	return block;
318 }
319 
320 static bool
resolve_jump(struct ir3_instruction * instr)321 resolve_jump(struct ir3_instruction *instr)
322 {
323 	struct ir3_block *tblock =
324 		resolve_dest_block(instr->cat0.target);
325 	struct ir3_instruction *target;
326 
327 	if (tblock != instr->cat0.target) {
328 		list_delinit(&instr->cat0.target->node);
329 		instr->cat0.target = tblock;
330 		return true;
331 	}
332 
333 	target = list_first_entry(&tblock->instr_list,
334 				struct ir3_instruction, node);
335 
336 	if ((!target) || (target->ip == (instr->ip + 1))) {
337 		list_delinit(&instr->node);
338 		return true;
339 	} else {
340 		instr->cat0.immed =
341 			(int)target->ip - (int)instr->ip;
342 	}
343 	return false;
344 }
345 
346 /* resolve jumps, removing jumps/branches to immediately following
347  * instruction which we end up with from earlier stages.  Since
348  * removing an instruction can invalidate earlier instruction's
349  * branch offsets, we need to do this iteratively until no more
350  * branches are removed.
351  */
352 static bool
resolve_jumps(struct ir3 * ir)353 resolve_jumps(struct ir3 *ir)
354 {
355 	list_for_each_entry (struct ir3_block, block, &ir->block_list, node)
356 		list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node)
357 			if (is_flow(instr) && instr->cat0.target)
358 				if (resolve_jump(instr))
359 					return true;
360 
361 	return false;
362 }
363 
364 /* we want to mark points where divergent flow control re-converges
365  * with (jp) flags.  For now, since we don't do any optimization for
366  * things that start out as a 'do {} while()', re-convergence points
367  * will always be a branch or jump target.  Note that this is overly
368  * conservative, since unconditional jump targets are not convergence
369  * points, we are just assuming that the other path to reach the jump
370  * target was divergent.  If we were clever enough to optimize the
371  * jump at end of a loop back to a conditional branch into a single
372  * conditional branch, ie. like:
373  *
374  *    add.f r1.w, r0.x, (neg)(r)c2.x   <= loop start
375  *    mul.f r1.z, r1.z, r0.x
376  *    mul.f r1.y, r1.y, r0.x
377  *    mul.f r0.z, r1.x, r0.x
378  *    mul.f r0.w, r0.y, r0.x
379  *    cmps.f.ge r0.x, (r)c2.y, (r)r1.w
380  *    add.s r0.x, (r)r0.x, (r)-1
381  *    sel.f32 r0.x, (r)c3.y, (r)r0.x, c3.x
382  *    cmps.f.eq p0.x, r0.x, c3.y
383  *    mov.f32f32 r0.x, r1.w
384  *    mov.f32f32 r0.y, r0.w
385  *    mov.f32f32 r1.x, r0.z
386  *    (rpt2)nop
387  *    br !p0.x, #-13
388  *    (jp)mul.f r0.x, c263.y, r1.y
389  *
390  * Then we'd have to be more clever, as the convergence point is no
391  * longer a branch or jump target.
392  */
393 static void
mark_convergence_points(struct ir3 * ir)394 mark_convergence_points(struct ir3 *ir)
395 {
396 	list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
397 		list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
398 			if (is_flow(instr) && instr->cat0.target) {
399 				struct ir3_instruction *target =
400 					list_first_entry(&instr->cat0.target->instr_list,
401 							struct ir3_instruction, node);
402 				target->flags |= IR3_INSTR_JP;
403 			}
404 		}
405 	}
406 }
407 
408 void
ir3_legalize(struct ir3 * ir,bool * has_samp,bool * has_ssbo,int * max_bary)409 ir3_legalize(struct ir3 *ir, bool *has_samp, bool *has_ssbo, int *max_bary)
410 {
411 	struct ir3_legalize_ctx ctx = {
412 			.max_bary = -1,
413 	};
414 
415 	list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
416 		legalize_block(&ctx, block);
417 	}
418 
419 	*has_samp = ctx.has_samp;
420 	*has_ssbo = ctx.has_ssbo;
421 	*max_bary = ctx.max_bary;
422 
423 	do {
424 		ir3_count_instructions(ir);
425 	} while(resolve_jumps(ir));
426 
427 	mark_convergence_points(ir);
428 }
429