1 //===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/HexagonMCInstrInfo.h"
15 #include "Hexagon.h"
16 #include "MCTargetDesc/HexagonBaseInfo.h"
17 #include "MCTargetDesc/HexagonMCChecker.h"
18 #include "MCTargetDesc/HexagonMCExpr.h"
19 #include "MCTargetDesc/HexagonMCShuffler.h"
20 #include "MCTargetDesc/HexagonMCTargetDesc.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/MC/MCContext.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCInst.h"
25 #include "llvm/MC/MCInstrInfo.h"
26 #include "llvm/MC/MCInstrItineraries.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include <cassert>
31 #include <cstdint>
32 #include <limits>
33 
34 using namespace llvm;
35 
isPredicated() const36 bool HexagonMCInstrInfo::PredicateInfo::isPredicated() const {
37   return Register != Hexagon::NoRegister;
38 }
39 
PacketIterator(MCInstrInfo const & MCII,MCInst const & Inst)40 Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
41                                         MCInst const &Inst)
42     : MCII(MCII), BundleCurrent(Inst.begin() +
43                                 HexagonMCInstrInfo::bundleInstructionsOffset),
44       BundleEnd(Inst.end()), DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
45 
PacketIterator(MCInstrInfo const & MCII,MCInst const & Inst,std::nullptr_t)46 Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
47                                         MCInst const &Inst, std::nullptr_t)
48     : MCII(MCII), BundleCurrent(Inst.end()), BundleEnd(Inst.end()),
49       DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
50 
operator ++()51 Hexagon::PacketIterator &Hexagon::PacketIterator::operator++() {
52   if (DuplexCurrent != DuplexEnd) {
53     ++DuplexCurrent;
54     if (DuplexCurrent == DuplexEnd) {
55       DuplexCurrent = BundleEnd;
56       DuplexEnd = BundleEnd;
57       ++BundleCurrent;
58     }
59     return *this;
60   }
61   ++BundleCurrent;
62   if (BundleCurrent != BundleEnd) {
63     MCInst const &Inst = *BundleCurrent->getInst();
64     if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) {
65       DuplexCurrent = Inst.begin();
66       DuplexEnd = Inst.end();
67     }
68   }
69   return *this;
70 }
71 
operator *() const72 MCInst const &Hexagon::PacketIterator::operator*() const {
73   if (DuplexCurrent != DuplexEnd)
74     return *DuplexCurrent->getInst();
75   return *BundleCurrent->getInst();
76 }
77 
operator ==(PacketIterator const & Other) const78 bool Hexagon::PacketIterator::operator==(PacketIterator const &Other) const {
79   return BundleCurrent == Other.BundleCurrent && BundleEnd == Other.BundleEnd &&
80          DuplexCurrent == Other.DuplexCurrent && DuplexEnd == Other.DuplexEnd;
81 }
82 
addConstant(MCInst & MI,uint64_t Value,MCContext & Context)83 void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
84                                      MCContext &Context) {
85   MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context)));
86 }
87 
addConstExtender(MCContext & Context,MCInstrInfo const & MCII,MCInst & MCB,MCInst const & MCI)88 void HexagonMCInstrInfo::addConstExtender(MCContext &Context,
89                                           MCInstrInfo const &MCII, MCInst &MCB,
90                                           MCInst const &MCI) {
91   assert(HexagonMCInstrInfo::isBundle(MCB));
92   MCOperand const &exOp =
93       MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
94 
95   // Create the extender.
96   MCInst *XMCI =
97       new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp));
98   XMCI->setLoc(MCI.getLoc());
99 
100   MCB.addOperand(MCOperand::createInst(XMCI));
101 }
102 
103 iterator_range<Hexagon::PacketIterator>
bundleInstructions(MCInstrInfo const & MCII,MCInst const & MCI)104 HexagonMCInstrInfo::bundleInstructions(MCInstrInfo const &MCII,
105                                        MCInst const &MCI) {
106   assert(isBundle(MCI));
107   return make_range(Hexagon::PacketIterator(MCII, MCI),
108                     Hexagon::PacketIterator(MCII, MCI, nullptr));
109 }
110 
111 iterator_range<MCInst::const_iterator>
bundleInstructions(MCInst const & MCI)112 HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
113   assert(isBundle(MCI));
114   return make_range(MCI.begin() + bundleInstructionsOffset, MCI.end());
115 }
116 
bundleSize(MCInst const & MCI)117 size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
118   if (HexagonMCInstrInfo::isBundle(MCI))
119     return (MCI.size() - bundleInstructionsOffset);
120   else
121     return (1);
122 }
123 
canonicalizePacket(MCInstrInfo const & MCII,MCSubtargetInfo const & STI,MCContext & Context,MCInst & MCB,HexagonMCChecker * Check)124 bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
125                                             MCSubtargetInfo const &STI,
126                                             MCContext &Context, MCInst &MCB,
127                                             HexagonMCChecker *Check) {
128   // Check the bundle for errors.
129   bool CheckOk = Check ? Check->check(false) : true;
130   if (!CheckOk)
131     return false;
132   // Examine the packet and convert pairs of instructions to compound
133   // instructions when possible.
134   if (!HexagonDisableCompound)
135     HexagonMCInstrInfo::tryCompound(MCII, STI, Context, MCB);
136   HexagonMCShuffle(Context, false, MCII, STI, MCB);
137   // Examine the packet and convert pairs of instructions to duplex
138   // instructions when possible.
139   MCInst InstBundlePreDuplex = MCInst(MCB);
140   if (STI.getFeatureBits() [Hexagon::FeatureDuplex]) {
141     SmallVector<DuplexCandidate, 8> possibleDuplexes;
142     possibleDuplexes =
143         HexagonMCInstrInfo::getDuplexPossibilties(MCII, STI, MCB);
144     HexagonMCShuffle(Context, MCII, STI, MCB, possibleDuplexes);
145   }
146   // Examines packet and pad the packet, if needed, when an
147   // end-loop is in the bundle.
148   HexagonMCInstrInfo::padEndloop(MCB, Context);
149   // If compounding and duplexing didn't reduce the size below
150   // 4 or less we have a packet that is too big.
151   if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE)
152     return false;
153   // Check the bundle for errors.
154   CheckOk = Check ? Check->check(true) : true;
155   if (!CheckOk)
156     return false;
157   HexagonMCShuffle(Context, true, MCII, STI, MCB);
158   return true;
159 }
160 
deriveExtender(MCInstrInfo const & MCII,MCInst const & Inst,MCOperand const & MO)161 MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
162                                           MCInst const &Inst,
163                                           MCOperand const &MO) {
164   assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
165          HexagonMCInstrInfo::isExtended(MCII, Inst));
166 
167   MCInst XMI;
168   XMI.setOpcode(Hexagon::A4_ext);
169   if (MO.isImm())
170     XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f)));
171   else if (MO.isExpr())
172     XMI.addOperand(MCOperand::createExpr(MO.getExpr()));
173   else
174     llvm_unreachable("invalid extendable operand");
175   return XMI;
176 }
177 
deriveDuplex(MCContext & Context,unsigned iClass,MCInst const & inst0,MCInst const & inst1)178 MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
179                                          MCInst const &inst0,
180                                          MCInst const &inst1) {
181   assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
182   MCInst *duplexInst = new (Context) MCInst;
183   duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
184 
185   MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
186   MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
187   duplexInst->addOperand(MCOperand::createInst(SubInst0));
188   duplexInst->addOperand(MCOperand::createInst(SubInst1));
189   return duplexInst;
190 }
191 
extenderForIndex(MCInst const & MCB,size_t Index)192 MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
193                                                    size_t Index) {
194   assert(Index <= bundleSize(MCB));
195   if (Index == 0)
196     return nullptr;
197   MCInst const *Inst =
198       MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
199   if (isImmext(*Inst))
200     return Inst;
201   return nullptr;
202 }
203 
extendIfNeeded(MCContext & Context,MCInstrInfo const & MCII,MCInst & MCB,MCInst const & MCI)204 void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context,
205                                         MCInstrInfo const &MCII, MCInst &MCB,
206                                         MCInst const &MCI) {
207   if (isConstExtended(MCII, MCI))
208     addConstExtender(Context, MCII, MCB, MCI);
209 }
210 
getMemAccessSize(MCInstrInfo const & MCII,MCInst const & MCI)211 unsigned HexagonMCInstrInfo::getMemAccessSize(MCInstrInfo const &MCII,
212       MCInst const &MCI) {
213   uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
214   unsigned S = (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
215   return HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(S));
216 }
217 
getAddrMode(MCInstrInfo const & MCII,MCInst const & MCI)218 unsigned HexagonMCInstrInfo::getAddrMode(MCInstrInfo const &MCII,
219                                          MCInst const &MCI) {
220   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
221   return static_cast<unsigned>((F >> HexagonII::AddrModePos) &
222                                HexagonII::AddrModeMask);
223 }
224 
getDesc(MCInstrInfo const & MCII,MCInst const & MCI)225 MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
226                                                MCInst const &MCI) {
227   return MCII.get(MCI.getOpcode());
228 }
229 
getDuplexRegisterNumbering(unsigned Reg)230 unsigned HexagonMCInstrInfo::getDuplexRegisterNumbering(unsigned Reg) {
231   using namespace Hexagon;
232 
233   switch (Reg) {
234   default:
235     llvm_unreachable("unknown duplex register");
236   // Rs       Rss
237   case R0:
238   case D0:
239     return 0;
240   case R1:
241   case D1:
242     return 1;
243   case R2:
244   case D2:
245     return 2;
246   case R3:
247   case D3:
248     return 3;
249   case R4:
250   case D8:
251     return 4;
252   case R5:
253   case D9:
254     return 5;
255   case R6:
256   case D10:
257     return 6;
258   case R7:
259   case D11:
260     return 7;
261   case R16:
262     return 8;
263   case R17:
264     return 9;
265   case R18:
266     return 10;
267   case R19:
268     return 11;
269   case R20:
270     return 12;
271   case R21:
272     return 13;
273   case R22:
274     return 14;
275   case R23:
276     return 15;
277   }
278 }
279 
getExpr(MCExpr const & Expr)280 MCExpr const &HexagonMCInstrInfo::getExpr(MCExpr const &Expr) {
281   const auto &HExpr = cast<HexagonMCExpr>(Expr);
282   assert(HExpr.getExpr());
283   return *HExpr.getExpr();
284 }
285 
getExtendableOp(MCInstrInfo const & MCII,MCInst const & MCI)286 unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
287                                                    MCInst const &MCI) {
288   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
289   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
290 }
291 
292 MCOperand const &
getExtendableOperand(MCInstrInfo const & MCII,MCInst const & MCI)293 HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
294                                          MCInst const &MCI) {
295   unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
296   MCOperand const &MO = MCI.getOperand(O);
297 
298   assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
299           HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
300          (MO.isImm() || MO.isExpr()));
301   return (MO);
302 }
303 
getExtentAlignment(MCInstrInfo const & MCII,MCInst const & MCI)304 unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
305                                                 MCInst const &MCI) {
306   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
307   return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
308 }
309 
getExtentBits(MCInstrInfo const & MCII,MCInst const & MCI)310 unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
311                                            MCInst const &MCI) {
312   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
313   return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
314 }
315 
isExtentSigned(MCInstrInfo const & MCII,MCInst const & MCI)316 bool HexagonMCInstrInfo::isExtentSigned(MCInstrInfo const &MCII,
317                                         MCInst const &MCI) {
318   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
319   return (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
320 }
321 
322 /// Return the maximum value of an extendable operand.
getMaxValue(MCInstrInfo const & MCII,MCInst const & MCI)323 int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
324                                     MCInst const &MCI) {
325   assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
326          HexagonMCInstrInfo::isExtended(MCII, MCI));
327 
328   if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed
329     return (1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1)) - 1;
330   return (1 << HexagonMCInstrInfo::getExtentBits(MCII, MCI)) - 1;
331 }
332 
333 /// Return the minimum value of an extendable operand.
getMinValue(MCInstrInfo const & MCII,MCInst const & MCI)334 int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
335                                     MCInst const &MCI) {
336   assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
337          HexagonMCInstrInfo::isExtended(MCII, MCI));
338 
339   if (HexagonMCInstrInfo::isExtentSigned(MCII, MCI)) // if value is signed
340     return -(1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1));
341   return 0;
342 }
343 
getName(MCInstrInfo const & MCII,MCInst const & MCI)344 StringRef HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
345                                       MCInst const &MCI) {
346   return MCII.getName(MCI.getOpcode());
347 }
348 
getNewValueOp(MCInstrInfo const & MCII,MCInst const & MCI)349 unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
350                                                  MCInst const &MCI) {
351   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
352   return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
353 }
354 
getNewValueOperand(MCInstrInfo const & MCII,MCInst const & MCI)355 MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
356                                                         MCInst const &MCI) {
357   if (HexagonMCInstrInfo::hasTmpDst(MCII, MCI)) {
358     // VTMP doesn't actually exist in the encodings for these 184
359     // 3 instructions so go ahead and create it here.
360     static MCOperand MCO = MCOperand::createReg(Hexagon::VTMP);
361     return (MCO);
362   } else {
363     unsigned O = HexagonMCInstrInfo::getNewValueOp(MCII, MCI);
364     MCOperand const &MCO = MCI.getOperand(O);
365 
366     assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
367             HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
368            MCO.isReg());
369     return (MCO);
370   }
371 }
372 
373 /// Return the new value or the newly produced value.
getNewValueOp2(MCInstrInfo const & MCII,MCInst const & MCI)374 unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
375                                                   MCInst const &MCI) {
376   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
377   return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
378 }
379 
380 MCOperand const &
getNewValueOperand2(MCInstrInfo const & MCII,MCInst const & MCI)381 HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
382                                         MCInst const &MCI) {
383   unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
384   MCOperand const &MCO = MCI.getOperand(O);
385 
386   assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
387           HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
388          MCO.isReg());
389   return (MCO);
390 }
391 
392 /// Return the Hexagon ISA class for the insn.
getType(MCInstrInfo const & MCII,MCInst const & MCI)393 unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
394                                      MCInst const &MCI) {
395   const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags;
396   return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
397 }
398 
399 /// Return the slots this instruction can execute out of
getUnits(MCInstrInfo const & MCII,MCSubtargetInfo const & STI,MCInst const & MCI)400 unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
401                                       MCSubtargetInfo const &STI,
402                                       MCInst const &MCI) {
403   const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
404   int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
405   return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
406 }
407 
408 /// Return the slots this instruction consumes in addition to
409 /// the slot(s) it can execute out of
410 
getOtherReservedSlots(MCInstrInfo const & MCII,MCSubtargetInfo const & STI,MCInst const & MCI)411 unsigned HexagonMCInstrInfo::getOtherReservedSlots(MCInstrInfo const &MCII,
412                                                    MCSubtargetInfo const &STI,
413                                                    MCInst const &MCI) {
414   const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
415   int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
416   unsigned Slots = 0;
417 
418   // FirstStage are slots that this instruction can execute in.
419   // FirstStage+1 are slots that are also consumed by this instruction.
420   // For example: vmemu can only execute in slot 0 but also consumes slot 1.
421   for (unsigned Stage = II[SchedClass].FirstStage + 1;
422        Stage < II[SchedClass].LastStage; ++Stage) {
423     unsigned Units = (Stage + HexagonStages)->getUnits();
424     if (Units > HexagonGetLastSlot())
425       break;
426     // fyi: getUnits() will return 0x1, 0x2, 0x4 or 0x8
427     Slots |= Units;
428   }
429 
430   // if 0 is returned, then no additional slots are consumed by this inst.
431   return Slots;
432 }
433 
hasDuplex(MCInstrInfo const & MCII,MCInst const & MCI)434 bool HexagonMCInstrInfo::hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
435   if (!HexagonMCInstrInfo::isBundle(MCI))
436     return false;
437 
438   for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
439     if (HexagonMCInstrInfo::isDuplex(MCII, *I.getInst()))
440       return true;
441   }
442 
443   return false;
444 }
445 
hasExtenderForIndex(MCInst const & MCB,size_t Index)446 bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
447   return extenderForIndex(MCB, Index) != nullptr;
448 }
449 
hasImmExt(MCInst const & MCI)450 bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
451   if (!HexagonMCInstrInfo::isBundle(MCI))
452     return false;
453 
454   for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
455     if (isImmext(*I.getInst()))
456       return true;
457   }
458 
459   return false;
460 }
461 
462 /// Return whether the insn produces a value.
hasNewValue(MCInstrInfo const & MCII,MCInst const & MCI)463 bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
464                                      MCInst const &MCI) {
465   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
466   return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
467 }
468 
469 /// Return whether the insn produces a second value.
hasNewValue2(MCInstrInfo const & MCII,MCInst const & MCI)470 bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
471                                       MCInst const &MCI) {
472   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
473   return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
474 }
475 
instruction(MCInst const & MCB,size_t Index)476 MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
477   assert(isBundle(MCB));
478   assert(Index < HEXAGON_PACKET_SIZE);
479   return *MCB.getOperand(bundleInstructionsOffset + Index).getInst();
480 }
481 
482 /// Return where the instruction is an accumulator.
isAccumulator(MCInstrInfo const & MCII,MCInst const & MCI)483 bool HexagonMCInstrInfo::isAccumulator(MCInstrInfo const &MCII,
484                                        MCInst const &MCI) {
485   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
486   return ((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
487 }
488 
isBundle(MCInst const & MCI)489 bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
490   auto Result = Hexagon::BUNDLE == MCI.getOpcode();
491   assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
492   return Result;
493 }
494 
isConstExtended(MCInstrInfo const & MCII,MCInst const & MCI)495 bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
496                                          MCInst const &MCI) {
497   if (HexagonMCInstrInfo::isExtended(MCII, MCI))
498     return true;
499   if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
500     return false;
501   MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);
502   if (isa<HexagonMCExpr>(MO.getExpr()) &&
503       HexagonMCInstrInfo::mustExtend(*MO.getExpr()))
504     return true;
505   // Branch insns are handled as necessary by relaxation.
506   if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
507       (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCJ &&
508        HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
509       (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNCJ &&
510        HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
511     return false;
512   // Otherwise loop instructions and other CR insts are handled by relaxation
513   else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
514            (MCI.getOpcode() != Hexagon::C4_addipc))
515     return false;
516 
517   assert(!MO.isImm());
518   if (isa<HexagonMCExpr>(MO.getExpr()) &&
519       HexagonMCInstrInfo::mustNotExtend(*MO.getExpr()))
520     return false;
521   int64_t Value;
522   if (!MO.getExpr()->evaluateAsAbsolute(Value))
523     return true;
524   int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
525   int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
526   return (MinValue > Value || Value > MaxValue);
527 }
528 
isCanon(MCInstrInfo const & MCII,MCInst const & MCI)529 bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
530   return !HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
531          !HexagonMCInstrInfo::isPrefix(MCII, MCI);
532 }
533 
isCofMax1(MCInstrInfo const & MCII,MCInst const & MCI)534 bool HexagonMCInstrInfo::isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI) {
535   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
536   return ((F >> HexagonII::CofMax1Pos) & HexagonII::CofMax1Mask);
537 }
538 
isCofRelax1(MCInstrInfo const & MCII,MCInst const & MCI)539 bool HexagonMCInstrInfo::isCofRelax1(MCInstrInfo const &MCII,
540                                      MCInst const &MCI) {
541   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
542   return ((F >> HexagonII::CofRelax1Pos) & HexagonII::CofRelax1Mask);
543 }
544 
isCofRelax2(MCInstrInfo const & MCII,MCInst const & MCI)545 bool HexagonMCInstrInfo::isCofRelax2(MCInstrInfo const &MCII,
546                                      MCInst const &MCI) {
547   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
548   return ((F >> HexagonII::CofRelax2Pos) & HexagonII::CofRelax2Mask);
549 }
550 
isCompound(MCInstrInfo const & MCII,MCInst const & MCI)551 bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
552                                     MCInst const &MCI) {
553   return (getType(MCII, MCI) == HexagonII::TypeCJ);
554 }
555 
isCVINew(MCInstrInfo const & MCII,MCInst const & MCI)556 bool HexagonMCInstrInfo::isCVINew(MCInstrInfo const &MCII, MCInst const &MCI) {
557   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
558   return ((F >> HexagonII::CVINewPos) & HexagonII::CVINewMask);
559 }
560 
isDblRegForSubInst(unsigned Reg)561 bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
562   return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
563           (Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
564 }
565 
isDuplex(MCInstrInfo const & MCII,MCInst const & MCI)566 bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
567   return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
568 }
569 
isExtendable(MCInstrInfo const & MCII,MCInst const & MCI)570 bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
571                                       MCInst const &MCI) {
572   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
573   return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
574 }
575 
isExtended(MCInstrInfo const & MCII,MCInst const & MCI)576 bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
577                                     MCInst const &MCI) {
578   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
579   return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
580 }
581 
isFloat(MCInstrInfo const & MCII,MCInst const & MCI)582 bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
583   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
584   return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
585 }
586 
isHVX(MCInstrInfo const & MCII,MCInst const & MCI)587 bool HexagonMCInstrInfo::isHVX(MCInstrInfo const &MCII, MCInst const &MCI) {
588   const uint64_t V = getType(MCII, MCI);
589   return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
590 }
591 
isImmext(MCInst const & MCI)592 bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
593   return MCI.getOpcode() == Hexagon::A4_ext;
594 }
595 
isInnerLoop(MCInst const & MCI)596 bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
597   assert(isBundle(MCI));
598   int64_t Flags = MCI.getOperand(0).getImm();
599   return (Flags & innerLoopMask) != 0;
600 }
601 
isIntReg(unsigned Reg)602 bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
603   return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
604 }
605 
isIntRegForSubInst(unsigned Reg)606 bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
607   return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
608           (Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
609 }
610 
611 /// Return whether the insn expects newly produced value.
isNewValue(MCInstrInfo const & MCII,MCInst const & MCI)612 bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
613                                     MCInst const &MCI) {
614   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
615   return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
616 }
617 
618 /// Return whether the operand is extendable.
isOpExtendable(MCInstrInfo const & MCII,MCInst const & MCI,unsigned short O)619 bool HexagonMCInstrInfo::isOpExtendable(MCInstrInfo const &MCII,
620                                         MCInst const &MCI, unsigned short O) {
621   return (O == HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
622 }
623 
isOuterLoop(MCInst const & MCI)624 bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
625   assert(isBundle(MCI));
626   int64_t Flags = MCI.getOperand(0).getImm();
627   return (Flags & outerLoopMask) != 0;
628 }
629 
isPredicated(MCInstrInfo const & MCII,MCInst const & MCI)630 bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
631                                       MCInst const &MCI) {
632   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
633   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
634 }
635 
isPrefix(MCInstrInfo const & MCII,MCInst const & MCI)636 bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
637   return HexagonII::TypeEXTENDER == HexagonMCInstrInfo::getType(MCII, MCI);
638 }
639 
isPredicateLate(MCInstrInfo const & MCII,MCInst const & MCI)640 bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
641                                          MCInst const &MCI) {
642   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
643   return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
644 }
645 
646 /// Return whether the insn is newly predicated.
isPredicatedNew(MCInstrInfo const & MCII,MCInst const & MCI)647 bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
648                                          MCInst const &MCI) {
649   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
650   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
651 }
652 
isPredicatedTrue(MCInstrInfo const & MCII,MCInst const & MCI)653 bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
654                                           MCInst const &MCI) {
655   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
656   return (
657       !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
658 }
659 
isPredReg(unsigned Reg)660 bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
661   return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
662 }
663 
664 /// Return whether the insn can be packaged only with A and X-type insns.
isSoloAX(MCInstrInfo const & MCII,MCInst const & MCI)665 bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
666   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
667   return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
668 }
669 
670 /// Return whether the insn can be packaged only with an A-type insn in slot #1.
isRestrictSlot1AOK(MCInstrInfo const & MCII,MCInst const & MCI)671 bool HexagonMCInstrInfo::isRestrictSlot1AOK(MCInstrInfo const &MCII,
672                                             MCInst const &MCI) {
673   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
674   return ((F >> HexagonII::RestrictSlot1AOKPos) &
675           HexagonII::RestrictSlot1AOKMask);
676 }
677 
isRestrictNoSlot1Store(MCInstrInfo const & MCII,MCInst const & MCI)678 bool HexagonMCInstrInfo::isRestrictNoSlot1Store(MCInstrInfo const &MCII,
679                                                 MCInst const &MCI) {
680   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
681   return ((F >> HexagonII::RestrictNoSlot1StorePos) &
682           HexagonII::RestrictNoSlot1StoreMask);
683 }
684 
685 /// Return whether the insn is solo, i.e., cannot be in a packet.
isSolo(MCInstrInfo const & MCII,MCInst const & MCI)686 bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
687   const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags;
688   return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
689 }
690 
isMemReorderDisabled(MCInst const & MCI)691 bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
692   assert(isBundle(MCI));
693   auto Flags = MCI.getOperand(0).getImm();
694   return (Flags & memReorderDisabledMask) != 0;
695 }
696 
isSubInstruction(MCInst const & MCI)697 bool HexagonMCInstrInfo::isSubInstruction(MCInst const &MCI) {
698   switch (MCI.getOpcode()) {
699   default:
700     return false;
701   case Hexagon::SA1_addi:
702   case Hexagon::SA1_addrx:
703   case Hexagon::SA1_addsp:
704   case Hexagon::SA1_and1:
705   case Hexagon::SA1_clrf:
706   case Hexagon::SA1_clrfnew:
707   case Hexagon::SA1_clrt:
708   case Hexagon::SA1_clrtnew:
709   case Hexagon::SA1_cmpeqi:
710   case Hexagon::SA1_combine0i:
711   case Hexagon::SA1_combine1i:
712   case Hexagon::SA1_combine2i:
713   case Hexagon::SA1_combine3i:
714   case Hexagon::SA1_combinerz:
715   case Hexagon::SA1_combinezr:
716   case Hexagon::SA1_dec:
717   case Hexagon::SA1_inc:
718   case Hexagon::SA1_seti:
719   case Hexagon::SA1_setin1:
720   case Hexagon::SA1_sxtb:
721   case Hexagon::SA1_sxth:
722   case Hexagon::SA1_tfr:
723   case Hexagon::SA1_zxtb:
724   case Hexagon::SA1_zxth:
725   case Hexagon::SL1_loadri_io:
726   case Hexagon::SL1_loadrub_io:
727   case Hexagon::SL2_deallocframe:
728   case Hexagon::SL2_jumpr31:
729   case Hexagon::SL2_jumpr31_f:
730   case Hexagon::SL2_jumpr31_fnew:
731   case Hexagon::SL2_jumpr31_t:
732   case Hexagon::SL2_jumpr31_tnew:
733   case Hexagon::SL2_loadrb_io:
734   case Hexagon::SL2_loadrd_sp:
735   case Hexagon::SL2_loadrh_io:
736   case Hexagon::SL2_loadri_sp:
737   case Hexagon::SL2_loadruh_io:
738   case Hexagon::SL2_return:
739   case Hexagon::SL2_return_f:
740   case Hexagon::SL2_return_fnew:
741   case Hexagon::SL2_return_t:
742   case Hexagon::SL2_return_tnew:
743   case Hexagon::SS1_storeb_io:
744   case Hexagon::SS1_storew_io:
745   case Hexagon::SS2_allocframe:
746   case Hexagon::SS2_storebi0:
747   case Hexagon::SS2_storebi1:
748   case Hexagon::SS2_stored_sp:
749   case Hexagon::SS2_storeh_io:
750   case Hexagon::SS2_storew_sp:
751   case Hexagon::SS2_storewi0:
752   case Hexagon::SS2_storewi1:
753     return true;
754   }
755 }
756 
isVector(MCInstrInfo const & MCII,MCInst const & MCI)757 bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
758   if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) &&
759       (getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST))
760     return true;
761   return false;
762 }
763 
minConstant(MCInst const & MCI,size_t Index)764 int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
765   auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
766                   << 8;
767   if (MCI.size() <= Index)
768     return Sentinal;
769   MCOperand const &MCO = MCI.getOperand(Index);
770   if (!MCO.isExpr())
771     return Sentinal;
772   int64_t Value;
773   if (!MCO.getExpr()->evaluateAsAbsolute(Value))
774     return Sentinal;
775   return Value;
776 }
777 
setMustExtend(MCExpr const & Expr,bool Val)778 void HexagonMCInstrInfo::setMustExtend(MCExpr const &Expr, bool Val) {
779   HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
780   HExpr.setMustExtend(Val);
781 }
782 
mustExtend(MCExpr const & Expr)783 bool HexagonMCInstrInfo::mustExtend(MCExpr const &Expr) {
784   HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
785   return HExpr.mustExtend();
786 }
setMustNotExtend(MCExpr const & Expr,bool Val)787 void HexagonMCInstrInfo::setMustNotExtend(MCExpr const &Expr, bool Val) {
788   HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
789   HExpr.setMustNotExtend(Val);
790 }
mustNotExtend(MCExpr const & Expr)791 bool HexagonMCInstrInfo::mustNotExtend(MCExpr const &Expr) {
792   HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
793   return HExpr.mustNotExtend();
794 }
setS27_2_reloc(MCExpr const & Expr,bool Val)795 void HexagonMCInstrInfo::setS27_2_reloc(MCExpr const &Expr, bool Val) {
796   HexagonMCExpr &HExpr =
797       const_cast<HexagonMCExpr &>(*cast<HexagonMCExpr>(&Expr));
798   HExpr.setS27_2_reloc(Val);
799 }
s27_2_reloc(MCExpr const & Expr)800 bool HexagonMCInstrInfo::s27_2_reloc(MCExpr const &Expr) {
801   HexagonMCExpr const *HExpr = dyn_cast<HexagonMCExpr>(&Expr);
802   if (!HExpr)
803     return false;
804   return HExpr->s27_2_reloc();
805 }
806 
padEndloop(MCInst & MCB,MCContext & Context)807 void HexagonMCInstrInfo::padEndloop(MCInst &MCB, MCContext &Context) {
808   MCInst Nop;
809   Nop.setOpcode(Hexagon::A2_nop);
810   assert(isBundle(MCB));
811   while ((HexagonMCInstrInfo::isInnerLoop(MCB) &&
812           (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
813          ((HexagonMCInstrInfo::isOuterLoop(MCB) &&
814            (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE))))
815     MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop)));
816 }
817 
818 HexagonMCInstrInfo::PredicateInfo
predicateInfo(MCInstrInfo const & MCII,MCInst const & MCI)819 HexagonMCInstrInfo::predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI) {
820   if (!isPredicated(MCII, MCI))
821     return {0, 0, false};
822   MCInstrDesc const &Desc = getDesc(MCII, MCI);
823   for (auto I = Desc.getNumDefs(), N = Desc.getNumOperands(); I != N; ++I)
824     if (Desc.OpInfo[I].RegClass == Hexagon::PredRegsRegClassID)
825       return {MCI.getOperand(I).getReg(), I, isPredicatedTrue(MCII, MCI)};
826   return {0, 0, false};
827 }
828 
prefersSlot3(MCInstrInfo const & MCII,MCInst const & MCI)829 bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
830                                       MCInst const &MCI) {
831   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
832   return (F >> HexagonII::PrefersSlot3Pos) & HexagonII::PrefersSlot3Mask;
833 }
834 
835 /// return true if instruction has hasTmpDst attribute.
hasTmpDst(MCInstrInfo const & MCII,MCInst const & MCI)836 bool HexagonMCInstrInfo::hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI) {
837   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
838   return (F >> HexagonII::HasTmpDstPos) & HexagonII::HasTmpDstMask;
839 }
840 
replaceDuplex(MCContext & Context,MCInst & MCB,DuplexCandidate Candidate)841 void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
842                                        DuplexCandidate Candidate) {
843   assert(Candidate.packetIndexI < MCB.size());
844   assert(Candidate.packetIndexJ < MCB.size());
845   assert(isBundle(MCB));
846   MCInst *Duplex =
847       deriveDuplex(Context, Candidate.iClass,
848                    *MCB.getOperand(Candidate.packetIndexJ).getInst(),
849                    *MCB.getOperand(Candidate.packetIndexI).getInst());
850   assert(Duplex != nullptr);
851   MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
852   MCB.erase(MCB.begin() + Candidate.packetIndexJ);
853 }
854 
setInnerLoop(MCInst & MCI)855 void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
856   assert(isBundle(MCI));
857   MCOperand &Operand = MCI.getOperand(0);
858   Operand.setImm(Operand.getImm() | innerLoopMask);
859 }
860 
setMemReorderDisabled(MCInst & MCI)861 void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
862   assert(isBundle(MCI));
863   MCOperand &Operand = MCI.getOperand(0);
864   Operand.setImm(Operand.getImm() | memReorderDisabledMask);
865   assert(isMemReorderDisabled(MCI));
866 }
867 
setOuterLoop(MCInst & MCI)868 void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
869   assert(isBundle(MCI));
870   MCOperand &Operand = MCI.getOperand(0);
871   Operand.setImm(Operand.getImm() | outerLoopMask);
872 }
873 
SubregisterBit(unsigned Consumer,unsigned Producer,unsigned Producer2)874 unsigned HexagonMCInstrInfo::SubregisterBit(unsigned Consumer,
875                                             unsigned Producer,
876                                             unsigned Producer2) {
877   // If we're a single vector consumer of a double producer, set subreg bit
878   // based on if we're accessing the lower or upper register component
879   if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15)
880     if (Consumer >= Hexagon::V0 && Consumer <= Hexagon::V31)
881       return (Consumer - Hexagon::V0) & 0x1;
882   if (Producer2 != Hexagon::NoRegister)
883     return Consumer == Producer;
884   return 0;
885 }
886