1 //===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the AArch64 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64InstrInfo.h"
15 #include "AArch64MachineFunctionInfo.h"
16 #include "AArch64Subtarget.h"
17 #include "MCTargetDesc/AArch64AddressingModes.h"
18 #include "Utils/AArch64BaseInfo.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/MC/MCInstrDesc.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CodeGen.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetOptions.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
49 #include <utility>
50
51 using namespace llvm;
52
53 #define GET_INSTRINFO_CTOR_DTOR
54 #include "AArch64GenInstrInfo.inc"
55
56 static cl::opt<unsigned> TBZDisplacementBits(
57 "aarch64-tbz-offset-bits", cl::Hidden, cl::init(14),
58 cl::desc("Restrict range of TB[N]Z instructions (DEBUG)"));
59
60 static cl::opt<unsigned> CBZDisplacementBits(
61 "aarch64-cbz-offset-bits", cl::Hidden, cl::init(19),
62 cl::desc("Restrict range of CB[N]Z instructions (DEBUG)"));
63
64 static cl::opt<unsigned>
65 BCCDisplacementBits("aarch64-bcc-offset-bits", cl::Hidden, cl::init(19),
66 cl::desc("Restrict range of Bcc instructions (DEBUG)"));
67
AArch64InstrInfo(const AArch64Subtarget & STI)68 AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
69 : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP),
70 RI(STI.getTargetTriple()), Subtarget(STI) {}
71
72 /// GetInstSize - Return the number of bytes of code the specified
73 /// instruction may be. This returns the maximum number of bytes.
getInstSizeInBytes(const MachineInstr & MI) const74 unsigned AArch64InstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
75 const MachineBasicBlock &MBB = *MI.getParent();
76 const MachineFunction *MF = MBB.getParent();
77 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
78
79 if (MI.getOpcode() == AArch64::INLINEASM)
80 return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
81
82 // FIXME: We currently only handle pseudoinstructions that don't get expanded
83 // before the assembly printer.
84 unsigned NumBytes = 0;
85 const MCInstrDesc &Desc = MI.getDesc();
86 switch (Desc.getOpcode()) {
87 default:
88 // Anything not explicitly designated otherwise is a normal 4-byte insn.
89 NumBytes = 4;
90 break;
91 case TargetOpcode::DBG_VALUE:
92 case TargetOpcode::EH_LABEL:
93 case TargetOpcode::IMPLICIT_DEF:
94 case TargetOpcode::KILL:
95 NumBytes = 0;
96 break;
97 case TargetOpcode::STACKMAP:
98 // The upper bound for a stackmap intrinsic is the full length of its shadow
99 NumBytes = StackMapOpers(&MI).getNumPatchBytes();
100 assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
101 break;
102 case TargetOpcode::PATCHPOINT:
103 // The size of the patchpoint intrinsic is the number of bytes requested
104 NumBytes = PatchPointOpers(&MI).getNumPatchBytes();
105 assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
106 break;
107 case AArch64::TLSDESC_CALLSEQ:
108 // This gets lowered to an instruction sequence which takes 16 bytes
109 NumBytes = 16;
110 break;
111 }
112
113 return NumBytes;
114 }
115
parseCondBranch(MachineInstr * LastInst,MachineBasicBlock * & Target,SmallVectorImpl<MachineOperand> & Cond)116 static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
117 SmallVectorImpl<MachineOperand> &Cond) {
118 // Block ends with fall-through condbranch.
119 switch (LastInst->getOpcode()) {
120 default:
121 llvm_unreachable("Unknown branch instruction?");
122 case AArch64::Bcc:
123 Target = LastInst->getOperand(1).getMBB();
124 Cond.push_back(LastInst->getOperand(0));
125 break;
126 case AArch64::CBZW:
127 case AArch64::CBZX:
128 case AArch64::CBNZW:
129 case AArch64::CBNZX:
130 Target = LastInst->getOperand(1).getMBB();
131 Cond.push_back(MachineOperand::CreateImm(-1));
132 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
133 Cond.push_back(LastInst->getOperand(0));
134 break;
135 case AArch64::TBZW:
136 case AArch64::TBZX:
137 case AArch64::TBNZW:
138 case AArch64::TBNZX:
139 Target = LastInst->getOperand(2).getMBB();
140 Cond.push_back(MachineOperand::CreateImm(-1));
141 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
142 Cond.push_back(LastInst->getOperand(0));
143 Cond.push_back(LastInst->getOperand(1));
144 }
145 }
146
getBranchDisplacementBits(unsigned Opc)147 static unsigned getBranchDisplacementBits(unsigned Opc) {
148 switch (Opc) {
149 default:
150 llvm_unreachable("unexpected opcode!");
151 case AArch64::B:
152 return 64;
153 case AArch64::TBNZW:
154 case AArch64::TBZW:
155 case AArch64::TBNZX:
156 case AArch64::TBZX:
157 return TBZDisplacementBits;
158 case AArch64::CBNZW:
159 case AArch64::CBZW:
160 case AArch64::CBNZX:
161 case AArch64::CBZX:
162 return CBZDisplacementBits;
163 case AArch64::Bcc:
164 return BCCDisplacementBits;
165 }
166 }
167
isBranchOffsetInRange(unsigned BranchOp,int64_t BrOffset) const168 bool AArch64InstrInfo::isBranchOffsetInRange(unsigned BranchOp,
169 int64_t BrOffset) const {
170 unsigned Bits = getBranchDisplacementBits(BranchOp);
171 assert(Bits >= 3 && "max branch displacement must be enough to jump"
172 "over conditional branch expansion");
173 return isIntN(Bits, BrOffset / 4);
174 }
175
176 MachineBasicBlock *
getBranchDestBlock(const MachineInstr & MI) const177 AArch64InstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
178 switch (MI.getOpcode()) {
179 default:
180 llvm_unreachable("unexpected opcode!");
181 case AArch64::B:
182 return MI.getOperand(0).getMBB();
183 case AArch64::TBZW:
184 case AArch64::TBNZW:
185 case AArch64::TBZX:
186 case AArch64::TBNZX:
187 return MI.getOperand(2).getMBB();
188 case AArch64::CBZW:
189 case AArch64::CBNZW:
190 case AArch64::CBZX:
191 case AArch64::CBNZX:
192 case AArch64::Bcc:
193 return MI.getOperand(1).getMBB();
194 }
195 }
196
197 // Branch analysis.
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const198 bool AArch64InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
199 MachineBasicBlock *&TBB,
200 MachineBasicBlock *&FBB,
201 SmallVectorImpl<MachineOperand> &Cond,
202 bool AllowModify) const {
203 // If the block has no terminators, it just falls into the block after it.
204 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
205 if (I == MBB.end())
206 return false;
207
208 if (!isUnpredicatedTerminator(*I))
209 return false;
210
211 // Get the last instruction in the block.
212 MachineInstr *LastInst = &*I;
213
214 // If there is only one terminator instruction, process it.
215 unsigned LastOpc = LastInst->getOpcode();
216 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
217 if (isUncondBranchOpcode(LastOpc)) {
218 TBB = LastInst->getOperand(0).getMBB();
219 return false;
220 }
221 if (isCondBranchOpcode(LastOpc)) {
222 // Block ends with fall-through condbranch.
223 parseCondBranch(LastInst, TBB, Cond);
224 return false;
225 }
226 return true; // Can't handle indirect branch.
227 }
228
229 // Get the instruction before it if it is a terminator.
230 MachineInstr *SecondLastInst = &*I;
231 unsigned SecondLastOpc = SecondLastInst->getOpcode();
232
233 // If AllowModify is true and the block ends with two or more unconditional
234 // branches, delete all but the first unconditional branch.
235 if (AllowModify && isUncondBranchOpcode(LastOpc)) {
236 while (isUncondBranchOpcode(SecondLastOpc)) {
237 LastInst->eraseFromParent();
238 LastInst = SecondLastInst;
239 LastOpc = LastInst->getOpcode();
240 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
241 // Return now the only terminator is an unconditional branch.
242 TBB = LastInst->getOperand(0).getMBB();
243 return false;
244 } else {
245 SecondLastInst = &*I;
246 SecondLastOpc = SecondLastInst->getOpcode();
247 }
248 }
249 }
250
251 // If there are three terminators, we don't know what sort of block this is.
252 if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
253 return true;
254
255 // If the block ends with a B and a Bcc, handle it.
256 if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
257 parseCondBranch(SecondLastInst, TBB, Cond);
258 FBB = LastInst->getOperand(0).getMBB();
259 return false;
260 }
261
262 // If the block ends with two unconditional branches, handle it. The second
263 // one is not executed, so remove it.
264 if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
265 TBB = SecondLastInst->getOperand(0).getMBB();
266 I = LastInst;
267 if (AllowModify)
268 I->eraseFromParent();
269 return false;
270 }
271
272 // ...likewise if it ends with an indirect branch followed by an unconditional
273 // branch.
274 if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
275 I = LastInst;
276 if (AllowModify)
277 I->eraseFromParent();
278 return true;
279 }
280
281 // Otherwise, can't handle this.
282 return true;
283 }
284
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const285 bool AArch64InstrInfo::reverseBranchCondition(
286 SmallVectorImpl<MachineOperand> &Cond) const {
287 if (Cond[0].getImm() != -1) {
288 // Regular Bcc
289 AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
290 Cond[0].setImm(AArch64CC::getInvertedCondCode(CC));
291 } else {
292 // Folded compare-and-branch
293 switch (Cond[1].getImm()) {
294 default:
295 llvm_unreachable("Unknown conditional branch!");
296 case AArch64::CBZW:
297 Cond[1].setImm(AArch64::CBNZW);
298 break;
299 case AArch64::CBNZW:
300 Cond[1].setImm(AArch64::CBZW);
301 break;
302 case AArch64::CBZX:
303 Cond[1].setImm(AArch64::CBNZX);
304 break;
305 case AArch64::CBNZX:
306 Cond[1].setImm(AArch64::CBZX);
307 break;
308 case AArch64::TBZW:
309 Cond[1].setImm(AArch64::TBNZW);
310 break;
311 case AArch64::TBNZW:
312 Cond[1].setImm(AArch64::TBZW);
313 break;
314 case AArch64::TBZX:
315 Cond[1].setImm(AArch64::TBNZX);
316 break;
317 case AArch64::TBNZX:
318 Cond[1].setImm(AArch64::TBZX);
319 break;
320 }
321 }
322
323 return false;
324 }
325
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const326 unsigned AArch64InstrInfo::removeBranch(MachineBasicBlock &MBB,
327 int *BytesRemoved) const {
328 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
329 if (I == MBB.end())
330 return 0;
331
332 if (!isUncondBranchOpcode(I->getOpcode()) &&
333 !isCondBranchOpcode(I->getOpcode()))
334 return 0;
335
336 // Remove the branch.
337 I->eraseFromParent();
338
339 I = MBB.end();
340
341 if (I == MBB.begin()) {
342 if (BytesRemoved)
343 *BytesRemoved = 4;
344 return 1;
345 }
346 --I;
347 if (!isCondBranchOpcode(I->getOpcode())) {
348 if (BytesRemoved)
349 *BytesRemoved = 4;
350 return 1;
351 }
352
353 // Remove the branch.
354 I->eraseFromParent();
355 if (BytesRemoved)
356 *BytesRemoved = 8;
357
358 return 2;
359 }
360
instantiateCondBranch(MachineBasicBlock & MBB,const DebugLoc & DL,MachineBasicBlock * TBB,ArrayRef<MachineOperand> Cond) const361 void AArch64InstrInfo::instantiateCondBranch(
362 MachineBasicBlock &MBB, const DebugLoc &DL, MachineBasicBlock *TBB,
363 ArrayRef<MachineOperand> Cond) const {
364 if (Cond[0].getImm() != -1) {
365 // Regular Bcc
366 BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
367 } else {
368 // Folded compare-and-branch
369 // Note that we use addOperand instead of addReg to keep the flags.
370 const MachineInstrBuilder MIB =
371 BuildMI(&MBB, DL, get(Cond[1].getImm())).add(Cond[2]);
372 if (Cond.size() > 3)
373 MIB.addImm(Cond[3].getImm());
374 MIB.addMBB(TBB);
375 }
376 }
377
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const378 unsigned AArch64InstrInfo::insertBranch(
379 MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
380 ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
381 // Shouldn't be a fall through.
382 assert(TBB && "insertBranch must not be told to insert a fallthrough");
383
384 if (!FBB) {
385 if (Cond.empty()) // Unconditional branch?
386 BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB);
387 else
388 instantiateCondBranch(MBB, DL, TBB, Cond);
389
390 if (BytesAdded)
391 *BytesAdded = 4;
392
393 return 1;
394 }
395
396 // Two-way conditional branch.
397 instantiateCondBranch(MBB, DL, TBB, Cond);
398 BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB);
399
400 if (BytesAdded)
401 *BytesAdded = 8;
402
403 return 2;
404 }
405
406 // Find the original register that VReg is copied from.
removeCopies(const MachineRegisterInfo & MRI,unsigned VReg)407 static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
408 while (TargetRegisterInfo::isVirtualRegister(VReg)) {
409 const MachineInstr *DefMI = MRI.getVRegDef(VReg);
410 if (!DefMI->isFullCopy())
411 return VReg;
412 VReg = DefMI->getOperand(1).getReg();
413 }
414 return VReg;
415 }
416
417 // Determine if VReg is defined by an instruction that can be folded into a
418 // csel instruction. If so, return the folded opcode, and the replacement
419 // register.
canFoldIntoCSel(const MachineRegisterInfo & MRI,unsigned VReg,unsigned * NewVReg=nullptr)420 static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
421 unsigned *NewVReg = nullptr) {
422 VReg = removeCopies(MRI, VReg);
423 if (!TargetRegisterInfo::isVirtualRegister(VReg))
424 return 0;
425
426 bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
427 const MachineInstr *DefMI = MRI.getVRegDef(VReg);
428 unsigned Opc = 0;
429 unsigned SrcOpNum = 0;
430 switch (DefMI->getOpcode()) {
431 case AArch64::ADDSXri:
432 case AArch64::ADDSWri:
433 // if NZCV is used, do not fold.
434 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
435 return 0;
436 // fall-through to ADDXri and ADDWri.
437 LLVM_FALLTHROUGH;
438 case AArch64::ADDXri:
439 case AArch64::ADDWri:
440 // add x, 1 -> csinc.
441 if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
442 DefMI->getOperand(3).getImm() != 0)
443 return 0;
444 SrcOpNum = 1;
445 Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr;
446 break;
447
448 case AArch64::ORNXrr:
449 case AArch64::ORNWrr: {
450 // not x -> csinv, represented as orn dst, xzr, src.
451 unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
452 if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
453 return 0;
454 SrcOpNum = 2;
455 Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr;
456 break;
457 }
458
459 case AArch64::SUBSXrr:
460 case AArch64::SUBSWrr:
461 // if NZCV is used, do not fold.
462 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
463 return 0;
464 // fall-through to SUBXrr and SUBWrr.
465 LLVM_FALLTHROUGH;
466 case AArch64::SUBXrr:
467 case AArch64::SUBWrr: {
468 // neg x -> csneg, represented as sub dst, xzr, src.
469 unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
470 if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
471 return 0;
472 SrcOpNum = 2;
473 Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr;
474 break;
475 }
476 default:
477 return 0;
478 }
479 assert(Opc && SrcOpNum && "Missing parameters");
480
481 if (NewVReg)
482 *NewVReg = DefMI->getOperand(SrcOpNum).getReg();
483 return Opc;
484 }
485
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const486 bool AArch64InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
487 ArrayRef<MachineOperand> Cond,
488 unsigned TrueReg, unsigned FalseReg,
489 int &CondCycles, int &TrueCycles,
490 int &FalseCycles) const {
491 // Check register classes.
492 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
493 const TargetRegisterClass *RC =
494 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
495 if (!RC)
496 return false;
497
498 // Expanding cbz/tbz requires an extra cycle of latency on the condition.
499 unsigned ExtraCondLat = Cond.size() != 1;
500
501 // GPRs are handled by csel.
502 // FIXME: Fold in x+1, -x, and ~x when applicable.
503 if (AArch64::GPR64allRegClass.hasSubClassEq(RC) ||
504 AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
505 // Single-cycle csel, csinc, csinv, and csneg.
506 CondCycles = 1 + ExtraCondLat;
507 TrueCycles = FalseCycles = 1;
508 if (canFoldIntoCSel(MRI, TrueReg))
509 TrueCycles = 0;
510 else if (canFoldIntoCSel(MRI, FalseReg))
511 FalseCycles = 0;
512 return true;
513 }
514
515 // Scalar floating point is handled by fcsel.
516 // FIXME: Form fabs, fmin, and fmax when applicable.
517 if (AArch64::FPR64RegClass.hasSubClassEq(RC) ||
518 AArch64::FPR32RegClass.hasSubClassEq(RC)) {
519 CondCycles = 5 + ExtraCondLat;
520 TrueCycles = FalseCycles = 2;
521 return true;
522 }
523
524 // Can't do vectors.
525 return false;
526 }
527
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DstReg,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg) const528 void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
529 MachineBasicBlock::iterator I,
530 const DebugLoc &DL, unsigned DstReg,
531 ArrayRef<MachineOperand> Cond,
532 unsigned TrueReg, unsigned FalseReg) const {
533 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
534
535 // Parse the condition code, see parseCondBranch() above.
536 AArch64CC::CondCode CC;
537 switch (Cond.size()) {
538 default:
539 llvm_unreachable("Unknown condition opcode in Cond");
540 case 1: // b.cc
541 CC = AArch64CC::CondCode(Cond[0].getImm());
542 break;
543 case 3: { // cbz/cbnz
544 // We must insert a compare against 0.
545 bool Is64Bit;
546 switch (Cond[1].getImm()) {
547 default:
548 llvm_unreachable("Unknown branch opcode in Cond");
549 case AArch64::CBZW:
550 Is64Bit = false;
551 CC = AArch64CC::EQ;
552 break;
553 case AArch64::CBZX:
554 Is64Bit = true;
555 CC = AArch64CC::EQ;
556 break;
557 case AArch64::CBNZW:
558 Is64Bit = false;
559 CC = AArch64CC::NE;
560 break;
561 case AArch64::CBNZX:
562 Is64Bit = true;
563 CC = AArch64CC::NE;
564 break;
565 }
566 unsigned SrcReg = Cond[2].getReg();
567 if (Is64Bit) {
568 // cmp reg, #0 is actually subs xzr, reg, #0.
569 MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass);
570 BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR)
571 .addReg(SrcReg)
572 .addImm(0)
573 .addImm(0);
574 } else {
575 MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass);
576 BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR)
577 .addReg(SrcReg)
578 .addImm(0)
579 .addImm(0);
580 }
581 break;
582 }
583 case 4: { // tbz/tbnz
584 // We must insert a tst instruction.
585 switch (Cond[1].getImm()) {
586 default:
587 llvm_unreachable("Unknown branch opcode in Cond");
588 case AArch64::TBZW:
589 case AArch64::TBZX:
590 CC = AArch64CC::EQ;
591 break;
592 case AArch64::TBNZW:
593 case AArch64::TBNZX:
594 CC = AArch64CC::NE;
595 break;
596 }
597 // cmp reg, #foo is actually ands xzr, reg, #1<<foo.
598 if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW)
599 BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR)
600 .addReg(Cond[2].getReg())
601 .addImm(
602 AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32));
603 else
604 BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR)
605 .addReg(Cond[2].getReg())
606 .addImm(
607 AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
608 break;
609 }
610 }
611
612 unsigned Opc = 0;
613 const TargetRegisterClass *RC = nullptr;
614 bool TryFold = false;
615 if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) {
616 RC = &AArch64::GPR64RegClass;
617 Opc = AArch64::CSELXr;
618 TryFold = true;
619 } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) {
620 RC = &AArch64::GPR32RegClass;
621 Opc = AArch64::CSELWr;
622 TryFold = true;
623 } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) {
624 RC = &AArch64::FPR64RegClass;
625 Opc = AArch64::FCSELDrrr;
626 } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) {
627 RC = &AArch64::FPR32RegClass;
628 Opc = AArch64::FCSELSrrr;
629 }
630 assert(RC && "Unsupported regclass");
631
632 // Try folding simple instructions into the csel.
633 if (TryFold) {
634 unsigned NewVReg = 0;
635 unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
636 if (FoldedOpc) {
637 // The folded opcodes csinc, csinc and csneg apply the operation to
638 // FalseReg, so we need to invert the condition.
639 CC = AArch64CC::getInvertedCondCode(CC);
640 TrueReg = FalseReg;
641 } else
642 FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
643
644 // Fold the operation. Leave any dead instructions for DCE to clean up.
645 if (FoldedOpc) {
646 FalseReg = NewVReg;
647 Opc = FoldedOpc;
648 // The extends the live range of NewVReg.
649 MRI.clearKillFlags(NewVReg);
650 }
651 }
652
653 // Pull all virtual register into the appropriate class.
654 MRI.constrainRegClass(TrueReg, RC);
655 MRI.constrainRegClass(FalseReg, RC);
656
657 // Insert the csel.
658 BuildMI(MBB, I, DL, get(Opc), DstReg)
659 .addReg(TrueReg)
660 .addReg(FalseReg)
661 .addImm(CC);
662 }
663
664 /// Returns true if a MOVi32imm or MOVi64imm can be expanded to an ORRxx.
canBeExpandedToORR(const MachineInstr & MI,unsigned BitSize)665 static bool canBeExpandedToORR(const MachineInstr &MI, unsigned BitSize) {
666 uint64_t Imm = MI.getOperand(1).getImm();
667 uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
668 uint64_t Encoding;
669 return AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding);
670 }
671
672 // FIXME: this implementation should be micro-architecture dependent, so a
673 // micro-architecture target hook should be introduced here in future.
isAsCheapAsAMove(const MachineInstr & MI) const674 bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
675 if (!Subtarget.hasCustomCheapAsMoveHandling())
676 return MI.isAsCheapAsAMove();
677
678 if (Subtarget.hasExynosCheapAsMoveHandling()) {
679 if (isExynosResetFast(MI) || isExynosShiftLeftFast(MI))
680 return true;
681 else
682 return MI.isAsCheapAsAMove();
683 }
684
685 switch (MI.getOpcode()) {
686 default:
687 return false;
688
689 // add/sub on register without shift
690 case AArch64::ADDWri:
691 case AArch64::ADDXri:
692 case AArch64::SUBWri:
693 case AArch64::SUBXri:
694 return (MI.getOperand(3).getImm() == 0);
695
696 // logical ops on immediate
697 case AArch64::ANDWri:
698 case AArch64::ANDXri:
699 case AArch64::EORWri:
700 case AArch64::EORXri:
701 case AArch64::ORRWri:
702 case AArch64::ORRXri:
703 return true;
704
705 // logical ops on register without shift
706 case AArch64::ANDWrr:
707 case AArch64::ANDXrr:
708 case AArch64::BICWrr:
709 case AArch64::BICXrr:
710 case AArch64::EONWrr:
711 case AArch64::EONXrr:
712 case AArch64::EORWrr:
713 case AArch64::EORXrr:
714 case AArch64::ORNWrr:
715 case AArch64::ORNXrr:
716 case AArch64::ORRWrr:
717 case AArch64::ORRXrr:
718 return true;
719
720 // If MOVi32imm or MOVi64imm can be expanded into ORRWri or
721 // ORRXri, it is as cheap as MOV
722 case AArch64::MOVi32imm:
723 return canBeExpandedToORR(MI, 32);
724 case AArch64::MOVi64imm:
725 return canBeExpandedToORR(MI, 64);
726
727 // It is cheap to zero out registers if the subtarget has ZeroCycleZeroing
728 // feature.
729 case AArch64::FMOVH0:
730 case AArch64::FMOVS0:
731 case AArch64::FMOVD0:
732 return Subtarget.hasZeroCycleZeroing();
733 case TargetOpcode::COPY:
734 return (Subtarget.hasZeroCycleZeroing() &&
735 (MI.getOperand(1).getReg() == AArch64::WZR ||
736 MI.getOperand(1).getReg() == AArch64::XZR));
737 }
738
739 llvm_unreachable("Unknown opcode to check as cheap as a move!");
740 }
741
isExynosResetFast(const MachineInstr & MI) const742 bool AArch64InstrInfo::isExynosResetFast(const MachineInstr &MI) const {
743 unsigned Reg, Imm, Shift;
744
745 switch (MI.getOpcode()) {
746 default:
747 return false;
748
749 // MOV Rd, SP
750 case AArch64::ADDWri:
751 case AArch64::ADDXri:
752 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
753 return false;
754
755 Reg = MI.getOperand(1).getReg();
756 Imm = MI.getOperand(2).getImm();
757 return ((Reg == AArch64::WSP || Reg == AArch64::SP) && Imm == 0);
758
759 // Literal
760 case AArch64::ADR:
761 case AArch64::ADRP:
762 return true;
763
764 // MOVI Vd, #0
765 case AArch64::MOVID:
766 case AArch64::MOVIv8b_ns:
767 case AArch64::MOVIv2d_ns:
768 case AArch64::MOVIv16b_ns:
769 Imm = MI.getOperand(1).getImm();
770 return (Imm == 0);
771
772 // MOVI Vd, #0
773 case AArch64::MOVIv2i32:
774 case AArch64::MOVIv4i16:
775 case AArch64::MOVIv4i32:
776 case AArch64::MOVIv8i16:
777 Imm = MI.getOperand(1).getImm();
778 Shift = MI.getOperand(2).getImm();
779 return (Imm == 0 && Shift == 0);
780
781 // MOV Rd, Imm
782 case AArch64::MOVNWi:
783 case AArch64::MOVNXi:
784
785 // MOV Rd, Imm
786 case AArch64::MOVZWi:
787 case AArch64::MOVZXi:
788 return true;
789
790 // MOV Rd, Imm
791 case AArch64::ORRWri:
792 case AArch64::ORRXri:
793 if (!MI.getOperand(1).isReg())
794 return false;
795
796 Reg = MI.getOperand(1).getReg();
797 Imm = MI.getOperand(2).getImm();
798 return ((Reg == AArch64::WZR || Reg == AArch64::XZR) && Imm == 0);
799
800 // MOV Rd, Rm
801 case AArch64::ORRWrs:
802 case AArch64::ORRXrs:
803 if (!MI.getOperand(1).isReg())
804 return false;
805
806 Reg = MI.getOperand(1).getReg();
807 Imm = MI.getOperand(3).getImm();
808 Shift = AArch64_AM::getShiftValue(Imm);
809 return ((Reg == AArch64::WZR || Reg == AArch64::XZR) && Shift == 0);
810 }
811 }
812
isExynosShiftLeftFast(const MachineInstr & MI) const813 bool AArch64InstrInfo::isExynosShiftLeftFast(const MachineInstr &MI) const {
814 unsigned Imm, Shift;
815 AArch64_AM::ShiftExtendType Ext;
816
817 switch (MI.getOpcode()) {
818 default:
819 return false;
820
821 // WriteI
822 case AArch64::ADDSWri:
823 case AArch64::ADDSXri:
824 case AArch64::ADDWri:
825 case AArch64::ADDXri:
826 case AArch64::SUBSWri:
827 case AArch64::SUBSXri:
828 case AArch64::SUBWri:
829 case AArch64::SUBXri:
830 return true;
831
832 // WriteISReg
833 case AArch64::ADDSWrs:
834 case AArch64::ADDSXrs:
835 case AArch64::ADDWrs:
836 case AArch64::ADDXrs:
837 case AArch64::ANDSWrs:
838 case AArch64::ANDSXrs:
839 case AArch64::ANDWrs:
840 case AArch64::ANDXrs:
841 case AArch64::BICSWrs:
842 case AArch64::BICSXrs:
843 case AArch64::BICWrs:
844 case AArch64::BICXrs:
845 case AArch64::EONWrs:
846 case AArch64::EONXrs:
847 case AArch64::EORWrs:
848 case AArch64::EORXrs:
849 case AArch64::ORNWrs:
850 case AArch64::ORNXrs:
851 case AArch64::ORRWrs:
852 case AArch64::ORRXrs:
853 case AArch64::SUBSWrs:
854 case AArch64::SUBSXrs:
855 case AArch64::SUBWrs:
856 case AArch64::SUBXrs:
857 Imm = MI.getOperand(3).getImm();
858 Shift = AArch64_AM::getShiftValue(Imm);
859 Ext = AArch64_AM::getShiftType(Imm);
860 return (Shift == 0 || (Shift <= 3 && Ext == AArch64_AM::LSL));
861
862 // WriteIEReg
863 case AArch64::ADDSWrx:
864 case AArch64::ADDSXrx:
865 case AArch64::ADDSXrx64:
866 case AArch64::ADDWrx:
867 case AArch64::ADDXrx:
868 case AArch64::ADDXrx64:
869 case AArch64::SUBSWrx:
870 case AArch64::SUBSXrx:
871 case AArch64::SUBSXrx64:
872 case AArch64::SUBWrx:
873 case AArch64::SUBXrx:
874 case AArch64::SUBXrx64:
875 Imm = MI.getOperand(3).getImm();
876 Shift = AArch64_AM::getArithShiftValue(Imm);
877 Ext = AArch64_AM::getArithExtendType(Imm);
878 return (Shift == 0 || (Shift <= 3 && Ext == AArch64_AM::UXTX));
879
880 case AArch64::PRFMroW:
881 case AArch64::PRFMroX:
882
883 // WriteLDIdx
884 case AArch64::LDRBBroW:
885 case AArch64::LDRBBroX:
886 case AArch64::LDRHHroW:
887 case AArch64::LDRHHroX:
888 case AArch64::LDRSBWroW:
889 case AArch64::LDRSBWroX:
890 case AArch64::LDRSBXroW:
891 case AArch64::LDRSBXroX:
892 case AArch64::LDRSHWroW:
893 case AArch64::LDRSHWroX:
894 case AArch64::LDRSHXroW:
895 case AArch64::LDRSHXroX:
896 case AArch64::LDRSWroW:
897 case AArch64::LDRSWroX:
898 case AArch64::LDRWroW:
899 case AArch64::LDRWroX:
900 case AArch64::LDRXroW:
901 case AArch64::LDRXroX:
902
903 case AArch64::LDRBroW:
904 case AArch64::LDRBroX:
905 case AArch64::LDRDroW:
906 case AArch64::LDRDroX:
907 case AArch64::LDRHroW:
908 case AArch64::LDRHroX:
909 case AArch64::LDRSroW:
910 case AArch64::LDRSroX:
911
912 // WriteSTIdx
913 case AArch64::STRBBroW:
914 case AArch64::STRBBroX:
915 case AArch64::STRHHroW:
916 case AArch64::STRHHroX:
917 case AArch64::STRWroW:
918 case AArch64::STRWroX:
919 case AArch64::STRXroW:
920 case AArch64::STRXroX:
921
922 case AArch64::STRBroW:
923 case AArch64::STRBroX:
924 case AArch64::STRDroW:
925 case AArch64::STRDroX:
926 case AArch64::STRHroW:
927 case AArch64::STRHroX:
928 case AArch64::STRSroW:
929 case AArch64::STRSroX:
930 Imm = MI.getOperand(3).getImm();
931 Ext = AArch64_AM::getMemExtendType(Imm);
932 return (Ext == AArch64_AM::SXTX || Ext == AArch64_AM::UXTX);
933 }
934 }
935
isFalkorShiftExtFast(const MachineInstr & MI) const936 bool AArch64InstrInfo::isFalkorShiftExtFast(const MachineInstr &MI) const {
937 switch (MI.getOpcode()) {
938 default:
939 return false;
940
941 case AArch64::ADDWrs:
942 case AArch64::ADDXrs:
943 case AArch64::ADDSWrs:
944 case AArch64::ADDSXrs: {
945 unsigned Imm = MI.getOperand(3).getImm();
946 unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
947 if (ShiftVal == 0)
948 return true;
949 return AArch64_AM::getShiftType(Imm) == AArch64_AM::LSL && ShiftVal <= 5;
950 }
951
952 case AArch64::ADDWrx:
953 case AArch64::ADDXrx:
954 case AArch64::ADDXrx64:
955 case AArch64::ADDSWrx:
956 case AArch64::ADDSXrx:
957 case AArch64::ADDSXrx64: {
958 unsigned Imm = MI.getOperand(3).getImm();
959 switch (AArch64_AM::getArithExtendType(Imm)) {
960 default:
961 return false;
962 case AArch64_AM::UXTB:
963 case AArch64_AM::UXTH:
964 case AArch64_AM::UXTW:
965 case AArch64_AM::UXTX:
966 return AArch64_AM::getArithShiftValue(Imm) <= 4;
967 }
968 }
969
970 case AArch64::SUBWrs:
971 case AArch64::SUBSWrs: {
972 unsigned Imm = MI.getOperand(3).getImm();
973 unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
974 return ShiftVal == 0 ||
975 (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 31);
976 }
977
978 case AArch64::SUBXrs:
979 case AArch64::SUBSXrs: {
980 unsigned Imm = MI.getOperand(3).getImm();
981 unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
982 return ShiftVal == 0 ||
983 (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 63);
984 }
985
986 case AArch64::SUBWrx:
987 case AArch64::SUBXrx:
988 case AArch64::SUBXrx64:
989 case AArch64::SUBSWrx:
990 case AArch64::SUBSXrx:
991 case AArch64::SUBSXrx64: {
992 unsigned Imm = MI.getOperand(3).getImm();
993 switch (AArch64_AM::getArithExtendType(Imm)) {
994 default:
995 return false;
996 case AArch64_AM::UXTB:
997 case AArch64_AM::UXTH:
998 case AArch64_AM::UXTW:
999 case AArch64_AM::UXTX:
1000 return AArch64_AM::getArithShiftValue(Imm) == 0;
1001 }
1002 }
1003
1004 case AArch64::LDRBBroW:
1005 case AArch64::LDRBBroX:
1006 case AArch64::LDRBroW:
1007 case AArch64::LDRBroX:
1008 case AArch64::LDRDroW:
1009 case AArch64::LDRDroX:
1010 case AArch64::LDRHHroW:
1011 case AArch64::LDRHHroX:
1012 case AArch64::LDRHroW:
1013 case AArch64::LDRHroX:
1014 case AArch64::LDRQroW:
1015 case AArch64::LDRQroX:
1016 case AArch64::LDRSBWroW:
1017 case AArch64::LDRSBWroX:
1018 case AArch64::LDRSBXroW:
1019 case AArch64::LDRSBXroX:
1020 case AArch64::LDRSHWroW:
1021 case AArch64::LDRSHWroX:
1022 case AArch64::LDRSHXroW:
1023 case AArch64::LDRSHXroX:
1024 case AArch64::LDRSWroW:
1025 case AArch64::LDRSWroX:
1026 case AArch64::LDRSroW:
1027 case AArch64::LDRSroX:
1028 case AArch64::LDRWroW:
1029 case AArch64::LDRWroX:
1030 case AArch64::LDRXroW:
1031 case AArch64::LDRXroX:
1032 case AArch64::PRFMroW:
1033 case AArch64::PRFMroX:
1034 case AArch64::STRBBroW:
1035 case AArch64::STRBBroX:
1036 case AArch64::STRBroW:
1037 case AArch64::STRBroX:
1038 case AArch64::STRDroW:
1039 case AArch64::STRDroX:
1040 case AArch64::STRHHroW:
1041 case AArch64::STRHHroX:
1042 case AArch64::STRHroW:
1043 case AArch64::STRHroX:
1044 case AArch64::STRQroW:
1045 case AArch64::STRQroX:
1046 case AArch64::STRSroW:
1047 case AArch64::STRSroX:
1048 case AArch64::STRWroW:
1049 case AArch64::STRWroX:
1050 case AArch64::STRXroW:
1051 case AArch64::STRXroX: {
1052 unsigned IsSigned = MI.getOperand(3).getImm();
1053 return !IsSigned;
1054 }
1055 }
1056 }
1057
isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx) const1058 bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1059 unsigned &SrcReg, unsigned &DstReg,
1060 unsigned &SubIdx) const {
1061 switch (MI.getOpcode()) {
1062 default:
1063 return false;
1064 case AArch64::SBFMXri: // aka sxtw
1065 case AArch64::UBFMXri: // aka uxtw
1066 // Check for the 32 -> 64 bit extension case, these instructions can do
1067 // much more.
1068 if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
1069 return false;
1070 // This is a signed or unsigned 32 -> 64 bit extension.
1071 SrcReg = MI.getOperand(1).getReg();
1072 DstReg = MI.getOperand(0).getReg();
1073 SubIdx = AArch64::sub_32;
1074 return true;
1075 }
1076 }
1077
areMemAccessesTriviallyDisjoint(MachineInstr & MIa,MachineInstr & MIb,AliasAnalysis * AA) const1078 bool AArch64InstrInfo::areMemAccessesTriviallyDisjoint(
1079 MachineInstr &MIa, MachineInstr &MIb, AliasAnalysis *AA) const {
1080 const TargetRegisterInfo *TRI = &getRegisterInfo();
1081 unsigned BaseRegA = 0, BaseRegB = 0;
1082 int64_t OffsetA = 0, OffsetB = 0;
1083 unsigned WidthA = 0, WidthB = 0;
1084
1085 assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
1086 assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
1087
1088 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1089 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1090 return false;
1091
1092 // Retrieve the base register, offset from the base register and width. Width
1093 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4, 8). If
1094 // base registers are identical, and the offset of a lower memory access +
1095 // the width doesn't overlap the offset of a higher memory access,
1096 // then the memory accesses are different.
1097 if (getMemOpBaseRegImmOfsWidth(MIa, BaseRegA, OffsetA, WidthA, TRI) &&
1098 getMemOpBaseRegImmOfsWidth(MIb, BaseRegB, OffsetB, WidthB, TRI)) {
1099 if (BaseRegA == BaseRegB) {
1100 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1101 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1102 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1103 if (LowOffset + LowWidth <= HighOffset)
1104 return true;
1105 }
1106 }
1107 return false;
1108 }
1109
1110 /// analyzeCompare - For a comparison instruction, return the source registers
1111 /// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
1112 /// Return true if the comparison instruction can be analyzed.
analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & CmpMask,int & CmpValue) const1113 bool AArch64InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1114 unsigned &SrcReg2, int &CmpMask,
1115 int &CmpValue) const {
1116 // The first operand can be a frame index where we'd normally expect a
1117 // register.
1118 assert(MI.getNumOperands() >= 2 && "All AArch64 cmps should have 2 operands");
1119 if (!MI.getOperand(1).isReg())
1120 return false;
1121
1122 switch (MI.getOpcode()) {
1123 default:
1124 break;
1125 case AArch64::SUBSWrr:
1126 case AArch64::SUBSWrs:
1127 case AArch64::SUBSWrx:
1128 case AArch64::SUBSXrr:
1129 case AArch64::SUBSXrs:
1130 case AArch64::SUBSXrx:
1131 case AArch64::ADDSWrr:
1132 case AArch64::ADDSWrs:
1133 case AArch64::ADDSWrx:
1134 case AArch64::ADDSXrr:
1135 case AArch64::ADDSXrs:
1136 case AArch64::ADDSXrx:
1137 // Replace SUBSWrr with SUBWrr if NZCV is not used.
1138 SrcReg = MI.getOperand(1).getReg();
1139 SrcReg2 = MI.getOperand(2).getReg();
1140 CmpMask = ~0;
1141 CmpValue = 0;
1142 return true;
1143 case AArch64::SUBSWri:
1144 case AArch64::ADDSWri:
1145 case AArch64::SUBSXri:
1146 case AArch64::ADDSXri:
1147 SrcReg = MI.getOperand(1).getReg();
1148 SrcReg2 = 0;
1149 CmpMask = ~0;
1150 // FIXME: In order to convert CmpValue to 0 or 1
1151 CmpValue = MI.getOperand(2).getImm() != 0;
1152 return true;
1153 case AArch64::ANDSWri:
1154 case AArch64::ANDSXri:
1155 // ANDS does not use the same encoding scheme as the others xxxS
1156 // instructions.
1157 SrcReg = MI.getOperand(1).getReg();
1158 SrcReg2 = 0;
1159 CmpMask = ~0;
1160 // FIXME:The return val type of decodeLogicalImmediate is uint64_t,
1161 // while the type of CmpValue is int. When converting uint64_t to int,
1162 // the high 32 bits of uint64_t will be lost.
1163 // In fact it causes a bug in spec2006-483.xalancbmk
1164 // CmpValue is only used to compare with zero in OptimizeCompareInstr
1165 CmpValue = AArch64_AM::decodeLogicalImmediate(
1166 MI.getOperand(2).getImm(),
1167 MI.getOpcode() == AArch64::ANDSWri ? 32 : 64) != 0;
1168 return true;
1169 }
1170
1171 return false;
1172 }
1173
UpdateOperandRegClass(MachineInstr & Instr)1174 static bool UpdateOperandRegClass(MachineInstr &Instr) {
1175 MachineBasicBlock *MBB = Instr.getParent();
1176 assert(MBB && "Can't get MachineBasicBlock here");
1177 MachineFunction *MF = MBB->getParent();
1178 assert(MF && "Can't get MachineFunction here");
1179 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1180 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1181 MachineRegisterInfo *MRI = &MF->getRegInfo();
1182
1183 for (unsigned OpIdx = 0, EndIdx = Instr.getNumOperands(); OpIdx < EndIdx;
1184 ++OpIdx) {
1185 MachineOperand &MO = Instr.getOperand(OpIdx);
1186 const TargetRegisterClass *OpRegCstraints =
1187 Instr.getRegClassConstraint(OpIdx, TII, TRI);
1188
1189 // If there's no constraint, there's nothing to do.
1190 if (!OpRegCstraints)
1191 continue;
1192 // If the operand is a frame index, there's nothing to do here.
1193 // A frame index operand will resolve correctly during PEI.
1194 if (MO.isFI())
1195 continue;
1196
1197 assert(MO.isReg() &&
1198 "Operand has register constraints without being a register!");
1199
1200 unsigned Reg = MO.getReg();
1201 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1202 if (!OpRegCstraints->contains(Reg))
1203 return false;
1204 } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
1205 !MRI->constrainRegClass(Reg, OpRegCstraints))
1206 return false;
1207 }
1208
1209 return true;
1210 }
1211
1212 /// Return the opcode that does not set flags when possible - otherwise
1213 /// return the original opcode. The caller is responsible to do the actual
1214 /// substitution and legality checking.
convertToNonFlagSettingOpc(const MachineInstr & MI)1215 static unsigned convertToNonFlagSettingOpc(const MachineInstr &MI) {
1216 // Don't convert all compare instructions, because for some the zero register
1217 // encoding becomes the sp register.
1218 bool MIDefinesZeroReg = false;
1219 if (MI.definesRegister(AArch64::WZR) || MI.definesRegister(AArch64::XZR))
1220 MIDefinesZeroReg = true;
1221
1222 switch (MI.getOpcode()) {
1223 default:
1224 return MI.getOpcode();
1225 case AArch64::ADDSWrr:
1226 return AArch64::ADDWrr;
1227 case AArch64::ADDSWri:
1228 return MIDefinesZeroReg ? AArch64::ADDSWri : AArch64::ADDWri;
1229 case AArch64::ADDSWrs:
1230 return MIDefinesZeroReg ? AArch64::ADDSWrs : AArch64::ADDWrs;
1231 case AArch64::ADDSWrx:
1232 return AArch64::ADDWrx;
1233 case AArch64::ADDSXrr:
1234 return AArch64::ADDXrr;
1235 case AArch64::ADDSXri:
1236 return MIDefinesZeroReg ? AArch64::ADDSXri : AArch64::ADDXri;
1237 case AArch64::ADDSXrs:
1238 return MIDefinesZeroReg ? AArch64::ADDSXrs : AArch64::ADDXrs;
1239 case AArch64::ADDSXrx:
1240 return AArch64::ADDXrx;
1241 case AArch64::SUBSWrr:
1242 return AArch64::SUBWrr;
1243 case AArch64::SUBSWri:
1244 return MIDefinesZeroReg ? AArch64::SUBSWri : AArch64::SUBWri;
1245 case AArch64::SUBSWrs:
1246 return MIDefinesZeroReg ? AArch64::SUBSWrs : AArch64::SUBWrs;
1247 case AArch64::SUBSWrx:
1248 return AArch64::SUBWrx;
1249 case AArch64::SUBSXrr:
1250 return AArch64::SUBXrr;
1251 case AArch64::SUBSXri:
1252 return MIDefinesZeroReg ? AArch64::SUBSXri : AArch64::SUBXri;
1253 case AArch64::SUBSXrs:
1254 return MIDefinesZeroReg ? AArch64::SUBSXrs : AArch64::SUBXrs;
1255 case AArch64::SUBSXrx:
1256 return AArch64::SUBXrx;
1257 }
1258 }
1259
1260 enum AccessKind { AK_Write = 0x01, AK_Read = 0x10, AK_All = 0x11 };
1261
1262 /// True when condition flags are accessed (either by writing or reading)
1263 /// on the instruction trace starting at From and ending at To.
1264 ///
1265 /// Note: If From and To are from different blocks it's assumed CC are accessed
1266 /// on the path.
areCFlagsAccessedBetweenInstrs(MachineBasicBlock::iterator From,MachineBasicBlock::iterator To,const TargetRegisterInfo * TRI,const AccessKind AccessToCheck=AK_All)1267 static bool areCFlagsAccessedBetweenInstrs(
1268 MachineBasicBlock::iterator From, MachineBasicBlock::iterator To,
1269 const TargetRegisterInfo *TRI, const AccessKind AccessToCheck = AK_All) {
1270 // Early exit if To is at the beginning of the BB.
1271 if (To == To->getParent()->begin())
1272 return true;
1273
1274 // Check whether the instructions are in the same basic block
1275 // If not, assume the condition flags might get modified somewhere.
1276 if (To->getParent() != From->getParent())
1277 return true;
1278
1279 // From must be above To.
1280 assert(std::find_if(++To.getReverse(), To->getParent()->rend(),
1281 [From](MachineInstr &MI) {
1282 return MI.getIterator() == From;
1283 }) != To->getParent()->rend());
1284
1285 // We iterate backward starting \p To until we hit \p From.
1286 for (--To; To != From; --To) {
1287 const MachineInstr &Instr = *To;
1288
1289 if (((AccessToCheck & AK_Write) &&
1290 Instr.modifiesRegister(AArch64::NZCV, TRI)) ||
1291 ((AccessToCheck & AK_Read) && Instr.readsRegister(AArch64::NZCV, TRI)))
1292 return true;
1293 }
1294 return false;
1295 }
1296
1297 /// Try to optimize a compare instruction. A compare instruction is an
1298 /// instruction which produces AArch64::NZCV. It can be truly compare
1299 /// instruction
1300 /// when there are no uses of its destination register.
1301 ///
1302 /// The following steps are tried in order:
1303 /// 1. Convert CmpInstr into an unconditional version.
1304 /// 2. Remove CmpInstr if above there is an instruction producing a needed
1305 /// condition code or an instruction which can be converted into such an
1306 /// instruction.
1307 /// Only comparison with zero is supported.
optimizeCompareInstr(MachineInstr & CmpInstr,unsigned SrcReg,unsigned SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const1308 bool AArch64InstrInfo::optimizeCompareInstr(
1309 MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
1310 int CmpValue, const MachineRegisterInfo *MRI) const {
1311 assert(CmpInstr.getParent());
1312 assert(MRI);
1313
1314 // Replace SUBSWrr with SUBWrr if NZCV is not used.
1315 int DeadNZCVIdx = CmpInstr.findRegisterDefOperandIdx(AArch64::NZCV, true);
1316 if (DeadNZCVIdx != -1) {
1317 if (CmpInstr.definesRegister(AArch64::WZR) ||
1318 CmpInstr.definesRegister(AArch64::XZR)) {
1319 CmpInstr.eraseFromParent();
1320 return true;
1321 }
1322 unsigned Opc = CmpInstr.getOpcode();
1323 unsigned NewOpc = convertToNonFlagSettingOpc(CmpInstr);
1324 if (NewOpc == Opc)
1325 return false;
1326 const MCInstrDesc &MCID = get(NewOpc);
1327 CmpInstr.setDesc(MCID);
1328 CmpInstr.RemoveOperand(DeadNZCVIdx);
1329 bool succeeded = UpdateOperandRegClass(CmpInstr);
1330 (void)succeeded;
1331 assert(succeeded && "Some operands reg class are incompatible!");
1332 return true;
1333 }
1334
1335 // Continue only if we have a "ri" where immediate is zero.
1336 // FIXME:CmpValue has already been converted to 0 or 1 in analyzeCompare
1337 // function.
1338 assert((CmpValue == 0 || CmpValue == 1) && "CmpValue must be 0 or 1!");
1339 if (CmpValue != 0 || SrcReg2 != 0)
1340 return false;
1341
1342 // CmpInstr is a Compare instruction if destination register is not used.
1343 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
1344 return false;
1345
1346 return substituteCmpToZero(CmpInstr, SrcReg, MRI);
1347 }
1348
1349 /// Get opcode of S version of Instr.
1350 /// If Instr is S version its opcode is returned.
1351 /// AArch64::INSTRUCTION_LIST_END is returned if Instr does not have S version
1352 /// or we are not interested in it.
sForm(MachineInstr & Instr)1353 static unsigned sForm(MachineInstr &Instr) {
1354 switch (Instr.getOpcode()) {
1355 default:
1356 return AArch64::INSTRUCTION_LIST_END;
1357
1358 case AArch64::ADDSWrr:
1359 case AArch64::ADDSWri:
1360 case AArch64::ADDSXrr:
1361 case AArch64::ADDSXri:
1362 case AArch64::SUBSWrr:
1363 case AArch64::SUBSWri:
1364 case AArch64::SUBSXrr:
1365 case AArch64::SUBSXri:
1366 return Instr.getOpcode();
1367
1368 case AArch64::ADDWrr:
1369 return AArch64::ADDSWrr;
1370 case AArch64::ADDWri:
1371 return AArch64::ADDSWri;
1372 case AArch64::ADDXrr:
1373 return AArch64::ADDSXrr;
1374 case AArch64::ADDXri:
1375 return AArch64::ADDSXri;
1376 case AArch64::ADCWr:
1377 return AArch64::ADCSWr;
1378 case AArch64::ADCXr:
1379 return AArch64::ADCSXr;
1380 case AArch64::SUBWrr:
1381 return AArch64::SUBSWrr;
1382 case AArch64::SUBWri:
1383 return AArch64::SUBSWri;
1384 case AArch64::SUBXrr:
1385 return AArch64::SUBSXrr;
1386 case AArch64::SUBXri:
1387 return AArch64::SUBSXri;
1388 case AArch64::SBCWr:
1389 return AArch64::SBCSWr;
1390 case AArch64::SBCXr:
1391 return AArch64::SBCSXr;
1392 case AArch64::ANDWri:
1393 return AArch64::ANDSWri;
1394 case AArch64::ANDXri:
1395 return AArch64::ANDSXri;
1396 }
1397 }
1398
1399 /// Check if AArch64::NZCV should be alive in successors of MBB.
areCFlagsAliveInSuccessors(MachineBasicBlock * MBB)1400 static bool areCFlagsAliveInSuccessors(MachineBasicBlock *MBB) {
1401 for (auto *BB : MBB->successors())
1402 if (BB->isLiveIn(AArch64::NZCV))
1403 return true;
1404 return false;
1405 }
1406
1407 namespace {
1408
1409 struct UsedNZCV {
1410 bool N = false;
1411 bool Z = false;
1412 bool C = false;
1413 bool V = false;
1414
1415 UsedNZCV() = default;
1416
operator |=__anon26797b7d0211::UsedNZCV1417 UsedNZCV &operator|=(const UsedNZCV &UsedFlags) {
1418 this->N |= UsedFlags.N;
1419 this->Z |= UsedFlags.Z;
1420 this->C |= UsedFlags.C;
1421 this->V |= UsedFlags.V;
1422 return *this;
1423 }
1424 };
1425
1426 } // end anonymous namespace
1427
1428 /// Find a condition code used by the instruction.
1429 /// Returns AArch64CC::Invalid if either the instruction does not use condition
1430 /// codes or we don't optimize CmpInstr in the presence of such instructions.
findCondCodeUsedByInstr(const MachineInstr & Instr)1431 static AArch64CC::CondCode findCondCodeUsedByInstr(const MachineInstr &Instr) {
1432 switch (Instr.getOpcode()) {
1433 default:
1434 return AArch64CC::Invalid;
1435
1436 case AArch64::Bcc: {
1437 int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
1438 assert(Idx >= 2);
1439 return static_cast<AArch64CC::CondCode>(Instr.getOperand(Idx - 2).getImm());
1440 }
1441
1442 case AArch64::CSINVWr:
1443 case AArch64::CSINVXr:
1444 case AArch64::CSINCWr:
1445 case AArch64::CSINCXr:
1446 case AArch64::CSELWr:
1447 case AArch64::CSELXr:
1448 case AArch64::CSNEGWr:
1449 case AArch64::CSNEGXr:
1450 case AArch64::FCSELSrrr:
1451 case AArch64::FCSELDrrr: {
1452 int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
1453 assert(Idx >= 1);
1454 return static_cast<AArch64CC::CondCode>(Instr.getOperand(Idx - 1).getImm());
1455 }
1456 }
1457 }
1458
getUsedNZCV(AArch64CC::CondCode CC)1459 static UsedNZCV getUsedNZCV(AArch64CC::CondCode CC) {
1460 assert(CC != AArch64CC::Invalid);
1461 UsedNZCV UsedFlags;
1462 switch (CC) {
1463 default:
1464 break;
1465
1466 case AArch64CC::EQ: // Z set
1467 case AArch64CC::NE: // Z clear
1468 UsedFlags.Z = true;
1469 break;
1470
1471 case AArch64CC::HI: // Z clear and C set
1472 case AArch64CC::LS: // Z set or C clear
1473 UsedFlags.Z = true;
1474 LLVM_FALLTHROUGH;
1475 case AArch64CC::HS: // C set
1476 case AArch64CC::LO: // C clear
1477 UsedFlags.C = true;
1478 break;
1479
1480 case AArch64CC::MI: // N set
1481 case AArch64CC::PL: // N clear
1482 UsedFlags.N = true;
1483 break;
1484
1485 case AArch64CC::VS: // V set
1486 case AArch64CC::VC: // V clear
1487 UsedFlags.V = true;
1488 break;
1489
1490 case AArch64CC::GT: // Z clear, N and V the same
1491 case AArch64CC::LE: // Z set, N and V differ
1492 UsedFlags.Z = true;
1493 LLVM_FALLTHROUGH;
1494 case AArch64CC::GE: // N and V the same
1495 case AArch64CC::LT: // N and V differ
1496 UsedFlags.N = true;
1497 UsedFlags.V = true;
1498 break;
1499 }
1500 return UsedFlags;
1501 }
1502
isADDSRegImm(unsigned Opcode)1503 static bool isADDSRegImm(unsigned Opcode) {
1504 return Opcode == AArch64::ADDSWri || Opcode == AArch64::ADDSXri;
1505 }
1506
isSUBSRegImm(unsigned Opcode)1507 static bool isSUBSRegImm(unsigned Opcode) {
1508 return Opcode == AArch64::SUBSWri || Opcode == AArch64::SUBSXri;
1509 }
1510
1511 /// Check if CmpInstr can be substituted by MI.
1512 ///
1513 /// CmpInstr can be substituted:
1514 /// - CmpInstr is either 'ADDS %vreg, 0' or 'SUBS %vreg, 0'
1515 /// - and, MI and CmpInstr are from the same MachineBB
1516 /// - and, condition flags are not alive in successors of the CmpInstr parent
1517 /// - and, if MI opcode is the S form there must be no defs of flags between
1518 /// MI and CmpInstr
1519 /// or if MI opcode is not the S form there must be neither defs of flags
1520 /// nor uses of flags between MI and CmpInstr.
1521 /// - and C/V flags are not used after CmpInstr
canInstrSubstituteCmpInstr(MachineInstr * MI,MachineInstr * CmpInstr,const TargetRegisterInfo * TRI)1522 static bool canInstrSubstituteCmpInstr(MachineInstr *MI, MachineInstr *CmpInstr,
1523 const TargetRegisterInfo *TRI) {
1524 assert(MI);
1525 assert(sForm(*MI) != AArch64::INSTRUCTION_LIST_END);
1526 assert(CmpInstr);
1527
1528 const unsigned CmpOpcode = CmpInstr->getOpcode();
1529 if (!isADDSRegImm(CmpOpcode) && !isSUBSRegImm(CmpOpcode))
1530 return false;
1531
1532 if (MI->getParent() != CmpInstr->getParent())
1533 return false;
1534
1535 if (areCFlagsAliveInSuccessors(CmpInstr->getParent()))
1536 return false;
1537
1538 AccessKind AccessToCheck = AK_Write;
1539 if (sForm(*MI) != MI->getOpcode())
1540 AccessToCheck = AK_All;
1541 if (areCFlagsAccessedBetweenInstrs(MI, CmpInstr, TRI, AccessToCheck))
1542 return false;
1543
1544 UsedNZCV NZCVUsedAfterCmp;
1545 for (auto I = std::next(CmpInstr->getIterator()),
1546 E = CmpInstr->getParent()->instr_end();
1547 I != E; ++I) {
1548 const MachineInstr &Instr = *I;
1549 if (Instr.readsRegister(AArch64::NZCV, TRI)) {
1550 AArch64CC::CondCode CC = findCondCodeUsedByInstr(Instr);
1551 if (CC == AArch64CC::Invalid) // Unsupported conditional instruction
1552 return false;
1553 NZCVUsedAfterCmp |= getUsedNZCV(CC);
1554 }
1555
1556 if (Instr.modifiesRegister(AArch64::NZCV, TRI))
1557 break;
1558 }
1559
1560 return !NZCVUsedAfterCmp.C && !NZCVUsedAfterCmp.V;
1561 }
1562
1563 /// Substitute an instruction comparing to zero with another instruction
1564 /// which produces needed condition flags.
1565 ///
1566 /// Return true on success.
substituteCmpToZero(MachineInstr & CmpInstr,unsigned SrcReg,const MachineRegisterInfo * MRI) const1567 bool AArch64InstrInfo::substituteCmpToZero(
1568 MachineInstr &CmpInstr, unsigned SrcReg,
1569 const MachineRegisterInfo *MRI) const {
1570 assert(MRI);
1571 // Get the unique definition of SrcReg.
1572 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1573 if (!MI)
1574 return false;
1575
1576 const TargetRegisterInfo *TRI = &getRegisterInfo();
1577
1578 unsigned NewOpc = sForm(*MI);
1579 if (NewOpc == AArch64::INSTRUCTION_LIST_END)
1580 return false;
1581
1582 if (!canInstrSubstituteCmpInstr(MI, &CmpInstr, TRI))
1583 return false;
1584
1585 // Update the instruction to set NZCV.
1586 MI->setDesc(get(NewOpc));
1587 CmpInstr.eraseFromParent();
1588 bool succeeded = UpdateOperandRegClass(*MI);
1589 (void)succeeded;
1590 assert(succeeded && "Some operands reg class are incompatible!");
1591 MI->addRegisterDefined(AArch64::NZCV, TRI);
1592 return true;
1593 }
1594
expandPostRAPseudo(MachineInstr & MI) const1595 bool AArch64InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1596 if (MI.getOpcode() != TargetOpcode::LOAD_STACK_GUARD)
1597 return false;
1598
1599 MachineBasicBlock &MBB = *MI.getParent();
1600 DebugLoc DL = MI.getDebugLoc();
1601 unsigned Reg = MI.getOperand(0).getReg();
1602 const GlobalValue *GV =
1603 cast<GlobalValue>((*MI.memoperands_begin())->getValue());
1604 const TargetMachine &TM = MBB.getParent()->getTarget();
1605 unsigned char OpFlags = Subtarget.ClassifyGlobalReference(GV, TM);
1606 const unsigned char MO_NC = AArch64II::MO_NC;
1607
1608 if ((OpFlags & AArch64II::MO_GOT) != 0) {
1609 BuildMI(MBB, MI, DL, get(AArch64::LOADgot), Reg)
1610 .addGlobalAddress(GV, 0, AArch64II::MO_GOT);
1611 BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
1612 .addReg(Reg, RegState::Kill)
1613 .addImm(0)
1614 .addMemOperand(*MI.memoperands_begin());
1615 } else if (TM.getCodeModel() == CodeModel::Large) {
1616 BuildMI(MBB, MI, DL, get(AArch64::MOVZXi), Reg)
1617 .addGlobalAddress(GV, 0, AArch64II::MO_G0 | MO_NC)
1618 .addImm(0);
1619 BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
1620 .addReg(Reg, RegState::Kill)
1621 .addGlobalAddress(GV, 0, AArch64II::MO_G1 | MO_NC)
1622 .addImm(16);
1623 BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
1624 .addReg(Reg, RegState::Kill)
1625 .addGlobalAddress(GV, 0, AArch64II::MO_G2 | MO_NC)
1626 .addImm(32);
1627 BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
1628 .addReg(Reg, RegState::Kill)
1629 .addGlobalAddress(GV, 0, AArch64II::MO_G3)
1630 .addImm(48);
1631 BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
1632 .addReg(Reg, RegState::Kill)
1633 .addImm(0)
1634 .addMemOperand(*MI.memoperands_begin());
1635 } else {
1636 BuildMI(MBB, MI, DL, get(AArch64::ADRP), Reg)
1637 .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE);
1638 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | MO_NC;
1639 BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
1640 .addReg(Reg, RegState::Kill)
1641 .addGlobalAddress(GV, 0, LoFlags)
1642 .addMemOperand(*MI.memoperands_begin());
1643 }
1644
1645 MBB.erase(MI);
1646
1647 return true;
1648 }
1649
1650 /// Return true if this is this instruction has a non-zero immediate
hasShiftedReg(const MachineInstr & MI)1651 bool AArch64InstrInfo::hasShiftedReg(const MachineInstr &MI) {
1652 switch (MI.getOpcode()) {
1653 default:
1654 break;
1655 case AArch64::ADDSWrs:
1656 case AArch64::ADDSXrs:
1657 case AArch64::ADDWrs:
1658 case AArch64::ADDXrs:
1659 case AArch64::ANDSWrs:
1660 case AArch64::ANDSXrs:
1661 case AArch64::ANDWrs:
1662 case AArch64::ANDXrs:
1663 case AArch64::BICSWrs:
1664 case AArch64::BICSXrs:
1665 case AArch64::BICWrs:
1666 case AArch64::BICXrs:
1667 case AArch64::EONWrs:
1668 case AArch64::EONXrs:
1669 case AArch64::EORWrs:
1670 case AArch64::EORXrs:
1671 case AArch64::ORNWrs:
1672 case AArch64::ORNXrs:
1673 case AArch64::ORRWrs:
1674 case AArch64::ORRXrs:
1675 case AArch64::SUBSWrs:
1676 case AArch64::SUBSXrs:
1677 case AArch64::SUBWrs:
1678 case AArch64::SUBXrs:
1679 if (MI.getOperand(3).isImm()) {
1680 unsigned val = MI.getOperand(3).getImm();
1681 return (val != 0);
1682 }
1683 break;
1684 }
1685 return false;
1686 }
1687
1688 /// Return true if this is this instruction has a non-zero immediate
hasExtendedReg(const MachineInstr & MI)1689 bool AArch64InstrInfo::hasExtendedReg(const MachineInstr &MI) {
1690 switch (MI.getOpcode()) {
1691 default:
1692 break;
1693 case AArch64::ADDSWrx:
1694 case AArch64::ADDSXrx:
1695 case AArch64::ADDSXrx64:
1696 case AArch64::ADDWrx:
1697 case AArch64::ADDXrx:
1698 case AArch64::ADDXrx64:
1699 case AArch64::SUBSWrx:
1700 case AArch64::SUBSXrx:
1701 case AArch64::SUBSXrx64:
1702 case AArch64::SUBWrx:
1703 case AArch64::SUBXrx:
1704 case AArch64::SUBXrx64:
1705 if (MI.getOperand(3).isImm()) {
1706 unsigned val = MI.getOperand(3).getImm();
1707 return (val != 0);
1708 }
1709 break;
1710 }
1711
1712 return false;
1713 }
1714
1715 // Return true if this instruction simply sets its single destination register
1716 // to zero. This is equivalent to a register rename of the zero-register.
isGPRZero(const MachineInstr & MI)1717 bool AArch64InstrInfo::isGPRZero(const MachineInstr &MI) {
1718 switch (MI.getOpcode()) {
1719 default:
1720 break;
1721 case AArch64::MOVZWi:
1722 case AArch64::MOVZXi: // movz Rd, #0 (LSL #0)
1723 if (MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) {
1724 assert(MI.getDesc().getNumOperands() == 3 &&
1725 MI.getOperand(2).getImm() == 0 && "invalid MOVZi operands");
1726 return true;
1727 }
1728 break;
1729 case AArch64::ANDWri: // and Rd, Rzr, #imm
1730 return MI.getOperand(1).getReg() == AArch64::WZR;
1731 case AArch64::ANDXri:
1732 return MI.getOperand(1).getReg() == AArch64::XZR;
1733 case TargetOpcode::COPY:
1734 return MI.getOperand(1).getReg() == AArch64::WZR;
1735 }
1736 return false;
1737 }
1738
1739 // Return true if this instruction simply renames a general register without
1740 // modifying bits.
isGPRCopy(const MachineInstr & MI)1741 bool AArch64InstrInfo::isGPRCopy(const MachineInstr &MI) {
1742 switch (MI.getOpcode()) {
1743 default:
1744 break;
1745 case TargetOpcode::COPY: {
1746 // GPR32 copies will by lowered to ORRXrs
1747 unsigned DstReg = MI.getOperand(0).getReg();
1748 return (AArch64::GPR32RegClass.contains(DstReg) ||
1749 AArch64::GPR64RegClass.contains(DstReg));
1750 }
1751 case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
1752 if (MI.getOperand(1).getReg() == AArch64::XZR) {
1753 assert(MI.getDesc().getNumOperands() == 4 &&
1754 MI.getOperand(3).getImm() == 0 && "invalid ORRrs operands");
1755 return true;
1756 }
1757 break;
1758 case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
1759 if (MI.getOperand(2).getImm() == 0) {
1760 assert(MI.getDesc().getNumOperands() == 4 &&
1761 MI.getOperand(3).getImm() == 0 && "invalid ADDXri operands");
1762 return true;
1763 }
1764 break;
1765 }
1766 return false;
1767 }
1768
1769 // Return true if this instruction simply renames a general register without
1770 // modifying bits.
isFPRCopy(const MachineInstr & MI)1771 bool AArch64InstrInfo::isFPRCopy(const MachineInstr &MI) {
1772 switch (MI.getOpcode()) {
1773 default:
1774 break;
1775 case TargetOpcode::COPY: {
1776 // FPR64 copies will by lowered to ORR.16b
1777 unsigned DstReg = MI.getOperand(0).getReg();
1778 return (AArch64::FPR64RegClass.contains(DstReg) ||
1779 AArch64::FPR128RegClass.contains(DstReg));
1780 }
1781 case AArch64::ORRv16i8:
1782 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) {
1783 assert(MI.getDesc().getNumOperands() == 3 && MI.getOperand(0).isReg() &&
1784 "invalid ORRv16i8 operands");
1785 return true;
1786 }
1787 break;
1788 }
1789 return false;
1790 }
1791
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const1792 unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1793 int &FrameIndex) const {
1794 switch (MI.getOpcode()) {
1795 default:
1796 break;
1797 case AArch64::LDRWui:
1798 case AArch64::LDRXui:
1799 case AArch64::LDRBui:
1800 case AArch64::LDRHui:
1801 case AArch64::LDRSui:
1802 case AArch64::LDRDui:
1803 case AArch64::LDRQui:
1804 if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() &&
1805 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) {
1806 FrameIndex = MI.getOperand(1).getIndex();
1807 return MI.getOperand(0).getReg();
1808 }
1809 break;
1810 }
1811
1812 return 0;
1813 }
1814
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const1815 unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1816 int &FrameIndex) const {
1817 switch (MI.getOpcode()) {
1818 default:
1819 break;
1820 case AArch64::STRWui:
1821 case AArch64::STRXui:
1822 case AArch64::STRBui:
1823 case AArch64::STRHui:
1824 case AArch64::STRSui:
1825 case AArch64::STRDui:
1826 case AArch64::STRQui:
1827 if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() &&
1828 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) {
1829 FrameIndex = MI.getOperand(1).getIndex();
1830 return MI.getOperand(0).getReg();
1831 }
1832 break;
1833 }
1834 return 0;
1835 }
1836
1837 /// Return true if this is load/store scales or extends its register offset.
1838 /// This refers to scaling a dynamic index as opposed to scaled immediates.
1839 /// MI should be a memory op that allows scaled addressing.
isScaledAddr(const MachineInstr & MI)1840 bool AArch64InstrInfo::isScaledAddr(const MachineInstr &MI) {
1841 switch (MI.getOpcode()) {
1842 default:
1843 break;
1844 case AArch64::LDRBBroW:
1845 case AArch64::LDRBroW:
1846 case AArch64::LDRDroW:
1847 case AArch64::LDRHHroW:
1848 case AArch64::LDRHroW:
1849 case AArch64::LDRQroW:
1850 case AArch64::LDRSBWroW:
1851 case AArch64::LDRSBXroW:
1852 case AArch64::LDRSHWroW:
1853 case AArch64::LDRSHXroW:
1854 case AArch64::LDRSWroW:
1855 case AArch64::LDRSroW:
1856 case AArch64::LDRWroW:
1857 case AArch64::LDRXroW:
1858 case AArch64::STRBBroW:
1859 case AArch64::STRBroW:
1860 case AArch64::STRDroW:
1861 case AArch64::STRHHroW:
1862 case AArch64::STRHroW:
1863 case AArch64::STRQroW:
1864 case AArch64::STRSroW:
1865 case AArch64::STRWroW:
1866 case AArch64::STRXroW:
1867 case AArch64::LDRBBroX:
1868 case AArch64::LDRBroX:
1869 case AArch64::LDRDroX:
1870 case AArch64::LDRHHroX:
1871 case AArch64::LDRHroX:
1872 case AArch64::LDRQroX:
1873 case AArch64::LDRSBWroX:
1874 case AArch64::LDRSBXroX:
1875 case AArch64::LDRSHWroX:
1876 case AArch64::LDRSHXroX:
1877 case AArch64::LDRSWroX:
1878 case AArch64::LDRSroX:
1879 case AArch64::LDRWroX:
1880 case AArch64::LDRXroX:
1881 case AArch64::STRBBroX:
1882 case AArch64::STRBroX:
1883 case AArch64::STRDroX:
1884 case AArch64::STRHHroX:
1885 case AArch64::STRHroX:
1886 case AArch64::STRQroX:
1887 case AArch64::STRSroX:
1888 case AArch64::STRWroX:
1889 case AArch64::STRXroX:
1890
1891 unsigned Val = MI.getOperand(3).getImm();
1892 AArch64_AM::ShiftExtendType ExtType = AArch64_AM::getMemExtendType(Val);
1893 return (ExtType != AArch64_AM::UXTX) || AArch64_AM::getMemDoShift(Val);
1894 }
1895 return false;
1896 }
1897
1898 /// Check all MachineMemOperands for a hint to suppress pairing.
isLdStPairSuppressed(const MachineInstr & MI)1899 bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr &MI) {
1900 return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) {
1901 return MMO->getFlags() & MOSuppressPair;
1902 });
1903 }
1904
1905 /// Set a flag on the first MachineMemOperand to suppress pairing.
suppressLdStPair(MachineInstr & MI)1906 void AArch64InstrInfo::suppressLdStPair(MachineInstr &MI) {
1907 if (MI.memoperands_empty())
1908 return;
1909 (*MI.memoperands_begin())->setFlags(MOSuppressPair);
1910 }
1911
1912 /// Check all MachineMemOperands for a hint that the load/store is strided.
isStridedAccess(const MachineInstr & MI)1913 bool AArch64InstrInfo::isStridedAccess(const MachineInstr &MI) {
1914 return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) {
1915 return MMO->getFlags() & MOStridedAccess;
1916 });
1917 }
1918
isUnscaledLdSt(unsigned Opc)1919 bool AArch64InstrInfo::isUnscaledLdSt(unsigned Opc) {
1920 switch (Opc) {
1921 default:
1922 return false;
1923 case AArch64::STURSi:
1924 case AArch64::STURDi:
1925 case AArch64::STURQi:
1926 case AArch64::STURBBi:
1927 case AArch64::STURHHi:
1928 case AArch64::STURWi:
1929 case AArch64::STURXi:
1930 case AArch64::LDURSi:
1931 case AArch64::LDURDi:
1932 case AArch64::LDURQi:
1933 case AArch64::LDURWi:
1934 case AArch64::LDURXi:
1935 case AArch64::LDURSWi:
1936 case AArch64::LDURHHi:
1937 case AArch64::LDURBBi:
1938 case AArch64::LDURSBWi:
1939 case AArch64::LDURSHWi:
1940 return true;
1941 }
1942 }
1943
isPairableLdStInst(const MachineInstr & MI)1944 bool AArch64InstrInfo::isPairableLdStInst(const MachineInstr &MI) {
1945 switch (MI.getOpcode()) {
1946 default:
1947 return false;
1948 // Scaled instructions.
1949 case AArch64::STRSui:
1950 case AArch64::STRDui:
1951 case AArch64::STRQui:
1952 case AArch64::STRXui:
1953 case AArch64::STRWui:
1954 case AArch64::LDRSui:
1955 case AArch64::LDRDui:
1956 case AArch64::LDRQui:
1957 case AArch64::LDRXui:
1958 case AArch64::LDRWui:
1959 case AArch64::LDRSWui:
1960 // Unscaled instructions.
1961 case AArch64::STURSi:
1962 case AArch64::STURDi:
1963 case AArch64::STURQi:
1964 case AArch64::STURWi:
1965 case AArch64::STURXi:
1966 case AArch64::LDURSi:
1967 case AArch64::LDURDi:
1968 case AArch64::LDURQi:
1969 case AArch64::LDURWi:
1970 case AArch64::LDURXi:
1971 case AArch64::LDURSWi:
1972 return true;
1973 }
1974 }
1975
convertToFlagSettingOpc(unsigned Opc,bool & Is64Bit)1976 unsigned AArch64InstrInfo::convertToFlagSettingOpc(unsigned Opc,
1977 bool &Is64Bit) {
1978 switch (Opc) {
1979 default:
1980 llvm_unreachable("Opcode has no flag setting equivalent!");
1981 // 32-bit cases:
1982 case AArch64::ADDWri:
1983 Is64Bit = false;
1984 return AArch64::ADDSWri;
1985 case AArch64::ADDWrr:
1986 Is64Bit = false;
1987 return AArch64::ADDSWrr;
1988 case AArch64::ADDWrs:
1989 Is64Bit = false;
1990 return AArch64::ADDSWrs;
1991 case AArch64::ADDWrx:
1992 Is64Bit = false;
1993 return AArch64::ADDSWrx;
1994 case AArch64::ANDWri:
1995 Is64Bit = false;
1996 return AArch64::ANDSWri;
1997 case AArch64::ANDWrr:
1998 Is64Bit = false;
1999 return AArch64::ANDSWrr;
2000 case AArch64::ANDWrs:
2001 Is64Bit = false;
2002 return AArch64::ANDSWrs;
2003 case AArch64::BICWrr:
2004 Is64Bit = false;
2005 return AArch64::BICSWrr;
2006 case AArch64::BICWrs:
2007 Is64Bit = false;
2008 return AArch64::BICSWrs;
2009 case AArch64::SUBWri:
2010 Is64Bit = false;
2011 return AArch64::SUBSWri;
2012 case AArch64::SUBWrr:
2013 Is64Bit = false;
2014 return AArch64::SUBSWrr;
2015 case AArch64::SUBWrs:
2016 Is64Bit = false;
2017 return AArch64::SUBSWrs;
2018 case AArch64::SUBWrx:
2019 Is64Bit = false;
2020 return AArch64::SUBSWrx;
2021 // 64-bit cases:
2022 case AArch64::ADDXri:
2023 Is64Bit = true;
2024 return AArch64::ADDSXri;
2025 case AArch64::ADDXrr:
2026 Is64Bit = true;
2027 return AArch64::ADDSXrr;
2028 case AArch64::ADDXrs:
2029 Is64Bit = true;
2030 return AArch64::ADDSXrs;
2031 case AArch64::ADDXrx:
2032 Is64Bit = true;
2033 return AArch64::ADDSXrx;
2034 case AArch64::ANDXri:
2035 Is64Bit = true;
2036 return AArch64::ANDSXri;
2037 case AArch64::ANDXrr:
2038 Is64Bit = true;
2039 return AArch64::ANDSXrr;
2040 case AArch64::ANDXrs:
2041 Is64Bit = true;
2042 return AArch64::ANDSXrs;
2043 case AArch64::BICXrr:
2044 Is64Bit = true;
2045 return AArch64::BICSXrr;
2046 case AArch64::BICXrs:
2047 Is64Bit = true;
2048 return AArch64::BICSXrs;
2049 case AArch64::SUBXri:
2050 Is64Bit = true;
2051 return AArch64::SUBSXri;
2052 case AArch64::SUBXrr:
2053 Is64Bit = true;
2054 return AArch64::SUBSXrr;
2055 case AArch64::SUBXrs:
2056 Is64Bit = true;
2057 return AArch64::SUBSXrs;
2058 case AArch64::SUBXrx:
2059 Is64Bit = true;
2060 return AArch64::SUBSXrx;
2061 }
2062 }
2063
2064 // Is this a candidate for ld/st merging or pairing? For example, we don't
2065 // touch volatiles or load/stores that have a hint to avoid pair formation.
isCandidateToMergeOrPair(MachineInstr & MI) const2066 bool AArch64InstrInfo::isCandidateToMergeOrPair(MachineInstr &MI) const {
2067 // If this is a volatile load/store, don't mess with it.
2068 if (MI.hasOrderedMemoryRef())
2069 return false;
2070
2071 // Make sure this is a reg+imm (as opposed to an address reloc).
2072 assert(MI.getOperand(1).isReg() && "Expected a reg operand.");
2073 if (!MI.getOperand(2).isImm())
2074 return false;
2075
2076 // Can't merge/pair if the instruction modifies the base register.
2077 // e.g., ldr x0, [x0]
2078 unsigned BaseReg = MI.getOperand(1).getReg();
2079 const TargetRegisterInfo *TRI = &getRegisterInfo();
2080 if (MI.modifiesRegister(BaseReg, TRI))
2081 return false;
2082
2083 // Check if this load/store has a hint to avoid pair formation.
2084 // MachineMemOperands hints are set by the AArch64StorePairSuppress pass.
2085 if (isLdStPairSuppressed(MI))
2086 return false;
2087
2088 // On some CPUs quad load/store pairs are slower than two single load/stores.
2089 if (Subtarget.isPaired128Slow()) {
2090 switch (MI.getOpcode()) {
2091 default:
2092 break;
2093 case AArch64::LDURQi:
2094 case AArch64::STURQi:
2095 case AArch64::LDRQui:
2096 case AArch64::STRQui:
2097 return false;
2098 }
2099 }
2100
2101 return true;
2102 }
2103
getMemOpBaseRegImmOfs(MachineInstr & LdSt,unsigned & BaseReg,int64_t & Offset,const TargetRegisterInfo * TRI) const2104 bool AArch64InstrInfo::getMemOpBaseRegImmOfs(
2105 MachineInstr &LdSt, unsigned &BaseReg, int64_t &Offset,
2106 const TargetRegisterInfo *TRI) const {
2107 unsigned Width;
2108 return getMemOpBaseRegImmOfsWidth(LdSt, BaseReg, Offset, Width, TRI);
2109 }
2110
getMemOpBaseRegImmOfsWidth(MachineInstr & LdSt,unsigned & BaseReg,int64_t & Offset,unsigned & Width,const TargetRegisterInfo * TRI) const2111 bool AArch64InstrInfo::getMemOpBaseRegImmOfsWidth(
2112 MachineInstr &LdSt, unsigned &BaseReg, int64_t &Offset, unsigned &Width,
2113 const TargetRegisterInfo *TRI) const {
2114 assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
2115 // Handle only loads/stores with base register followed by immediate offset.
2116 if (LdSt.getNumExplicitOperands() == 3) {
2117 // Non-paired instruction (e.g., ldr x1, [x0, #8]).
2118 if (!LdSt.getOperand(1).isReg() || !LdSt.getOperand(2).isImm())
2119 return false;
2120 } else if (LdSt.getNumExplicitOperands() == 4) {
2121 // Paired instruction (e.g., ldp x1, x2, [x0, #8]).
2122 if (!LdSt.getOperand(1).isReg() || !LdSt.getOperand(2).isReg() ||
2123 !LdSt.getOperand(3).isImm())
2124 return false;
2125 } else
2126 return false;
2127
2128 // Get the scaling factor for the instruction and set the width for the
2129 // instruction.
2130 unsigned Scale = 0;
2131 int64_t Dummy1, Dummy2;
2132
2133 // If this returns false, then it's an instruction we don't want to handle.
2134 if (!getMemOpInfo(LdSt.getOpcode(), Scale, Width, Dummy1, Dummy2))
2135 return false;
2136
2137 // Compute the offset. Offset is calculated as the immediate operand
2138 // multiplied by the scaling factor. Unscaled instructions have scaling factor
2139 // set to 1.
2140 if (LdSt.getNumExplicitOperands() == 3) {
2141 BaseReg = LdSt.getOperand(1).getReg();
2142 Offset = LdSt.getOperand(2).getImm() * Scale;
2143 } else {
2144 assert(LdSt.getNumExplicitOperands() == 4 && "invalid number of operands");
2145 BaseReg = LdSt.getOperand(2).getReg();
2146 Offset = LdSt.getOperand(3).getImm() * Scale;
2147 }
2148 return true;
2149 }
2150
2151 MachineOperand &
getMemOpBaseRegImmOfsOffsetOperand(MachineInstr & LdSt) const2152 AArch64InstrInfo::getMemOpBaseRegImmOfsOffsetOperand(MachineInstr &LdSt) const {
2153 assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
2154 MachineOperand &OfsOp = LdSt.getOperand(LdSt.getNumExplicitOperands() - 1);
2155 assert(OfsOp.isImm() && "Offset operand wasn't immediate.");
2156 return OfsOp;
2157 }
2158
getMemOpInfo(unsigned Opcode,unsigned & Scale,unsigned & Width,int64_t & MinOffset,int64_t & MaxOffset) const2159 bool AArch64InstrInfo::getMemOpInfo(unsigned Opcode, unsigned &Scale,
2160 unsigned &Width, int64_t &MinOffset,
2161 int64_t &MaxOffset) const {
2162 switch (Opcode) {
2163 // Not a memory operation or something we want to handle.
2164 default:
2165 Scale = Width = 0;
2166 MinOffset = MaxOffset = 0;
2167 return false;
2168 case AArch64::STRWpost:
2169 case AArch64::LDRWpost:
2170 Width = 32;
2171 Scale = 4;
2172 MinOffset = -256;
2173 MaxOffset = 255;
2174 break;
2175 case AArch64::LDURQi:
2176 case AArch64::STURQi:
2177 Width = 16;
2178 Scale = 1;
2179 MinOffset = -256;
2180 MaxOffset = 255;
2181 break;
2182 case AArch64::LDURXi:
2183 case AArch64::LDURDi:
2184 case AArch64::STURXi:
2185 case AArch64::STURDi:
2186 Width = 8;
2187 Scale = 1;
2188 MinOffset = -256;
2189 MaxOffset = 255;
2190 break;
2191 case AArch64::LDURWi:
2192 case AArch64::LDURSi:
2193 case AArch64::LDURSWi:
2194 case AArch64::STURWi:
2195 case AArch64::STURSi:
2196 Width = 4;
2197 Scale = 1;
2198 MinOffset = -256;
2199 MaxOffset = 255;
2200 break;
2201 case AArch64::LDURHi:
2202 case AArch64::LDURHHi:
2203 case AArch64::LDURSHXi:
2204 case AArch64::LDURSHWi:
2205 case AArch64::STURHi:
2206 case AArch64::STURHHi:
2207 Width = 2;
2208 Scale = 1;
2209 MinOffset = -256;
2210 MaxOffset = 255;
2211 break;
2212 case AArch64::LDURBi:
2213 case AArch64::LDURBBi:
2214 case AArch64::LDURSBXi:
2215 case AArch64::LDURSBWi:
2216 case AArch64::STURBi:
2217 case AArch64::STURBBi:
2218 Width = 1;
2219 Scale = 1;
2220 MinOffset = -256;
2221 MaxOffset = 255;
2222 break;
2223 case AArch64::LDPQi:
2224 case AArch64::LDNPQi:
2225 case AArch64::STPQi:
2226 case AArch64::STNPQi:
2227 Scale = 16;
2228 Width = 32;
2229 MinOffset = -64;
2230 MaxOffset = 63;
2231 break;
2232 case AArch64::LDRQui:
2233 case AArch64::STRQui:
2234 Scale = Width = 16;
2235 MinOffset = 0;
2236 MaxOffset = 4095;
2237 break;
2238 case AArch64::LDPXi:
2239 case AArch64::LDPDi:
2240 case AArch64::LDNPXi:
2241 case AArch64::LDNPDi:
2242 case AArch64::STPXi:
2243 case AArch64::STPDi:
2244 case AArch64::STNPXi:
2245 case AArch64::STNPDi:
2246 Scale = 8;
2247 Width = 16;
2248 MinOffset = -64;
2249 MaxOffset = 63;
2250 break;
2251 case AArch64::LDRXui:
2252 case AArch64::LDRDui:
2253 case AArch64::STRXui:
2254 case AArch64::STRDui:
2255 Scale = Width = 8;
2256 MinOffset = 0;
2257 MaxOffset = 4095;
2258 break;
2259 case AArch64::LDPWi:
2260 case AArch64::LDPSi:
2261 case AArch64::LDNPWi:
2262 case AArch64::LDNPSi:
2263 case AArch64::STPWi:
2264 case AArch64::STPSi:
2265 case AArch64::STNPWi:
2266 case AArch64::STNPSi:
2267 Scale = 4;
2268 Width = 8;
2269 MinOffset = -64;
2270 MaxOffset = 63;
2271 break;
2272 case AArch64::LDRWui:
2273 case AArch64::LDRSui:
2274 case AArch64::LDRSWui:
2275 case AArch64::STRWui:
2276 case AArch64::STRSui:
2277 Scale = Width = 4;
2278 MinOffset = 0;
2279 MaxOffset = 4095;
2280 break;
2281 case AArch64::LDRHui:
2282 case AArch64::LDRHHui:
2283 case AArch64::STRHui:
2284 case AArch64::STRHHui:
2285 Scale = Width = 2;
2286 MinOffset = 0;
2287 MaxOffset = 4095;
2288 break;
2289 case AArch64::LDRBui:
2290 case AArch64::LDRBBui:
2291 case AArch64::STRBui:
2292 case AArch64::STRBBui:
2293 Scale = Width = 1;
2294 MinOffset = 0;
2295 MaxOffset = 4095;
2296 break;
2297 }
2298
2299 return true;
2300 }
2301
2302 // Scale the unscaled offsets. Returns false if the unscaled offset can't be
2303 // scaled.
scaleOffset(unsigned Opc,int64_t & Offset)2304 static bool scaleOffset(unsigned Opc, int64_t &Offset) {
2305 unsigned OffsetStride = 1;
2306 switch (Opc) {
2307 default:
2308 return false;
2309 case AArch64::LDURQi:
2310 case AArch64::STURQi:
2311 OffsetStride = 16;
2312 break;
2313 case AArch64::LDURXi:
2314 case AArch64::LDURDi:
2315 case AArch64::STURXi:
2316 case AArch64::STURDi:
2317 OffsetStride = 8;
2318 break;
2319 case AArch64::LDURWi:
2320 case AArch64::LDURSi:
2321 case AArch64::LDURSWi:
2322 case AArch64::STURWi:
2323 case AArch64::STURSi:
2324 OffsetStride = 4;
2325 break;
2326 }
2327 // If the byte-offset isn't a multiple of the stride, we can't scale this
2328 // offset.
2329 if (Offset % OffsetStride != 0)
2330 return false;
2331
2332 // Convert the byte-offset used by unscaled into an "element" offset used
2333 // by the scaled pair load/store instructions.
2334 Offset /= OffsetStride;
2335 return true;
2336 }
2337
canPairLdStOpc(unsigned FirstOpc,unsigned SecondOpc)2338 static bool canPairLdStOpc(unsigned FirstOpc, unsigned SecondOpc) {
2339 if (FirstOpc == SecondOpc)
2340 return true;
2341 // We can also pair sign-ext and zero-ext instructions.
2342 switch (FirstOpc) {
2343 default:
2344 return false;
2345 case AArch64::LDRWui:
2346 case AArch64::LDURWi:
2347 return SecondOpc == AArch64::LDRSWui || SecondOpc == AArch64::LDURSWi;
2348 case AArch64::LDRSWui:
2349 case AArch64::LDURSWi:
2350 return SecondOpc == AArch64::LDRWui || SecondOpc == AArch64::LDURWi;
2351 }
2352 // These instructions can't be paired based on their opcodes.
2353 return false;
2354 }
2355
2356 /// Detect opportunities for ldp/stp formation.
2357 ///
2358 /// Only called for LdSt for which getMemOpBaseRegImmOfs returns true.
shouldClusterMemOps(MachineInstr & FirstLdSt,unsigned BaseReg1,MachineInstr & SecondLdSt,unsigned BaseReg2,unsigned NumLoads) const2359 bool AArch64InstrInfo::shouldClusterMemOps(MachineInstr &FirstLdSt,
2360 unsigned BaseReg1,
2361 MachineInstr &SecondLdSt,
2362 unsigned BaseReg2,
2363 unsigned NumLoads) const {
2364 if (BaseReg1 != BaseReg2)
2365 return false;
2366
2367 // Only cluster up to a single pair.
2368 if (NumLoads > 1)
2369 return false;
2370
2371 if (!isPairableLdStInst(FirstLdSt) || !isPairableLdStInst(SecondLdSt))
2372 return false;
2373
2374 // Can we pair these instructions based on their opcodes?
2375 unsigned FirstOpc = FirstLdSt.getOpcode();
2376 unsigned SecondOpc = SecondLdSt.getOpcode();
2377 if (!canPairLdStOpc(FirstOpc, SecondOpc))
2378 return false;
2379
2380 // Can't merge volatiles or load/stores that have a hint to avoid pair
2381 // formation, for example.
2382 if (!isCandidateToMergeOrPair(FirstLdSt) ||
2383 !isCandidateToMergeOrPair(SecondLdSt))
2384 return false;
2385
2386 // isCandidateToMergeOrPair guarantees that operand 2 is an immediate.
2387 int64_t Offset1 = FirstLdSt.getOperand(2).getImm();
2388 if (isUnscaledLdSt(FirstOpc) && !scaleOffset(FirstOpc, Offset1))
2389 return false;
2390
2391 int64_t Offset2 = SecondLdSt.getOperand(2).getImm();
2392 if (isUnscaledLdSt(SecondOpc) && !scaleOffset(SecondOpc, Offset2))
2393 return false;
2394
2395 // Pairwise instructions have a 7-bit signed offset field.
2396 if (Offset1 > 63 || Offset1 < -64)
2397 return false;
2398
2399 // The caller should already have ordered First/SecondLdSt by offset.
2400 assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
2401 return Offset1 + 1 == Offset2;
2402 }
2403
AddSubReg(const MachineInstrBuilder & MIB,unsigned Reg,unsigned SubIdx,unsigned State,const TargetRegisterInfo * TRI)2404 static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
2405 unsigned Reg, unsigned SubIdx,
2406 unsigned State,
2407 const TargetRegisterInfo *TRI) {
2408 if (!SubIdx)
2409 return MIB.addReg(Reg, State);
2410
2411 if (TargetRegisterInfo::isPhysicalRegister(Reg))
2412 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
2413 return MIB.addReg(Reg, State, SubIdx);
2414 }
2415
forwardCopyWillClobberTuple(unsigned DestReg,unsigned SrcReg,unsigned NumRegs)2416 static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
2417 unsigned NumRegs) {
2418 // We really want the positive remainder mod 32 here, that happens to be
2419 // easily obtainable with a mask.
2420 return ((DestReg - SrcReg) & 0x1f) < NumRegs;
2421 }
2422
copyPhysRegTuple(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc,unsigned Opcode,ArrayRef<unsigned> Indices) const2423 void AArch64InstrInfo::copyPhysRegTuple(MachineBasicBlock &MBB,
2424 MachineBasicBlock::iterator I,
2425 const DebugLoc &DL, unsigned DestReg,
2426 unsigned SrcReg, bool KillSrc,
2427 unsigned Opcode,
2428 ArrayRef<unsigned> Indices) const {
2429 assert(Subtarget.hasNEON() && "Unexpected register copy without NEON");
2430 const TargetRegisterInfo *TRI = &getRegisterInfo();
2431 uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
2432 uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
2433 unsigned NumRegs = Indices.size();
2434
2435 int SubReg = 0, End = NumRegs, Incr = 1;
2436 if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
2437 SubReg = NumRegs - 1;
2438 End = -1;
2439 Incr = -1;
2440 }
2441
2442 for (; SubReg != End; SubReg += Incr) {
2443 const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode));
2444 AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
2445 AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
2446 AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
2447 }
2448 }
2449
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const2450 void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2451 MachineBasicBlock::iterator I,
2452 const DebugLoc &DL, unsigned DestReg,
2453 unsigned SrcReg, bool KillSrc) const {
2454 if (AArch64::GPR32spRegClass.contains(DestReg) &&
2455 (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) {
2456 const TargetRegisterInfo *TRI = &getRegisterInfo();
2457
2458 if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
2459 // If either operand is WSP, expand to ADD #0.
2460 if (Subtarget.hasZeroCycleRegMove()) {
2461 // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
2462 unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
2463 &AArch64::GPR64spRegClass);
2464 unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
2465 &AArch64::GPR64spRegClass);
2466 // This instruction is reading and writing X registers. This may upset
2467 // the register scavenger and machine verifier, so we need to indicate
2468 // that we are reading an undefined value from SrcRegX, but a proper
2469 // value from SrcReg.
2470 BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX)
2471 .addReg(SrcRegX, RegState::Undef)
2472 .addImm(0)
2473 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
2474 .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
2475 } else {
2476 BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg)
2477 .addReg(SrcReg, getKillRegState(KillSrc))
2478 .addImm(0)
2479 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
2480 }
2481 } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroing()) {
2482 BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg)
2483 .addImm(0)
2484 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
2485 } else {
2486 if (Subtarget.hasZeroCycleRegMove()) {
2487 // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
2488 unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
2489 &AArch64::GPR64spRegClass);
2490 unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
2491 &AArch64::GPR64spRegClass);
2492 // This instruction is reading and writing X registers. This may upset
2493 // the register scavenger and machine verifier, so we need to indicate
2494 // that we are reading an undefined value from SrcRegX, but a proper
2495 // value from SrcReg.
2496 BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX)
2497 .addReg(AArch64::XZR)
2498 .addReg(SrcRegX, RegState::Undef)
2499 .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
2500 } else {
2501 // Otherwise, expand to ORR WZR.
2502 BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg)
2503 .addReg(AArch64::WZR)
2504 .addReg(SrcReg, getKillRegState(KillSrc));
2505 }
2506 }
2507 return;
2508 }
2509
2510 if (AArch64::GPR64spRegClass.contains(DestReg) &&
2511 (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) {
2512 if (DestReg == AArch64::SP || SrcReg == AArch64::SP) {
2513 // If either operand is SP, expand to ADD #0.
2514 BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg)
2515 .addReg(SrcReg, getKillRegState(KillSrc))
2516 .addImm(0)
2517 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
2518 } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroing()) {
2519 BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg)
2520 .addImm(0)
2521 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
2522 } else {
2523 // Otherwise, expand to ORR XZR.
2524 BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
2525 .addReg(AArch64::XZR)
2526 .addReg(SrcReg, getKillRegState(KillSrc));
2527 }
2528 return;
2529 }
2530
2531 // Copy a DDDD register quad by copying the individual sub-registers.
2532 if (AArch64::DDDDRegClass.contains(DestReg) &&
2533 AArch64::DDDDRegClass.contains(SrcReg)) {
2534 static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
2535 AArch64::dsub2, AArch64::dsub3};
2536 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
2537 Indices);
2538 return;
2539 }
2540
2541 // Copy a DDD register triple by copying the individual sub-registers.
2542 if (AArch64::DDDRegClass.contains(DestReg) &&
2543 AArch64::DDDRegClass.contains(SrcReg)) {
2544 static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
2545 AArch64::dsub2};
2546 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
2547 Indices);
2548 return;
2549 }
2550
2551 // Copy a DD register pair by copying the individual sub-registers.
2552 if (AArch64::DDRegClass.contains(DestReg) &&
2553 AArch64::DDRegClass.contains(SrcReg)) {
2554 static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1};
2555 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
2556 Indices);
2557 return;
2558 }
2559
2560 // Copy a QQQQ register quad by copying the individual sub-registers.
2561 if (AArch64::QQQQRegClass.contains(DestReg) &&
2562 AArch64::QQQQRegClass.contains(SrcReg)) {
2563 static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
2564 AArch64::qsub2, AArch64::qsub3};
2565 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
2566 Indices);
2567 return;
2568 }
2569
2570 // Copy a QQQ register triple by copying the individual sub-registers.
2571 if (AArch64::QQQRegClass.contains(DestReg) &&
2572 AArch64::QQQRegClass.contains(SrcReg)) {
2573 static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
2574 AArch64::qsub2};
2575 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
2576 Indices);
2577 return;
2578 }
2579
2580 // Copy a QQ register pair by copying the individual sub-registers.
2581 if (AArch64::QQRegClass.contains(DestReg) &&
2582 AArch64::QQRegClass.contains(SrcReg)) {
2583 static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1};
2584 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
2585 Indices);
2586 return;
2587 }
2588
2589 if (AArch64::FPR128RegClass.contains(DestReg) &&
2590 AArch64::FPR128RegClass.contains(SrcReg)) {
2591 if (Subtarget.hasNEON()) {
2592 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
2593 .addReg(SrcReg)
2594 .addReg(SrcReg, getKillRegState(KillSrc));
2595 } else {
2596 BuildMI(MBB, I, DL, get(AArch64::STRQpre))
2597 .addReg(AArch64::SP, RegState::Define)
2598 .addReg(SrcReg, getKillRegState(KillSrc))
2599 .addReg(AArch64::SP)
2600 .addImm(-16);
2601 BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
2602 .addReg(AArch64::SP, RegState::Define)
2603 .addReg(DestReg, RegState::Define)
2604 .addReg(AArch64::SP)
2605 .addImm(16);
2606 }
2607 return;
2608 }
2609
2610 if (AArch64::FPR64RegClass.contains(DestReg) &&
2611 AArch64::FPR64RegClass.contains(SrcReg)) {
2612 if (Subtarget.hasNEON()) {
2613 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::dsub,
2614 &AArch64::FPR128RegClass);
2615 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::dsub,
2616 &AArch64::FPR128RegClass);
2617 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
2618 .addReg(SrcReg)
2619 .addReg(SrcReg, getKillRegState(KillSrc));
2620 } else {
2621 BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg)
2622 .addReg(SrcReg, getKillRegState(KillSrc));
2623 }
2624 return;
2625 }
2626
2627 if (AArch64::FPR32RegClass.contains(DestReg) &&
2628 AArch64::FPR32RegClass.contains(SrcReg)) {
2629 if (Subtarget.hasNEON()) {
2630 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::ssub,
2631 &AArch64::FPR128RegClass);
2632 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::ssub,
2633 &AArch64::FPR128RegClass);
2634 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
2635 .addReg(SrcReg)
2636 .addReg(SrcReg, getKillRegState(KillSrc));
2637 } else {
2638 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
2639 .addReg(SrcReg, getKillRegState(KillSrc));
2640 }
2641 return;
2642 }
2643
2644 if (AArch64::FPR16RegClass.contains(DestReg) &&
2645 AArch64::FPR16RegClass.contains(SrcReg)) {
2646 if (Subtarget.hasNEON()) {
2647 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
2648 &AArch64::FPR128RegClass);
2649 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
2650 &AArch64::FPR128RegClass);
2651 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
2652 .addReg(SrcReg)
2653 .addReg(SrcReg, getKillRegState(KillSrc));
2654 } else {
2655 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
2656 &AArch64::FPR32RegClass);
2657 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
2658 &AArch64::FPR32RegClass);
2659 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
2660 .addReg(SrcReg, getKillRegState(KillSrc));
2661 }
2662 return;
2663 }
2664
2665 if (AArch64::FPR8RegClass.contains(DestReg) &&
2666 AArch64::FPR8RegClass.contains(SrcReg)) {
2667 if (Subtarget.hasNEON()) {
2668 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
2669 &AArch64::FPR128RegClass);
2670 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
2671 &AArch64::FPR128RegClass);
2672 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
2673 .addReg(SrcReg)
2674 .addReg(SrcReg, getKillRegState(KillSrc));
2675 } else {
2676 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
2677 &AArch64::FPR32RegClass);
2678 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
2679 &AArch64::FPR32RegClass);
2680 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
2681 .addReg(SrcReg, getKillRegState(KillSrc));
2682 }
2683 return;
2684 }
2685
2686 // Copies between GPR64 and FPR64.
2687 if (AArch64::FPR64RegClass.contains(DestReg) &&
2688 AArch64::GPR64RegClass.contains(SrcReg)) {
2689 BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg)
2690 .addReg(SrcReg, getKillRegState(KillSrc));
2691 return;
2692 }
2693 if (AArch64::GPR64RegClass.contains(DestReg) &&
2694 AArch64::FPR64RegClass.contains(SrcReg)) {
2695 BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg)
2696 .addReg(SrcReg, getKillRegState(KillSrc));
2697 return;
2698 }
2699 // Copies between GPR32 and FPR32.
2700 if (AArch64::FPR32RegClass.contains(DestReg) &&
2701 AArch64::GPR32RegClass.contains(SrcReg)) {
2702 BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg)
2703 .addReg(SrcReg, getKillRegState(KillSrc));
2704 return;
2705 }
2706 if (AArch64::GPR32RegClass.contains(DestReg) &&
2707 AArch64::FPR32RegClass.contains(SrcReg)) {
2708 BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg)
2709 .addReg(SrcReg, getKillRegState(KillSrc));
2710 return;
2711 }
2712
2713 if (DestReg == AArch64::NZCV) {
2714 assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
2715 BuildMI(MBB, I, DL, get(AArch64::MSR))
2716 .addImm(AArch64SysReg::NZCV)
2717 .addReg(SrcReg, getKillRegState(KillSrc))
2718 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
2719 return;
2720 }
2721
2722 if (SrcReg == AArch64::NZCV) {
2723 assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
2724 BuildMI(MBB, I, DL, get(AArch64::MRS), DestReg)
2725 .addImm(AArch64SysReg::NZCV)
2726 .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
2727 return;
2728 }
2729
2730 llvm_unreachable("unimplemented reg-to-reg copy");
2731 }
2732
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const2733 void AArch64InstrInfo::storeRegToStackSlot(
2734 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
2735 bool isKill, int FI, const TargetRegisterClass *RC,
2736 const TargetRegisterInfo *TRI) const {
2737 DebugLoc DL;
2738 if (MBBI != MBB.end())
2739 DL = MBBI->getDebugLoc();
2740 MachineFunction &MF = *MBB.getParent();
2741 MachineFrameInfo &MFI = MF.getFrameInfo();
2742 unsigned Align = MFI.getObjectAlignment(FI);
2743
2744 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
2745 MachineMemOperand *MMO = MF.getMachineMemOperand(
2746 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align);
2747 unsigned Opc = 0;
2748 bool Offset = true;
2749 switch (TRI->getSpillSize(*RC)) {
2750 case 1:
2751 if (AArch64::FPR8RegClass.hasSubClassEq(RC))
2752 Opc = AArch64::STRBui;
2753 break;
2754 case 2:
2755 if (AArch64::FPR16RegClass.hasSubClassEq(RC))
2756 Opc = AArch64::STRHui;
2757 break;
2758 case 4:
2759 if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
2760 Opc = AArch64::STRWui;
2761 if (TargetRegisterInfo::isVirtualRegister(SrcReg))
2762 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
2763 else
2764 assert(SrcReg != AArch64::WSP);
2765 } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
2766 Opc = AArch64::STRSui;
2767 break;
2768 case 8:
2769 if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
2770 Opc = AArch64::STRXui;
2771 if (TargetRegisterInfo::isVirtualRegister(SrcReg))
2772 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
2773 else
2774 assert(SrcReg != AArch64::SP);
2775 } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
2776 Opc = AArch64::STRDui;
2777 break;
2778 case 16:
2779 if (AArch64::FPR128RegClass.hasSubClassEq(RC))
2780 Opc = AArch64::STRQui;
2781 else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
2782 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
2783 Opc = AArch64::ST1Twov1d;
2784 Offset = false;
2785 } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) {
2786 BuildMI(MBB, MBBI, DL, get(AArch64::STPXi))
2787 .addReg(TRI->getSubReg(SrcReg, AArch64::sube64),
2788 getKillRegState(isKill))
2789 .addReg(TRI->getSubReg(SrcReg, AArch64::subo64),
2790 getKillRegState(isKill))
2791 .addFrameIndex(FI)
2792 .addImm(0)
2793 .addMemOperand(MMO);
2794 return;
2795 }
2796 break;
2797 case 24:
2798 if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
2799 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
2800 Opc = AArch64::ST1Threev1d;
2801 Offset = false;
2802 }
2803 break;
2804 case 32:
2805 if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
2806 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
2807 Opc = AArch64::ST1Fourv1d;
2808 Offset = false;
2809 } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
2810 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
2811 Opc = AArch64::ST1Twov2d;
2812 Offset = false;
2813 }
2814 break;
2815 case 48:
2816 if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
2817 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
2818 Opc = AArch64::ST1Threev2d;
2819 Offset = false;
2820 }
2821 break;
2822 case 64:
2823 if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
2824 assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
2825 Opc = AArch64::ST1Fourv2d;
2826 Offset = false;
2827 }
2828 break;
2829 }
2830 assert(Opc && "Unknown register class");
2831
2832 const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DL, get(Opc))
2833 .addReg(SrcReg, getKillRegState(isKill))
2834 .addFrameIndex(FI);
2835
2836 if (Offset)
2837 MI.addImm(0);
2838 MI.addMemOperand(MMO);
2839 }
2840
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const2841 void AArch64InstrInfo::loadRegFromStackSlot(
2842 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
2843 int FI, const TargetRegisterClass *RC,
2844 const TargetRegisterInfo *TRI) const {
2845 DebugLoc DL;
2846 if (MBBI != MBB.end())
2847 DL = MBBI->getDebugLoc();
2848 MachineFunction &MF = *MBB.getParent();
2849 MachineFrameInfo &MFI = MF.getFrameInfo();
2850 unsigned Align = MFI.getObjectAlignment(FI);
2851 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
2852 MachineMemOperand *MMO = MF.getMachineMemOperand(
2853 PtrInfo, MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align);
2854
2855 unsigned Opc = 0;
2856 bool Offset = true;
2857 switch (TRI->getSpillSize(*RC)) {
2858 case 1:
2859 if (AArch64::FPR8RegClass.hasSubClassEq(RC))
2860 Opc = AArch64::LDRBui;
2861 break;
2862 case 2:
2863 if (AArch64::FPR16RegClass.hasSubClassEq(RC))
2864 Opc = AArch64::LDRHui;
2865 break;
2866 case 4:
2867 if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
2868 Opc = AArch64::LDRWui;
2869 if (TargetRegisterInfo::isVirtualRegister(DestReg))
2870 MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass);
2871 else
2872 assert(DestReg != AArch64::WSP);
2873 } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
2874 Opc = AArch64::LDRSui;
2875 break;
2876 case 8:
2877 if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
2878 Opc = AArch64::LDRXui;
2879 if (TargetRegisterInfo::isVirtualRegister(DestReg))
2880 MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass);
2881 else
2882 assert(DestReg != AArch64::SP);
2883 } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
2884 Opc = AArch64::LDRDui;
2885 break;
2886 case 16:
2887 if (AArch64::FPR128RegClass.hasSubClassEq(RC))
2888 Opc = AArch64::LDRQui;
2889 else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
2890 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
2891 Opc = AArch64::LD1Twov1d;
2892 Offset = false;
2893 } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) {
2894 BuildMI(MBB, MBBI, DL, get(AArch64::LDPXi))
2895 .addReg(TRI->getSubReg(DestReg, AArch64::sube64),
2896 getDefRegState(true))
2897 .addReg(TRI->getSubReg(DestReg, AArch64::subo64),
2898 getDefRegState(true))
2899 .addFrameIndex(FI)
2900 .addImm(0)
2901 .addMemOperand(MMO);
2902 return;
2903 }
2904 break;
2905 case 24:
2906 if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
2907 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
2908 Opc = AArch64::LD1Threev1d;
2909 Offset = false;
2910 }
2911 break;
2912 case 32:
2913 if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
2914 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
2915 Opc = AArch64::LD1Fourv1d;
2916 Offset = false;
2917 } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
2918 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
2919 Opc = AArch64::LD1Twov2d;
2920 Offset = false;
2921 }
2922 break;
2923 case 48:
2924 if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
2925 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
2926 Opc = AArch64::LD1Threev2d;
2927 Offset = false;
2928 }
2929 break;
2930 case 64:
2931 if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
2932 assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
2933 Opc = AArch64::LD1Fourv2d;
2934 Offset = false;
2935 }
2936 break;
2937 }
2938 assert(Opc && "Unknown register class");
2939
2940 const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DL, get(Opc))
2941 .addReg(DestReg, getDefRegState(true))
2942 .addFrameIndex(FI);
2943 if (Offset)
2944 MI.addImm(0);
2945 MI.addMemOperand(MMO);
2946 }
2947
emitFrameOffset(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,int Offset,const TargetInstrInfo * TII,MachineInstr::MIFlag Flag,bool SetNZCV)2948 void llvm::emitFrameOffset(MachineBasicBlock &MBB,
2949 MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
2950 unsigned DestReg, unsigned SrcReg, int Offset,
2951 const TargetInstrInfo *TII,
2952 MachineInstr::MIFlag Flag, bool SetNZCV) {
2953 if (DestReg == SrcReg && Offset == 0)
2954 return;
2955
2956 assert((DestReg != AArch64::SP || Offset % 16 == 0) &&
2957 "SP increment/decrement not 16-byte aligned");
2958
2959 bool isSub = Offset < 0;
2960 if (isSub)
2961 Offset = -Offset;
2962
2963 // FIXME: If the offset won't fit in 24-bits, compute the offset into a
2964 // scratch register. If DestReg is a virtual register, use it as the
2965 // scratch register; otherwise, create a new virtual register (to be
2966 // replaced by the scavenger at the end of PEI). That case can be optimized
2967 // slightly if DestReg is SP which is always 16-byte aligned, so the scratch
2968 // register can be loaded with offset%8 and the add/sub can use an extending
2969 // instruction with LSL#3.
2970 // Currently the function handles any offsets but generates a poor sequence
2971 // of code.
2972 // assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
2973
2974 unsigned Opc;
2975 if (SetNZCV)
2976 Opc = isSub ? AArch64::SUBSXri : AArch64::ADDSXri;
2977 else
2978 Opc = isSub ? AArch64::SUBXri : AArch64::ADDXri;
2979 const unsigned MaxEncoding = 0xfff;
2980 const unsigned ShiftSize = 12;
2981 const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
2982 while (((unsigned)Offset) >= (1 << ShiftSize)) {
2983 unsigned ThisVal;
2984 if (((unsigned)Offset) > MaxEncodableValue) {
2985 ThisVal = MaxEncodableValue;
2986 } else {
2987 ThisVal = Offset & MaxEncodableValue;
2988 }
2989 assert((ThisVal >> ShiftSize) <= MaxEncoding &&
2990 "Encoding cannot handle value that big");
2991 BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
2992 .addReg(SrcReg)
2993 .addImm(ThisVal >> ShiftSize)
2994 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftSize))
2995 .setMIFlag(Flag);
2996
2997 SrcReg = DestReg;
2998 Offset -= ThisVal;
2999 if (Offset == 0)
3000 return;
3001 }
3002 BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
3003 .addReg(SrcReg)
3004 .addImm(Offset)
3005 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
3006 .setMIFlag(Flag);
3007 }
3008
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,int FrameIndex,LiveIntervals * LIS) const3009 MachineInstr *AArch64InstrInfo::foldMemoryOperandImpl(
3010 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
3011 MachineBasicBlock::iterator InsertPt, int FrameIndex,
3012 LiveIntervals *LIS) const {
3013 // This is a bit of a hack. Consider this instruction:
3014 //
3015 // %0 = COPY %sp; GPR64all:%0
3016 //
3017 // We explicitly chose GPR64all for the virtual register so such a copy might
3018 // be eliminated by RegisterCoalescer. However, that may not be possible, and
3019 // %0 may even spill. We can't spill %sp, and since it is in the GPR64all
3020 // register class, TargetInstrInfo::foldMemoryOperand() is going to try.
3021 //
3022 // To prevent that, we are going to constrain the %0 register class here.
3023 //
3024 // <rdar://problem/11522048>
3025 //
3026 if (MI.isFullCopy()) {
3027 unsigned DstReg = MI.getOperand(0).getReg();
3028 unsigned SrcReg = MI.getOperand(1).getReg();
3029 if (SrcReg == AArch64::SP &&
3030 TargetRegisterInfo::isVirtualRegister(DstReg)) {
3031 MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass);
3032 return nullptr;
3033 }
3034 if (DstReg == AArch64::SP &&
3035 TargetRegisterInfo::isVirtualRegister(SrcReg)) {
3036 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
3037 return nullptr;
3038 }
3039 }
3040
3041 // Handle the case where a copy is being spilled or filled but the source
3042 // and destination register class don't match. For example:
3043 //
3044 // %0 = COPY %xzr; GPR64common:%0
3045 //
3046 // In this case we can still safely fold away the COPY and generate the
3047 // following spill code:
3048 //
3049 // STRXui %xzr, %stack.0
3050 //
3051 // This also eliminates spilled cross register class COPYs (e.g. between x and
3052 // d regs) of the same size. For example:
3053 //
3054 // %0 = COPY %1; GPR64:%0, FPR64:%1
3055 //
3056 // will be filled as
3057 //
3058 // LDRDui %0, fi<#0>
3059 //
3060 // instead of
3061 //
3062 // LDRXui %Temp, fi<#0>
3063 // %0 = FMOV %Temp
3064 //
3065 if (MI.isCopy() && Ops.size() == 1 &&
3066 // Make sure we're only folding the explicit COPY defs/uses.
3067 (Ops[0] == 0 || Ops[0] == 1)) {
3068 bool IsSpill = Ops[0] == 0;
3069 bool IsFill = !IsSpill;
3070 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3071 const MachineRegisterInfo &MRI = MF.getRegInfo();
3072 MachineBasicBlock &MBB = *MI.getParent();
3073 const MachineOperand &DstMO = MI.getOperand(0);
3074 const MachineOperand &SrcMO = MI.getOperand(1);
3075 unsigned DstReg = DstMO.getReg();
3076 unsigned SrcReg = SrcMO.getReg();
3077 // This is slightly expensive to compute for physical regs since
3078 // getMinimalPhysRegClass is slow.
3079 auto getRegClass = [&](unsigned Reg) {
3080 return TargetRegisterInfo::isVirtualRegister(Reg)
3081 ? MRI.getRegClass(Reg)
3082 : TRI.getMinimalPhysRegClass(Reg);
3083 };
3084
3085 if (DstMO.getSubReg() == 0 && SrcMO.getSubReg() == 0) {
3086 assert(TRI.getRegSizeInBits(*getRegClass(DstReg)) ==
3087 TRI.getRegSizeInBits(*getRegClass(SrcReg)) &&
3088 "Mismatched register size in non subreg COPY");
3089 if (IsSpill)
3090 storeRegToStackSlot(MBB, InsertPt, SrcReg, SrcMO.isKill(), FrameIndex,
3091 getRegClass(SrcReg), &TRI);
3092 else
3093 loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex,
3094 getRegClass(DstReg), &TRI);
3095 return &*--InsertPt;
3096 }
3097
3098 // Handle cases like spilling def of:
3099 //
3100 // %0:sub_32<def,read-undef> = COPY %wzr; GPR64common:%0
3101 //
3102 // where the physical register source can be widened and stored to the full
3103 // virtual reg destination stack slot, in this case producing:
3104 //
3105 // STRXui %xzr, %stack.0
3106 //
3107 if (IsSpill && DstMO.isUndef() &&
3108 TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
3109 assert(SrcMO.getSubReg() == 0 &&
3110 "Unexpected subreg on physical register");
3111 const TargetRegisterClass *SpillRC;
3112 unsigned SpillSubreg;
3113 switch (DstMO.getSubReg()) {
3114 default:
3115 SpillRC = nullptr;
3116 break;
3117 case AArch64::sub_32:
3118 case AArch64::ssub:
3119 if (AArch64::GPR32RegClass.contains(SrcReg)) {
3120 SpillRC = &AArch64::GPR64RegClass;
3121 SpillSubreg = AArch64::sub_32;
3122 } else if (AArch64::FPR32RegClass.contains(SrcReg)) {
3123 SpillRC = &AArch64::FPR64RegClass;
3124 SpillSubreg = AArch64::ssub;
3125 } else
3126 SpillRC = nullptr;
3127 break;
3128 case AArch64::dsub:
3129 if (AArch64::FPR64RegClass.contains(SrcReg)) {
3130 SpillRC = &AArch64::FPR128RegClass;
3131 SpillSubreg = AArch64::dsub;
3132 } else
3133 SpillRC = nullptr;
3134 break;
3135 }
3136
3137 if (SpillRC)
3138 if (unsigned WidenedSrcReg =
3139 TRI.getMatchingSuperReg(SrcReg, SpillSubreg, SpillRC)) {
3140 storeRegToStackSlot(MBB, InsertPt, WidenedSrcReg, SrcMO.isKill(),
3141 FrameIndex, SpillRC, &TRI);
3142 return &*--InsertPt;
3143 }
3144 }
3145
3146 // Handle cases like filling use of:
3147 //
3148 // %0:sub_32<def,read-undef> = COPY %1; GPR64:%0, GPR32:%1
3149 //
3150 // where we can load the full virtual reg source stack slot, into the subreg
3151 // destination, in this case producing:
3152 //
3153 // LDRWui %0:sub_32<def,read-undef>, %stack.0
3154 //
3155 if (IsFill && SrcMO.getSubReg() == 0 && DstMO.isUndef()) {
3156 const TargetRegisterClass *FillRC;
3157 switch (DstMO.getSubReg()) {
3158 default:
3159 FillRC = nullptr;
3160 break;
3161 case AArch64::sub_32:
3162 FillRC = &AArch64::GPR32RegClass;
3163 break;
3164 case AArch64::ssub:
3165 FillRC = &AArch64::FPR32RegClass;
3166 break;
3167 case AArch64::dsub:
3168 FillRC = &AArch64::FPR64RegClass;
3169 break;
3170 }
3171
3172 if (FillRC) {
3173 assert(TRI.getRegSizeInBits(*getRegClass(SrcReg)) ==
3174 TRI.getRegSizeInBits(*FillRC) &&
3175 "Mismatched regclass size on folded subreg COPY");
3176 loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex, FillRC, &TRI);
3177 MachineInstr &LoadMI = *--InsertPt;
3178 MachineOperand &LoadDst = LoadMI.getOperand(0);
3179 assert(LoadDst.getSubReg() == 0 && "unexpected subreg on fill load");
3180 LoadDst.setSubReg(DstMO.getSubReg());
3181 LoadDst.setIsUndef();
3182 return &LoadMI;
3183 }
3184 }
3185 }
3186
3187 // Cannot fold.
3188 return nullptr;
3189 }
3190
isAArch64FrameOffsetLegal(const MachineInstr & MI,int & Offset,bool * OutUseUnscaledOp,unsigned * OutUnscaledOp,int * EmittableOffset)3191 int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI, int &Offset,
3192 bool *OutUseUnscaledOp,
3193 unsigned *OutUnscaledOp,
3194 int *EmittableOffset) {
3195 int Scale = 1;
3196 bool IsSigned = false;
3197 // The ImmIdx should be changed case by case if it is not 2.
3198 unsigned ImmIdx = 2;
3199 unsigned UnscaledOp = 0;
3200 // Set output values in case of early exit.
3201 if (EmittableOffset)
3202 *EmittableOffset = 0;
3203 if (OutUseUnscaledOp)
3204 *OutUseUnscaledOp = false;
3205 if (OutUnscaledOp)
3206 *OutUnscaledOp = 0;
3207 switch (MI.getOpcode()) {
3208 default:
3209 llvm_unreachable("unhandled opcode in rewriteAArch64FrameIndex");
3210 // Vector spills/fills can't take an immediate offset.
3211 case AArch64::LD1Twov2d:
3212 case AArch64::LD1Threev2d:
3213 case AArch64::LD1Fourv2d:
3214 case AArch64::LD1Twov1d:
3215 case AArch64::LD1Threev1d:
3216 case AArch64::LD1Fourv1d:
3217 case AArch64::ST1Twov2d:
3218 case AArch64::ST1Threev2d:
3219 case AArch64::ST1Fourv2d:
3220 case AArch64::ST1Twov1d:
3221 case AArch64::ST1Threev1d:
3222 case AArch64::ST1Fourv1d:
3223 return AArch64FrameOffsetCannotUpdate;
3224 case AArch64::PRFMui:
3225 Scale = 8;
3226 UnscaledOp = AArch64::PRFUMi;
3227 break;
3228 case AArch64::LDRXui:
3229 Scale = 8;
3230 UnscaledOp = AArch64::LDURXi;
3231 break;
3232 case AArch64::LDRWui:
3233 Scale = 4;
3234 UnscaledOp = AArch64::LDURWi;
3235 break;
3236 case AArch64::LDRBui:
3237 Scale = 1;
3238 UnscaledOp = AArch64::LDURBi;
3239 break;
3240 case AArch64::LDRHui:
3241 Scale = 2;
3242 UnscaledOp = AArch64::LDURHi;
3243 break;
3244 case AArch64::LDRSui:
3245 Scale = 4;
3246 UnscaledOp = AArch64::LDURSi;
3247 break;
3248 case AArch64::LDRDui:
3249 Scale = 8;
3250 UnscaledOp = AArch64::LDURDi;
3251 break;
3252 case AArch64::LDRQui:
3253 Scale = 16;
3254 UnscaledOp = AArch64::LDURQi;
3255 break;
3256 case AArch64::LDRBBui:
3257 Scale = 1;
3258 UnscaledOp = AArch64::LDURBBi;
3259 break;
3260 case AArch64::LDRHHui:
3261 Scale = 2;
3262 UnscaledOp = AArch64::LDURHHi;
3263 break;
3264 case AArch64::LDRSBXui:
3265 Scale = 1;
3266 UnscaledOp = AArch64::LDURSBXi;
3267 break;
3268 case AArch64::LDRSBWui:
3269 Scale = 1;
3270 UnscaledOp = AArch64::LDURSBWi;
3271 break;
3272 case AArch64::LDRSHXui:
3273 Scale = 2;
3274 UnscaledOp = AArch64::LDURSHXi;
3275 break;
3276 case AArch64::LDRSHWui:
3277 Scale = 2;
3278 UnscaledOp = AArch64::LDURSHWi;
3279 break;
3280 case AArch64::LDRSWui:
3281 Scale = 4;
3282 UnscaledOp = AArch64::LDURSWi;
3283 break;
3284
3285 case AArch64::STRXui:
3286 Scale = 8;
3287 UnscaledOp = AArch64::STURXi;
3288 break;
3289 case AArch64::STRWui:
3290 Scale = 4;
3291 UnscaledOp = AArch64::STURWi;
3292 break;
3293 case AArch64::STRBui:
3294 Scale = 1;
3295 UnscaledOp = AArch64::STURBi;
3296 break;
3297 case AArch64::STRHui:
3298 Scale = 2;
3299 UnscaledOp = AArch64::STURHi;
3300 break;
3301 case AArch64::STRSui:
3302 Scale = 4;
3303 UnscaledOp = AArch64::STURSi;
3304 break;
3305 case AArch64::STRDui:
3306 Scale = 8;
3307 UnscaledOp = AArch64::STURDi;
3308 break;
3309 case AArch64::STRQui:
3310 Scale = 16;
3311 UnscaledOp = AArch64::STURQi;
3312 break;
3313 case AArch64::STRBBui:
3314 Scale = 1;
3315 UnscaledOp = AArch64::STURBBi;
3316 break;
3317 case AArch64::STRHHui:
3318 Scale = 2;
3319 UnscaledOp = AArch64::STURHHi;
3320 break;
3321
3322 case AArch64::LDPXi:
3323 case AArch64::LDPDi:
3324 case AArch64::STPXi:
3325 case AArch64::STPDi:
3326 case AArch64::LDNPXi:
3327 case AArch64::LDNPDi:
3328 case AArch64::STNPXi:
3329 case AArch64::STNPDi:
3330 ImmIdx = 3;
3331 IsSigned = true;
3332 Scale = 8;
3333 break;
3334 case AArch64::LDPQi:
3335 case AArch64::STPQi:
3336 case AArch64::LDNPQi:
3337 case AArch64::STNPQi:
3338 ImmIdx = 3;
3339 IsSigned = true;
3340 Scale = 16;
3341 break;
3342 case AArch64::LDPWi:
3343 case AArch64::LDPSi:
3344 case AArch64::STPWi:
3345 case AArch64::STPSi:
3346 case AArch64::LDNPWi:
3347 case AArch64::LDNPSi:
3348 case AArch64::STNPWi:
3349 case AArch64::STNPSi:
3350 ImmIdx = 3;
3351 IsSigned = true;
3352 Scale = 4;
3353 break;
3354
3355 case AArch64::LDURXi:
3356 case AArch64::LDURWi:
3357 case AArch64::LDURBi:
3358 case AArch64::LDURHi:
3359 case AArch64::LDURSi:
3360 case AArch64::LDURDi:
3361 case AArch64::LDURQi:
3362 case AArch64::LDURHHi:
3363 case AArch64::LDURBBi:
3364 case AArch64::LDURSBXi:
3365 case AArch64::LDURSBWi:
3366 case AArch64::LDURSHXi:
3367 case AArch64::LDURSHWi:
3368 case AArch64::LDURSWi:
3369 case AArch64::STURXi:
3370 case AArch64::STURWi:
3371 case AArch64::STURBi:
3372 case AArch64::STURHi:
3373 case AArch64::STURSi:
3374 case AArch64::STURDi:
3375 case AArch64::STURQi:
3376 case AArch64::STURBBi:
3377 case AArch64::STURHHi:
3378 Scale = 1;
3379 break;
3380 }
3381
3382 Offset += MI.getOperand(ImmIdx).getImm() * Scale;
3383
3384 bool useUnscaledOp = false;
3385 // If the offset doesn't match the scale, we rewrite the instruction to
3386 // use the unscaled instruction instead. Likewise, if we have a negative
3387 // offset (and have an unscaled op to use).
3388 if ((Offset & (Scale - 1)) != 0 || (Offset < 0 && UnscaledOp != 0))
3389 useUnscaledOp = true;
3390
3391 // Use an unscaled addressing mode if the instruction has a negative offset
3392 // (or if the instruction is already using an unscaled addressing mode).
3393 unsigned MaskBits;
3394 if (IsSigned) {
3395 // ldp/stp instructions.
3396 MaskBits = 7;
3397 Offset /= Scale;
3398 } else if (UnscaledOp == 0 || useUnscaledOp) {
3399 MaskBits = 9;
3400 IsSigned = true;
3401 Scale = 1;
3402 } else {
3403 MaskBits = 12;
3404 IsSigned = false;
3405 Offset /= Scale;
3406 }
3407
3408 // Attempt to fold address computation.
3409 int MaxOff = (1 << (MaskBits - IsSigned)) - 1;
3410 int MinOff = (IsSigned ? (-MaxOff - 1) : 0);
3411 if (Offset >= MinOff && Offset <= MaxOff) {
3412 if (EmittableOffset)
3413 *EmittableOffset = Offset;
3414 Offset = 0;
3415 } else {
3416 int NewOff = Offset < 0 ? MinOff : MaxOff;
3417 if (EmittableOffset)
3418 *EmittableOffset = NewOff;
3419 Offset = (Offset - NewOff) * Scale;
3420 }
3421 if (OutUseUnscaledOp)
3422 *OutUseUnscaledOp = useUnscaledOp;
3423 if (OutUnscaledOp)
3424 *OutUnscaledOp = UnscaledOp;
3425 return AArch64FrameOffsetCanUpdate |
3426 (Offset == 0 ? AArch64FrameOffsetIsLegal : 0);
3427 }
3428
rewriteAArch64FrameIndex(MachineInstr & MI,unsigned FrameRegIdx,unsigned FrameReg,int & Offset,const AArch64InstrInfo * TII)3429 bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
3430 unsigned FrameReg, int &Offset,
3431 const AArch64InstrInfo *TII) {
3432 unsigned Opcode = MI.getOpcode();
3433 unsigned ImmIdx = FrameRegIdx + 1;
3434
3435 if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) {
3436 Offset += MI.getOperand(ImmIdx).getImm();
3437 emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
3438 MI.getOperand(0).getReg(), FrameReg, Offset, TII,
3439 MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri));
3440 MI.eraseFromParent();
3441 Offset = 0;
3442 return true;
3443 }
3444
3445 int NewOffset;
3446 unsigned UnscaledOp;
3447 bool UseUnscaledOp;
3448 int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp,
3449 &UnscaledOp, &NewOffset);
3450 if (Status & AArch64FrameOffsetCanUpdate) {
3451 if (Status & AArch64FrameOffsetIsLegal)
3452 // Replace the FrameIndex with FrameReg.
3453 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
3454 if (UseUnscaledOp)
3455 MI.setDesc(TII->get(UnscaledOp));
3456
3457 MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
3458 return Offset == 0;
3459 }
3460
3461 return false;
3462 }
3463
getNoop(MCInst & NopInst) const3464 void AArch64InstrInfo::getNoop(MCInst &NopInst) const {
3465 NopInst.setOpcode(AArch64::HINT);
3466 NopInst.addOperand(MCOperand::createImm(0));
3467 }
3468
3469 // AArch64 supports MachineCombiner.
useMachineCombiner() const3470 bool AArch64InstrInfo::useMachineCombiner() const { return true; }
3471
3472 // True when Opc sets flag
isCombineInstrSettingFlag(unsigned Opc)3473 static bool isCombineInstrSettingFlag(unsigned Opc) {
3474 switch (Opc) {
3475 case AArch64::ADDSWrr:
3476 case AArch64::ADDSWri:
3477 case AArch64::ADDSXrr:
3478 case AArch64::ADDSXri:
3479 case AArch64::SUBSWrr:
3480 case AArch64::SUBSXrr:
3481 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
3482 case AArch64::SUBSWri:
3483 case AArch64::SUBSXri:
3484 return true;
3485 default:
3486 break;
3487 }
3488 return false;
3489 }
3490
3491 // 32b Opcodes that can be combined with a MUL
isCombineInstrCandidate32(unsigned Opc)3492 static bool isCombineInstrCandidate32(unsigned Opc) {
3493 switch (Opc) {
3494 case AArch64::ADDWrr:
3495 case AArch64::ADDWri:
3496 case AArch64::SUBWrr:
3497 case AArch64::ADDSWrr:
3498 case AArch64::ADDSWri:
3499 case AArch64::SUBSWrr:
3500 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
3501 case AArch64::SUBWri:
3502 case AArch64::SUBSWri:
3503 return true;
3504 default:
3505 break;
3506 }
3507 return false;
3508 }
3509
3510 // 64b Opcodes that can be combined with a MUL
isCombineInstrCandidate64(unsigned Opc)3511 static bool isCombineInstrCandidate64(unsigned Opc) {
3512 switch (Opc) {
3513 case AArch64::ADDXrr:
3514 case AArch64::ADDXri:
3515 case AArch64::SUBXrr:
3516 case AArch64::ADDSXrr:
3517 case AArch64::ADDSXri:
3518 case AArch64::SUBSXrr:
3519 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
3520 case AArch64::SUBXri:
3521 case AArch64::SUBSXri:
3522 return true;
3523 default:
3524 break;
3525 }
3526 return false;
3527 }
3528
3529 // FP Opcodes that can be combined with a FMUL
isCombineInstrCandidateFP(const MachineInstr & Inst)3530 static bool isCombineInstrCandidateFP(const MachineInstr &Inst) {
3531 switch (Inst.getOpcode()) {
3532 default:
3533 break;
3534 case AArch64::FADDSrr:
3535 case AArch64::FADDDrr:
3536 case AArch64::FADDv2f32:
3537 case AArch64::FADDv2f64:
3538 case AArch64::FADDv4f32:
3539 case AArch64::FSUBSrr:
3540 case AArch64::FSUBDrr:
3541 case AArch64::FSUBv2f32:
3542 case AArch64::FSUBv2f64:
3543 case AArch64::FSUBv4f32:
3544 TargetOptions Options = Inst.getParent()->getParent()->getTarget().Options;
3545 return (Options.UnsafeFPMath ||
3546 Options.AllowFPOpFusion == FPOpFusion::Fast);
3547 }
3548 return false;
3549 }
3550
3551 // Opcodes that can be combined with a MUL
isCombineInstrCandidate(unsigned Opc)3552 static bool isCombineInstrCandidate(unsigned Opc) {
3553 return (isCombineInstrCandidate32(Opc) || isCombineInstrCandidate64(Opc));
3554 }
3555
3556 //
3557 // Utility routine that checks if \param MO is defined by an
3558 // \param CombineOpc instruction in the basic block \param MBB
canCombine(MachineBasicBlock & MBB,MachineOperand & MO,unsigned CombineOpc,unsigned ZeroReg=0,bool CheckZeroReg=false)3559 static bool canCombine(MachineBasicBlock &MBB, MachineOperand &MO,
3560 unsigned CombineOpc, unsigned ZeroReg = 0,
3561 bool CheckZeroReg = false) {
3562 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3563 MachineInstr *MI = nullptr;
3564
3565 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3566 MI = MRI.getUniqueVRegDef(MO.getReg());
3567 // And it needs to be in the trace (otherwise, it won't have a depth).
3568 if (!MI || MI->getParent() != &MBB || (unsigned)MI->getOpcode() != CombineOpc)
3569 return false;
3570 // Must only used by the user we combine with.
3571 if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
3572 return false;
3573
3574 if (CheckZeroReg) {
3575 assert(MI->getNumOperands() >= 4 && MI->getOperand(0).isReg() &&
3576 MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
3577 MI->getOperand(3).isReg() && "MAdd/MSub must have a least 4 regs");
3578 // The third input reg must be zero.
3579 if (MI->getOperand(3).getReg() != ZeroReg)
3580 return false;
3581 }
3582
3583 return true;
3584 }
3585
3586 //
3587 // Is \param MO defined by an integer multiply and can be combined?
canCombineWithMUL(MachineBasicBlock & MBB,MachineOperand & MO,unsigned MulOpc,unsigned ZeroReg)3588 static bool canCombineWithMUL(MachineBasicBlock &MBB, MachineOperand &MO,
3589 unsigned MulOpc, unsigned ZeroReg) {
3590 return canCombine(MBB, MO, MulOpc, ZeroReg, true);
3591 }
3592
3593 //
3594 // Is \param MO defined by a floating-point multiply and can be combined?
canCombineWithFMUL(MachineBasicBlock & MBB,MachineOperand & MO,unsigned MulOpc)3595 static bool canCombineWithFMUL(MachineBasicBlock &MBB, MachineOperand &MO,
3596 unsigned MulOpc) {
3597 return canCombine(MBB, MO, MulOpc);
3598 }
3599
3600 // TODO: There are many more machine instruction opcodes to match:
3601 // 1. Other data types (integer, vectors)
3602 // 2. Other math / logic operations (xor, or)
3603 // 3. Other forms of the same operation (intrinsics and other variants)
isAssociativeAndCommutative(const MachineInstr & Inst) const3604 bool AArch64InstrInfo::isAssociativeAndCommutative(
3605 const MachineInstr &Inst) const {
3606 switch (Inst.getOpcode()) {
3607 case AArch64::FADDDrr:
3608 case AArch64::FADDSrr:
3609 case AArch64::FADDv2f32:
3610 case AArch64::FADDv2f64:
3611 case AArch64::FADDv4f32:
3612 case AArch64::FMULDrr:
3613 case AArch64::FMULSrr:
3614 case AArch64::FMULX32:
3615 case AArch64::FMULX64:
3616 case AArch64::FMULXv2f32:
3617 case AArch64::FMULXv2f64:
3618 case AArch64::FMULXv4f32:
3619 case AArch64::FMULv2f32:
3620 case AArch64::FMULv2f64:
3621 case AArch64::FMULv4f32:
3622 return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
3623 default:
3624 return false;
3625 }
3626 }
3627
3628 /// Find instructions that can be turned into madd.
getMaddPatterns(MachineInstr & Root,SmallVectorImpl<MachineCombinerPattern> & Patterns)3629 static bool getMaddPatterns(MachineInstr &Root,
3630 SmallVectorImpl<MachineCombinerPattern> &Patterns) {
3631 unsigned Opc = Root.getOpcode();
3632 MachineBasicBlock &MBB = *Root.getParent();
3633 bool Found = false;
3634
3635 if (!isCombineInstrCandidate(Opc))
3636 return false;
3637 if (isCombineInstrSettingFlag(Opc)) {
3638 int Cmp_NZCV = Root.findRegisterDefOperandIdx(AArch64::NZCV, true);
3639 // When NZCV is live bail out.
3640 if (Cmp_NZCV == -1)
3641 return false;
3642 unsigned NewOpc = convertToNonFlagSettingOpc(Root);
3643 // When opcode can't change bail out.
3644 // CHECKME: do we miss any cases for opcode conversion?
3645 if (NewOpc == Opc)
3646 return false;
3647 Opc = NewOpc;
3648 }
3649
3650 switch (Opc) {
3651 default:
3652 break;
3653 case AArch64::ADDWrr:
3654 assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
3655 "ADDWrr does not have register operands");
3656 if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
3657 AArch64::WZR)) {
3658 Patterns.push_back(MachineCombinerPattern::MULADDW_OP1);
3659 Found = true;
3660 }
3661 if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDWrrr,
3662 AArch64::WZR)) {
3663 Patterns.push_back(MachineCombinerPattern::MULADDW_OP2);
3664 Found = true;
3665 }
3666 break;
3667 case AArch64::ADDXrr:
3668 if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
3669 AArch64::XZR)) {
3670 Patterns.push_back(MachineCombinerPattern::MULADDX_OP1);
3671 Found = true;
3672 }
3673 if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDXrrr,
3674 AArch64::XZR)) {
3675 Patterns.push_back(MachineCombinerPattern::MULADDX_OP2);
3676 Found = true;
3677 }
3678 break;
3679 case AArch64::SUBWrr:
3680 if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
3681 AArch64::WZR)) {
3682 Patterns.push_back(MachineCombinerPattern::MULSUBW_OP1);
3683 Found = true;
3684 }
3685 if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDWrrr,
3686 AArch64::WZR)) {
3687 Patterns.push_back(MachineCombinerPattern::MULSUBW_OP2);
3688 Found = true;
3689 }
3690 break;
3691 case AArch64::SUBXrr:
3692 if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
3693 AArch64::XZR)) {
3694 Patterns.push_back(MachineCombinerPattern::MULSUBX_OP1);
3695 Found = true;
3696 }
3697 if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDXrrr,
3698 AArch64::XZR)) {
3699 Patterns.push_back(MachineCombinerPattern::MULSUBX_OP2);
3700 Found = true;
3701 }
3702 break;
3703 case AArch64::ADDWri:
3704 if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
3705 AArch64::WZR)) {
3706 Patterns.push_back(MachineCombinerPattern::MULADDWI_OP1);
3707 Found = true;
3708 }
3709 break;
3710 case AArch64::ADDXri:
3711 if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
3712 AArch64::XZR)) {
3713 Patterns.push_back(MachineCombinerPattern::MULADDXI_OP1);
3714 Found = true;
3715 }
3716 break;
3717 case AArch64::SUBWri:
3718 if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
3719 AArch64::WZR)) {
3720 Patterns.push_back(MachineCombinerPattern::MULSUBWI_OP1);
3721 Found = true;
3722 }
3723 break;
3724 case AArch64::SUBXri:
3725 if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
3726 AArch64::XZR)) {
3727 Patterns.push_back(MachineCombinerPattern::MULSUBXI_OP1);
3728 Found = true;
3729 }
3730 break;
3731 }
3732 return Found;
3733 }
3734 /// Floating-Point Support
3735
3736 /// Find instructions that can be turned into madd.
getFMAPatterns(MachineInstr & Root,SmallVectorImpl<MachineCombinerPattern> & Patterns)3737 static bool getFMAPatterns(MachineInstr &Root,
3738 SmallVectorImpl<MachineCombinerPattern> &Patterns) {
3739
3740 if (!isCombineInstrCandidateFP(Root))
3741 return false;
3742
3743 MachineBasicBlock &MBB = *Root.getParent();
3744 bool Found = false;
3745
3746 switch (Root.getOpcode()) {
3747 default:
3748 assert(false && "Unsupported FP instruction in combiner\n");
3749 break;
3750 case AArch64::FADDSrr:
3751 assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
3752 "FADDWrr does not have register operands");
3753 if (canCombineWithFMUL(MBB, Root.getOperand(1), AArch64::FMULSrr)) {
3754 Patterns.push_back(MachineCombinerPattern::FMULADDS_OP1);
3755 Found = true;
3756 } else if (canCombineWithFMUL(MBB, Root.getOperand(1),
3757 AArch64::FMULv1i32_indexed)) {
3758 Patterns.push_back(MachineCombinerPattern::FMLAv1i32_indexed_OP1);
3759 Found = true;
3760 }
3761 if (canCombineWithFMUL(MBB, Root.getOperand(2), AArch64::FMULSrr)) {
3762 Patterns.push_back(MachineCombinerPattern::FMULADDS_OP2);
3763 Found = true;
3764 } else if (canCombineWithFMUL(MBB, Root.getOperand(2),
3765 AArch64::FMULv1i32_indexed)) {
3766 Patterns.push_back(MachineCombinerPattern::FMLAv1i32_indexed_OP2);
3767 Found = true;
3768 }
3769 break;
3770 case AArch64::FADDDrr:
3771 if (canCombineWithFMUL(MBB, Root.getOperand(1), AArch64::FMULDrr)) {
3772 Patterns.push_back(MachineCombinerPattern::FMULADDD_OP1);
3773 Found = true;
3774 } else if (canCombineWithFMUL(MBB, Root.getOperand(1),
3775 AArch64::FMULv1i64_indexed)) {
3776 Patterns.push_back(MachineCombinerPattern::FMLAv1i64_indexed_OP1);
3777 Found = true;
3778 }
3779 if (canCombineWithFMUL(MBB, Root.getOperand(2), AArch64::FMULDrr)) {
3780 Patterns.push_back(MachineCombinerPattern::FMULADDD_OP2);
3781 Found = true;
3782 } else if (canCombineWithFMUL(MBB, Root.getOperand(2),
3783 AArch64::FMULv1i64_indexed)) {
3784 Patterns.push_back(MachineCombinerPattern::FMLAv1i64_indexed_OP2);
3785 Found = true;
3786 }
3787 break;
3788 case AArch64::FADDv2f32:
3789 if (canCombineWithFMUL(MBB, Root.getOperand(1),
3790 AArch64::FMULv2i32_indexed)) {
3791 Patterns.push_back(MachineCombinerPattern::FMLAv2i32_indexed_OP1);
3792 Found = true;
3793 } else if (canCombineWithFMUL(MBB, Root.getOperand(1),
3794 AArch64::FMULv2f32)) {
3795 Patterns.push_back(MachineCombinerPattern::FMLAv2f32_OP1);
3796 Found = true;
3797 }
3798 if (canCombineWithFMUL(MBB, Root.getOperand(2),
3799 AArch64::FMULv2i32_indexed)) {
3800 Patterns.push_back(MachineCombinerPattern::FMLAv2i32_indexed_OP2);
3801 Found = true;
3802 } else if (canCombineWithFMUL(MBB, Root.getOperand(2),
3803 AArch64::FMULv2f32)) {
3804 Patterns.push_back(MachineCombinerPattern::FMLAv2f32_OP2);
3805 Found = true;
3806 }
3807 break;
3808 case AArch64::FADDv2f64:
3809 if (canCombineWithFMUL(MBB, Root.getOperand(1),
3810 AArch64::FMULv2i64_indexed)) {
3811 Patterns.push_back(MachineCombinerPattern::FMLAv2i64_indexed_OP1);
3812 Found = true;
3813 } else if (canCombineWithFMUL(MBB, Root.getOperand(1),
3814 AArch64::FMULv2f64)) {
3815 Patterns.push_back(MachineCombinerPattern::FMLAv2f64_OP1);
3816 Found = true;
3817 }
3818 if (canCombineWithFMUL(MBB, Root.getOperand(2),
3819 AArch64::FMULv2i64_indexed)) {
3820 Patterns.push_back(MachineCombinerPattern::FMLAv2i64_indexed_OP2);
3821 Found = true;
3822 } else if (canCombineWithFMUL(MBB, Root.getOperand(2),
3823 AArch64::FMULv2f64)) {
3824 Patterns.push_back(MachineCombinerPattern::FMLAv2f64_OP2);
3825 Found = true;
3826 }
3827 break;
3828 case AArch64::FADDv4f32:
3829 if (canCombineWithFMUL(MBB, Root.getOperand(1),
3830 AArch64::FMULv4i32_indexed)) {
3831 Patterns.push_back(MachineCombinerPattern::FMLAv4i32_indexed_OP1);
3832 Found = true;
3833 } else if (canCombineWithFMUL(MBB, Root.getOperand(1),
3834 AArch64::FMULv4f32)) {
3835 Patterns.push_back(MachineCombinerPattern::FMLAv4f32_OP1);
3836 Found = true;
3837 }
3838 if (canCombineWithFMUL(MBB, Root.getOperand(2),
3839 AArch64::FMULv4i32_indexed)) {
3840 Patterns.push_back(MachineCombinerPattern::FMLAv4i32_indexed_OP2);
3841 Found = true;
3842 } else if (canCombineWithFMUL(MBB, Root.getOperand(2),
3843 AArch64::FMULv4f32)) {
3844 Patterns.push_back(MachineCombinerPattern::FMLAv4f32_OP2);
3845 Found = true;
3846 }
3847 break;
3848
3849 case AArch64::FSUBSrr:
3850 if (canCombineWithFMUL(MBB, Root.getOperand(1), AArch64::FMULSrr)) {
3851 Patterns.push_back(MachineCombinerPattern::FMULSUBS_OP1);
3852 Found = true;
3853 }
3854 if (canCombineWithFMUL(MBB, Root.getOperand(2), AArch64::FMULSrr)) {
3855 Patterns.push_back(MachineCombinerPattern::FMULSUBS_OP2);
3856 Found = true;
3857 } else if (canCombineWithFMUL(MBB, Root.getOperand(2),
3858 AArch64::FMULv1i32_indexed)) {
3859 Patterns.push_back(MachineCombinerPattern::FMLSv1i32_indexed_OP2);
3860 Found = true;
3861 }
3862 if (canCombineWithFMUL(MBB, Root.getOperand(1), AArch64::FNMULSrr)) {
3863 Patterns.push_back(MachineCombinerPattern::FNMULSUBS_OP1);
3864 Found = true;
3865 }
3866 break;
3867 case AArch64::FSUBDrr:
3868 if (canCombineWithFMUL(MBB, Root.getOperand(1), AArch64::FMULDrr)) {
3869 Patterns.push_back(MachineCombinerPattern::FMULSUBD_OP1);
3870 Found = true;
3871 }
3872 if (canCombineWithFMUL(MBB, Root.getOperand(2), AArch64::FMULDrr)) {
3873 Patterns.push_back(MachineCombinerPattern::FMULSUBD_OP2);
3874 Found = true;
3875 } else if (canCombineWithFMUL(MBB, Root.getOperand(2),
3876 AArch64::FMULv1i64_indexed)) {
3877 Patterns.push_back(MachineCombinerPattern::FMLSv1i64_indexed_OP2);
3878 Found = true;
3879 }
3880 if (canCombineWithFMUL(MBB, Root.getOperand(1), AArch64::FNMULDrr)) {
3881 Patterns.push_back(MachineCombinerPattern::FNMULSUBD_OP1);
3882 Found = true;
3883 }
3884 break;
3885 case AArch64::FSUBv2f32:
3886 if (canCombineWithFMUL(MBB, Root.getOperand(2),
3887 AArch64::FMULv2i32_indexed)) {
3888 Patterns.push_back(MachineCombinerPattern::FMLSv2i32_indexed_OP2);
3889 Found = true;
3890 } else if (canCombineWithFMUL(MBB, Root.getOperand(2),
3891 AArch64::FMULv2f32)) {
3892 Patterns.push_back(MachineCombinerPattern::FMLSv2f32_OP2);
3893 Found = true;
3894 }
3895 if (canCombineWithFMUL(MBB, Root.getOperand(1),
3896 AArch64::FMULv2i32_indexed)) {
3897 Patterns.push_back(MachineCombinerPattern::FMLSv2i32_indexed_OP1);
3898 Found = true;
3899 } else if (canCombineWithFMUL(MBB, Root.getOperand(1),
3900 AArch64::FMULv2f32)) {
3901 Patterns.push_back(MachineCombinerPattern::FMLSv2f32_OP1);
3902 Found = true;
3903 }
3904 break;
3905 case AArch64::FSUBv2f64:
3906 if (canCombineWithFMUL(MBB, Root.getOperand(2),
3907 AArch64::FMULv2i64_indexed)) {
3908 Patterns.push_back(MachineCombinerPattern::FMLSv2i64_indexed_OP2);
3909 Found = true;
3910 } else if (canCombineWithFMUL(MBB, Root.getOperand(2),
3911 AArch64::FMULv2f64)) {
3912 Patterns.push_back(MachineCombinerPattern::FMLSv2f64_OP2);
3913 Found = true;
3914 }
3915 if (canCombineWithFMUL(MBB, Root.getOperand(1),
3916 AArch64::FMULv2i64_indexed)) {
3917 Patterns.push_back(MachineCombinerPattern::FMLSv2i64_indexed_OP1);
3918 Found = true;
3919 } else if (canCombineWithFMUL(MBB, Root.getOperand(1),
3920 AArch64::FMULv2f64)) {
3921 Patterns.push_back(MachineCombinerPattern::FMLSv2f64_OP1);
3922 Found = true;
3923 }
3924 break;
3925 case AArch64::FSUBv4f32:
3926 if (canCombineWithFMUL(MBB, Root.getOperand(2),
3927 AArch64::FMULv4i32_indexed)) {
3928 Patterns.push_back(MachineCombinerPattern::FMLSv4i32_indexed_OP2);
3929 Found = true;
3930 } else if (canCombineWithFMUL(MBB, Root.getOperand(2),
3931 AArch64::FMULv4f32)) {
3932 Patterns.push_back(MachineCombinerPattern::FMLSv4f32_OP2);
3933 Found = true;
3934 }
3935 if (canCombineWithFMUL(MBB, Root.getOperand(1),
3936 AArch64::FMULv4i32_indexed)) {
3937 Patterns.push_back(MachineCombinerPattern::FMLSv4i32_indexed_OP1);
3938 Found = true;
3939 } else if (canCombineWithFMUL(MBB, Root.getOperand(1),
3940 AArch64::FMULv4f32)) {
3941 Patterns.push_back(MachineCombinerPattern::FMLSv4f32_OP1);
3942 Found = true;
3943 }
3944 break;
3945 }
3946 return Found;
3947 }
3948
3949 /// Return true when a code sequence can improve throughput. It
3950 /// should be called only for instructions in loops.
3951 /// \param Pattern - combiner pattern
isThroughputPattern(MachineCombinerPattern Pattern) const3952 bool AArch64InstrInfo::isThroughputPattern(
3953 MachineCombinerPattern Pattern) const {
3954 switch (Pattern) {
3955 default:
3956 break;
3957 case MachineCombinerPattern::FMULADDS_OP1:
3958 case MachineCombinerPattern::FMULADDS_OP2:
3959 case MachineCombinerPattern::FMULSUBS_OP1:
3960 case MachineCombinerPattern::FMULSUBS_OP2:
3961 case MachineCombinerPattern::FMULADDD_OP1:
3962 case MachineCombinerPattern::FMULADDD_OP2:
3963 case MachineCombinerPattern::FMULSUBD_OP1:
3964 case MachineCombinerPattern::FMULSUBD_OP2:
3965 case MachineCombinerPattern::FNMULSUBS_OP1:
3966 case MachineCombinerPattern::FNMULSUBD_OP1:
3967 case MachineCombinerPattern::FMLAv1i32_indexed_OP1:
3968 case MachineCombinerPattern::FMLAv1i32_indexed_OP2:
3969 case MachineCombinerPattern::FMLAv1i64_indexed_OP1:
3970 case MachineCombinerPattern::FMLAv1i64_indexed_OP2:
3971 case MachineCombinerPattern::FMLAv2f32_OP2:
3972 case MachineCombinerPattern::FMLAv2f32_OP1:
3973 case MachineCombinerPattern::FMLAv2f64_OP1:
3974 case MachineCombinerPattern::FMLAv2f64_OP2:
3975 case MachineCombinerPattern::FMLAv2i32_indexed_OP1:
3976 case MachineCombinerPattern::FMLAv2i32_indexed_OP2:
3977 case MachineCombinerPattern::FMLAv2i64_indexed_OP1:
3978 case MachineCombinerPattern::FMLAv2i64_indexed_OP2:
3979 case MachineCombinerPattern::FMLAv4f32_OP1:
3980 case MachineCombinerPattern::FMLAv4f32_OP2:
3981 case MachineCombinerPattern::FMLAv4i32_indexed_OP1:
3982 case MachineCombinerPattern::FMLAv4i32_indexed_OP2:
3983 case MachineCombinerPattern::FMLSv1i32_indexed_OP2:
3984 case MachineCombinerPattern::FMLSv1i64_indexed_OP2:
3985 case MachineCombinerPattern::FMLSv2i32_indexed_OP2:
3986 case MachineCombinerPattern::FMLSv2i64_indexed_OP2:
3987 case MachineCombinerPattern::FMLSv2f32_OP2:
3988 case MachineCombinerPattern::FMLSv2f64_OP2:
3989 case MachineCombinerPattern::FMLSv4i32_indexed_OP2:
3990 case MachineCombinerPattern::FMLSv4f32_OP2:
3991 return true;
3992 } // end switch (Pattern)
3993 return false;
3994 }
3995 /// Return true when there is potentially a faster code sequence for an
3996 /// instruction chain ending in \p Root. All potential patterns are listed in
3997 /// the \p Pattern vector. Pattern should be sorted in priority order since the
3998 /// pattern evaluator stops checking as soon as it finds a faster sequence.
3999
getMachineCombinerPatterns(MachineInstr & Root,SmallVectorImpl<MachineCombinerPattern> & Patterns) const4000 bool AArch64InstrInfo::getMachineCombinerPatterns(
4001 MachineInstr &Root,
4002 SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
4003 // Integer patterns
4004 if (getMaddPatterns(Root, Patterns))
4005 return true;
4006 // Floating point patterns
4007 if (getFMAPatterns(Root, Patterns))
4008 return true;
4009
4010 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
4011 }
4012
4013 enum class FMAInstKind { Default, Indexed, Accumulator };
4014 /// genFusedMultiply - Generate fused multiply instructions.
4015 /// This function supports both integer and floating point instructions.
4016 /// A typical example:
4017 /// F|MUL I=A,B,0
4018 /// F|ADD R,I,C
4019 /// ==> F|MADD R,A,B,C
4020 /// \param MF Containing MachineFunction
4021 /// \param MRI Register information
4022 /// \param TII Target information
4023 /// \param Root is the F|ADD instruction
4024 /// \param [out] InsInstrs is a vector of machine instructions and will
4025 /// contain the generated madd instruction
4026 /// \param IdxMulOpd is index of operand in Root that is the result of
4027 /// the F|MUL. In the example above IdxMulOpd is 1.
4028 /// \param MaddOpc the opcode fo the f|madd instruction
4029 /// \param RC Register class of operands
4030 /// \param kind of fma instruction (addressing mode) to be generated
4031 /// \param ReplacedAddend is the result register from the instruction
4032 /// replacing the non-combined operand, if any.
4033 static MachineInstr *
genFusedMultiply(MachineFunction & MF,MachineRegisterInfo & MRI,const TargetInstrInfo * TII,MachineInstr & Root,SmallVectorImpl<MachineInstr * > & InsInstrs,unsigned IdxMulOpd,unsigned MaddOpc,const TargetRegisterClass * RC,FMAInstKind kind=FMAInstKind::Default,const unsigned * ReplacedAddend=nullptr)4034 genFusedMultiply(MachineFunction &MF, MachineRegisterInfo &MRI,
4035 const TargetInstrInfo *TII, MachineInstr &Root,
4036 SmallVectorImpl<MachineInstr *> &InsInstrs, unsigned IdxMulOpd,
4037 unsigned MaddOpc, const TargetRegisterClass *RC,
4038 FMAInstKind kind = FMAInstKind::Default,
4039 const unsigned *ReplacedAddend = nullptr) {
4040 assert(IdxMulOpd == 1 || IdxMulOpd == 2);
4041
4042 unsigned IdxOtherOpd = IdxMulOpd == 1 ? 2 : 1;
4043 MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
4044 unsigned ResultReg = Root.getOperand(0).getReg();
4045 unsigned SrcReg0 = MUL->getOperand(1).getReg();
4046 bool Src0IsKill = MUL->getOperand(1).isKill();
4047 unsigned SrcReg1 = MUL->getOperand(2).getReg();
4048 bool Src1IsKill = MUL->getOperand(2).isKill();
4049
4050 unsigned SrcReg2;
4051 bool Src2IsKill;
4052 if (ReplacedAddend) {
4053 // If we just generated a new addend, we must be it's only use.
4054 SrcReg2 = *ReplacedAddend;
4055 Src2IsKill = true;
4056 } else {
4057 SrcReg2 = Root.getOperand(IdxOtherOpd).getReg();
4058 Src2IsKill = Root.getOperand(IdxOtherOpd).isKill();
4059 }
4060
4061 if (TargetRegisterInfo::isVirtualRegister(ResultReg))
4062 MRI.constrainRegClass(ResultReg, RC);
4063 if (TargetRegisterInfo::isVirtualRegister(SrcReg0))
4064 MRI.constrainRegClass(SrcReg0, RC);
4065 if (TargetRegisterInfo::isVirtualRegister(SrcReg1))
4066 MRI.constrainRegClass(SrcReg1, RC);
4067 if (TargetRegisterInfo::isVirtualRegister(SrcReg2))
4068 MRI.constrainRegClass(SrcReg2, RC);
4069
4070 MachineInstrBuilder MIB;
4071 if (kind == FMAInstKind::Default)
4072 MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
4073 .addReg(SrcReg0, getKillRegState(Src0IsKill))
4074 .addReg(SrcReg1, getKillRegState(Src1IsKill))
4075 .addReg(SrcReg2, getKillRegState(Src2IsKill));
4076 else if (kind == FMAInstKind::Indexed)
4077 MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
4078 .addReg(SrcReg2, getKillRegState(Src2IsKill))
4079 .addReg(SrcReg0, getKillRegState(Src0IsKill))
4080 .addReg(SrcReg1, getKillRegState(Src1IsKill))
4081 .addImm(MUL->getOperand(3).getImm());
4082 else if (kind == FMAInstKind::Accumulator)
4083 MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
4084 .addReg(SrcReg2, getKillRegState(Src2IsKill))
4085 .addReg(SrcReg0, getKillRegState(Src0IsKill))
4086 .addReg(SrcReg1, getKillRegState(Src1IsKill));
4087 else
4088 assert(false && "Invalid FMA instruction kind \n");
4089 // Insert the MADD (MADD, FMA, FMS, FMLA, FMSL)
4090 InsInstrs.push_back(MIB);
4091 return MUL;
4092 }
4093
4094 /// genMaddR - Generate madd instruction and combine mul and add using
4095 /// an extra virtual register
4096 /// Example - an ADD intermediate needs to be stored in a register:
4097 /// MUL I=A,B,0
4098 /// ADD R,I,Imm
4099 /// ==> ORR V, ZR, Imm
4100 /// ==> MADD R,A,B,V
4101 /// \param MF Containing MachineFunction
4102 /// \param MRI Register information
4103 /// \param TII Target information
4104 /// \param Root is the ADD instruction
4105 /// \param [out] InsInstrs is a vector of machine instructions and will
4106 /// contain the generated madd instruction
4107 /// \param IdxMulOpd is index of operand in Root that is the result of
4108 /// the MUL. In the example above IdxMulOpd is 1.
4109 /// \param MaddOpc the opcode fo the madd instruction
4110 /// \param VR is a virtual register that holds the value of an ADD operand
4111 /// (V in the example above).
4112 /// \param RC Register class of operands
genMaddR(MachineFunction & MF,MachineRegisterInfo & MRI,const TargetInstrInfo * TII,MachineInstr & Root,SmallVectorImpl<MachineInstr * > & InsInstrs,unsigned IdxMulOpd,unsigned MaddOpc,unsigned VR,const TargetRegisterClass * RC)4113 static MachineInstr *genMaddR(MachineFunction &MF, MachineRegisterInfo &MRI,
4114 const TargetInstrInfo *TII, MachineInstr &Root,
4115 SmallVectorImpl<MachineInstr *> &InsInstrs,
4116 unsigned IdxMulOpd, unsigned MaddOpc, unsigned VR,
4117 const TargetRegisterClass *RC) {
4118 assert(IdxMulOpd == 1 || IdxMulOpd == 2);
4119
4120 MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
4121 unsigned ResultReg = Root.getOperand(0).getReg();
4122 unsigned SrcReg0 = MUL->getOperand(1).getReg();
4123 bool Src0IsKill = MUL->getOperand(1).isKill();
4124 unsigned SrcReg1 = MUL->getOperand(2).getReg();
4125 bool Src1IsKill = MUL->getOperand(2).isKill();
4126
4127 if (TargetRegisterInfo::isVirtualRegister(ResultReg))
4128 MRI.constrainRegClass(ResultReg, RC);
4129 if (TargetRegisterInfo::isVirtualRegister(SrcReg0))
4130 MRI.constrainRegClass(SrcReg0, RC);
4131 if (TargetRegisterInfo::isVirtualRegister(SrcReg1))
4132 MRI.constrainRegClass(SrcReg1, RC);
4133 if (TargetRegisterInfo::isVirtualRegister(VR))
4134 MRI.constrainRegClass(VR, RC);
4135
4136 MachineInstrBuilder MIB =
4137 BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
4138 .addReg(SrcReg0, getKillRegState(Src0IsKill))
4139 .addReg(SrcReg1, getKillRegState(Src1IsKill))
4140 .addReg(VR);
4141 // Insert the MADD
4142 InsInstrs.push_back(MIB);
4143 return MUL;
4144 }
4145
4146 /// When getMachineCombinerPatterns() finds potential patterns,
4147 /// this function generates the instructions that could replace the
4148 /// original code sequence
genAlternativeCodeSequence(MachineInstr & Root,MachineCombinerPattern Pattern,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg) const4149 void AArch64InstrInfo::genAlternativeCodeSequence(
4150 MachineInstr &Root, MachineCombinerPattern Pattern,
4151 SmallVectorImpl<MachineInstr *> &InsInstrs,
4152 SmallVectorImpl<MachineInstr *> &DelInstrs,
4153 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
4154 MachineBasicBlock &MBB = *Root.getParent();
4155 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4156 MachineFunction &MF = *MBB.getParent();
4157 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
4158
4159 MachineInstr *MUL;
4160 const TargetRegisterClass *RC;
4161 unsigned Opc;
4162 switch (Pattern) {
4163 default:
4164 // Reassociate instructions.
4165 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
4166 DelInstrs, InstrIdxForVirtReg);
4167 return;
4168 case MachineCombinerPattern::MULADDW_OP1:
4169 case MachineCombinerPattern::MULADDX_OP1:
4170 // MUL I=A,B,0
4171 // ADD R,I,C
4172 // ==> MADD R,A,B,C
4173 // --- Create(MADD);
4174 if (Pattern == MachineCombinerPattern::MULADDW_OP1) {
4175 Opc = AArch64::MADDWrrr;
4176 RC = &AArch64::GPR32RegClass;
4177 } else {
4178 Opc = AArch64::MADDXrrr;
4179 RC = &AArch64::GPR64RegClass;
4180 }
4181 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4182 break;
4183 case MachineCombinerPattern::MULADDW_OP2:
4184 case MachineCombinerPattern::MULADDX_OP2:
4185 // MUL I=A,B,0
4186 // ADD R,C,I
4187 // ==> MADD R,A,B,C
4188 // --- Create(MADD);
4189 if (Pattern == MachineCombinerPattern::MULADDW_OP2) {
4190 Opc = AArch64::MADDWrrr;
4191 RC = &AArch64::GPR32RegClass;
4192 } else {
4193 Opc = AArch64::MADDXrrr;
4194 RC = &AArch64::GPR64RegClass;
4195 }
4196 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
4197 break;
4198 case MachineCombinerPattern::MULADDWI_OP1:
4199 case MachineCombinerPattern::MULADDXI_OP1: {
4200 // MUL I=A,B,0
4201 // ADD R,I,Imm
4202 // ==> ORR V, ZR, Imm
4203 // ==> MADD R,A,B,V
4204 // --- Create(MADD);
4205 const TargetRegisterClass *OrrRC;
4206 unsigned BitSize, OrrOpc, ZeroReg;
4207 if (Pattern == MachineCombinerPattern::MULADDWI_OP1) {
4208 OrrOpc = AArch64::ORRWri;
4209 OrrRC = &AArch64::GPR32spRegClass;
4210 BitSize = 32;
4211 ZeroReg = AArch64::WZR;
4212 Opc = AArch64::MADDWrrr;
4213 RC = &AArch64::GPR32RegClass;
4214 } else {
4215 OrrOpc = AArch64::ORRXri;
4216 OrrRC = &AArch64::GPR64spRegClass;
4217 BitSize = 64;
4218 ZeroReg = AArch64::XZR;
4219 Opc = AArch64::MADDXrrr;
4220 RC = &AArch64::GPR64RegClass;
4221 }
4222 unsigned NewVR = MRI.createVirtualRegister(OrrRC);
4223 uint64_t Imm = Root.getOperand(2).getImm();
4224
4225 if (Root.getOperand(3).isImm()) {
4226 unsigned Val = Root.getOperand(3).getImm();
4227 Imm = Imm << Val;
4228 }
4229 uint64_t UImm = SignExtend64(Imm, BitSize);
4230 uint64_t Encoding;
4231 if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
4232 MachineInstrBuilder MIB1 =
4233 BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
4234 .addReg(ZeroReg)
4235 .addImm(Encoding);
4236 InsInstrs.push_back(MIB1);
4237 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4238 MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
4239 }
4240 break;
4241 }
4242 case MachineCombinerPattern::MULSUBW_OP1:
4243 case MachineCombinerPattern::MULSUBX_OP1: {
4244 // MUL I=A,B,0
4245 // SUB R,I, C
4246 // ==> SUB V, 0, C
4247 // ==> MADD R,A,B,V // = -C + A*B
4248 // --- Create(MADD);
4249 const TargetRegisterClass *SubRC;
4250 unsigned SubOpc, ZeroReg;
4251 if (Pattern == MachineCombinerPattern::MULSUBW_OP1) {
4252 SubOpc = AArch64::SUBWrr;
4253 SubRC = &AArch64::GPR32spRegClass;
4254 ZeroReg = AArch64::WZR;
4255 Opc = AArch64::MADDWrrr;
4256 RC = &AArch64::GPR32RegClass;
4257 } else {
4258 SubOpc = AArch64::SUBXrr;
4259 SubRC = &AArch64::GPR64spRegClass;
4260 ZeroReg = AArch64::XZR;
4261 Opc = AArch64::MADDXrrr;
4262 RC = &AArch64::GPR64RegClass;
4263 }
4264 unsigned NewVR = MRI.createVirtualRegister(SubRC);
4265 // SUB NewVR, 0, C
4266 MachineInstrBuilder MIB1 =
4267 BuildMI(MF, Root.getDebugLoc(), TII->get(SubOpc), NewVR)
4268 .addReg(ZeroReg)
4269 .add(Root.getOperand(2));
4270 InsInstrs.push_back(MIB1);
4271 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4272 MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
4273 break;
4274 }
4275 case MachineCombinerPattern::MULSUBW_OP2:
4276 case MachineCombinerPattern::MULSUBX_OP2:
4277 // MUL I=A,B,0
4278 // SUB R,C,I
4279 // ==> MSUB R,A,B,C (computes C - A*B)
4280 // --- Create(MSUB);
4281 if (Pattern == MachineCombinerPattern::MULSUBW_OP2) {
4282 Opc = AArch64::MSUBWrrr;
4283 RC = &AArch64::GPR32RegClass;
4284 } else {
4285 Opc = AArch64::MSUBXrrr;
4286 RC = &AArch64::GPR64RegClass;
4287 }
4288 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
4289 break;
4290 case MachineCombinerPattern::MULSUBWI_OP1:
4291 case MachineCombinerPattern::MULSUBXI_OP1: {
4292 // MUL I=A,B,0
4293 // SUB R,I, Imm
4294 // ==> ORR V, ZR, -Imm
4295 // ==> MADD R,A,B,V // = -Imm + A*B
4296 // --- Create(MADD);
4297 const TargetRegisterClass *OrrRC;
4298 unsigned BitSize, OrrOpc, ZeroReg;
4299 if (Pattern == MachineCombinerPattern::MULSUBWI_OP1) {
4300 OrrOpc = AArch64::ORRWri;
4301 OrrRC = &AArch64::GPR32spRegClass;
4302 BitSize = 32;
4303 ZeroReg = AArch64::WZR;
4304 Opc = AArch64::MADDWrrr;
4305 RC = &AArch64::GPR32RegClass;
4306 } else {
4307 OrrOpc = AArch64::ORRXri;
4308 OrrRC = &AArch64::GPR64spRegClass;
4309 BitSize = 64;
4310 ZeroReg = AArch64::XZR;
4311 Opc = AArch64::MADDXrrr;
4312 RC = &AArch64::GPR64RegClass;
4313 }
4314 unsigned NewVR = MRI.createVirtualRegister(OrrRC);
4315 uint64_t Imm = Root.getOperand(2).getImm();
4316 if (Root.getOperand(3).isImm()) {
4317 unsigned Val = Root.getOperand(3).getImm();
4318 Imm = Imm << Val;
4319 }
4320 uint64_t UImm = SignExtend64(-Imm, BitSize);
4321 uint64_t Encoding;
4322 if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
4323 MachineInstrBuilder MIB1 =
4324 BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
4325 .addReg(ZeroReg)
4326 .addImm(Encoding);
4327 InsInstrs.push_back(MIB1);
4328 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4329 MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
4330 }
4331 break;
4332 }
4333 // Floating Point Support
4334 case MachineCombinerPattern::FMULADDS_OP1:
4335 case MachineCombinerPattern::FMULADDD_OP1:
4336 // MUL I=A,B,0
4337 // ADD R,I,C
4338 // ==> MADD R,A,B,C
4339 // --- Create(MADD);
4340 if (Pattern == MachineCombinerPattern::FMULADDS_OP1) {
4341 Opc = AArch64::FMADDSrrr;
4342 RC = &AArch64::FPR32RegClass;
4343 } else {
4344 Opc = AArch64::FMADDDrrr;
4345 RC = &AArch64::FPR64RegClass;
4346 }
4347 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4348 break;
4349 case MachineCombinerPattern::FMULADDS_OP2:
4350 case MachineCombinerPattern::FMULADDD_OP2:
4351 // FMUL I=A,B,0
4352 // FADD R,C,I
4353 // ==> FMADD R,A,B,C
4354 // --- Create(FMADD);
4355 if (Pattern == MachineCombinerPattern::FMULADDS_OP2) {
4356 Opc = AArch64::FMADDSrrr;
4357 RC = &AArch64::FPR32RegClass;
4358 } else {
4359 Opc = AArch64::FMADDDrrr;
4360 RC = &AArch64::FPR64RegClass;
4361 }
4362 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
4363 break;
4364
4365 case MachineCombinerPattern::FMLAv1i32_indexed_OP1:
4366 Opc = AArch64::FMLAv1i32_indexed;
4367 RC = &AArch64::FPR32RegClass;
4368 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4369 FMAInstKind::Indexed);
4370 break;
4371 case MachineCombinerPattern::FMLAv1i32_indexed_OP2:
4372 Opc = AArch64::FMLAv1i32_indexed;
4373 RC = &AArch64::FPR32RegClass;
4374 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4375 FMAInstKind::Indexed);
4376 break;
4377
4378 case MachineCombinerPattern::FMLAv1i64_indexed_OP1:
4379 Opc = AArch64::FMLAv1i64_indexed;
4380 RC = &AArch64::FPR64RegClass;
4381 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4382 FMAInstKind::Indexed);
4383 break;
4384 case MachineCombinerPattern::FMLAv1i64_indexed_OP2:
4385 Opc = AArch64::FMLAv1i64_indexed;
4386 RC = &AArch64::FPR64RegClass;
4387 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4388 FMAInstKind::Indexed);
4389 break;
4390
4391 case MachineCombinerPattern::FMLAv2i32_indexed_OP1:
4392 case MachineCombinerPattern::FMLAv2f32_OP1:
4393 RC = &AArch64::FPR64RegClass;
4394 if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP1) {
4395 Opc = AArch64::FMLAv2i32_indexed;
4396 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4397 FMAInstKind::Indexed);
4398 } else {
4399 Opc = AArch64::FMLAv2f32;
4400 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4401 FMAInstKind::Accumulator);
4402 }
4403 break;
4404 case MachineCombinerPattern::FMLAv2i32_indexed_OP2:
4405 case MachineCombinerPattern::FMLAv2f32_OP2:
4406 RC = &AArch64::FPR64RegClass;
4407 if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP2) {
4408 Opc = AArch64::FMLAv2i32_indexed;
4409 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4410 FMAInstKind::Indexed);
4411 } else {
4412 Opc = AArch64::FMLAv2f32;
4413 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4414 FMAInstKind::Accumulator);
4415 }
4416 break;
4417
4418 case MachineCombinerPattern::FMLAv2i64_indexed_OP1:
4419 case MachineCombinerPattern::FMLAv2f64_OP1:
4420 RC = &AArch64::FPR128RegClass;
4421 if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP1) {
4422 Opc = AArch64::FMLAv2i64_indexed;
4423 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4424 FMAInstKind::Indexed);
4425 } else {
4426 Opc = AArch64::FMLAv2f64;
4427 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4428 FMAInstKind::Accumulator);
4429 }
4430 break;
4431 case MachineCombinerPattern::FMLAv2i64_indexed_OP2:
4432 case MachineCombinerPattern::FMLAv2f64_OP2:
4433 RC = &AArch64::FPR128RegClass;
4434 if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP2) {
4435 Opc = AArch64::FMLAv2i64_indexed;
4436 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4437 FMAInstKind::Indexed);
4438 } else {
4439 Opc = AArch64::FMLAv2f64;
4440 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4441 FMAInstKind::Accumulator);
4442 }
4443 break;
4444
4445 case MachineCombinerPattern::FMLAv4i32_indexed_OP1:
4446 case MachineCombinerPattern::FMLAv4f32_OP1:
4447 RC = &AArch64::FPR128RegClass;
4448 if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP1) {
4449 Opc = AArch64::FMLAv4i32_indexed;
4450 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4451 FMAInstKind::Indexed);
4452 } else {
4453 Opc = AArch64::FMLAv4f32;
4454 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4455 FMAInstKind::Accumulator);
4456 }
4457 break;
4458
4459 case MachineCombinerPattern::FMLAv4i32_indexed_OP2:
4460 case MachineCombinerPattern::FMLAv4f32_OP2:
4461 RC = &AArch64::FPR128RegClass;
4462 if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP2) {
4463 Opc = AArch64::FMLAv4i32_indexed;
4464 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4465 FMAInstKind::Indexed);
4466 } else {
4467 Opc = AArch64::FMLAv4f32;
4468 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4469 FMAInstKind::Accumulator);
4470 }
4471 break;
4472
4473 case MachineCombinerPattern::FMULSUBS_OP1:
4474 case MachineCombinerPattern::FMULSUBD_OP1: {
4475 // FMUL I=A,B,0
4476 // FSUB R,I,C
4477 // ==> FNMSUB R,A,B,C // = -C + A*B
4478 // --- Create(FNMSUB);
4479 if (Pattern == MachineCombinerPattern::FMULSUBS_OP1) {
4480 Opc = AArch64::FNMSUBSrrr;
4481 RC = &AArch64::FPR32RegClass;
4482 } else {
4483 Opc = AArch64::FNMSUBDrrr;
4484 RC = &AArch64::FPR64RegClass;
4485 }
4486 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4487 break;
4488 }
4489
4490 case MachineCombinerPattern::FNMULSUBS_OP1:
4491 case MachineCombinerPattern::FNMULSUBD_OP1: {
4492 // FNMUL I=A,B,0
4493 // FSUB R,I,C
4494 // ==> FNMADD R,A,B,C // = -A*B - C
4495 // --- Create(FNMADD);
4496 if (Pattern == MachineCombinerPattern::FNMULSUBS_OP1) {
4497 Opc = AArch64::FNMADDSrrr;
4498 RC = &AArch64::FPR32RegClass;
4499 } else {
4500 Opc = AArch64::FNMADDDrrr;
4501 RC = &AArch64::FPR64RegClass;
4502 }
4503 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
4504 break;
4505 }
4506
4507 case MachineCombinerPattern::FMULSUBS_OP2:
4508 case MachineCombinerPattern::FMULSUBD_OP2: {
4509 // FMUL I=A,B,0
4510 // FSUB R,C,I
4511 // ==> FMSUB R,A,B,C (computes C - A*B)
4512 // --- Create(FMSUB);
4513 if (Pattern == MachineCombinerPattern::FMULSUBS_OP2) {
4514 Opc = AArch64::FMSUBSrrr;
4515 RC = &AArch64::FPR32RegClass;
4516 } else {
4517 Opc = AArch64::FMSUBDrrr;
4518 RC = &AArch64::FPR64RegClass;
4519 }
4520 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
4521 break;
4522 }
4523
4524 case MachineCombinerPattern::FMLSv1i32_indexed_OP2:
4525 Opc = AArch64::FMLSv1i32_indexed;
4526 RC = &AArch64::FPR32RegClass;
4527 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4528 FMAInstKind::Indexed);
4529 break;
4530
4531 case MachineCombinerPattern::FMLSv1i64_indexed_OP2:
4532 Opc = AArch64::FMLSv1i64_indexed;
4533 RC = &AArch64::FPR64RegClass;
4534 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4535 FMAInstKind::Indexed);
4536 break;
4537
4538 case MachineCombinerPattern::FMLSv2f32_OP2:
4539 case MachineCombinerPattern::FMLSv2i32_indexed_OP2:
4540 RC = &AArch64::FPR64RegClass;
4541 if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP2) {
4542 Opc = AArch64::FMLSv2i32_indexed;
4543 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4544 FMAInstKind::Indexed);
4545 } else {
4546 Opc = AArch64::FMLSv2f32;
4547 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4548 FMAInstKind::Accumulator);
4549 }
4550 break;
4551
4552 case MachineCombinerPattern::FMLSv2f64_OP2:
4553 case MachineCombinerPattern::FMLSv2i64_indexed_OP2:
4554 RC = &AArch64::FPR128RegClass;
4555 if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP2) {
4556 Opc = AArch64::FMLSv2i64_indexed;
4557 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4558 FMAInstKind::Indexed);
4559 } else {
4560 Opc = AArch64::FMLSv2f64;
4561 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4562 FMAInstKind::Accumulator);
4563 }
4564 break;
4565
4566 case MachineCombinerPattern::FMLSv4f32_OP2:
4567 case MachineCombinerPattern::FMLSv4i32_indexed_OP2:
4568 RC = &AArch64::FPR128RegClass;
4569 if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP2) {
4570 Opc = AArch64::FMLSv4i32_indexed;
4571 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4572 FMAInstKind::Indexed);
4573 } else {
4574 Opc = AArch64::FMLSv4f32;
4575 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
4576 FMAInstKind::Accumulator);
4577 }
4578 break;
4579 case MachineCombinerPattern::FMLSv2f32_OP1:
4580 case MachineCombinerPattern::FMLSv2i32_indexed_OP1: {
4581 RC = &AArch64::FPR64RegClass;
4582 unsigned NewVR = MRI.createVirtualRegister(RC);
4583 MachineInstrBuilder MIB1 =
4584 BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv2f32), NewVR)
4585 .add(Root.getOperand(2));
4586 InsInstrs.push_back(MIB1);
4587 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4588 if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP1) {
4589 Opc = AArch64::FMLAv2i32_indexed;
4590 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4591 FMAInstKind::Indexed, &NewVR);
4592 } else {
4593 Opc = AArch64::FMLAv2f32;
4594 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4595 FMAInstKind::Accumulator, &NewVR);
4596 }
4597 break;
4598 }
4599 case MachineCombinerPattern::FMLSv4f32_OP1:
4600 case MachineCombinerPattern::FMLSv4i32_indexed_OP1: {
4601 RC = &AArch64::FPR128RegClass;
4602 unsigned NewVR = MRI.createVirtualRegister(RC);
4603 MachineInstrBuilder MIB1 =
4604 BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv4f32), NewVR)
4605 .add(Root.getOperand(2));
4606 InsInstrs.push_back(MIB1);
4607 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4608 if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP1) {
4609 Opc = AArch64::FMLAv4i32_indexed;
4610 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4611 FMAInstKind::Indexed, &NewVR);
4612 } else {
4613 Opc = AArch64::FMLAv4f32;
4614 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4615 FMAInstKind::Accumulator, &NewVR);
4616 }
4617 break;
4618 }
4619 case MachineCombinerPattern::FMLSv2f64_OP1:
4620 case MachineCombinerPattern::FMLSv2i64_indexed_OP1: {
4621 RC = &AArch64::FPR128RegClass;
4622 unsigned NewVR = MRI.createVirtualRegister(RC);
4623 MachineInstrBuilder MIB1 =
4624 BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv2f64), NewVR)
4625 .add(Root.getOperand(2));
4626 InsInstrs.push_back(MIB1);
4627 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
4628 if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP1) {
4629 Opc = AArch64::FMLAv2i64_indexed;
4630 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4631 FMAInstKind::Indexed, &NewVR);
4632 } else {
4633 Opc = AArch64::FMLAv2f64;
4634 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
4635 FMAInstKind::Accumulator, &NewVR);
4636 }
4637 break;
4638 }
4639 } // end switch (Pattern)
4640 // Record MUL and ADD/SUB for deletion
4641 DelInstrs.push_back(MUL);
4642 DelInstrs.push_back(&Root);
4643 }
4644
4645 /// Replace csincr-branch sequence by simple conditional branch
4646 ///
4647 /// Examples:
4648 /// 1. \code
4649 /// csinc w9, wzr, wzr, <condition code>
4650 /// tbnz w9, #0, 0x44
4651 /// \endcode
4652 /// to
4653 /// \code
4654 /// b.<inverted condition code>
4655 /// \endcode
4656 ///
4657 /// 2. \code
4658 /// csinc w9, wzr, wzr, <condition code>
4659 /// tbz w9, #0, 0x44
4660 /// \endcode
4661 /// to
4662 /// \code
4663 /// b.<condition code>
4664 /// \endcode
4665 ///
4666 /// Replace compare and branch sequence by TBZ/TBNZ instruction when the
4667 /// compare's constant operand is power of 2.
4668 ///
4669 /// Examples:
4670 /// \code
4671 /// and w8, w8, #0x400
4672 /// cbnz w8, L1
4673 /// \endcode
4674 /// to
4675 /// \code
4676 /// tbnz w8, #10, L1
4677 /// \endcode
4678 ///
4679 /// \param MI Conditional Branch
4680 /// \return True when the simple conditional branch is generated
4681 ///
optimizeCondBranch(MachineInstr & MI) const4682 bool AArch64InstrInfo::optimizeCondBranch(MachineInstr &MI) const {
4683 bool IsNegativeBranch = false;
4684 bool IsTestAndBranch = false;
4685 unsigned TargetBBInMI = 0;
4686 switch (MI.getOpcode()) {
4687 default:
4688 llvm_unreachable("Unknown branch instruction?");
4689 case AArch64::Bcc:
4690 return false;
4691 case AArch64::CBZW:
4692 case AArch64::CBZX:
4693 TargetBBInMI = 1;
4694 break;
4695 case AArch64::CBNZW:
4696 case AArch64::CBNZX:
4697 TargetBBInMI = 1;
4698 IsNegativeBranch = true;
4699 break;
4700 case AArch64::TBZW:
4701 case AArch64::TBZX:
4702 TargetBBInMI = 2;
4703 IsTestAndBranch = true;
4704 break;
4705 case AArch64::TBNZW:
4706 case AArch64::TBNZX:
4707 TargetBBInMI = 2;
4708 IsNegativeBranch = true;
4709 IsTestAndBranch = true;
4710 break;
4711 }
4712 // So we increment a zero register and test for bits other
4713 // than bit 0? Conservatively bail out in case the verifier
4714 // missed this case.
4715 if (IsTestAndBranch && MI.getOperand(1).getImm())
4716 return false;
4717
4718 // Find Definition.
4719 assert(MI.getParent() && "Incomplete machine instruciton\n");
4720 MachineBasicBlock *MBB = MI.getParent();
4721 MachineFunction *MF = MBB->getParent();
4722 MachineRegisterInfo *MRI = &MF->getRegInfo();
4723 unsigned VReg = MI.getOperand(0).getReg();
4724 if (!TargetRegisterInfo::isVirtualRegister(VReg))
4725 return false;
4726
4727 MachineInstr *DefMI = MRI->getVRegDef(VReg);
4728
4729 // Look through COPY instructions to find definition.
4730 while (DefMI->isCopy()) {
4731 unsigned CopyVReg = DefMI->getOperand(1).getReg();
4732 if (!MRI->hasOneNonDBGUse(CopyVReg))
4733 return false;
4734 if (!MRI->hasOneDef(CopyVReg))
4735 return false;
4736 DefMI = MRI->getVRegDef(CopyVReg);
4737 }
4738
4739 switch (DefMI->getOpcode()) {
4740 default:
4741 return false;
4742 // Fold AND into a TBZ/TBNZ if constant operand is power of 2.
4743 case AArch64::ANDWri:
4744 case AArch64::ANDXri: {
4745 if (IsTestAndBranch)
4746 return false;
4747 if (DefMI->getParent() != MBB)
4748 return false;
4749 if (!MRI->hasOneNonDBGUse(VReg))
4750 return false;
4751
4752 bool Is32Bit = (DefMI->getOpcode() == AArch64::ANDWri);
4753 uint64_t Mask = AArch64_AM::decodeLogicalImmediate(
4754 DefMI->getOperand(2).getImm(), Is32Bit ? 32 : 64);
4755 if (!isPowerOf2_64(Mask))
4756 return false;
4757
4758 MachineOperand &MO = DefMI->getOperand(1);
4759 unsigned NewReg = MO.getReg();
4760 if (!TargetRegisterInfo::isVirtualRegister(NewReg))
4761 return false;
4762
4763 assert(!MRI->def_empty(NewReg) && "Register must be defined.");
4764
4765 MachineBasicBlock &RefToMBB = *MBB;
4766 MachineBasicBlock *TBB = MI.getOperand(1).getMBB();
4767 DebugLoc DL = MI.getDebugLoc();
4768 unsigned Imm = Log2_64(Mask);
4769 unsigned Opc = (Imm < 32)
4770 ? (IsNegativeBranch ? AArch64::TBNZW : AArch64::TBZW)
4771 : (IsNegativeBranch ? AArch64::TBNZX : AArch64::TBZX);
4772 MachineInstr *NewMI = BuildMI(RefToMBB, MI, DL, get(Opc))
4773 .addReg(NewReg)
4774 .addImm(Imm)
4775 .addMBB(TBB);
4776 // Register lives on to the CBZ now.
4777 MO.setIsKill(false);
4778
4779 // For immediate smaller than 32, we need to use the 32-bit
4780 // variant (W) in all cases. Indeed the 64-bit variant does not
4781 // allow to encode them.
4782 // Therefore, if the input register is 64-bit, we need to take the
4783 // 32-bit sub-part.
4784 if (!Is32Bit && Imm < 32)
4785 NewMI->getOperand(0).setSubReg(AArch64::sub_32);
4786 MI.eraseFromParent();
4787 return true;
4788 }
4789 // Look for CSINC
4790 case AArch64::CSINCWr:
4791 case AArch64::CSINCXr: {
4792 if (!(DefMI->getOperand(1).getReg() == AArch64::WZR &&
4793 DefMI->getOperand(2).getReg() == AArch64::WZR) &&
4794 !(DefMI->getOperand(1).getReg() == AArch64::XZR &&
4795 DefMI->getOperand(2).getReg() == AArch64::XZR))
4796 return false;
4797
4798 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) != -1)
4799 return false;
4800
4801 AArch64CC::CondCode CC = (AArch64CC::CondCode)DefMI->getOperand(3).getImm();
4802 // Convert only when the condition code is not modified between
4803 // the CSINC and the branch. The CC may be used by other
4804 // instructions in between.
4805 if (areCFlagsAccessedBetweenInstrs(DefMI, MI, &getRegisterInfo(), AK_Write))
4806 return false;
4807 MachineBasicBlock &RefToMBB = *MBB;
4808 MachineBasicBlock *TBB = MI.getOperand(TargetBBInMI).getMBB();
4809 DebugLoc DL = MI.getDebugLoc();
4810 if (IsNegativeBranch)
4811 CC = AArch64CC::getInvertedCondCode(CC);
4812 BuildMI(RefToMBB, MI, DL, get(AArch64::Bcc)).addImm(CC).addMBB(TBB);
4813 MI.eraseFromParent();
4814 return true;
4815 }
4816 }
4817 }
4818
4819 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const4820 AArch64InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
4821 const unsigned Mask = AArch64II::MO_FRAGMENT;
4822 return std::make_pair(TF & Mask, TF & ~Mask);
4823 }
4824
4825 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const4826 AArch64InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
4827 using namespace AArch64II;
4828
4829 static const std::pair<unsigned, const char *> TargetFlags[] = {
4830 {MO_PAGE, "aarch64-page"}, {MO_PAGEOFF, "aarch64-pageoff"},
4831 {MO_G3, "aarch64-g3"}, {MO_G2, "aarch64-g2"},
4832 {MO_G1, "aarch64-g1"}, {MO_G0, "aarch64-g0"},
4833 {MO_HI12, "aarch64-hi12"}};
4834 return makeArrayRef(TargetFlags);
4835 }
4836
4837 ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const4838 AArch64InstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
4839 using namespace AArch64II;
4840
4841 static const std::pair<unsigned, const char *> TargetFlags[] = {
4842 {MO_GOT, "aarch64-got"}, {MO_NC, "aarch64-nc"}, {MO_TLS, "aarch64-tls"}};
4843 return makeArrayRef(TargetFlags);
4844 }
4845
4846 ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
getSerializableMachineMemOperandTargetFlags() const4847 AArch64InstrInfo::getSerializableMachineMemOperandTargetFlags() const {
4848 static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] =
4849 {{MOSuppressPair, "aarch64-suppress-pair"},
4850 {MOStridedAccess, "aarch64-strided-access"}};
4851 return makeArrayRef(TargetFlags);
4852 }
4853
4854 /// Constants defining how certain sequences should be outlined.
4855 /// This encompasses how an outlined function should be called, and what kind of
4856 /// frame should be emitted for that outlined function.
4857 ///
4858 /// \p MachineOutlinerDefault implies that the function should be called with
4859 /// a save and restore of LR to the stack.
4860 ///
4861 /// That is,
4862 ///
4863 /// I1 Save LR OUTLINED_FUNCTION:
4864 /// I2 --> BL OUTLINED_FUNCTION I1
4865 /// I3 Restore LR I2
4866 /// I3
4867 /// RET
4868 ///
4869 /// * Call construction overhead: 3 (save + BL + restore)
4870 /// * Frame construction overhead: 1 (ret)
4871 /// * Requires stack fixups? Yes
4872 ///
4873 /// \p MachineOutlinerTailCall implies that the function is being created from
4874 /// a sequence of instructions ending in a return.
4875 ///
4876 /// That is,
4877 ///
4878 /// I1 OUTLINED_FUNCTION:
4879 /// I2 --> B OUTLINED_FUNCTION I1
4880 /// RET I2
4881 /// RET
4882 ///
4883 /// * Call construction overhead: 1 (B)
4884 /// * Frame construction overhead: 0 (Return included in sequence)
4885 /// * Requires stack fixups? No
4886 ///
4887 /// \p MachineOutlinerNoLRSave implies that the function should be called using
4888 /// a BL instruction, but doesn't require LR to be saved and restored. This
4889 /// happens when LR is known to be dead.
4890 ///
4891 /// That is,
4892 ///
4893 /// I1 OUTLINED_FUNCTION:
4894 /// I2 --> BL OUTLINED_FUNCTION I1
4895 /// I3 I2
4896 /// I3
4897 /// RET
4898 ///
4899 /// * Call construction overhead: 1 (BL)
4900 /// * Frame construction overhead: 1 (RET)
4901 /// * Requires stack fixups? No
4902 ///
4903 /// \p MachineOutlinerThunk implies that the function is being created from
4904 /// a sequence of instructions ending in a call. The outlined function is
4905 /// called with a BL instruction, and the outlined function tail-calls the
4906 /// original call destination.
4907 ///
4908 /// That is,
4909 ///
4910 /// I1 OUTLINED_FUNCTION:
4911 /// I2 --> BL OUTLINED_FUNCTION I1
4912 /// BL f I2
4913 /// B f
4914 /// * Call construction overhead: 1 (BL)
4915 /// * Frame construction overhead: 0
4916 /// * Requires stack fixups? No
4917 ///
4918 /// \p MachineOutlinerRegSave implies that the function should be called with a
4919 /// save and restore of LR to an available register. This allows us to avoid
4920 /// stack fixups. Note that this outlining variant is compatible with the
4921 /// NoLRSave case.
4922 ///
4923 /// That is,
4924 ///
4925 /// I1 Save LR OUTLINED_FUNCTION:
4926 /// I2 --> BL OUTLINED_FUNCTION I1
4927 /// I3 Restore LR I2
4928 /// I3
4929 /// RET
4930 ///
4931 /// * Call construction overhead: 3 (save + BL + restore)
4932 /// * Frame construction overhead: 1 (ret)
4933 /// * Requires stack fixups? No
4934 enum MachineOutlinerClass {
4935 MachineOutlinerDefault, /// Emit a save, restore, call, and return.
4936 MachineOutlinerTailCall, /// Only emit a branch.
4937 MachineOutlinerNoLRSave, /// Emit a call and return.
4938 MachineOutlinerThunk, /// Emit a call and tail-call.
4939 MachineOutlinerRegSave /// Same as default, but save to a register.
4940 };
4941
4942 enum MachineOutlinerMBBFlags {
4943 LRUnavailableSomewhere = 0x2,
4944 HasCalls = 0x4
4945 };
4946
4947 unsigned
findRegisterToSaveLRTo(const outliner::Candidate & C) const4948 AArch64InstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const {
4949 MachineFunction *MF = C.getMF();
4950 const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>(
4951 MF->getSubtarget().getRegisterInfo());
4952
4953 // Check if there is an available register across the sequence that we can
4954 // use.
4955 for (unsigned Reg : AArch64::GPR64RegClass) {
4956 if (!ARI->isReservedReg(*MF, Reg) &&
4957 Reg != AArch64::LR && // LR is not reserved, but don't use it.
4958 Reg != AArch64::X16 && // X16 is not guaranteed to be preserved.
4959 Reg != AArch64::X17 && // Ditto for X17.
4960 C.LRU.available(Reg) && C.UsedInSequence.available(Reg))
4961 return Reg;
4962 }
4963
4964 // No suitable register. Return 0.
4965 return 0u;
4966 }
4967
4968 outliner::OutlinedFunction
getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs) const4969 AArch64InstrInfo::getOutliningCandidateInfo(
4970 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
4971 unsigned SequenceSize = std::accumulate(
4972 RepeatedSequenceLocs[0].front(),
4973 std::next(RepeatedSequenceLocs[0].back()),
4974 0, [this](unsigned Sum, const MachineInstr &MI) {
4975 return Sum + getInstSizeInBytes(MI);
4976 });
4977
4978 // Compute liveness information for each candidate.
4979 const TargetRegisterInfo &TRI = getRegisterInfo();
4980 std::for_each(RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
4981 [&TRI](outliner::Candidate &C) { C.initLRU(TRI); });
4982
4983 // According to the AArch64 Procedure Call Standard, the following are
4984 // undefined on entry/exit from a function call:
4985 //
4986 // * Registers x16, x17, (and thus w16, w17)
4987 // * Condition codes (and thus the NZCV register)
4988 //
4989 // Because if this, we can't outline any sequence of instructions where
4990 // one
4991 // of these registers is live into/across it. Thus, we need to delete
4992 // those
4993 // candidates.
4994 auto CantGuaranteeValueAcrossCall = [](outliner::Candidate &C) {
4995 LiveRegUnits LRU = C.LRU;
4996 return (!LRU.available(AArch64::W16) || !LRU.available(AArch64::W17) ||
4997 !LRU.available(AArch64::NZCV));
4998 };
4999
5000 // Erase every candidate that violates the restrictions above. (It could be
5001 // true that we have viable candidates, so it's not worth bailing out in
5002 // the case that, say, 1 out of 20 candidates violate the restructions.)
5003 RepeatedSequenceLocs.erase(std::remove_if(RepeatedSequenceLocs.begin(),
5004 RepeatedSequenceLocs.end(),
5005 CantGuaranteeValueAcrossCall),
5006 RepeatedSequenceLocs.end());
5007
5008 // If the sequence is empty, we're done.
5009 if (RepeatedSequenceLocs.empty())
5010 return outliner::OutlinedFunction();
5011
5012 // At this point, we have only "safe" candidates to outline. Figure out
5013 // frame + call instruction information.
5014
5015 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
5016
5017 // Helper lambda which sets call information for every candidate.
5018 auto SetCandidateCallInfo =
5019 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5020 for (outliner::Candidate &C : RepeatedSequenceLocs)
5021 C.setCallInfo(CallID, NumBytesForCall);
5022 };
5023
5024 unsigned FrameID = MachineOutlinerDefault;
5025 unsigned NumBytesToCreateFrame = 4;
5026
5027 // If the last instruction in any candidate is a terminator, then we should
5028 // tail call all of the candidates.
5029 if (RepeatedSequenceLocs[0].back()->isTerminator()) {
5030 FrameID = MachineOutlinerTailCall;
5031 NumBytesToCreateFrame = 0;
5032 SetCandidateCallInfo(MachineOutlinerTailCall, 4);
5033 }
5034
5035 else if (LastInstrOpcode == AArch64::BL || LastInstrOpcode == AArch64::BLR) {
5036 // FIXME: Do we need to check if the code after this uses the value of LR?
5037 FrameID = MachineOutlinerThunk;
5038 NumBytesToCreateFrame = 0;
5039 SetCandidateCallInfo(MachineOutlinerThunk, 4);
5040 }
5041
5042 // Make sure that LR isn't live on entry to this candidate. The only
5043 // instructions that use LR that could possibly appear in a repeated sequence
5044 // are calls. Therefore, we only have to check and see if LR is dead on entry
5045 // to (or exit from) some candidate.
5046 else if (std::all_of(RepeatedSequenceLocs.begin(),
5047 RepeatedSequenceLocs.end(),
5048 [](outliner::Candidate &C) {
5049 return C.LRU.available(AArch64::LR);
5050 })) {
5051 FrameID = MachineOutlinerNoLRSave;
5052 NumBytesToCreateFrame = 4;
5053 SetCandidateCallInfo(MachineOutlinerNoLRSave, 4);
5054 }
5055
5056 // LR is live, so we need to save it. Decide whether it should be saved to
5057 // the stack, or if it can be saved to a register.
5058 else {
5059 if (std::all_of(RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
5060 [this](outliner::Candidate &C) {
5061 return findRegisterToSaveLRTo(C);
5062 })) {
5063 // Every candidate has an available callee-saved register for the save.
5064 // We can save LR to a register.
5065 FrameID = MachineOutlinerRegSave;
5066 NumBytesToCreateFrame = 4;
5067 SetCandidateCallInfo(MachineOutlinerRegSave, 12);
5068 }
5069
5070 else {
5071 // At least one candidate does not have an available callee-saved
5072 // register. We must save LR to the stack.
5073 FrameID = MachineOutlinerDefault;
5074 NumBytesToCreateFrame = 4;
5075 SetCandidateCallInfo(MachineOutlinerDefault, 12);
5076 }
5077 }
5078
5079 // Check if the range contains a call. These require a save + restore of the
5080 // link register.
5081 if (std::any_of(RepeatedSequenceLocs[0].front(),
5082 RepeatedSequenceLocs[0].back(),
5083 [](const MachineInstr &MI) { return MI.isCall(); }))
5084 NumBytesToCreateFrame += 8; // Save + restore the link register.
5085
5086 // Handle the last instruction separately. If this is a tail call, then the
5087 // last instruction is a call. We don't want to save + restore in this case.
5088 // However, it could be possible that the last instruction is a call without
5089 // it being valid to tail call this sequence. We should consider this as well.
5090 else if (FrameID != MachineOutlinerThunk &&
5091 FrameID != MachineOutlinerTailCall &&
5092 RepeatedSequenceLocs[0].back()->isCall())
5093 NumBytesToCreateFrame += 8;
5094
5095 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
5096 NumBytesToCreateFrame, FrameID);
5097 }
5098
isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs) const5099 bool AArch64InstrInfo::isFunctionSafeToOutlineFrom(
5100 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
5101 const Function &F = MF.getFunction();
5102
5103 // Can F be deduplicated by the linker? If it can, don't outline from it.
5104 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
5105 return false;
5106
5107 // Don't outline from functions with section markings; the program could
5108 // expect that all the code is in the named section.
5109 // FIXME: Allow outlining from multiple functions with the same section
5110 // marking.
5111 if (F.hasSection())
5112 return false;
5113
5114 // Outlining from functions with redzones is unsafe since the outliner may
5115 // modify the stack. Check if hasRedZone is true or unknown; if yes, don't
5116 // outline from it.
5117 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
5118 if (!AFI || AFI->hasRedZone().getValueOr(true))
5119 return false;
5120
5121 // It's safe to outline from MF.
5122 return true;
5123 }
5124
5125 unsigned
getMachineOutlinerMBBFlags(MachineBasicBlock & MBB) const5126 AArch64InstrInfo::getMachineOutlinerMBBFlags(MachineBasicBlock &MBB) const {
5127 unsigned Flags = 0x0;
5128 // Check if there's a call inside this MachineBasicBlock. If there is, then
5129 // set a flag.
5130 if (std::any_of(MBB.begin(), MBB.end(),
5131 [](MachineInstr &MI) { return MI.isCall(); }))
5132 Flags |= MachineOutlinerMBBFlags::HasCalls;
5133
5134 // Check if LR is available through all of the MBB. If it's not, then set
5135 // a flag.
5136 assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
5137 "Suitable Machine Function for outlining must track liveness");
5138 LiveRegUnits LRU(getRegisterInfo());
5139 LRU.addLiveOuts(MBB);
5140
5141 std::for_each(MBB.rbegin(),
5142 MBB.rend(),
5143 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); });
5144
5145 if (!LRU.available(AArch64::LR))
5146 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
5147
5148 return Flags;
5149 }
5150
5151 outliner::InstrType
getOutliningType(MachineBasicBlock::iterator & MIT,unsigned Flags) const5152 AArch64InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
5153 unsigned Flags) const {
5154 MachineInstr &MI = *MIT;
5155 MachineBasicBlock *MBB = MI.getParent();
5156 MachineFunction *MF = MBB->getParent();
5157 AArch64FunctionInfo *FuncInfo = MF->getInfo<AArch64FunctionInfo>();
5158
5159 // Don't outline LOHs.
5160 if (FuncInfo->getLOHRelated().count(&MI))
5161 return outliner::InstrType::Illegal;
5162
5163 // Don't allow debug values to impact outlining type.
5164 if (MI.isDebugInstr() || MI.isIndirectDebugValue())
5165 return outliner::InstrType::Invisible;
5166
5167 // At this point, KILL instructions don't really tell us much so we can go
5168 // ahead and skip over them.
5169 if (MI.isKill())
5170 return outliner::InstrType::Invisible;
5171
5172 // Is this a terminator for a basic block?
5173 if (MI.isTerminator()) {
5174
5175 // Is this the end of a function?
5176 if (MI.getParent()->succ_empty())
5177 return outliner::InstrType::Legal;
5178
5179 // It's not, so don't outline it.
5180 return outliner::InstrType::Illegal;
5181 }
5182
5183 // Make sure none of the operands are un-outlinable.
5184 for (const MachineOperand &MOP : MI.operands()) {
5185 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
5186 MOP.isTargetIndex())
5187 return outliner::InstrType::Illegal;
5188
5189 // If it uses LR or W30 explicitly, then don't touch it.
5190 if (MOP.isReg() && !MOP.isImplicit() &&
5191 (MOP.getReg() == AArch64::LR || MOP.getReg() == AArch64::W30))
5192 return outliner::InstrType::Illegal;
5193 }
5194
5195 // Special cases for instructions that can always be outlined, but will fail
5196 // the later tests. e.g, ADRPs, which are PC-relative use LR, but can always
5197 // be outlined because they don't require a *specific* value to be in LR.
5198 if (MI.getOpcode() == AArch64::ADRP)
5199 return outliner::InstrType::Legal;
5200
5201 // If MI is a call we might be able to outline it. We don't want to outline
5202 // any calls that rely on the position of items on the stack. When we outline
5203 // something containing a call, we have to emit a save and restore of LR in
5204 // the outlined function. Currently, this always happens by saving LR to the
5205 // stack. Thus, if we outline, say, half the parameters for a function call
5206 // plus the call, then we'll break the callee's expectations for the layout
5207 // of the stack.
5208 //
5209 // FIXME: Allow calls to functions which construct a stack frame, as long
5210 // as they don't access arguments on the stack.
5211 // FIXME: Figure out some way to analyze functions defined in other modules.
5212 // We should be able to compute the memory usage based on the IR calling
5213 // convention, even if we can't see the definition.
5214 if (MI.isCall()) {
5215 // Get the function associated with the call. Look at each operand and find
5216 // the one that represents the callee and get its name.
5217 const Function *Callee = nullptr;
5218 for (const MachineOperand &MOP : MI.operands()) {
5219 if (MOP.isGlobal()) {
5220 Callee = dyn_cast<Function>(MOP.getGlobal());
5221 break;
5222 }
5223 }
5224
5225 // Never outline calls to mcount. There isn't any rule that would require
5226 // this, but the Linux kernel's "ftrace" feature depends on it.
5227 if (Callee && Callee->getName() == "\01_mcount")
5228 return outliner::InstrType::Illegal;
5229
5230 // If we don't know anything about the callee, assume it depends on the
5231 // stack layout of the caller. In that case, it's only legal to outline
5232 // as a tail-call. Whitelist the call instructions we know about so we
5233 // don't get unexpected results with call pseudo-instructions.
5234 auto UnknownCallOutlineType = outliner::InstrType::Illegal;
5235 if (MI.getOpcode() == AArch64::BLR || MI.getOpcode() == AArch64::BL)
5236 UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
5237
5238 if (!Callee)
5239 return UnknownCallOutlineType;
5240
5241 // We have a function we have information about. Check it if it's something
5242 // can safely outline.
5243 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
5244
5245 // We don't know what's going on with the callee at all. Don't touch it.
5246 if (!CalleeMF)
5247 return UnknownCallOutlineType;
5248
5249 // Check if we know anything about the callee saves on the function. If we
5250 // don't, then don't touch it, since that implies that we haven't
5251 // computed anything about its stack frame yet.
5252 MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
5253 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
5254 MFI.getNumObjects() > 0)
5255 return UnknownCallOutlineType;
5256
5257 // At this point, we can say that CalleeMF ought to not pass anything on the
5258 // stack. Therefore, we can outline it.
5259 return outliner::InstrType::Legal;
5260 }
5261
5262 // Don't outline positions.
5263 if (MI.isPosition())
5264 return outliner::InstrType::Illegal;
5265
5266 // Don't touch the link register or W30.
5267 if (MI.readsRegister(AArch64::W30, &getRegisterInfo()) ||
5268 MI.modifiesRegister(AArch64::W30, &getRegisterInfo()))
5269 return outliner::InstrType::Illegal;
5270
5271 // Does this use the stack?
5272 if (MI.modifiesRegister(AArch64::SP, &RI) ||
5273 MI.readsRegister(AArch64::SP, &RI)) {
5274 // True if there is no chance that any outlined candidate from this range
5275 // could require stack fixups. That is, both
5276 // * LR is available in the range (No save/restore around call)
5277 // * The range doesn't include calls (No save/restore in outlined frame)
5278 // are true.
5279 // FIXME: This is very restrictive; the flags check the whole block,
5280 // not just the bit we will try to outline.
5281 bool MightNeedStackFixUp =
5282 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
5283 MachineOutlinerMBBFlags::HasCalls));
5284
5285 // If this instruction is in a range where it *never* needs to be fixed
5286 // up, then we can *always* outline it. This is true even if it's not
5287 // possible to fix that instruction up.
5288 //
5289 // Why? Consider two equivalent instructions I1, I2 where both I1 and I2
5290 // use SP. Suppose that I1 sits within a range that definitely doesn't
5291 // need stack fixups, while I2 sits in a range that does.
5292 //
5293 // First, I1 can be outlined as long as we *never* fix up the stack in
5294 // any sequence containing it. I1 is already a safe instruction in the
5295 // original program, so as long as we don't modify it we're good to go.
5296 // So this leaves us with showing that outlining I2 won't break our
5297 // program.
5298 //
5299 // Suppose I1 and I2 belong to equivalent candidate sequences. When we
5300 // look at I2, we need to see if it can be fixed up. Suppose I2, (and
5301 // thus I1) cannot be fixed up. Then I2 will be assigned an unique
5302 // integer label; thus, I2 cannot belong to any candidate sequence (a
5303 // contradiction). Suppose I2 can be fixed up. Then I1 can be fixed up
5304 // as well, so we're good. Thus, I1 is always safe to outline.
5305 //
5306 // This gives us two things: first off, it buys us some more instructions
5307 // for our search space by deeming stack instructions illegal only when
5308 // they can't be fixed up AND we might have to fix them up. Second off,
5309 // This allows us to catch tricky instructions like, say,
5310 // %xi = ADDXri %sp, n, 0. We can't safely outline these since they might
5311 // be paired with later SUBXris, which might *not* end up being outlined.
5312 // If we mess with the stack to save something, then an ADDXri messes with
5313 // it *after*, then we aren't going to restore the right something from
5314 // the stack if we don't outline the corresponding SUBXri first. ADDXris and
5315 // SUBXris are extremely common in prologue/epilogue code, so supporting
5316 // them in the outliner can be a pretty big win!
5317 if (!MightNeedStackFixUp)
5318 return outliner::InstrType::Legal;
5319
5320 // Any modification of SP will break our code to save/restore LR.
5321 // FIXME: We could handle some instructions which add a constant offset to
5322 // SP, with a bit more work.
5323 if (MI.modifiesRegister(AArch64::SP, &RI))
5324 return outliner::InstrType::Illegal;
5325
5326 // At this point, we have a stack instruction that we might need to fix
5327 // up. We'll handle it if it's a load or store.
5328 if (MI.mayLoadOrStore()) {
5329 unsigned Base; // Filled with the base regiser of MI.
5330 int64_t Offset; // Filled with the offset of MI.
5331 unsigned DummyWidth;
5332
5333 // Does it allow us to offset the base register and is the base SP?
5334 if (!getMemOpBaseRegImmOfsWidth(MI, Base, Offset, DummyWidth, &RI) ||
5335 Base != AArch64::SP)
5336 return outliner::InstrType::Illegal;
5337
5338 // Find the minimum/maximum offset for this instruction and check if
5339 // fixing it up would be in range.
5340 int64_t MinOffset, MaxOffset; // Unscaled offsets for the instruction.
5341 unsigned Scale; // The scale to multiply the offsets by.
5342 getMemOpInfo(MI.getOpcode(), Scale, DummyWidth, MinOffset, MaxOffset);
5343
5344 // TODO: We should really test what happens if an instruction overflows.
5345 // This is tricky to test with IR tests, but when the outliner is moved
5346 // to a MIR test, it really ought to be checked.
5347 Offset += 16; // Update the offset to what it would be if we outlined.
5348 if (Offset < MinOffset * Scale || Offset > MaxOffset * Scale)
5349 return outliner::InstrType::Illegal;
5350
5351 // It's in range, so we can outline it.
5352 return outliner::InstrType::Legal;
5353 }
5354
5355 // FIXME: Add handling for instructions like "add x0, sp, #8".
5356
5357 // We can't fix it up, so don't outline it.
5358 return outliner::InstrType::Illegal;
5359 }
5360
5361 return outliner::InstrType::Legal;
5362 }
5363
fixupPostOutline(MachineBasicBlock & MBB) const5364 void AArch64InstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
5365 for (MachineInstr &MI : MBB) {
5366 unsigned Base, Width;
5367 int64_t Offset;
5368
5369 // Is this a load or store with an immediate offset with SP as the base?
5370 if (!MI.mayLoadOrStore() ||
5371 !getMemOpBaseRegImmOfsWidth(MI, Base, Offset, Width, &RI) ||
5372 Base != AArch64::SP)
5373 continue;
5374
5375 // It is, so we have to fix it up.
5376 unsigned Scale;
5377 int64_t Dummy1, Dummy2;
5378
5379 MachineOperand &StackOffsetOperand = getMemOpBaseRegImmOfsOffsetOperand(MI);
5380 assert(StackOffsetOperand.isImm() && "Stack offset wasn't immediate!");
5381 getMemOpInfo(MI.getOpcode(), Scale, Width, Dummy1, Dummy2);
5382 assert(Scale != 0 && "Unexpected opcode!");
5383
5384 // We've pushed the return address to the stack, so add 16 to the offset.
5385 // This is safe, since we already checked if it would overflow when we
5386 // checked if this instruction was legal to outline.
5387 int64_t NewImm = (Offset + 16) / Scale;
5388 StackOffsetOperand.setImm(NewImm);
5389 }
5390 }
5391
buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF) const5392 void AArch64InstrInfo::buildOutlinedFrame(
5393 MachineBasicBlock &MBB, MachineFunction &MF,
5394 const outliner::OutlinedFunction &OF) const {
5395 // For thunk outlining, rewrite the last instruction from a call to a
5396 // tail-call.
5397 if (OF.FrameConstructionID == MachineOutlinerThunk) {
5398 MachineInstr *Call = &*--MBB.instr_end();
5399 unsigned TailOpcode;
5400 if (Call->getOpcode() == AArch64::BL) {
5401 TailOpcode = AArch64::TCRETURNdi;
5402 } else {
5403 assert(Call->getOpcode() == AArch64::BLR);
5404 TailOpcode = AArch64::TCRETURNri;
5405 }
5406 MachineInstr *TC = BuildMI(MF, DebugLoc(), get(TailOpcode))
5407 .add(Call->getOperand(0))
5408 .addImm(0);
5409 MBB.insert(MBB.end(), TC);
5410 Call->eraseFromParent();
5411 }
5412
5413 // Is there a call in the outlined range?
5414 auto IsNonTailCall = [](MachineInstr &MI) {
5415 return MI.isCall() && !MI.isReturn();
5416 };
5417 if (std::any_of(MBB.instr_begin(), MBB.instr_end(), IsNonTailCall)) {
5418 // Fix up the instructions in the range, since we're going to modify the
5419 // stack.
5420 assert(OF.FrameConstructionID != MachineOutlinerDefault &&
5421 "Can only fix up stack references once");
5422 fixupPostOutline(MBB);
5423
5424 // LR has to be a live in so that we can save it.
5425 MBB.addLiveIn(AArch64::LR);
5426
5427 MachineBasicBlock::iterator It = MBB.begin();
5428 MachineBasicBlock::iterator Et = MBB.end();
5429
5430 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
5431 OF.FrameConstructionID == MachineOutlinerThunk)
5432 Et = std::prev(MBB.end());
5433
5434 // Insert a save before the outlined region
5435 MachineInstr *STRXpre = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre))
5436 .addReg(AArch64::SP, RegState::Define)
5437 .addReg(AArch64::LR)
5438 .addReg(AArch64::SP)
5439 .addImm(-16);
5440 It = MBB.insert(It, STRXpre);
5441
5442 const TargetSubtargetInfo &STI = MF.getSubtarget();
5443 const MCRegisterInfo *MRI = STI.getRegisterInfo();
5444 unsigned DwarfReg = MRI->getDwarfRegNum(AArch64::LR, true);
5445
5446 // Add a CFI saying the stack was moved 16 B down.
5447 int64_t StackPosEntry =
5448 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 16));
5449 BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION))
5450 .addCFIIndex(StackPosEntry)
5451 .setMIFlags(MachineInstr::FrameSetup);
5452
5453 // Add a CFI saying that the LR that we want to find is now 16 B higher than
5454 // before.
5455 int64_t LRPosEntry =
5456 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfReg, 16));
5457 BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION))
5458 .addCFIIndex(LRPosEntry)
5459 .setMIFlags(MachineInstr::FrameSetup);
5460
5461 // Insert a restore before the terminator for the function.
5462 MachineInstr *LDRXpost = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost))
5463 .addReg(AArch64::SP, RegState::Define)
5464 .addReg(AArch64::LR, RegState::Define)
5465 .addReg(AArch64::SP)
5466 .addImm(16);
5467 Et = MBB.insert(Et, LDRXpost);
5468 }
5469
5470 // If this is a tail call outlined function, then there's already a return.
5471 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
5472 OF.FrameConstructionID == MachineOutlinerThunk)
5473 return;
5474
5475 // It's not a tail call, so we have to insert the return ourselves.
5476 MachineInstr *ret = BuildMI(MF, DebugLoc(), get(AArch64::RET))
5477 .addReg(AArch64::LR, RegState::Undef);
5478 MBB.insert(MBB.end(), ret);
5479
5480 // Did we have to modify the stack by saving the link register?
5481 if (OF.FrameConstructionID != MachineOutlinerDefault)
5482 return;
5483
5484 // We modified the stack.
5485 // Walk over the basic block and fix up all the stack accesses.
5486 fixupPostOutline(MBB);
5487 }
5488
insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,const outliner::Candidate & C) const5489 MachineBasicBlock::iterator AArch64InstrInfo::insertOutlinedCall(
5490 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
5491 MachineFunction &MF, const outliner::Candidate &C) const {
5492
5493 // Are we tail calling?
5494 if (C.CallConstructionID == MachineOutlinerTailCall) {
5495 // If yes, then we can just branch to the label.
5496 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::TCRETURNdi))
5497 .addGlobalAddress(M.getNamedValue(MF.getName()))
5498 .addImm(0));
5499 return It;
5500 }
5501
5502 // Are we saving the link register?
5503 if (C.CallConstructionID == MachineOutlinerNoLRSave ||
5504 C.CallConstructionID == MachineOutlinerThunk) {
5505 // No, so just insert the call.
5506 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL))
5507 .addGlobalAddress(M.getNamedValue(MF.getName())));
5508 return It;
5509 }
5510
5511 // We want to return the spot where we inserted the call.
5512 MachineBasicBlock::iterator CallPt;
5513
5514 // Instructions for saving and restoring LR around the call instruction we're
5515 // going to insert.
5516 MachineInstr *Save;
5517 MachineInstr *Restore;
5518 // Can we save to a register?
5519 if (C.CallConstructionID == MachineOutlinerRegSave) {
5520 // FIXME: This logic should be sunk into a target-specific interface so that
5521 // we don't have to recompute the register.
5522 unsigned Reg = findRegisterToSaveLRTo(C);
5523 assert(Reg != 0 && "No callee-saved register available?");
5524
5525 // Save and restore LR from that register.
5526 Save = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), Reg)
5527 .addReg(AArch64::XZR)
5528 .addReg(AArch64::LR)
5529 .addImm(0);
5530 Restore = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), AArch64::LR)
5531 .addReg(AArch64::XZR)
5532 .addReg(Reg)
5533 .addImm(0);
5534 } else {
5535 // We have the default case. Save and restore from SP.
5536 Save = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre))
5537 .addReg(AArch64::SP, RegState::Define)
5538 .addReg(AArch64::LR)
5539 .addReg(AArch64::SP)
5540 .addImm(-16);
5541 Restore = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost))
5542 .addReg(AArch64::SP, RegState::Define)
5543 .addReg(AArch64::LR, RegState::Define)
5544 .addReg(AArch64::SP)
5545 .addImm(16);
5546 }
5547
5548 It = MBB.insert(It, Save);
5549 It++;
5550
5551 // Insert the call.
5552 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL))
5553 .addGlobalAddress(M.getNamedValue(MF.getName())));
5554 CallPt = It;
5555 It++;
5556
5557 It = MBB.insert(It, Restore);
5558 return CallPt;
5559 }
5560
shouldOutlineFromFunctionByDefault(MachineFunction & MF) const5561 bool AArch64InstrInfo::shouldOutlineFromFunctionByDefault(
5562 MachineFunction &MF) const {
5563 return MF.getFunction().optForMinSize();
5564 }
5565