1 //===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveRange and LiveInterval classes. Given some 11 // numbering of each the machine instructions an interval [i, j) is said to be a 12 // live range for register v if there is no instruction with number j' >= j 13 // such that v is live at j' and there is no instruction with number i' < i such 14 // that v is live at i'. In this implementation ranges can have holes, 15 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each 16 // individual segment is represented as an instance of LiveRange::Segment, 17 // and the whole range is represented as an instance of LiveRange. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #ifndef LLVM_CODEGEN_LIVEINTERVAL_H 22 #define LLVM_CODEGEN_LIVEINTERVAL_H 23 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/IntEqClasses.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/CodeGen/SlotIndexes.h" 30 #include "llvm/MC/LaneBitmask.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/MathExtras.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstddef> 36 #include <functional> 37 #include <memory> 38 #include <set> 39 #include <tuple> 40 #include <utility> 41 42 namespace llvm { 43 44 class CoalescerPair; 45 class LiveIntervals; 46 class MachineRegisterInfo; 47 class raw_ostream; 48 49 /// VNInfo - Value Number Information. 50 /// This class holds information about a machine level values, including 51 /// definition and use points. 52 /// 53 class VNInfo { 54 public: 55 using Allocator = BumpPtrAllocator; 56 57 /// The ID number of this value. 58 unsigned id; 59 60 /// The index of the defining instruction. 61 SlotIndex def; 62 63 /// VNInfo constructor. VNInfo(unsigned i,SlotIndex d)64 VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {} 65 66 /// VNInfo constructor, copies values from orig, except for the value number. VNInfo(unsigned i,const VNInfo & orig)67 VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {} 68 69 /// Copy from the parameter into this VNInfo. copyFrom(VNInfo & src)70 void copyFrom(VNInfo &src) { 71 def = src.def; 72 } 73 74 /// Returns true if this value is defined by a PHI instruction (or was, 75 /// PHI instructions may have been eliminated). 76 /// PHI-defs begin at a block boundary, all other defs begin at register or 77 /// EC slots. isPHIDef()78 bool isPHIDef() const { return def.isBlock(); } 79 80 /// Returns true if this value is unused. isUnused()81 bool isUnused() const { return !def.isValid(); } 82 83 /// Mark this value as unused. markUnused()84 void markUnused() { def = SlotIndex(); } 85 }; 86 87 /// Result of a LiveRange query. This class hides the implementation details 88 /// of live ranges, and it should be used as the primary interface for 89 /// examining live ranges around instructions. 90 class LiveQueryResult { 91 VNInfo *const EarlyVal; 92 VNInfo *const LateVal; 93 const SlotIndex EndPoint; 94 const bool Kill; 95 96 public: LiveQueryResult(VNInfo * EarlyVal,VNInfo * LateVal,SlotIndex EndPoint,bool Kill)97 LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint, 98 bool Kill) 99 : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill) 100 {} 101 102 /// Return the value that is live-in to the instruction. This is the value 103 /// that will be read by the instruction's use operands. Return NULL if no 104 /// value is live-in. valueIn()105 VNInfo *valueIn() const { 106 return EarlyVal; 107 } 108 109 /// Return true if the live-in value is killed by this instruction. This 110 /// means that either the live range ends at the instruction, or it changes 111 /// value. isKill()112 bool isKill() const { 113 return Kill; 114 } 115 116 /// Return true if this instruction has a dead def. isDeadDef()117 bool isDeadDef() const { 118 return EndPoint.isDead(); 119 } 120 121 /// Return the value leaving the instruction, if any. This can be a 122 /// live-through value, or a live def. A dead def returns NULL. valueOut()123 VNInfo *valueOut() const { 124 return isDeadDef() ? nullptr : LateVal; 125 } 126 127 /// Returns the value alive at the end of the instruction, if any. This can 128 /// be a live-through value, a live def or a dead def. valueOutOrDead()129 VNInfo *valueOutOrDead() const { 130 return LateVal; 131 } 132 133 /// Return the value defined by this instruction, if any. This includes 134 /// dead defs, it is the value created by the instruction's def operands. valueDefined()135 VNInfo *valueDefined() const { 136 return EarlyVal == LateVal ? nullptr : LateVal; 137 } 138 139 /// Return the end point of the last live range segment to interact with 140 /// the instruction, if any. 141 /// 142 /// The end point is an invalid SlotIndex only if the live range doesn't 143 /// intersect the instruction at all. 144 /// 145 /// The end point may be at or past the end of the instruction's basic 146 /// block. That means the value was live out of the block. endPoint()147 SlotIndex endPoint() const { 148 return EndPoint; 149 } 150 }; 151 152 /// This class represents the liveness of a register, stack slot, etc. 153 /// It manages an ordered list of Segment objects. 154 /// The Segments are organized in a static single assignment form: At places 155 /// where a new value is defined or different values reach a CFG join a new 156 /// segment with a new value number is used. 157 class LiveRange { 158 public: 159 /// This represents a simple continuous liveness interval for a value. 160 /// The start point is inclusive, the end point exclusive. These intervals 161 /// are rendered as [start,end). 162 struct Segment { 163 SlotIndex start; // Start point of the interval (inclusive) 164 SlotIndex end; // End point of the interval (exclusive) 165 VNInfo *valno = nullptr; // identifier for the value contained in this 166 // segment. 167 168 Segment() = default; 169 SegmentSegment170 Segment(SlotIndex S, SlotIndex E, VNInfo *V) 171 : start(S), end(E), valno(V) { 172 assert(S < E && "Cannot create empty or backwards segment"); 173 } 174 175 /// Return true if the index is covered by this segment. containsSegment176 bool contains(SlotIndex I) const { 177 return start <= I && I < end; 178 } 179 180 /// Return true if the given interval, [S, E), is covered by this segment. containsIntervalSegment181 bool containsInterval(SlotIndex S, SlotIndex E) const { 182 assert((S < E) && "Backwards interval?"); 183 return (start <= S && S < end) && (start < E && E <= end); 184 } 185 186 bool operator<(const Segment &Other) const { 187 return std::tie(start, end) < std::tie(Other.start, Other.end); 188 } 189 bool operator==(const Segment &Other) const { 190 return start == Other.start && end == Other.end; 191 } 192 193 void dump() const; 194 }; 195 196 using Segments = SmallVector<Segment, 2>; 197 using VNInfoList = SmallVector<VNInfo *, 2>; 198 199 Segments segments; // the liveness segments 200 VNInfoList valnos; // value#'s 201 202 // The segment set is used temporarily to accelerate initial computation 203 // of live ranges of physical registers in computeRegUnitRange. 204 // After that the set is flushed to the segment vector and deleted. 205 using SegmentSet = std::set<Segment>; 206 std::unique_ptr<SegmentSet> segmentSet; 207 208 using iterator = Segments::iterator; 209 using const_iterator = Segments::const_iterator; 210 begin()211 iterator begin() { return segments.begin(); } end()212 iterator end() { return segments.end(); } 213 begin()214 const_iterator begin() const { return segments.begin(); } end()215 const_iterator end() const { return segments.end(); } 216 217 using vni_iterator = VNInfoList::iterator; 218 using const_vni_iterator = VNInfoList::const_iterator; 219 vni_begin()220 vni_iterator vni_begin() { return valnos.begin(); } vni_end()221 vni_iterator vni_end() { return valnos.end(); } 222 vni_begin()223 const_vni_iterator vni_begin() const { return valnos.begin(); } vni_end()224 const_vni_iterator vni_end() const { return valnos.end(); } 225 226 /// Constructs a new LiveRange object. 227 LiveRange(bool UseSegmentSet = false) 228 : segmentSet(UseSegmentSet ? llvm::make_unique<SegmentSet>() 229 : nullptr) {} 230 231 /// Constructs a new LiveRange object by copying segments and valnos from 232 /// another LiveRange. LiveRange(const LiveRange & Other,BumpPtrAllocator & Allocator)233 LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) { 234 assert(Other.segmentSet == nullptr && 235 "Copying of LiveRanges with active SegmentSets is not supported"); 236 assign(Other, Allocator); 237 } 238 239 /// Copies values numbers and live segments from \p Other into this range. assign(const LiveRange & Other,BumpPtrAllocator & Allocator)240 void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) { 241 if (this == &Other) 242 return; 243 244 assert(Other.segmentSet == nullptr && 245 "Copying of LiveRanges with active SegmentSets is not supported"); 246 // Duplicate valnos. 247 for (const VNInfo *VNI : Other.valnos) 248 createValueCopy(VNI, Allocator); 249 // Now we can copy segments and remap their valnos. 250 for (const Segment &S : Other.segments) 251 segments.push_back(Segment(S.start, S.end, valnos[S.valno->id])); 252 } 253 254 /// advanceTo - Advance the specified iterator to point to the Segment 255 /// containing the specified position, or end() if the position is past the 256 /// end of the range. If no Segment contains this position, but the 257 /// position is in a hole, this method returns an iterator pointing to the 258 /// Segment immediately after the hole. advanceTo(iterator I,SlotIndex Pos)259 iterator advanceTo(iterator I, SlotIndex Pos) { 260 assert(I != end()); 261 if (Pos >= endIndex()) 262 return end(); 263 while (I->end <= Pos) ++I; 264 return I; 265 } 266 advanceTo(const_iterator I,SlotIndex Pos)267 const_iterator advanceTo(const_iterator I, SlotIndex Pos) const { 268 assert(I != end()); 269 if (Pos >= endIndex()) 270 return end(); 271 while (I->end <= Pos) ++I; 272 return I; 273 } 274 275 /// find - Return an iterator pointing to the first segment that ends after 276 /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster 277 /// when searching large ranges. 278 /// 279 /// If Pos is contained in a Segment, that segment is returned. 280 /// If Pos is in a hole, the following Segment is returned. 281 /// If Pos is beyond endIndex, end() is returned. 282 iterator find(SlotIndex Pos); 283 find(SlotIndex Pos)284 const_iterator find(SlotIndex Pos) const { 285 return const_cast<LiveRange*>(this)->find(Pos); 286 } 287 clear()288 void clear() { 289 valnos.clear(); 290 segments.clear(); 291 } 292 size()293 size_t size() const { 294 return segments.size(); 295 } 296 hasAtLeastOneValue()297 bool hasAtLeastOneValue() const { return !valnos.empty(); } 298 containsOneValue()299 bool containsOneValue() const { return valnos.size() == 1; } 300 getNumValNums()301 unsigned getNumValNums() const { return (unsigned)valnos.size(); } 302 303 /// getValNumInfo - Returns pointer to the specified val#. 304 /// getValNumInfo(unsigned ValNo)305 inline VNInfo *getValNumInfo(unsigned ValNo) { 306 return valnos[ValNo]; 307 } getValNumInfo(unsigned ValNo)308 inline const VNInfo *getValNumInfo(unsigned ValNo) const { 309 return valnos[ValNo]; 310 } 311 312 /// containsValue - Returns true if VNI belongs to this range. containsValue(const VNInfo * VNI)313 bool containsValue(const VNInfo *VNI) const { 314 return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id); 315 } 316 317 /// getNextValue - Create a new value number and return it. MIIdx specifies 318 /// the instruction that defines the value number. getNextValue(SlotIndex def,VNInfo::Allocator & VNInfoAllocator)319 VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) { 320 VNInfo *VNI = 321 new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def); 322 valnos.push_back(VNI); 323 return VNI; 324 } 325 326 /// createDeadDef - Make sure the range has a value defined at Def. 327 /// If one already exists, return it. Otherwise allocate a new value and 328 /// add liveness for a dead def. 329 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc); 330 331 /// Create a def of value @p VNI. Return @p VNI. If there already exists 332 /// a definition at VNI->def, the value defined there must be @p VNI. 333 VNInfo *createDeadDef(VNInfo *VNI); 334 335 /// Create a copy of the given value. The new value will be identical except 336 /// for the Value number. createValueCopy(const VNInfo * orig,VNInfo::Allocator & VNInfoAllocator)337 VNInfo *createValueCopy(const VNInfo *orig, 338 VNInfo::Allocator &VNInfoAllocator) { 339 VNInfo *VNI = 340 new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig); 341 valnos.push_back(VNI); 342 return VNI; 343 } 344 345 /// RenumberValues - Renumber all values in order of appearance and remove 346 /// unused values. 347 void RenumberValues(); 348 349 /// MergeValueNumberInto - This method is called when two value numbers 350 /// are found to be equivalent. This eliminates V1, replacing all 351 /// segments with the V1 value number with the V2 value number. This can 352 /// cause merging of V1/V2 values numbers and compaction of the value space. 353 VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2); 354 355 /// Merge all of the live segments of a specific val# in RHS into this live 356 /// range as the specified value number. The segments in RHS are allowed 357 /// to overlap with segments in the current range, it will replace the 358 /// value numbers of the overlaped live segments with the specified value 359 /// number. 360 void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo); 361 362 /// MergeValueInAsValue - Merge all of the segments of a specific val# 363 /// in RHS into this live range as the specified value number. 364 /// The segments in RHS are allowed to overlap with segments in the 365 /// current range, but only if the overlapping segments have the 366 /// specified value number. 367 void MergeValueInAsValue(const LiveRange &RHS, 368 const VNInfo *RHSValNo, VNInfo *LHSValNo); 369 empty()370 bool empty() const { return segments.empty(); } 371 372 /// beginIndex - Return the lowest numbered slot covered. beginIndex()373 SlotIndex beginIndex() const { 374 assert(!empty() && "Call to beginIndex() on empty range."); 375 return segments.front().start; 376 } 377 378 /// endNumber - return the maximum point of the range of the whole, 379 /// exclusive. endIndex()380 SlotIndex endIndex() const { 381 assert(!empty() && "Call to endIndex() on empty range."); 382 return segments.back().end; 383 } 384 expiredAt(SlotIndex index)385 bool expiredAt(SlotIndex index) const { 386 return index >= endIndex(); 387 } 388 liveAt(SlotIndex index)389 bool liveAt(SlotIndex index) const { 390 const_iterator r = find(index); 391 return r != end() && r->start <= index; 392 } 393 394 /// Return the segment that contains the specified index, or null if there 395 /// is none. getSegmentContaining(SlotIndex Idx)396 const Segment *getSegmentContaining(SlotIndex Idx) const { 397 const_iterator I = FindSegmentContaining(Idx); 398 return I == end() ? nullptr : &*I; 399 } 400 401 /// Return the live segment that contains the specified index, or null if 402 /// there is none. getSegmentContaining(SlotIndex Idx)403 Segment *getSegmentContaining(SlotIndex Idx) { 404 iterator I = FindSegmentContaining(Idx); 405 return I == end() ? nullptr : &*I; 406 } 407 408 /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL. getVNInfoAt(SlotIndex Idx)409 VNInfo *getVNInfoAt(SlotIndex Idx) const { 410 const_iterator I = FindSegmentContaining(Idx); 411 return I == end() ? nullptr : I->valno; 412 } 413 414 /// getVNInfoBefore - Return the VNInfo that is live up to but not 415 /// necessarilly including Idx, or NULL. Use this to find the reaching def 416 /// used by an instruction at this SlotIndex position. getVNInfoBefore(SlotIndex Idx)417 VNInfo *getVNInfoBefore(SlotIndex Idx) const { 418 const_iterator I = FindSegmentContaining(Idx.getPrevSlot()); 419 return I == end() ? nullptr : I->valno; 420 } 421 422 /// Return an iterator to the segment that contains the specified index, or 423 /// end() if there is none. FindSegmentContaining(SlotIndex Idx)424 iterator FindSegmentContaining(SlotIndex Idx) { 425 iterator I = find(Idx); 426 return I != end() && I->start <= Idx ? I : end(); 427 } 428 FindSegmentContaining(SlotIndex Idx)429 const_iterator FindSegmentContaining(SlotIndex Idx) const { 430 const_iterator I = find(Idx); 431 return I != end() && I->start <= Idx ? I : end(); 432 } 433 434 /// overlaps - Return true if the intersection of the two live ranges is 435 /// not empty. overlaps(const LiveRange & other)436 bool overlaps(const LiveRange &other) const { 437 if (other.empty()) 438 return false; 439 return overlapsFrom(other, other.begin()); 440 } 441 442 /// overlaps - Return true if the two ranges have overlapping segments 443 /// that are not coalescable according to CP. 444 /// 445 /// Overlapping segments where one range is defined by a coalescable 446 /// copy are allowed. 447 bool overlaps(const LiveRange &Other, const CoalescerPair &CP, 448 const SlotIndexes&) const; 449 450 /// overlaps - Return true if the live range overlaps an interval specified 451 /// by [Start, End). 452 bool overlaps(SlotIndex Start, SlotIndex End) const; 453 454 /// overlapsFrom - Return true if the intersection of the two live ranges 455 /// is not empty. The specified iterator is a hint that we can begin 456 /// scanning the Other range starting at I. 457 bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const; 458 459 /// Returns true if all segments of the @p Other live range are completely 460 /// covered by this live range. 461 /// Adjacent live ranges do not affect the covering:the liverange 462 /// [1,5](5,10] covers (3,7]. 463 bool covers(const LiveRange &Other) const; 464 465 /// Add the specified Segment to this range, merging segments as 466 /// appropriate. This returns an iterator to the inserted segment (which 467 /// may have grown since it was inserted). 468 iterator addSegment(Segment S); 469 470 /// Attempt to extend a value defined after @p StartIdx to include @p Use. 471 /// Both @p StartIdx and @p Use should be in the same basic block. In case 472 /// of subranges, an extension could be prevented by an explicit "undef" 473 /// caused by a <def,read-undef> on a non-overlapping lane. The list of 474 /// location of such "undefs" should be provided in @p Undefs. 475 /// The return value is a pair: the first element is VNInfo of the value 476 /// that was extended (possibly nullptr), the second is a boolean value 477 /// indicating whether an "undef" was encountered. 478 /// If this range is live before @p Use in the basic block that starts at 479 /// @p StartIdx, and there is no intervening "undef", extend it to be live 480 /// up to @p Use, and return the pair {value, false}. If there is no 481 /// segment before @p Use and there is no "undef" between @p StartIdx and 482 /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use, 483 /// return {nullptr, true}. 484 std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs, 485 SlotIndex StartIdx, SlotIndex Kill); 486 487 /// Simplified version of the above "extendInBlock", which assumes that 488 /// no register lanes are undefined by <def,read-undef> operands. 489 /// If this range is live before @p Use in the basic block that starts 490 /// at @p StartIdx, extend it to be live up to @p Use, and return the 491 /// value. If there is no segment before @p Use, return nullptr. 492 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill); 493 494 /// join - Join two live ranges (this, and other) together. This applies 495 /// mappings to the value numbers in the LHS/RHS ranges as specified. If 496 /// the ranges are not joinable, this aborts. 497 void join(LiveRange &Other, 498 const int *ValNoAssignments, 499 const int *RHSValNoAssignments, 500 SmallVectorImpl<VNInfo *> &NewVNInfo); 501 502 /// True iff this segment is a single segment that lies between the 503 /// specified boundaries, exclusively. Vregs live across a backedge are not 504 /// considered local. The boundaries are expected to lie within an extended 505 /// basic block, so vregs that are not live out should contain no holes. isLocal(SlotIndex Start,SlotIndex End)506 bool isLocal(SlotIndex Start, SlotIndex End) const { 507 return beginIndex() > Start.getBaseIndex() && 508 endIndex() < End.getBoundaryIndex(); 509 } 510 511 /// Remove the specified segment from this range. Note that the segment 512 /// must be a single Segment in its entirety. 513 void removeSegment(SlotIndex Start, SlotIndex End, 514 bool RemoveDeadValNo = false); 515 516 void removeSegment(Segment S, bool RemoveDeadValNo = false) { 517 removeSegment(S.start, S.end, RemoveDeadValNo); 518 } 519 520 /// Remove segment pointed to by iterator @p I from this range. This does 521 /// not remove dead value numbers. removeSegment(iterator I)522 iterator removeSegment(iterator I) { 523 return segments.erase(I); 524 } 525 526 /// Query Liveness at Idx. 527 /// The sub-instruction slot of Idx doesn't matter, only the instruction 528 /// it refers to is considered. Query(SlotIndex Idx)529 LiveQueryResult Query(SlotIndex Idx) const { 530 // Find the segment that enters the instruction. 531 const_iterator I = find(Idx.getBaseIndex()); 532 const_iterator E = end(); 533 if (I == E) 534 return LiveQueryResult(nullptr, nullptr, SlotIndex(), false); 535 536 // Is this an instruction live-in segment? 537 // If Idx is the start index of a basic block, include live-in segments 538 // that start at Idx.getBaseIndex(). 539 VNInfo *EarlyVal = nullptr; 540 VNInfo *LateVal = nullptr; 541 SlotIndex EndPoint; 542 bool Kill = false; 543 if (I->start <= Idx.getBaseIndex()) { 544 EarlyVal = I->valno; 545 EndPoint = I->end; 546 // Move to the potentially live-out segment. 547 if (SlotIndex::isSameInstr(Idx, I->end)) { 548 Kill = true; 549 if (++I == E) 550 return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill); 551 } 552 // Special case: A PHIDef value can have its def in the middle of a 553 // segment if the value happens to be live out of the layout 554 // predecessor. 555 // Such a value is not live-in. 556 if (EarlyVal->def == Idx.getBaseIndex()) 557 EarlyVal = nullptr; 558 } 559 // I now points to the segment that may be live-through, or defined by 560 // this instr. Ignore segments starting after the current instr. 561 if (!SlotIndex::isEarlierInstr(Idx, I->start)) { 562 LateVal = I->valno; 563 EndPoint = I->end; 564 } 565 return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill); 566 } 567 568 /// removeValNo - Remove all the segments defined by the specified value#. 569 /// Also remove the value# from value# list. 570 void removeValNo(VNInfo *ValNo); 571 572 /// Returns true if the live range is zero length, i.e. no live segments 573 /// span instructions. It doesn't pay to spill such a range. isZeroLength(SlotIndexes * Indexes)574 bool isZeroLength(SlotIndexes *Indexes) const { 575 for (const Segment &S : segments) 576 if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() < 577 S.end.getBaseIndex()) 578 return false; 579 return true; 580 } 581 582 // Returns true if any segment in the live range contains any of the 583 // provided slot indexes. Slots which occur in holes between 584 // segments will not cause the function to return true. 585 bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const; 586 587 bool operator<(const LiveRange& other) const { 588 const SlotIndex &thisIndex = beginIndex(); 589 const SlotIndex &otherIndex = other.beginIndex(); 590 return thisIndex < otherIndex; 591 } 592 593 /// Returns true if there is an explicit "undef" between @p Begin 594 /// @p End. isUndefIn(ArrayRef<SlotIndex> Undefs,SlotIndex Begin,SlotIndex End)595 bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin, 596 SlotIndex End) const { 597 return std::any_of(Undefs.begin(), Undefs.end(), 598 [Begin,End] (SlotIndex Idx) -> bool { 599 return Begin <= Idx && Idx < End; 600 }); 601 } 602 603 /// Flush segment set into the regular segment vector. 604 /// The method is to be called after the live range 605 /// has been created, if use of the segment set was 606 /// activated in the constructor of the live range. 607 void flushSegmentSet(); 608 609 void print(raw_ostream &OS) const; 610 void dump() const; 611 612 /// Walk the range and assert if any invariants fail to hold. 613 /// 614 /// Note that this is a no-op when asserts are disabled. 615 #ifdef NDEBUG verify()616 void verify() const {} 617 #else 618 void verify() const; 619 #endif 620 621 protected: 622 /// Append a segment to the list of segments. 623 void append(const LiveRange::Segment S); 624 625 private: 626 friend class LiveRangeUpdater; 627 void addSegmentToSet(Segment S); 628 void markValNoForDeletion(VNInfo *V); 629 }; 630 631 inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) { 632 LR.print(OS); 633 return OS; 634 } 635 636 /// LiveInterval - This class represents the liveness of a register, 637 /// or stack slot. 638 class LiveInterval : public LiveRange { 639 public: 640 using super = LiveRange; 641 642 /// A live range for subregisters. The LaneMask specifies which parts of the 643 /// super register are covered by the interval. 644 /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()). 645 class SubRange : public LiveRange { 646 public: 647 SubRange *Next = nullptr; 648 LaneBitmask LaneMask; 649 650 /// Constructs a new SubRange object. SubRange(LaneBitmask LaneMask)651 SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {} 652 653 /// Constructs a new SubRange object by copying liveness from @p Other. SubRange(LaneBitmask LaneMask,const LiveRange & Other,BumpPtrAllocator & Allocator)654 SubRange(LaneBitmask LaneMask, const LiveRange &Other, 655 BumpPtrAllocator &Allocator) 656 : LiveRange(Other, Allocator), LaneMask(LaneMask) {} 657 658 void print(raw_ostream &OS) const; 659 void dump() const; 660 }; 661 662 private: 663 SubRange *SubRanges = nullptr; ///< Single linked list of subregister live 664 /// ranges. 665 666 public: 667 const unsigned reg; // the register or stack slot of this interval. 668 float weight; // weight of this interval 669 LiveInterval(unsigned Reg,float Weight)670 LiveInterval(unsigned Reg, float Weight) : reg(Reg), weight(Weight) {} 671 ~LiveInterval()672 ~LiveInterval() { 673 clearSubRanges(); 674 } 675 676 template<typename T> 677 class SingleLinkedListIterator { 678 T *P; 679 680 public: P(P)681 SingleLinkedListIterator<T>(T *P) : P(P) {} 682 683 SingleLinkedListIterator<T> &operator++() { 684 P = P->Next; 685 return *this; 686 } 687 SingleLinkedListIterator<T> operator++(int) { 688 SingleLinkedListIterator res = *this; 689 ++*this; 690 return res; 691 } 692 bool operator!=(const SingleLinkedListIterator<T> &Other) { 693 return P != Other.operator->(); 694 } 695 bool operator==(const SingleLinkedListIterator<T> &Other) { 696 return P == Other.operator->(); 697 } 698 T &operator*() const { 699 return *P; 700 } 701 T *operator->() const { 702 return P; 703 } 704 }; 705 706 using subrange_iterator = SingleLinkedListIterator<SubRange>; 707 using const_subrange_iterator = SingleLinkedListIterator<const SubRange>; 708 subrange_begin()709 subrange_iterator subrange_begin() { 710 return subrange_iterator(SubRanges); 711 } subrange_end()712 subrange_iterator subrange_end() { 713 return subrange_iterator(nullptr); 714 } 715 subrange_begin()716 const_subrange_iterator subrange_begin() const { 717 return const_subrange_iterator(SubRanges); 718 } subrange_end()719 const_subrange_iterator subrange_end() const { 720 return const_subrange_iterator(nullptr); 721 } 722 subranges()723 iterator_range<subrange_iterator> subranges() { 724 return make_range(subrange_begin(), subrange_end()); 725 } 726 subranges()727 iterator_range<const_subrange_iterator> subranges() const { 728 return make_range(subrange_begin(), subrange_end()); 729 } 730 731 /// Creates a new empty subregister live range. The range is added at the 732 /// beginning of the subrange list; subrange iterators stay valid. createSubRange(BumpPtrAllocator & Allocator,LaneBitmask LaneMask)733 SubRange *createSubRange(BumpPtrAllocator &Allocator, 734 LaneBitmask LaneMask) { 735 SubRange *Range = new (Allocator) SubRange(LaneMask); 736 appendSubRange(Range); 737 return Range; 738 } 739 740 /// Like createSubRange() but the new range is filled with a copy of the 741 /// liveness information in @p CopyFrom. createSubRangeFrom(BumpPtrAllocator & Allocator,LaneBitmask LaneMask,const LiveRange & CopyFrom)742 SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator, 743 LaneBitmask LaneMask, 744 const LiveRange &CopyFrom) { 745 SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator); 746 appendSubRange(Range); 747 return Range; 748 } 749 750 /// Returns true if subregister liveness information is available. hasSubRanges()751 bool hasSubRanges() const { 752 return SubRanges != nullptr; 753 } 754 755 /// Removes all subregister liveness information. 756 void clearSubRanges(); 757 758 /// Removes all subranges without any segments (subranges without segments 759 /// are not considered valid and should only exist temporarily). 760 void removeEmptySubRanges(); 761 762 /// getSize - Returns the sum of sizes of all the LiveRange's. 763 /// 764 unsigned getSize() const; 765 766 /// isSpillable - Can this interval be spilled? isSpillable()767 bool isSpillable() const { 768 return weight != huge_valf; 769 } 770 771 /// markNotSpillable - Mark interval as not spillable markNotSpillable()772 void markNotSpillable() { 773 weight = huge_valf; 774 } 775 776 /// For a given lane mask @p LaneMask, compute indexes at which the 777 /// lane is marked undefined by subregister <def,read-undef> definitions. 778 void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs, 779 LaneBitmask LaneMask, 780 const MachineRegisterInfo &MRI, 781 const SlotIndexes &Indexes) const; 782 783 /// Refines the subranges to support \p LaneMask. This may only be called 784 /// for LI.hasSubrange()==true. Subregister ranges are split or created 785 /// until \p LaneMask can be matched exactly. \p Mod is executed on the 786 /// matching subranges. 787 /// 788 /// Example: 789 /// Given an interval with subranges with lanemasks L0F00, L00F0 and 790 /// L000F, refining for mask L0018. Will split the L00F0 lane into 791 /// L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod 792 /// function will be applied to the L0010 and L0008 subranges. 793 void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, 794 std::function<void(LiveInterval::SubRange&)> Apply); 795 796 bool operator<(const LiveInterval& other) const { 797 const SlotIndex &thisIndex = beginIndex(); 798 const SlotIndex &otherIndex = other.beginIndex(); 799 return std::tie(thisIndex, reg) < std::tie(otherIndex, other.reg); 800 } 801 802 void print(raw_ostream &OS) const; 803 void dump() const; 804 805 /// Walks the interval and assert if any invariants fail to hold. 806 /// 807 /// Note that this is a no-op when asserts are disabled. 808 #ifdef NDEBUG 809 void verify(const MachineRegisterInfo *MRI = nullptr) const {} 810 #else 811 void verify(const MachineRegisterInfo *MRI = nullptr) const; 812 #endif 813 814 private: 815 /// Appends @p Range to SubRanges list. appendSubRange(SubRange * Range)816 void appendSubRange(SubRange *Range) { 817 Range->Next = SubRanges; 818 SubRanges = Range; 819 } 820 821 /// Free memory held by SubRange. 822 void freeSubRange(SubRange *S); 823 }; 824 825 inline raw_ostream &operator<<(raw_ostream &OS, 826 const LiveInterval::SubRange &SR) { 827 SR.print(OS); 828 return OS; 829 } 830 831 inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) { 832 LI.print(OS); 833 return OS; 834 } 835 836 raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S); 837 838 inline bool operator<(SlotIndex V, const LiveRange::Segment &S) { 839 return V < S.start; 840 } 841 842 inline bool operator<(const LiveRange::Segment &S, SlotIndex V) { 843 return S.start < V; 844 } 845 846 /// Helper class for performant LiveRange bulk updates. 847 /// 848 /// Calling LiveRange::addSegment() repeatedly can be expensive on large 849 /// live ranges because segments after the insertion point may need to be 850 /// shifted. The LiveRangeUpdater class can defer the shifting when adding 851 /// many segments in order. 852 /// 853 /// The LiveRange will be in an invalid state until flush() is called. 854 class LiveRangeUpdater { 855 LiveRange *LR; 856 SlotIndex LastStart; 857 LiveRange::iterator WriteI; 858 LiveRange::iterator ReadI; 859 SmallVector<LiveRange::Segment, 16> Spills; 860 void mergeSpills(); 861 862 public: 863 /// Create a LiveRangeUpdater for adding segments to LR. 864 /// LR will temporarily be in an invalid state until flush() is called. LR(lr)865 LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {} 866 ~LiveRangeUpdater()867 ~LiveRangeUpdater() { flush(); } 868 869 /// Add a segment to LR and coalesce when possible, just like 870 /// LR.addSegment(). Segments should be added in increasing start order for 871 /// best performance. 872 void add(LiveRange::Segment); 873 add(SlotIndex Start,SlotIndex End,VNInfo * VNI)874 void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 875 add(LiveRange::Segment(Start, End, VNI)); 876 } 877 878 /// Return true if the LR is currently in an invalid state, and flush() 879 /// needs to be called. isDirty()880 bool isDirty() const { return LastStart.isValid(); } 881 882 /// Flush the updater state to LR so it is valid and contains all added 883 /// segments. 884 void flush(); 885 886 /// Select a different destination live range. setDest(LiveRange * lr)887 void setDest(LiveRange *lr) { 888 if (LR != lr && isDirty()) 889 flush(); 890 LR = lr; 891 } 892 893 /// Get the current destination live range. getDest()894 LiveRange *getDest() const { return LR; } 895 896 void dump() const; 897 void print(raw_ostream&) const; 898 }; 899 900 inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) { 901 X.print(OS); 902 return OS; 903 } 904 905 /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a 906 /// LiveInterval into equivalence clases of connected components. A 907 /// LiveInterval that has multiple connected components can be broken into 908 /// multiple LiveIntervals. 909 /// 910 /// Given a LiveInterval that may have multiple connected components, run: 911 /// 912 /// unsigned numComps = ConEQ.Classify(LI); 913 /// if (numComps > 1) { 914 /// // allocate numComps-1 new LiveIntervals into LIS[1..] 915 /// ConEQ.Distribute(LIS); 916 /// } 917 918 class ConnectedVNInfoEqClasses { 919 LiveIntervals &LIS; 920 IntEqClasses EqClass; 921 922 public: ConnectedVNInfoEqClasses(LiveIntervals & lis)923 explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {} 924 925 /// Classify the values in \p LR into connected components. 926 /// Returns the number of connected components. 927 unsigned Classify(const LiveRange &LR); 928 929 /// getEqClass - Classify creates equivalence classes numbered 0..N. Return 930 /// the equivalence class assigned the VNI. getEqClass(const VNInfo * VNI)931 unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; } 932 933 /// Distribute values in \p LI into a separate LiveIntervals 934 /// for each connected component. LIV must have an empty LiveInterval for 935 /// each additional connected component. The first connected component is 936 /// left in \p LI. 937 void Distribute(LiveInterval &LI, LiveInterval *LIV[], 938 MachineRegisterInfo &MRI); 939 }; 940 941 } // end namespace llvm 942 943 #endif // LLVM_CODEGEN_LIVEINTERVAL_H 944