1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitAnd, visitOr, and visitXor functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombine.h"
15 #include "llvm/Intrinsics.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Support/ConstantRange.h"
18 #include "llvm/Support/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21 
22 
23 /// AddOne - Add one to a ConstantInt.
AddOne(Constant * C)24 static Constant *AddOne(Constant *C) {
25   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
26 }
27 /// SubOne - Subtract one from a ConstantInt.
SubOne(ConstantInt * C)28 static Constant *SubOne(ConstantInt *C) {
29   return ConstantInt::get(C->getContext(), C->getValue()-1);
30 }
31 
32 /// isFreeToInvert - Return true if the specified value is free to invert (apply
33 /// ~ to).  This happens in cases where the ~ can be eliminated.
isFreeToInvert(Value * V)34 static inline bool isFreeToInvert(Value *V) {
35   // ~(~(X)) -> X.
36   if (BinaryOperator::isNot(V))
37     return true;
38 
39   // Constants can be considered to be not'ed values.
40   if (isa<ConstantInt>(V))
41     return true;
42 
43   // Compares can be inverted if they have a single use.
44   if (CmpInst *CI = dyn_cast<CmpInst>(V))
45     return CI->hasOneUse();
46 
47   return false;
48 }
49 
dyn_castNotVal(Value * V)50 static inline Value *dyn_castNotVal(Value *V) {
51   // If this is not(not(x)) don't return that this is a not: we want the two
52   // not's to be folded first.
53   if (BinaryOperator::isNot(V)) {
54     Value *Operand = BinaryOperator::getNotArgument(V);
55     if (!isFreeToInvert(Operand))
56       return Operand;
57   }
58 
59   // Constants can be considered to be not'ed values...
60   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
61     return ConstantInt::get(C->getType(), ~C->getValue());
62   return 0;
63 }
64 
65 
66 /// getICmpCode - Encode a icmp predicate into a three bit mask.  These bits
67 /// are carefully arranged to allow folding of expressions such as:
68 ///
69 ///      (A < B) | (A > B) --> (A != B)
70 ///
71 /// Note that this is only valid if the first and second predicates have the
72 /// same sign. Is illegal to do: (A u< B) | (A s> B)
73 ///
74 /// Three bits are used to represent the condition, as follows:
75 ///   0  A > B
76 ///   1  A == B
77 ///   2  A < B
78 ///
79 /// <=>  Value  Definition
80 /// 000     0   Always false
81 /// 001     1   A >  B
82 /// 010     2   A == B
83 /// 011     3   A >= B
84 /// 100     4   A <  B
85 /// 101     5   A != B
86 /// 110     6   A <= B
87 /// 111     7   Always true
88 ///
getICmpCode(const ICmpInst * ICI)89 static unsigned getICmpCode(const ICmpInst *ICI) {
90   switch (ICI->getPredicate()) {
91     // False -> 0
92   case ICmpInst::ICMP_UGT: return 1;  // 001
93   case ICmpInst::ICMP_SGT: return 1;  // 001
94   case ICmpInst::ICMP_EQ:  return 2;  // 010
95   case ICmpInst::ICMP_UGE: return 3;  // 011
96   case ICmpInst::ICMP_SGE: return 3;  // 011
97   case ICmpInst::ICMP_ULT: return 4;  // 100
98   case ICmpInst::ICMP_SLT: return 4;  // 100
99   case ICmpInst::ICMP_NE:  return 5;  // 101
100   case ICmpInst::ICMP_ULE: return 6;  // 110
101   case ICmpInst::ICMP_SLE: return 6;  // 110
102     // True -> 7
103   default:
104     llvm_unreachable("Invalid ICmp predicate!");
105     return 0;
106   }
107 }
108 
109 /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
110 /// predicate into a three bit mask. It also returns whether it is an ordered
111 /// predicate by reference.
getFCmpCode(FCmpInst::Predicate CC,bool & isOrdered)112 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
113   isOrdered = false;
114   switch (CC) {
115   case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
116   case FCmpInst::FCMP_UNO:                   return 0;  // 000
117   case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
118   case FCmpInst::FCMP_UGT:                   return 1;  // 001
119   case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
120   case FCmpInst::FCMP_UEQ:                   return 2;  // 010
121   case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
122   case FCmpInst::FCMP_UGE:                   return 3;  // 011
123   case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
124   case FCmpInst::FCMP_ULT:                   return 4;  // 100
125   case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
126   case FCmpInst::FCMP_UNE:                   return 5;  // 101
127   case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
128   case FCmpInst::FCMP_ULE:                   return 6;  // 110
129     // True -> 7
130   default:
131     // Not expecting FCMP_FALSE and FCMP_TRUE;
132     llvm_unreachable("Unexpected FCmp predicate!");
133     return 0;
134   }
135 }
136 
137 /// getICmpValue - This is the complement of getICmpCode, which turns an
138 /// opcode and two operands into either a constant true or false, or a brand
139 /// new ICmp instruction. The sign is passed in to determine which kind
140 /// of predicate to use in the new icmp instruction.
getICmpValue(bool Sign,unsigned Code,Value * LHS,Value * RHS,InstCombiner::BuilderTy * Builder)141 static Value *getICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
142                            InstCombiner::BuilderTy *Builder) {
143   CmpInst::Predicate Pred;
144   switch (Code) {
145   default: assert(0 && "Illegal ICmp code!");
146   case 0: // False.
147     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
148   case 1: Pred = Sign ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
149   case 2: Pred = ICmpInst::ICMP_EQ; break;
150   case 3: Pred = Sign ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
151   case 4: Pred = Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
152   case 5: Pred = ICmpInst::ICMP_NE; break;
153   case 6: Pred = Sign ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
154   case 7: // True.
155     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
156   }
157   return Builder->CreateICmp(Pred, LHS, RHS);
158 }
159 
160 /// getFCmpValue - This is the complement of getFCmpCode, which turns an
161 /// opcode and two operands into either a FCmp instruction. isordered is passed
162 /// in to determine which kind of predicate to use in the new fcmp instruction.
getFCmpValue(bool isordered,unsigned code,Value * LHS,Value * RHS,InstCombiner::BuilderTy * Builder)163 static Value *getFCmpValue(bool isordered, unsigned code,
164                            Value *LHS, Value *RHS,
165                            InstCombiner::BuilderTy *Builder) {
166   CmpInst::Predicate Pred;
167   switch (code) {
168   default: assert(0 && "Illegal FCmp code!");
169   case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
170   case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
171   case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
172   case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
173   case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
174   case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
175   case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
176   case 7:
177     if (!isordered) return ConstantInt::getTrue(LHS->getContext());
178     Pred = FCmpInst::FCMP_ORD; break;
179   }
180   return Builder->CreateFCmp(Pred, LHS, RHS);
181 }
182 
183 /// PredicatesFoldable - Return true if both predicates match sign or if at
184 /// least one of them is an equality comparison (which is signless).
PredicatesFoldable(ICmpInst::Predicate p1,ICmpInst::Predicate p2)185 static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
186   return (CmpInst::isSigned(p1) == CmpInst::isSigned(p2)) ||
187          (CmpInst::isSigned(p1) && ICmpInst::isEquality(p2)) ||
188          (CmpInst::isSigned(p2) && ICmpInst::isEquality(p1));
189 }
190 
191 // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
192 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
193 // guaranteed to be a binary operator.
OptAndOp(Instruction * Op,ConstantInt * OpRHS,ConstantInt * AndRHS,BinaryOperator & TheAnd)194 Instruction *InstCombiner::OptAndOp(Instruction *Op,
195                                     ConstantInt *OpRHS,
196                                     ConstantInt *AndRHS,
197                                     BinaryOperator &TheAnd) {
198   Value *X = Op->getOperand(0);
199   Constant *Together = 0;
200   if (!Op->isShift())
201     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
202 
203   switch (Op->getOpcode()) {
204   case Instruction::Xor:
205     if (Op->hasOneUse()) {
206       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
207       Value *And = Builder->CreateAnd(X, AndRHS);
208       And->takeName(Op);
209       return BinaryOperator::CreateXor(And, Together);
210     }
211     break;
212   case Instruction::Or:
213     if (Op->hasOneUse()){
214       if (Together != OpRHS) {
215         // (X | C1) & C2 --> (X | (C1&C2)) & C2
216         Value *Or = Builder->CreateOr(X, Together);
217         Or->takeName(Op);
218         return BinaryOperator::CreateAnd(Or, AndRHS);
219       }
220 
221       ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
222       if (TogetherCI && !TogetherCI->isZero()){
223         // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
224         // NOTE: This reduces the number of bits set in the & mask, which
225         // can expose opportunities for store narrowing.
226         Together = ConstantExpr::getXor(AndRHS, Together);
227         Value *And = Builder->CreateAnd(X, Together);
228         And->takeName(Op);
229         return BinaryOperator::CreateOr(And, OpRHS);
230       }
231     }
232 
233     break;
234   case Instruction::Add:
235     if (Op->hasOneUse()) {
236       // Adding a one to a single bit bit-field should be turned into an XOR
237       // of the bit.  First thing to check is to see if this AND is with a
238       // single bit constant.
239       const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
240 
241       // If there is only one bit set.
242       if (AndRHSV.isPowerOf2()) {
243         // Ok, at this point, we know that we are masking the result of the
244         // ADD down to exactly one bit.  If the constant we are adding has
245         // no bits set below this bit, then we can eliminate the ADD.
246         const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
247 
248         // Check to see if any bits below the one bit set in AndRHSV are set.
249         if ((AddRHS & (AndRHSV-1)) == 0) {
250           // If not, the only thing that can effect the output of the AND is
251           // the bit specified by AndRHSV.  If that bit is set, the effect of
252           // the XOR is to toggle the bit.  If it is clear, then the ADD has
253           // no effect.
254           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
255             TheAnd.setOperand(0, X);
256             return &TheAnd;
257           } else {
258             // Pull the XOR out of the AND.
259             Value *NewAnd = Builder->CreateAnd(X, AndRHS);
260             NewAnd->takeName(Op);
261             return BinaryOperator::CreateXor(NewAnd, AndRHS);
262           }
263         }
264       }
265     }
266     break;
267 
268   case Instruction::Shl: {
269     // We know that the AND will not produce any of the bits shifted in, so if
270     // the anded constant includes them, clear them now!
271     //
272     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
273     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
274     APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
275     ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
276                                        AndRHS->getValue() & ShlMask);
277 
278     if (CI->getValue() == ShlMask)
279       // Masking out bits that the shift already masks.
280       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
281 
282     if (CI != AndRHS) {                  // Reducing bits set in and.
283       TheAnd.setOperand(1, CI);
284       return &TheAnd;
285     }
286     break;
287   }
288   case Instruction::LShr: {
289     // We know that the AND will not produce any of the bits shifted in, so if
290     // the anded constant includes them, clear them now!  This only applies to
291     // unsigned shifts, because a signed shr may bring in set bits!
292     //
293     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
294     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
295     APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
296     ConstantInt *CI = ConstantInt::get(Op->getContext(),
297                                        AndRHS->getValue() & ShrMask);
298 
299     if (CI->getValue() == ShrMask)
300       // Masking out bits that the shift already masks.
301       return ReplaceInstUsesWith(TheAnd, Op);
302 
303     if (CI != AndRHS) {
304       TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
305       return &TheAnd;
306     }
307     break;
308   }
309   case Instruction::AShr:
310     // Signed shr.
311     // See if this is shifting in some sign extension, then masking it out
312     // with an and.
313     if (Op->hasOneUse()) {
314       uint32_t BitWidth = AndRHS->getType()->getBitWidth();
315       uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
316       APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
317       Constant *C = ConstantInt::get(Op->getContext(),
318                                      AndRHS->getValue() & ShrMask);
319       if (C == AndRHS) {          // Masking out bits shifted in.
320         // (Val ashr C1) & C2 -> (Val lshr C1) & C2
321         // Make the argument unsigned.
322         Value *ShVal = Op->getOperand(0);
323         ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
324         return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
325       }
326     }
327     break;
328   }
329   return 0;
330 }
331 
332 
333 /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
334 /// true, otherwise (V < Lo || V >= Hi).  In practice, we emit the more efficient
335 /// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
336 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
337 /// insert new instructions.
InsertRangeTest(Value * V,Constant * Lo,Constant * Hi,bool isSigned,bool Inside)338 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
339                                      bool isSigned, bool Inside) {
340   assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
341             ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
342          "Lo is not <= Hi in range emission code!");
343 
344   if (Inside) {
345     if (Lo == Hi)  // Trivially false.
346       return ConstantInt::getFalse(V->getContext());
347 
348     // V >= Min && V < Hi --> V < Hi
349     if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
350       ICmpInst::Predicate pred = (isSigned ?
351         ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
352       return Builder->CreateICmp(pred, V, Hi);
353     }
354 
355     // Emit V-Lo <u Hi-Lo
356     Constant *NegLo = ConstantExpr::getNeg(Lo);
357     Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
358     Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
359     return Builder->CreateICmpULT(Add, UpperBound);
360   }
361 
362   if (Lo == Hi)  // Trivially true.
363     return ConstantInt::getTrue(V->getContext());
364 
365   // V < Min || V >= Hi -> V > Hi-1
366   Hi = SubOne(cast<ConstantInt>(Hi));
367   if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
368     ICmpInst::Predicate pred = (isSigned ?
369         ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
370     return Builder->CreateICmp(pred, V, Hi);
371   }
372 
373   // Emit V-Lo >u Hi-1-Lo
374   // Note that Hi has already had one subtracted from it, above.
375   ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
376   Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
377   Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
378   return Builder->CreateICmpUGT(Add, LowerBound);
379 }
380 
381 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
382 // any number of 0s on either side.  The 1s are allowed to wrap from LSB to
383 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
384 // not, since all 1s are not contiguous.
isRunOfOnes(ConstantInt * Val,uint32_t & MB,uint32_t & ME)385 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
386   const APInt& V = Val->getValue();
387   uint32_t BitWidth = Val->getType()->getBitWidth();
388   if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
389 
390   // look for the first zero bit after the run of ones
391   MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
392   // look for the first non-zero bit
393   ME = V.getActiveBits();
394   return true;
395 }
396 
397 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
398 /// where isSub determines whether the operator is a sub.  If we can fold one of
399 /// the following xforms:
400 ///
401 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
402 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
403 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
404 ///
405 /// return (A +/- B).
406 ///
FoldLogicalPlusAnd(Value * LHS,Value * RHS,ConstantInt * Mask,bool isSub,Instruction & I)407 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
408                                         ConstantInt *Mask, bool isSub,
409                                         Instruction &I) {
410   Instruction *LHSI = dyn_cast<Instruction>(LHS);
411   if (!LHSI || LHSI->getNumOperands() != 2 ||
412       !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
413 
414   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
415 
416   switch (LHSI->getOpcode()) {
417   default: return 0;
418   case Instruction::And:
419     if (ConstantExpr::getAnd(N, Mask) == Mask) {
420       // If the AndRHS is a power of two minus one (0+1+), this is simple.
421       if ((Mask->getValue().countLeadingZeros() +
422            Mask->getValue().countPopulation()) ==
423           Mask->getValue().getBitWidth())
424         break;
425 
426       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
427       // part, we don't need any explicit masks to take them out of A.  If that
428       // is all N is, ignore it.
429       uint32_t MB = 0, ME = 0;
430       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
431         uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
432         APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
433         if (MaskedValueIsZero(RHS, Mask))
434           break;
435       }
436     }
437     return 0;
438   case Instruction::Or:
439   case Instruction::Xor:
440     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
441     if ((Mask->getValue().countLeadingZeros() +
442          Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
443         && ConstantExpr::getAnd(N, Mask)->isNullValue())
444       break;
445     return 0;
446   }
447 
448   if (isSub)
449     return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
450   return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
451 }
452 
453 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
454 /// One of A and B is considered the mask, the other the value. This is
455 /// described as the "AMask" or "BMask" part of the enum. If the enum
456 /// contains only "Mask", then both A and B can be considered masks.
457 /// If A is the mask, then it was proven, that (A & C) == C. This
458 /// is trivial if C == A, or C == 0. If both A and C are constants, this
459 /// proof is also easy.
460 /// For the following explanations we assume that A is the mask.
461 /// The part "AllOnes" declares, that the comparison is true only
462 /// if (A & B) == A, or all bits of A are set in B.
463 ///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
464 /// The part "AllZeroes" declares, that the comparison is true only
465 /// if (A & B) == 0, or all bits of A are cleared in B.
466 ///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
467 /// The part "Mixed" declares, that (A & B) == C and C might or might not
468 /// contain any number of one bits and zero bits.
469 ///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
470 /// The Part "Not" means, that in above descriptions "==" should be replaced
471 /// by "!=".
472 ///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
473 /// If the mask A contains a single bit, then the following is equivalent:
474 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
475 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
476 enum MaskedICmpType {
477   FoldMskICmp_AMask_AllOnes           =     1,
478   FoldMskICmp_AMask_NotAllOnes        =     2,
479   FoldMskICmp_BMask_AllOnes           =     4,
480   FoldMskICmp_BMask_NotAllOnes        =     8,
481   FoldMskICmp_Mask_AllZeroes          =    16,
482   FoldMskICmp_Mask_NotAllZeroes       =    32,
483   FoldMskICmp_AMask_Mixed             =    64,
484   FoldMskICmp_AMask_NotMixed          =   128,
485   FoldMskICmp_BMask_Mixed             =   256,
486   FoldMskICmp_BMask_NotMixed          =   512
487 };
488 
489 /// return the set of pattern classes (from MaskedICmpType)
490 /// that (icmp SCC (A & B), C) satisfies
getTypeOfMaskedICmp(Value * A,Value * B,Value * C,ICmpInst::Predicate SCC)491 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
492                                     ICmpInst::Predicate SCC)
493 {
494   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
495   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
496   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
497   bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
498   bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
499                     ACst->getValue().isPowerOf2());
500   bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
501                     BCst->getValue().isPowerOf2());
502   unsigned result = 0;
503   if (CCst != 0 && CCst->isZero()) {
504     // if C is zero, then both A and B qualify as mask
505     result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
506                           FoldMskICmp_Mask_AllZeroes |
507                           FoldMskICmp_AMask_Mixed |
508                           FoldMskICmp_BMask_Mixed)
509                        : (FoldMskICmp_Mask_NotAllZeroes |
510                           FoldMskICmp_Mask_NotAllZeroes |
511                           FoldMskICmp_AMask_NotMixed |
512                           FoldMskICmp_BMask_NotMixed));
513     if (icmp_abit)
514       result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
515                             FoldMskICmp_AMask_NotMixed)
516                          : (FoldMskICmp_AMask_AllOnes |
517                             FoldMskICmp_AMask_Mixed));
518     if (icmp_bbit)
519       result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
520                             FoldMskICmp_BMask_NotMixed)
521                          : (FoldMskICmp_BMask_AllOnes |
522                             FoldMskICmp_BMask_Mixed));
523     return result;
524   }
525   if (A == C) {
526     result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
527                           FoldMskICmp_AMask_Mixed)
528                        : (FoldMskICmp_AMask_NotAllOnes |
529                           FoldMskICmp_AMask_NotMixed));
530     if (icmp_abit)
531       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
532                             FoldMskICmp_AMask_NotMixed)
533                          : (FoldMskICmp_Mask_AllZeroes |
534                             FoldMskICmp_AMask_Mixed));
535   }
536   else if (ACst != 0 && CCst != 0 &&
537         ConstantExpr::getAnd(ACst, CCst) == CCst) {
538     result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
539                        : FoldMskICmp_AMask_NotMixed);
540   }
541   if (B == C)
542   {
543     result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
544                           FoldMskICmp_BMask_Mixed)
545                        : (FoldMskICmp_BMask_NotAllOnes |
546                           FoldMskICmp_BMask_NotMixed));
547     if (icmp_bbit)
548       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
549                             FoldMskICmp_BMask_NotMixed)
550                          : (FoldMskICmp_Mask_AllZeroes |
551                             FoldMskICmp_BMask_Mixed));
552   }
553   else if (BCst != 0 && CCst != 0 &&
554         ConstantExpr::getAnd(BCst, CCst) == CCst) {
555     result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
556                        : FoldMskICmp_BMask_NotMixed);
557   }
558   return result;
559 }
560 
561 /// foldLogOpOfMaskedICmpsHelper:
562 /// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
563 /// return the set of pattern classes (from MaskedICmpType)
564 /// that both LHS and RHS satisfy
foldLogOpOfMaskedICmpsHelper(Value * & A,Value * & B,Value * & C,Value * & D,Value * & E,ICmpInst * LHS,ICmpInst * RHS)565 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
566                                              Value*& B, Value*& C,
567                                              Value*& D, Value*& E,
568                                              ICmpInst *LHS, ICmpInst *RHS) {
569   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
570   if (LHSCC != ICmpInst::ICMP_EQ && LHSCC != ICmpInst::ICMP_NE) return 0;
571   if (RHSCC != ICmpInst::ICMP_EQ && RHSCC != ICmpInst::ICMP_NE) return 0;
572   if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
573   // vectors are not (yet?) supported
574   if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
575 
576   // Here comes the tricky part:
577   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
578   // and L11 & L12 == L21 & L22. The same goes for RHS.
579   // Now we must find those components L** and R**, that are equal, so
580   // that we can extract the parameters A, B, C, D, and E for the canonical
581   // above.
582   Value *L1 = LHS->getOperand(0);
583   Value *L2 = LHS->getOperand(1);
584   Value *L11,*L12,*L21,*L22;
585   if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
586     if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
587       L21 = L22 = 0;
588   }
589   else {
590     if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
591       return 0;
592     std::swap(L1, L2);
593     L21 = L22 = 0;
594   }
595 
596   Value *R1 = RHS->getOperand(0);
597   Value *R2 = RHS->getOperand(1);
598   Value *R11,*R12;
599   bool ok = false;
600   if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
601     if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
602       A = R11; D = R12; E = R2; ok = true;
603     }
604     else
605     if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
606       A = R12; D = R11; E = R2; ok = true;
607     }
608   }
609   if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
610     if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
611        A = R11; D = R12; E = R1; ok = true;
612     }
613     else
614     if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
615       A = R12; D = R11; E = R1; ok = true;
616     }
617     else
618       return 0;
619   }
620   if (!ok)
621     return 0;
622 
623   if (L11 == A) {
624     B = L12; C = L2;
625   }
626   else if (L12 == A) {
627     B = L11; C = L2;
628   }
629   else if (L21 == A) {
630     B = L22; C = L1;
631   }
632   else if (L22 == A) {
633     B = L21; C = L1;
634   }
635 
636   unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
637   unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
638   return left_type & right_type;
639 }
640 /// foldLogOpOfMaskedICmps:
641 /// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
642 /// into a single (icmp(A & X) ==/!= Y)
foldLogOpOfMaskedICmps(ICmpInst * LHS,ICmpInst * RHS,ICmpInst::Predicate NEWCC,llvm::InstCombiner::BuilderTy * Builder)643 static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
644                                      ICmpInst::Predicate NEWCC,
645                                      llvm::InstCombiner::BuilderTy* Builder) {
646   Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
647   unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS);
648   if (mask == 0) return 0;
649 
650   if (NEWCC == ICmpInst::ICMP_NE)
651     mask >>= 1; // treat "Not"-states as normal states
652 
653   if (mask & FoldMskICmp_Mask_AllZeroes) {
654     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
655     // -> (icmp eq (A & (B|D)), 0)
656     Value* newOr = Builder->CreateOr(B, D);
657     Value* newAnd = Builder->CreateAnd(A, newOr);
658     // we can't use C as zero, because we might actually handle
659     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
660     // with B and D, having a single bit set
661     Value* zero = Constant::getNullValue(A->getType());
662     return Builder->CreateICmp(NEWCC, newAnd, zero);
663   }
664   else if (mask & FoldMskICmp_BMask_AllOnes) {
665     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
666     // -> (icmp eq (A & (B|D)), (B|D))
667     Value* newOr = Builder->CreateOr(B, D);
668     Value* newAnd = Builder->CreateAnd(A, newOr);
669     return Builder->CreateICmp(NEWCC, newAnd, newOr);
670   }
671   else if (mask & FoldMskICmp_AMask_AllOnes) {
672     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
673     // -> (icmp eq (A & (B&D)), A)
674     Value* newAnd1 = Builder->CreateAnd(B, D);
675     Value* newAnd = Builder->CreateAnd(A, newAnd1);
676     return Builder->CreateICmp(NEWCC, newAnd, A);
677   }
678   else if (mask & FoldMskICmp_BMask_Mixed) {
679     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
680     // We already know that B & C == C && D & E == E.
681     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
682     // C and E, which are shared by both the mask B and the mask D, don't
683     // contradict, then we can transform to
684     // -> (icmp eq (A & (B|D)), (C|E))
685     // Currently, we only handle the case of B, C, D, and E being constant.
686     ConstantInt *BCst = dyn_cast<ConstantInt>(B);
687     if (BCst == 0) return 0;
688     ConstantInt *DCst = dyn_cast<ConstantInt>(D);
689     if (DCst == 0) return 0;
690     // we can't simply use C and E, because we might actually handle
691     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
692     // with B and D, having a single bit set
693 
694     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
695     if (CCst == 0) return 0;
696     if (LHS->getPredicate() != NEWCC)
697       CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
698     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
699     if (ECst == 0) return 0;
700     if (RHS->getPredicate() != NEWCC)
701       ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
702     ConstantInt* MCst = dyn_cast<ConstantInt>(
703       ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
704                            ConstantExpr::getXor(CCst, ECst)) );
705     // if there is a conflict we should actually return a false for the
706     // whole construct
707     if (!MCst->isZero())
708       return 0;
709     Value *newOr1 = Builder->CreateOr(B, D);
710     Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
711     Value *newAnd = Builder->CreateAnd(A, newOr1);
712     return Builder->CreateICmp(NEWCC, newAnd, newOr2);
713   }
714   return 0;
715 }
716 
717 /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
FoldAndOfICmps(ICmpInst * LHS,ICmpInst * RHS)718 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
719   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
720 
721   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
722   if (PredicatesFoldable(LHSCC, RHSCC)) {
723     if (LHS->getOperand(0) == RHS->getOperand(1) &&
724         LHS->getOperand(1) == RHS->getOperand(0))
725       LHS->swapOperands();
726     if (LHS->getOperand(0) == RHS->getOperand(0) &&
727         LHS->getOperand(1) == RHS->getOperand(1)) {
728       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
729       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
730       bool isSigned = LHS->isSigned() || RHS->isSigned();
731       return getICmpValue(isSigned, Code, Op0, Op1, Builder);
732     }
733   }
734 
735   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
736   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
737     return V;
738 
739   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
740   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
741   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
742   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
743   if (LHSCst == 0 || RHSCst == 0) return 0;
744 
745   if (LHSCst == RHSCst && LHSCC == RHSCC) {
746     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
747     // where C is a power of 2
748     if (LHSCC == ICmpInst::ICMP_ULT &&
749         LHSCst->getValue().isPowerOf2()) {
750       Value *NewOr = Builder->CreateOr(Val, Val2);
751       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
752     }
753 
754     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
755     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
756       Value *NewOr = Builder->CreateOr(Val, Val2);
757       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
758     }
759 
760     // (icmp slt A, 0) & (icmp slt B, 0) --> (icmp slt (A&B), 0)
761     if (LHSCC == ICmpInst::ICMP_SLT && LHSCst->isZero()) {
762       Value *NewAnd = Builder->CreateAnd(Val, Val2);
763       return Builder->CreateICmp(LHSCC, NewAnd, LHSCst);
764     }
765 
766     // (icmp sgt A, -1) & (icmp sgt B, -1) --> (icmp sgt (A|B), -1)
767     if (LHSCC == ICmpInst::ICMP_SGT && LHSCst->isAllOnesValue()) {
768       Value *NewOr = Builder->CreateOr(Val, Val2);
769       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
770     }
771   }
772 
773   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
774   // where CMAX is the all ones value for the truncated type,
775   // iff the lower bits of C2 and CA are zero.
776   if (LHSCC == RHSCC && ICmpInst::isEquality(LHSCC) &&
777       LHS->hasOneUse() && RHS->hasOneUse()) {
778     Value *V;
779     ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
780 
781     // (trunc x) == C1 & (and x, CA) == C2
782     if (match(Val2, m_Trunc(m_Value(V))) &&
783         match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
784       SmallCst = RHSCst;
785       BigCst = LHSCst;
786     }
787     // (and x, CA) == C2 & (trunc x) == C1
788     else if (match(Val, m_Trunc(m_Value(V))) &&
789              match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
790       SmallCst = LHSCst;
791       BigCst = RHSCst;
792     }
793 
794     if (SmallCst && BigCst) {
795       unsigned BigBitSize = BigCst->getType()->getBitWidth();
796       unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
797 
798       // Check that the low bits are zero.
799       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
800       if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
801         Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
802         APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
803         Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
804         return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
805       }
806     }
807   }
808 
809   // From here on, we only handle:
810   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
811   if (Val != Val2) return 0;
812 
813   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
814   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
815       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
816       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
817       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
818     return 0;
819 
820   // Make a constant range that's the intersection of the two icmp ranges.
821   // If the intersection is empty, we know that the result is false.
822   ConstantRange LHSRange =
823     ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
824   ConstantRange RHSRange =
825     ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
826 
827   if (LHSRange.intersectWith(RHSRange).isEmptySet())
828     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
829 
830   // We can't fold (ugt x, C) & (sgt x, C2).
831   if (!PredicatesFoldable(LHSCC, RHSCC))
832     return 0;
833 
834   // Ensure that the larger constant is on the RHS.
835   bool ShouldSwap;
836   if (CmpInst::isSigned(LHSCC) ||
837       (ICmpInst::isEquality(LHSCC) &&
838        CmpInst::isSigned(RHSCC)))
839     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
840   else
841     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
842 
843   if (ShouldSwap) {
844     std::swap(LHS, RHS);
845     std::swap(LHSCst, RHSCst);
846     std::swap(LHSCC, RHSCC);
847   }
848 
849   // At this point, we know we have two icmp instructions
850   // comparing a value against two constants and and'ing the result
851   // together.  Because of the above check, we know that we only have
852   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
853   // (from the icmp folding check above), that the two constants
854   // are not equal and that the larger constant is on the RHS
855   assert(LHSCst != RHSCst && "Compares not folded above?");
856 
857   switch (LHSCC) {
858   default: llvm_unreachable("Unknown integer condition code!");
859   case ICmpInst::ICMP_EQ:
860     switch (RHSCC) {
861     default: llvm_unreachable("Unknown integer condition code!");
862     case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
863     case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
864     case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
865       return LHS;
866     }
867   case ICmpInst::ICMP_NE:
868     switch (RHSCC) {
869     default: llvm_unreachable("Unknown integer condition code!");
870     case ICmpInst::ICMP_ULT:
871       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
872         return Builder->CreateICmpULT(Val, LHSCst);
873       break;                        // (X != 13 & X u< 15) -> no change
874     case ICmpInst::ICMP_SLT:
875       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
876         return Builder->CreateICmpSLT(Val, LHSCst);
877       break;                        // (X != 13 & X s< 15) -> no change
878     case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
879     case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
880     case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
881       return RHS;
882     case ICmpInst::ICMP_NE:
883       if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
884         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
885         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
886         return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
887       }
888       break;                        // (X != 13 & X != 15) -> no change
889     }
890     break;
891   case ICmpInst::ICMP_ULT:
892     switch (RHSCC) {
893     default: llvm_unreachable("Unknown integer condition code!");
894     case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
895     case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
896       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
897     case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
898       break;
899     case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
900     case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
901       return LHS;
902     case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
903       break;
904     }
905     break;
906   case ICmpInst::ICMP_SLT:
907     switch (RHSCC) {
908     default: llvm_unreachable("Unknown integer condition code!");
909     case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
910       break;
911     case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
912     case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
913       return LHS;
914     case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
915       break;
916     }
917     break;
918   case ICmpInst::ICMP_UGT:
919     switch (RHSCC) {
920     default: llvm_unreachable("Unknown integer condition code!");
921     case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
922     case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
923       return RHS;
924     case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
925       break;
926     case ICmpInst::ICMP_NE:
927       if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
928         return Builder->CreateICmp(LHSCC, Val, RHSCst);
929       break;                        // (X u> 13 & X != 15) -> no change
930     case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
931       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
932     case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
933       break;
934     }
935     break;
936   case ICmpInst::ICMP_SGT:
937     switch (RHSCC) {
938     default: llvm_unreachable("Unknown integer condition code!");
939     case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
940     case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
941       return RHS;
942     case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
943       break;
944     case ICmpInst::ICMP_NE:
945       if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
946         return Builder->CreateICmp(LHSCC, Val, RHSCst);
947       break;                        // (X s> 13 & X != 15) -> no change
948     case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
949       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
950     case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
951       break;
952     }
953     break;
954   }
955 
956   return 0;
957 }
958 
959 /// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
960 /// instcombine, this returns a Value which should already be inserted into the
961 /// function.
FoldAndOfFCmps(FCmpInst * LHS,FCmpInst * RHS)962 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
963   if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
964       RHS->getPredicate() == FCmpInst::FCMP_ORD) {
965     // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
966     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
967       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
968         // If either of the constants are nans, then the whole thing returns
969         // false.
970         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
971           return ConstantInt::getFalse(LHS->getContext());
972         return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
973       }
974 
975     // Handle vector zeros.  This occurs because the canonical form of
976     // "fcmp ord x,x" is "fcmp ord x, 0".
977     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
978         isa<ConstantAggregateZero>(RHS->getOperand(1)))
979       return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
980     return 0;
981   }
982 
983   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
984   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
985   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
986 
987 
988   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
989     // Swap RHS operands to match LHS.
990     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
991     std::swap(Op1LHS, Op1RHS);
992   }
993 
994   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
995     // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
996     if (Op0CC == Op1CC)
997       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
998     if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
999       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1000     if (Op0CC == FCmpInst::FCMP_TRUE)
1001       return RHS;
1002     if (Op1CC == FCmpInst::FCMP_TRUE)
1003       return LHS;
1004 
1005     bool Op0Ordered;
1006     bool Op1Ordered;
1007     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1008     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1009     if (Op1Pred == 0) {
1010       std::swap(LHS, RHS);
1011       std::swap(Op0Pred, Op1Pred);
1012       std::swap(Op0Ordered, Op1Ordered);
1013     }
1014     if (Op0Pred == 0) {
1015       // uno && ueq -> uno && (uno || eq) -> ueq
1016       // ord && olt -> ord && (ord && lt) -> olt
1017       if (Op0Ordered == Op1Ordered)
1018         return RHS;
1019 
1020       // uno && oeq -> uno && (ord && eq) -> false
1021       // uno && ord -> false
1022       if (!Op0Ordered)
1023         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1024       // ord && ueq -> ord && (uno || eq) -> oeq
1025       return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
1026     }
1027   }
1028 
1029   return 0;
1030 }
1031 
1032 
visitAnd(BinaryOperator & I)1033 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1034   bool Changed = SimplifyAssociativeOrCommutative(I);
1035   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1036 
1037   if (Value *V = SimplifyAndInst(Op0, Op1, TD))
1038     return ReplaceInstUsesWith(I, V);
1039 
1040   // (A|B)&(A|C) -> A|(B&C) etc
1041   if (Value *V = SimplifyUsingDistributiveLaws(I))
1042     return ReplaceInstUsesWith(I, V);
1043 
1044   // See if we can simplify any instructions used by the instruction whose sole
1045   // purpose is to compute bits we don't care about.
1046   if (SimplifyDemandedInstructionBits(I))
1047     return &I;
1048 
1049   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1050     const APInt &AndRHSMask = AndRHS->getValue();
1051 
1052     // Optimize a variety of ((val OP C1) & C2) combinations...
1053     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1054       Value *Op0LHS = Op0I->getOperand(0);
1055       Value *Op0RHS = Op0I->getOperand(1);
1056       switch (Op0I->getOpcode()) {
1057       default: break;
1058       case Instruction::Xor:
1059       case Instruction::Or: {
1060         // If the mask is only needed on one incoming arm, push it up.
1061         if (!Op0I->hasOneUse()) break;
1062 
1063         APInt NotAndRHS(~AndRHSMask);
1064         if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
1065           // Not masking anything out for the LHS, move to RHS.
1066           Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
1067                                              Op0RHS->getName()+".masked");
1068           return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
1069         }
1070         if (!isa<Constant>(Op0RHS) &&
1071             MaskedValueIsZero(Op0RHS, NotAndRHS)) {
1072           // Not masking anything out for the RHS, move to LHS.
1073           Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
1074                                              Op0LHS->getName()+".masked");
1075           return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
1076         }
1077 
1078         break;
1079       }
1080       case Instruction::Add:
1081         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1082         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1083         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1084         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
1085           return BinaryOperator::CreateAnd(V, AndRHS);
1086         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
1087           return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
1088         break;
1089 
1090       case Instruction::Sub:
1091         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1092         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1093         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1094         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
1095           return BinaryOperator::CreateAnd(V, AndRHS);
1096 
1097         // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1098         // has 1's for all bits that the subtraction with A might affect.
1099         if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
1100           uint32_t BitWidth = AndRHSMask.getBitWidth();
1101           uint32_t Zeros = AndRHSMask.countLeadingZeros();
1102           APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
1103 
1104           if (MaskedValueIsZero(Op0LHS, Mask)) {
1105             Value *NewNeg = Builder->CreateNeg(Op0RHS);
1106             return BinaryOperator::CreateAnd(NewNeg, AndRHS);
1107           }
1108         }
1109         break;
1110 
1111       case Instruction::Shl:
1112       case Instruction::LShr:
1113         // (1 << x) & 1 --> zext(x == 0)
1114         // (1 >> x) & 1 --> zext(x == 0)
1115         if (AndRHSMask == 1 && Op0LHS == AndRHS) {
1116           Value *NewICmp =
1117             Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
1118           return new ZExtInst(NewICmp, I.getType());
1119         }
1120         break;
1121       }
1122 
1123       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1124         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1125           return Res;
1126     }
1127 
1128     // If this is an integer truncation, and if the source is an 'and' with
1129     // immediate, transform it.  This frequently occurs for bitfield accesses.
1130     {
1131       Value *X = 0; ConstantInt *YC = 0;
1132       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1133         // Change: and (trunc (and X, YC) to T), C2
1134         // into  : and (trunc X to T), trunc(YC) & C2
1135         // This will fold the two constants together, which may allow
1136         // other simplifications.
1137         Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
1138         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1139         C3 = ConstantExpr::getAnd(C3, AndRHS);
1140         return BinaryOperator::CreateAnd(NewCast, C3);
1141       }
1142     }
1143 
1144     // Try to fold constant and into select arguments.
1145     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1146       if (Instruction *R = FoldOpIntoSelect(I, SI))
1147         return R;
1148     if (isa<PHINode>(Op0))
1149       if (Instruction *NV = FoldOpIntoPhi(I))
1150         return NV;
1151   }
1152 
1153 
1154   // (~A & ~B) == (~(A | B)) - De Morgan's Law
1155   if (Value *Op0NotVal = dyn_castNotVal(Op0))
1156     if (Value *Op1NotVal = dyn_castNotVal(Op1))
1157       if (Op0->hasOneUse() && Op1->hasOneUse()) {
1158         Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
1159                                       I.getName()+".demorgan");
1160         return BinaryOperator::CreateNot(Or);
1161       }
1162 
1163   {
1164     Value *A = 0, *B = 0, *C = 0, *D = 0;
1165     // (A|B) & ~(A&B) -> A^B
1166     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1167         match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1168         ((A == C && B == D) || (A == D && B == C)))
1169       return BinaryOperator::CreateXor(A, B);
1170 
1171     // ~(A&B) & (A|B) -> A^B
1172     if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1173         match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1174         ((A == C && B == D) || (A == D && B == C)))
1175       return BinaryOperator::CreateXor(A, B);
1176 
1177     // A&(A^B) => A & ~B
1178     {
1179       Value *tmpOp0 = Op0;
1180       Value *tmpOp1 = Op1;
1181       if (Op0->hasOneUse() &&
1182           match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
1183         if (A == Op1 || B == Op1 ) {
1184           tmpOp1 = Op0;
1185           tmpOp0 = Op1;
1186           // Simplify below
1187         }
1188       }
1189 
1190       if (tmpOp1->hasOneUse() &&
1191           match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
1192         if (B == tmpOp0) {
1193           std::swap(A, B);
1194         }
1195         // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
1196         // A is originally -1 (or a vector of -1 and undefs), then we enter
1197         // an endless loop. By checking that A is non-constant we ensure that
1198         // we will never get to the loop.
1199         if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
1200           return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
1201       }
1202     }
1203 
1204     // (A&((~A)|B)) -> A&B
1205     if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
1206         match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
1207       return BinaryOperator::CreateAnd(A, Op1);
1208     if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
1209         match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
1210       return BinaryOperator::CreateAnd(A, Op0);
1211   }
1212 
1213   if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
1214     if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
1215       if (Value *Res = FoldAndOfICmps(LHS, RHS))
1216         return ReplaceInstUsesWith(I, Res);
1217 
1218   // If and'ing two fcmp, try combine them into one.
1219   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1220     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1221       if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1222         return ReplaceInstUsesWith(I, Res);
1223 
1224 
1225   // fold (and (cast A), (cast B)) -> (cast (and A, B))
1226   if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
1227     if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
1228       Type *SrcTy = Op0C->getOperand(0)->getType();
1229       if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
1230           SrcTy == Op1C->getOperand(0)->getType() &&
1231           SrcTy->isIntOrIntVectorTy()) {
1232         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
1233 
1234         // Only do this if the casts both really cause code to be generated.
1235         if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1236             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1237           Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
1238           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
1239         }
1240 
1241         // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
1242         // cast is otherwise not optimizable.  This happens for vector sexts.
1243         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1244           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
1245             if (Value *Res = FoldAndOfICmps(LHS, RHS))
1246               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1247 
1248         // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
1249         // cast is otherwise not optimizable.  This happens for vector sexts.
1250         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1251           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
1252             if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1253               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1254       }
1255     }
1256 
1257   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
1258   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1259     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1260       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1261           SI0->getOperand(1) == SI1->getOperand(1) &&
1262           (SI0->hasOneUse() || SI1->hasOneUse())) {
1263         Value *NewOp =
1264           Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
1265                              SI0->getName());
1266         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1267                                       SI1->getOperand(1));
1268       }
1269   }
1270 
1271   return Changed ? &I : 0;
1272 }
1273 
1274 /// CollectBSwapParts - Analyze the specified subexpression and see if it is
1275 /// capable of providing pieces of a bswap.  The subexpression provides pieces
1276 /// of a bswap if it is proven that each of the non-zero bytes in the output of
1277 /// the expression came from the corresponding "byte swapped" byte in some other
1278 /// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
1279 /// we know that the expression deposits the low byte of %X into the high byte
1280 /// of the bswap result and that all other bytes are zero.  This expression is
1281 /// accepted, the high byte of ByteValues is set to X to indicate a correct
1282 /// match.
1283 ///
1284 /// This function returns true if the match was unsuccessful and false if so.
1285 /// On entry to the function the "OverallLeftShift" is a signed integer value
1286 /// indicating the number of bytes that the subexpression is later shifted.  For
1287 /// example, if the expression is later right shifted by 16 bits, the
1288 /// OverallLeftShift value would be -2 on entry.  This is used to specify which
1289 /// byte of ByteValues is actually being set.
1290 ///
1291 /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
1292 /// byte is masked to zero by a user.  For example, in (X & 255), X will be
1293 /// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
1294 /// this function to working on up to 32-byte (256 bit) values.  ByteMask is
1295 /// always in the local (OverallLeftShift) coordinate space.
1296 ///
CollectBSwapParts(Value * V,int OverallLeftShift,uint32_t ByteMask,SmallVector<Value *,8> & ByteValues)1297 static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
1298                               SmallVector<Value*, 8> &ByteValues) {
1299   if (Instruction *I = dyn_cast<Instruction>(V)) {
1300     // If this is an or instruction, it may be an inner node of the bswap.
1301     if (I->getOpcode() == Instruction::Or) {
1302       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1303                                ByteValues) ||
1304              CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
1305                                ByteValues);
1306     }
1307 
1308     // If this is a logical shift by a constant multiple of 8, recurse with
1309     // OverallLeftShift and ByteMask adjusted.
1310     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1311       unsigned ShAmt =
1312         cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1313       // Ensure the shift amount is defined and of a byte value.
1314       if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
1315         return true;
1316 
1317       unsigned ByteShift = ShAmt >> 3;
1318       if (I->getOpcode() == Instruction::Shl) {
1319         // X << 2 -> collect(X, +2)
1320         OverallLeftShift += ByteShift;
1321         ByteMask >>= ByteShift;
1322       } else {
1323         // X >>u 2 -> collect(X, -2)
1324         OverallLeftShift -= ByteShift;
1325         ByteMask <<= ByteShift;
1326         ByteMask &= (~0U >> (32-ByteValues.size()));
1327       }
1328 
1329       if (OverallLeftShift >= (int)ByteValues.size()) return true;
1330       if (OverallLeftShift <= -(int)ByteValues.size()) return true;
1331 
1332       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1333                                ByteValues);
1334     }
1335 
1336     // If this is a logical 'and' with a mask that clears bytes, clear the
1337     // corresponding bytes in ByteMask.
1338     if (I->getOpcode() == Instruction::And &&
1339         isa<ConstantInt>(I->getOperand(1))) {
1340       // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
1341       unsigned NumBytes = ByteValues.size();
1342       APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
1343       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1344 
1345       for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
1346         // If this byte is masked out by a later operation, we don't care what
1347         // the and mask is.
1348         if ((ByteMask & (1 << i)) == 0)
1349           continue;
1350 
1351         // If the AndMask is all zeros for this byte, clear the bit.
1352         APInt MaskB = AndMask & Byte;
1353         if (MaskB == 0) {
1354           ByteMask &= ~(1U << i);
1355           continue;
1356         }
1357 
1358         // If the AndMask is not all ones for this byte, it's not a bytezap.
1359         if (MaskB != Byte)
1360           return true;
1361 
1362         // Otherwise, this byte is kept.
1363       }
1364 
1365       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1366                                ByteValues);
1367     }
1368   }
1369 
1370   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1371   // the input value to the bswap.  Some observations: 1) if more than one byte
1372   // is demanded from this input, then it could not be successfully assembled
1373   // into a byteswap.  At least one of the two bytes would not be aligned with
1374   // their ultimate destination.
1375   if (!isPowerOf2_32(ByteMask)) return true;
1376   unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
1377 
1378   // 2) The input and ultimate destinations must line up: if byte 3 of an i32
1379   // is demanded, it needs to go into byte 0 of the result.  This means that the
1380   // byte needs to be shifted until it lands in the right byte bucket.  The
1381   // shift amount depends on the position: if the byte is coming from the high
1382   // part of the value (e.g. byte 3) then it must be shifted right.  If from the
1383   // low part, it must be shifted left.
1384   unsigned DestByteNo = InputByteNo + OverallLeftShift;
1385   if (InputByteNo < ByteValues.size()/2) {
1386     if (ByteValues.size()-1-DestByteNo != InputByteNo)
1387       return true;
1388   } else {
1389     if (ByteValues.size()-1-DestByteNo != InputByteNo)
1390       return true;
1391   }
1392 
1393   // If the destination byte value is already defined, the values are or'd
1394   // together, which isn't a bswap (unless it's an or of the same bits).
1395   if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
1396     return true;
1397   ByteValues[DestByteNo] = V;
1398   return false;
1399 }
1400 
1401 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
1402 /// If so, insert the new bswap intrinsic and return it.
MatchBSwap(BinaryOperator & I)1403 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
1404   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
1405   if (!ITy || ITy->getBitWidth() % 16 ||
1406       // ByteMask only allows up to 32-byte values.
1407       ITy->getBitWidth() > 32*8)
1408     return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
1409 
1410   /// ByteValues - For each byte of the result, we keep track of which value
1411   /// defines each byte.
1412   SmallVector<Value*, 8> ByteValues;
1413   ByteValues.resize(ITy->getBitWidth()/8);
1414 
1415   // Try to find all the pieces corresponding to the bswap.
1416   uint32_t ByteMask = ~0U >> (32-ByteValues.size());
1417   if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
1418     return 0;
1419 
1420   // Check to see if all of the bytes come from the same value.
1421   Value *V = ByteValues[0];
1422   if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
1423 
1424   // Check to make sure that all of the bytes come from the same value.
1425   for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
1426     if (ByteValues[i] != V)
1427       return 0;
1428   Module *M = I.getParent()->getParent()->getParent();
1429   Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
1430   return CallInst::Create(F, V);
1431 }
1432 
1433 /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
1434 /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
1435 /// we can simplify this expression to "cond ? C : D or B".
MatchSelectFromAndOr(Value * A,Value * B,Value * C,Value * D)1436 static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
1437                                          Value *C, Value *D) {
1438   // If A is not a select of -1/0, this cannot match.
1439   Value *Cond = 0;
1440   if (!match(A, m_SExt(m_Value(Cond))) ||
1441       !Cond->getType()->isIntegerTy(1))
1442     return 0;
1443 
1444   // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
1445   if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
1446     return SelectInst::Create(Cond, C, B);
1447   if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
1448     return SelectInst::Create(Cond, C, B);
1449 
1450   // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
1451   if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
1452     return SelectInst::Create(Cond, C, D);
1453   if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
1454     return SelectInst::Create(Cond, C, D);
1455   return 0;
1456 }
1457 
1458 /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
FoldOrOfICmps(ICmpInst * LHS,ICmpInst * RHS)1459 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
1460   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
1461 
1462   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1463   if (PredicatesFoldable(LHSCC, RHSCC)) {
1464     if (LHS->getOperand(0) == RHS->getOperand(1) &&
1465         LHS->getOperand(1) == RHS->getOperand(0))
1466       LHS->swapOperands();
1467     if (LHS->getOperand(0) == RHS->getOperand(0) &&
1468         LHS->getOperand(1) == RHS->getOperand(1)) {
1469       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1470       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1471       bool isSigned = LHS->isSigned() || RHS->isSigned();
1472       return getICmpValue(isSigned, Code, Op0, Op1, Builder);
1473     }
1474   }
1475 
1476   // handle (roughly):
1477   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1478   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder))
1479     return V;
1480 
1481   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1482   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
1483   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
1484   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
1485   if (LHSCst == 0 || RHSCst == 0) return 0;
1486 
1487   if (LHSCst == RHSCst && LHSCC == RHSCC) {
1488     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1489     if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
1490       Value *NewOr = Builder->CreateOr(Val, Val2);
1491       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1492     }
1493 
1494     // (icmp slt A, 0) | (icmp slt B, 0) --> (icmp slt (A|B), 0)
1495     if (LHSCC == ICmpInst::ICMP_SLT && LHSCst->isZero()) {
1496       Value *NewOr = Builder->CreateOr(Val, Val2);
1497       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1498     }
1499 
1500     // (icmp sgt A, -1) | (icmp sgt B, -1) --> (icmp sgt (A&B), -1)
1501     if (LHSCC == ICmpInst::ICMP_SGT && LHSCst->isAllOnesValue()) {
1502       Value *NewAnd = Builder->CreateAnd(Val, Val2);
1503       return Builder->CreateICmp(LHSCC, NewAnd, LHSCst);
1504     }
1505   }
1506 
1507   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
1508   //   iff C2 + CA == C1.
1509   if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
1510     ConstantInt *AddCst;
1511     if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
1512       if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
1513         return Builder->CreateICmpULE(Val, LHSCst);
1514   }
1515 
1516   // From here on, we only handle:
1517   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1518   if (Val != Val2) return 0;
1519 
1520   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1521   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
1522       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
1523       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
1524       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
1525     return 0;
1526 
1527   // We can't fold (ugt x, C) | (sgt x, C2).
1528   if (!PredicatesFoldable(LHSCC, RHSCC))
1529     return 0;
1530 
1531   // Ensure that the larger constant is on the RHS.
1532   bool ShouldSwap;
1533   if (CmpInst::isSigned(LHSCC) ||
1534       (ICmpInst::isEquality(LHSCC) &&
1535        CmpInst::isSigned(RHSCC)))
1536     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
1537   else
1538     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1539 
1540   if (ShouldSwap) {
1541     std::swap(LHS, RHS);
1542     std::swap(LHSCst, RHSCst);
1543     std::swap(LHSCC, RHSCC);
1544   }
1545 
1546   // At this point, we know we have two icmp instructions
1547   // comparing a value against two constants and or'ing the result
1548   // together.  Because of the above check, we know that we only have
1549   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1550   // icmp folding check above), that the two constants are not
1551   // equal.
1552   assert(LHSCst != RHSCst && "Compares not folded above?");
1553 
1554   switch (LHSCC) {
1555   default: llvm_unreachable("Unknown integer condition code!");
1556   case ICmpInst::ICMP_EQ:
1557     switch (RHSCC) {
1558     default: llvm_unreachable("Unknown integer condition code!");
1559     case ICmpInst::ICMP_EQ:
1560       if (LHSCst == SubOne(RHSCst)) {
1561         // (X == 13 | X == 14) -> X-13 <u 2
1562         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1563         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1564         AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
1565         return Builder->CreateICmpULT(Add, AddCST);
1566       }
1567       break;                         // (X == 13 | X == 15) -> no change
1568     case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
1569     case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
1570       break;
1571     case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
1572     case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
1573     case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
1574       return RHS;
1575     }
1576     break;
1577   case ICmpInst::ICMP_NE:
1578     switch (RHSCC) {
1579     default: llvm_unreachable("Unknown integer condition code!");
1580     case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
1581     case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
1582     case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
1583       return LHS;
1584     case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
1585     case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
1586     case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
1587       return ConstantInt::getTrue(LHS->getContext());
1588     }
1589     break;
1590   case ICmpInst::ICMP_ULT:
1591     switch (RHSCC) {
1592     default: llvm_unreachable("Unknown integer condition code!");
1593     case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
1594       break;
1595     case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
1596       // If RHSCst is [us]MAXINT, it is always false.  Not handling
1597       // this can cause overflow.
1598       if (RHSCst->isMaxValue(false))
1599         return LHS;
1600       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
1601     case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
1602       break;
1603     case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
1604     case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
1605       return RHS;
1606     case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
1607       break;
1608     }
1609     break;
1610   case ICmpInst::ICMP_SLT:
1611     switch (RHSCC) {
1612     default: llvm_unreachable("Unknown integer condition code!");
1613     case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
1614       break;
1615     case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
1616       // If RHSCst is [us]MAXINT, it is always false.  Not handling
1617       // this can cause overflow.
1618       if (RHSCst->isMaxValue(true))
1619         return LHS;
1620       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
1621     case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
1622       break;
1623     case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
1624     case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
1625       return RHS;
1626     case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
1627       break;
1628     }
1629     break;
1630   case ICmpInst::ICMP_UGT:
1631     switch (RHSCC) {
1632     default: llvm_unreachable("Unknown integer condition code!");
1633     case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
1634     case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
1635       return LHS;
1636     case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
1637       break;
1638     case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
1639     case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
1640       return ConstantInt::getTrue(LHS->getContext());
1641     case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
1642       break;
1643     }
1644     break;
1645   case ICmpInst::ICMP_SGT:
1646     switch (RHSCC) {
1647     default: llvm_unreachable("Unknown integer condition code!");
1648     case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
1649     case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
1650       return LHS;
1651     case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
1652       break;
1653     case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
1654     case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
1655       return ConstantInt::getTrue(LHS->getContext());
1656     case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
1657       break;
1658     }
1659     break;
1660   }
1661   return 0;
1662 }
1663 
1664 /// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
1665 /// instcombine, this returns a Value which should already be inserted into the
1666 /// function.
FoldOrOfFCmps(FCmpInst * LHS,FCmpInst * RHS)1667 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
1668   if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
1669       RHS->getPredicate() == FCmpInst::FCMP_UNO &&
1670       LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
1671     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1672       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1673         // If either of the constants are nans, then the whole thing returns
1674         // true.
1675         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
1676           return ConstantInt::getTrue(LHS->getContext());
1677 
1678         // Otherwise, no need to compare the two constants, compare the
1679         // rest.
1680         return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
1681       }
1682 
1683     // Handle vector zeros.  This occurs because the canonical form of
1684     // "fcmp uno x,x" is "fcmp uno x, 0".
1685     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1686         isa<ConstantAggregateZero>(RHS->getOperand(1)))
1687       return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
1688 
1689     return 0;
1690   }
1691 
1692   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1693   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1694   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1695 
1696   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1697     // Swap RHS operands to match LHS.
1698     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1699     std::swap(Op1LHS, Op1RHS);
1700   }
1701   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1702     // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
1703     if (Op0CC == Op1CC)
1704       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
1705     if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
1706       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
1707     if (Op0CC == FCmpInst::FCMP_FALSE)
1708       return RHS;
1709     if (Op1CC == FCmpInst::FCMP_FALSE)
1710       return LHS;
1711     bool Op0Ordered;
1712     bool Op1Ordered;
1713     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1714     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1715     if (Op0Ordered == Op1Ordered) {
1716       // If both are ordered or unordered, return a new fcmp with
1717       // or'ed predicates.
1718       return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
1719     }
1720   }
1721   return 0;
1722 }
1723 
1724 /// FoldOrWithConstants - This helper function folds:
1725 ///
1726 ///     ((A | B) & C1) | (B & C2)
1727 ///
1728 /// into:
1729 ///
1730 ///     (A & C1) | B
1731 ///
1732 /// when the XOR of the two constants is "all ones" (-1).
FoldOrWithConstants(BinaryOperator & I,Value * Op,Value * A,Value * B,Value * C)1733 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
1734                                                Value *A, Value *B, Value *C) {
1735   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
1736   if (!CI1) return 0;
1737 
1738   Value *V1 = 0;
1739   ConstantInt *CI2 = 0;
1740   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
1741 
1742   APInt Xor = CI1->getValue() ^ CI2->getValue();
1743   if (!Xor.isAllOnesValue()) return 0;
1744 
1745   if (V1 == A || V1 == B) {
1746     Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
1747     return BinaryOperator::CreateOr(NewOp, V1);
1748   }
1749 
1750   return 0;
1751 }
1752 
visitOr(BinaryOperator & I)1753 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
1754   bool Changed = SimplifyAssociativeOrCommutative(I);
1755   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1756 
1757   if (Value *V = SimplifyOrInst(Op0, Op1, TD))
1758     return ReplaceInstUsesWith(I, V);
1759 
1760   // (A&B)|(A&C) -> A&(B|C) etc
1761   if (Value *V = SimplifyUsingDistributiveLaws(I))
1762     return ReplaceInstUsesWith(I, V);
1763 
1764   // See if we can simplify any instructions used by the instruction whose sole
1765   // purpose is to compute bits we don't care about.
1766   if (SimplifyDemandedInstructionBits(I))
1767     return &I;
1768 
1769   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
1770     ConstantInt *C1 = 0; Value *X = 0;
1771     // (X & C1) | C2 --> (X | C2) & (C1|C2)
1772     // iff (C1 & C2) == 0.
1773     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
1774         (RHS->getValue() & C1->getValue()) != 0 &&
1775         Op0->hasOneUse()) {
1776       Value *Or = Builder->CreateOr(X, RHS);
1777       Or->takeName(Op0);
1778       return BinaryOperator::CreateAnd(Or,
1779                          ConstantInt::get(I.getContext(),
1780                                           RHS->getValue() | C1->getValue()));
1781     }
1782 
1783     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
1784     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
1785         Op0->hasOneUse()) {
1786       Value *Or = Builder->CreateOr(X, RHS);
1787       Or->takeName(Op0);
1788       return BinaryOperator::CreateXor(Or,
1789                  ConstantInt::get(I.getContext(),
1790                                   C1->getValue() & ~RHS->getValue()));
1791     }
1792 
1793     // Try to fold constant and into select arguments.
1794     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1795       if (Instruction *R = FoldOpIntoSelect(I, SI))
1796         return R;
1797 
1798     if (isa<PHINode>(Op0))
1799       if (Instruction *NV = FoldOpIntoPhi(I))
1800         return NV;
1801   }
1802 
1803   Value *A = 0, *B = 0;
1804   ConstantInt *C1 = 0, *C2 = 0;
1805 
1806   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
1807   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
1808   if (match(Op0, m_Or(m_Value(), m_Value())) ||
1809       match(Op1, m_Or(m_Value(), m_Value())) ||
1810       (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1811        match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
1812     if (Instruction *BSwap = MatchBSwap(I))
1813       return BSwap;
1814   }
1815 
1816   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
1817   if (Op0->hasOneUse() &&
1818       match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1819       MaskedValueIsZero(Op1, C1->getValue())) {
1820     Value *NOr = Builder->CreateOr(A, Op1);
1821     NOr->takeName(Op0);
1822     return BinaryOperator::CreateXor(NOr, C1);
1823   }
1824 
1825   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
1826   if (Op1->hasOneUse() &&
1827       match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1828       MaskedValueIsZero(Op0, C1->getValue())) {
1829     Value *NOr = Builder->CreateOr(A, Op0);
1830     NOr->takeName(Op0);
1831     return BinaryOperator::CreateXor(NOr, C1);
1832   }
1833 
1834   // (A & C)|(B & D)
1835   Value *C = 0, *D = 0;
1836   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1837       match(Op1, m_And(m_Value(B), m_Value(D)))) {
1838     Value *V1 = 0, *V2 = 0;
1839     C1 = dyn_cast<ConstantInt>(C);
1840     C2 = dyn_cast<ConstantInt>(D);
1841     if (C1 && C2) {  // (A & C1)|(B & C2)
1842       // If we have: ((V + N) & C1) | (V & C2)
1843       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1844       // replace with V+N.
1845       if (C1->getValue() == ~C2->getValue()) {
1846         if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
1847             match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1848           // Add commutes, try both ways.
1849           if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
1850             return ReplaceInstUsesWith(I, A);
1851           if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
1852             return ReplaceInstUsesWith(I, A);
1853         }
1854         // Or commutes, try both ways.
1855         if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
1856             match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1857           // Add commutes, try both ways.
1858           if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
1859             return ReplaceInstUsesWith(I, B);
1860           if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
1861             return ReplaceInstUsesWith(I, B);
1862         }
1863       }
1864 
1865       if ((C1->getValue() & C2->getValue()) == 0) {
1866         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
1867         // iff (C1&C2) == 0 and (N&~C1) == 0
1868         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
1869             ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
1870              (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
1871           return BinaryOperator::CreateAnd(A,
1872                                ConstantInt::get(A->getContext(),
1873                                                 C1->getValue()|C2->getValue()));
1874         // Or commutes, try both ways.
1875         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
1876             ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
1877              (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
1878           return BinaryOperator::CreateAnd(B,
1879                                ConstantInt::get(B->getContext(),
1880                                                 C1->getValue()|C2->getValue()));
1881 
1882         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
1883         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
1884         ConstantInt *C3 = 0, *C4 = 0;
1885         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
1886             (C3->getValue() & ~C1->getValue()) == 0 &&
1887             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
1888             (C4->getValue() & ~C2->getValue()) == 0) {
1889           V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
1890           return BinaryOperator::CreateAnd(V2,
1891                                ConstantInt::get(B->getContext(),
1892                                                 C1->getValue()|C2->getValue()));
1893         }
1894       }
1895     }
1896 
1897     // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
1898     // Don't do this for vector select idioms, the code generator doesn't handle
1899     // them well yet.
1900     if (!I.getType()->isVectorTy()) {
1901       if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
1902         return Match;
1903       if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
1904         return Match;
1905       if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
1906         return Match;
1907       if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
1908         return Match;
1909     }
1910 
1911     // ((A&~B)|(~A&B)) -> A^B
1912     if ((match(C, m_Not(m_Specific(D))) &&
1913          match(B, m_Not(m_Specific(A)))))
1914       return BinaryOperator::CreateXor(A, D);
1915     // ((~B&A)|(~A&B)) -> A^B
1916     if ((match(A, m_Not(m_Specific(D))) &&
1917          match(B, m_Not(m_Specific(C)))))
1918       return BinaryOperator::CreateXor(C, D);
1919     // ((A&~B)|(B&~A)) -> A^B
1920     if ((match(C, m_Not(m_Specific(B))) &&
1921          match(D, m_Not(m_Specific(A)))))
1922       return BinaryOperator::CreateXor(A, B);
1923     // ((~B&A)|(B&~A)) -> A^B
1924     if ((match(A, m_Not(m_Specific(B))) &&
1925          match(D, m_Not(m_Specific(C)))))
1926       return BinaryOperator::CreateXor(C, B);
1927 
1928     // ((A|B)&1)|(B&-2) -> (A&1) | B
1929     if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
1930         match(A, m_Or(m_Specific(B), m_Value(V1)))) {
1931       Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
1932       if (Ret) return Ret;
1933     }
1934     // (B&-2)|((A|B)&1) -> (A&1) | B
1935     if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
1936         match(B, m_Or(m_Value(V1), m_Specific(A)))) {
1937       Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
1938       if (Ret) return Ret;
1939     }
1940   }
1941 
1942   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
1943   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1944     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1945       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1946           SI0->getOperand(1) == SI1->getOperand(1) &&
1947           (SI0->hasOneUse() || SI1->hasOneUse())) {
1948         Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
1949                                          SI0->getName());
1950         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1951                                       SI1->getOperand(1));
1952       }
1953   }
1954 
1955   // (~A | ~B) == (~(A & B)) - De Morgan's Law
1956   if (Value *Op0NotVal = dyn_castNotVal(Op0))
1957     if (Value *Op1NotVal = dyn_castNotVal(Op1))
1958       if (Op0->hasOneUse() && Op1->hasOneUse()) {
1959         Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
1960                                         I.getName()+".demorgan");
1961         return BinaryOperator::CreateNot(And);
1962       }
1963 
1964   // Canonicalize xor to the RHS.
1965   if (match(Op0, m_Xor(m_Value(), m_Value())))
1966     std::swap(Op0, Op1);
1967 
1968   // A | ( A ^ B) -> A |  B
1969   // A | (~A ^ B) -> A | ~B
1970   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
1971     if (Op0 == A || Op0 == B)
1972       return BinaryOperator::CreateOr(A, B);
1973 
1974     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
1975       Value *Not = Builder->CreateNot(B, B->getName()+".not");
1976       return BinaryOperator::CreateOr(Not, Op0);
1977     }
1978     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
1979       Value *Not = Builder->CreateNot(A, A->getName()+".not");
1980       return BinaryOperator::CreateOr(Not, Op0);
1981     }
1982   }
1983 
1984   // A | ~(A | B) -> A | ~B
1985   // A | ~(A ^ B) -> A | ~B
1986   if (match(Op1, m_Not(m_Value(A))))
1987     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
1988       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
1989           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
1990                                B->getOpcode() == Instruction::Xor)) {
1991         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
1992                                                  B->getOperand(0);
1993         Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
1994         return BinaryOperator::CreateOr(Not, Op0);
1995       }
1996 
1997   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
1998     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
1999       if (Value *Res = FoldOrOfICmps(LHS, RHS))
2000         return ReplaceInstUsesWith(I, Res);
2001 
2002   // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
2003   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2004     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2005       if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2006         return ReplaceInstUsesWith(I, Res);
2007 
2008   // fold (or (cast A), (cast B)) -> (cast (or A, B))
2009   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2010     CastInst *Op1C = dyn_cast<CastInst>(Op1);
2011     if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
2012       Type *SrcTy = Op0C->getOperand(0)->getType();
2013       if (SrcTy == Op1C->getOperand(0)->getType() &&
2014           SrcTy->isIntOrIntVectorTy()) {
2015         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
2016 
2017         if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
2018             // Only do this if the casts both really cause code to be
2019             // generated.
2020             ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
2021             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
2022           Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
2023           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2024         }
2025 
2026         // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
2027         // cast is otherwise not optimizable.  This happens for vector sexts.
2028         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
2029           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
2030             if (Value *Res = FoldOrOfICmps(LHS, RHS))
2031               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2032 
2033         // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
2034         // cast is otherwise not optimizable.  This happens for vector sexts.
2035         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
2036           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
2037             if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2038               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2039       }
2040     }
2041   }
2042 
2043   // or(sext(A), B) -> A ? -1 : B where A is an i1
2044   // or(A, sext(B)) -> B ? -1 : A where B is an i1
2045   if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2046     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2047   if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2048     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2049 
2050   // Note: If we've gotten to the point of visiting the outer OR, then the
2051   // inner one couldn't be simplified.  If it was a constant, then it won't
2052   // be simplified by a later pass either, so we try swapping the inner/outer
2053   // ORs in the hopes that we'll be able to simplify it this way.
2054   // (X|C) | V --> (X|V) | C
2055   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2056       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
2057     Value *Inner = Builder->CreateOr(A, Op1);
2058     Inner->takeName(Op0);
2059     return BinaryOperator::CreateOr(Inner, C1);
2060   }
2061 
2062   return Changed ? &I : 0;
2063 }
2064 
visitXor(BinaryOperator & I)2065 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
2066   bool Changed = SimplifyAssociativeOrCommutative(I);
2067   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2068 
2069   if (Value *V = SimplifyXorInst(Op0, Op1, TD))
2070     return ReplaceInstUsesWith(I, V);
2071 
2072   // (A&B)^(A&C) -> A&(B^C) etc
2073   if (Value *V = SimplifyUsingDistributiveLaws(I))
2074     return ReplaceInstUsesWith(I, V);
2075 
2076   // See if we can simplify any instructions used by the instruction whose sole
2077   // purpose is to compute bits we don't care about.
2078   if (SimplifyDemandedInstructionBits(I))
2079     return &I;
2080 
2081   // Is this a ~ operation?
2082   if (Value *NotOp = dyn_castNotVal(&I)) {
2083     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
2084       if (Op0I->getOpcode() == Instruction::And ||
2085           Op0I->getOpcode() == Instruction::Or) {
2086         // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
2087         // ~(~X | Y) === (X & ~Y) - De Morgan's Law
2088         if (dyn_castNotVal(Op0I->getOperand(1)))
2089           Op0I->swapOperands();
2090         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2091           Value *NotY =
2092             Builder->CreateNot(Op0I->getOperand(1),
2093                                Op0I->getOperand(1)->getName()+".not");
2094           if (Op0I->getOpcode() == Instruction::And)
2095             return BinaryOperator::CreateOr(Op0NotVal, NotY);
2096           return BinaryOperator::CreateAnd(Op0NotVal, NotY);
2097         }
2098 
2099         // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
2100         // ~(X | Y) === (~X & ~Y) - De Morgan's Law
2101         if (isFreeToInvert(Op0I->getOperand(0)) &&
2102             isFreeToInvert(Op0I->getOperand(1))) {
2103           Value *NotX =
2104             Builder->CreateNot(Op0I->getOperand(0), "notlhs");
2105           Value *NotY =
2106             Builder->CreateNot(Op0I->getOperand(1), "notrhs");
2107           if (Op0I->getOpcode() == Instruction::And)
2108             return BinaryOperator::CreateOr(NotX, NotY);
2109           return BinaryOperator::CreateAnd(NotX, NotY);
2110         }
2111 
2112       } else if (Op0I->getOpcode() == Instruction::AShr) {
2113         // ~(~X >>s Y) --> (X >>s Y)
2114         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
2115           return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
2116       }
2117     }
2118   }
2119 
2120 
2121   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2122     if (RHS->isOne() && Op0->hasOneUse())
2123       // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
2124       if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
2125         return CmpInst::Create(CI->getOpcode(),
2126                                CI->getInversePredicate(),
2127                                CI->getOperand(0), CI->getOperand(1));
2128 
2129     // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2130     if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2131       if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
2132         if (CI->hasOneUse() && Op0C->hasOneUse()) {
2133           Instruction::CastOps Opcode = Op0C->getOpcode();
2134           if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
2135               (RHS == ConstantExpr::getCast(Opcode,
2136                                            ConstantInt::getTrue(I.getContext()),
2137                                             Op0C->getDestTy()))) {
2138             CI->setPredicate(CI->getInversePredicate());
2139             return CastInst::Create(Opcode, CI, Op0C->getType());
2140           }
2141         }
2142       }
2143     }
2144 
2145     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2146       // ~(c-X) == X-c-1 == X+(-c-1)
2147       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2148         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
2149           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2150           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
2151                                       ConstantInt::get(I.getType(), 1));
2152           return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
2153         }
2154 
2155       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2156         if (Op0I->getOpcode() == Instruction::Add) {
2157           // ~(X-c) --> (-c-1)-X
2158           if (RHS->isAllOnesValue()) {
2159             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2160             return BinaryOperator::CreateSub(
2161                            ConstantExpr::getSub(NegOp0CI,
2162                                       ConstantInt::get(I.getType(), 1)),
2163                                       Op0I->getOperand(0));
2164           } else if (RHS->getValue().isSignBit()) {
2165             // (X + C) ^ signbit -> (X + C + signbit)
2166             Constant *C = ConstantInt::get(I.getContext(),
2167                                            RHS->getValue() + Op0CI->getValue());
2168             return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
2169 
2170           }
2171         } else if (Op0I->getOpcode() == Instruction::Or) {
2172           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2173           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
2174             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2175             // Anything in both C1 and C2 is known to be zero, remove it from
2176             // NewRHS.
2177             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2178             NewRHS = ConstantExpr::getAnd(NewRHS,
2179                                        ConstantExpr::getNot(CommonBits));
2180             Worklist.Add(Op0I);
2181             I.setOperand(0, Op0I->getOperand(0));
2182             I.setOperand(1, NewRHS);
2183             return &I;
2184           }
2185         }
2186       }
2187     }
2188 
2189     // Try to fold constant and into select arguments.
2190     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2191       if (Instruction *R = FoldOpIntoSelect(I, SI))
2192         return R;
2193     if (isa<PHINode>(Op0))
2194       if (Instruction *NV = FoldOpIntoPhi(I))
2195         return NV;
2196   }
2197 
2198   BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
2199   if (Op1I) {
2200     Value *A, *B;
2201     if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2202       if (A == Op0) {              // B^(B|A) == (A|B)^B
2203         Op1I->swapOperands();
2204         I.swapOperands();
2205         std::swap(Op0, Op1);
2206       } else if (B == Op0) {       // B^(A|B) == (A|B)^B
2207         I.swapOperands();     // Simplified below.
2208         std::swap(Op0, Op1);
2209       }
2210     } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
2211                Op1I->hasOneUse()){
2212       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
2213         Op1I->swapOperands();
2214         std::swap(A, B);
2215       }
2216       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
2217         I.swapOperands();     // Simplified below.
2218         std::swap(Op0, Op1);
2219       }
2220     }
2221   }
2222 
2223   BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
2224   if (Op0I) {
2225     Value *A, *B;
2226     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2227         Op0I->hasOneUse()) {
2228       if (A == Op1)                                  // (B|A)^B == (A|B)^B
2229         std::swap(A, B);
2230       if (B == Op1)                                  // (A|B)^B == A & ~B
2231         return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
2232     } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2233                Op0I->hasOneUse()){
2234       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
2235         std::swap(A, B);
2236       if (B == Op1 &&                                      // (B&A)^A == ~B & A
2237           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
2238         return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
2239       }
2240     }
2241   }
2242 
2243   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
2244   if (Op0I && Op1I && Op0I->isShift() &&
2245       Op0I->getOpcode() == Op1I->getOpcode() &&
2246       Op0I->getOperand(1) == Op1I->getOperand(1) &&
2247       (Op1I->hasOneUse() || Op1I->hasOneUse())) {
2248     Value *NewOp =
2249       Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
2250                          Op0I->getName());
2251     return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
2252                                   Op1I->getOperand(1));
2253   }
2254 
2255   if (Op0I && Op1I) {
2256     Value *A, *B, *C, *D;
2257     // (A & B)^(A | B) -> A ^ B
2258     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2259         match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
2260       if ((A == C && B == D) || (A == D && B == C))
2261         return BinaryOperator::CreateXor(A, B);
2262     }
2263     // (A | B)^(A & B) -> A ^ B
2264     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2265         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2266       if ((A == C && B == D) || (A == D && B == C))
2267         return BinaryOperator::CreateXor(A, B);
2268     }
2269   }
2270 
2271   // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2272   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2273     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2274       if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2275         if (LHS->getOperand(0) == RHS->getOperand(1) &&
2276             LHS->getOperand(1) == RHS->getOperand(0))
2277           LHS->swapOperands();
2278         if (LHS->getOperand(0) == RHS->getOperand(0) &&
2279             LHS->getOperand(1) == RHS->getOperand(1)) {
2280           Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2281           unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2282           bool isSigned = LHS->isSigned() || RHS->isSigned();
2283           return ReplaceInstUsesWith(I,
2284                                getICmpValue(isSigned, Code, Op0, Op1, Builder));
2285         }
2286       }
2287 
2288   // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
2289   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2290     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
2291       if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
2292         Type *SrcTy = Op0C->getOperand(0)->getType();
2293         if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
2294             // Only do this if the casts both really cause code to be generated.
2295             ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
2296                                I.getType()) &&
2297             ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
2298                                I.getType())) {
2299           Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
2300                                             Op1C->getOperand(0), I.getName());
2301           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2302         }
2303       }
2304   }
2305 
2306   return Changed ? &I : 0;
2307 }
2308