1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_PROPERTY_DETAILS_H_
6 #define V8_PROPERTY_DETAILS_H_
7 
8 #include "include/v8.h"
9 #include "src/allocation.h"
10 // TODO(ishell): remove once FLAG_track_constant_fields is removed.
11 #include "src/flags.h"
12 #include "src/utils.h"
13 
14 namespace v8 {
15 namespace internal {
16 
17 // ES6 6.1.7.1
18 enum PropertyAttributes {
19   NONE = ::v8::None,
20   READ_ONLY = ::v8::ReadOnly,
21   DONT_ENUM = ::v8::DontEnum,
22   DONT_DELETE = ::v8::DontDelete,
23 
24   ALL_ATTRIBUTES_MASK = READ_ONLY | DONT_ENUM | DONT_DELETE,
25 
26   SEALED = DONT_DELETE,
27   FROZEN = SEALED | READ_ONLY,
28 
29   ABSENT = 64,  // Used in runtime to indicate a property is absent.
30   // ABSENT can never be stored in or returned from a descriptor's attributes
31   // bitfield.  It is only used as a return value meaning the attributes of
32   // a non-existent property.
33 };
34 
35 
36 enum PropertyFilter {
37   ALL_PROPERTIES = 0,
38   ONLY_WRITABLE = 1,
39   ONLY_ENUMERABLE = 2,
40   ONLY_CONFIGURABLE = 4,
41   SKIP_STRINGS = 8,
42   SKIP_SYMBOLS = 16,
43   ONLY_ALL_CAN_READ = 32,
44   ENUMERABLE_STRINGS = ONLY_ENUMERABLE | SKIP_SYMBOLS,
45 };
46 // Enable fast comparisons of PropertyAttributes against PropertyFilters.
47 STATIC_ASSERT(ALL_PROPERTIES == static_cast<PropertyFilter>(NONE));
48 STATIC_ASSERT(ONLY_WRITABLE == static_cast<PropertyFilter>(READ_ONLY));
49 STATIC_ASSERT(ONLY_ENUMERABLE == static_cast<PropertyFilter>(DONT_ENUM));
50 STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast<PropertyFilter>(DONT_DELETE));
51 STATIC_ASSERT(((SKIP_STRINGS | SKIP_SYMBOLS | ONLY_ALL_CAN_READ) &
52                ALL_ATTRIBUTES_MASK) == 0);
53 STATIC_ASSERT(ALL_PROPERTIES ==
54               static_cast<PropertyFilter>(v8::PropertyFilter::ALL_PROPERTIES));
55 STATIC_ASSERT(ONLY_WRITABLE ==
56               static_cast<PropertyFilter>(v8::PropertyFilter::ONLY_WRITABLE));
57 STATIC_ASSERT(ONLY_ENUMERABLE ==
58               static_cast<PropertyFilter>(v8::PropertyFilter::ONLY_ENUMERABLE));
59 STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast<PropertyFilter>(
60                                        v8::PropertyFilter::ONLY_CONFIGURABLE));
61 STATIC_ASSERT(SKIP_STRINGS ==
62               static_cast<PropertyFilter>(v8::PropertyFilter::SKIP_STRINGS));
63 STATIC_ASSERT(SKIP_SYMBOLS ==
64               static_cast<PropertyFilter>(v8::PropertyFilter::SKIP_SYMBOLS));
65 
66 class Smi;
67 class TypeInfo;
68 
69 // Order of kinds is significant.
70 // Must fit in the BitField PropertyDetails::KindField.
71 enum PropertyKind { kData = 0, kAccessor = 1 };
72 
73 // Order of modes is significant.
74 // Must fit in the BitField PropertyDetails::LocationField.
75 enum PropertyLocation { kField = 0, kDescriptor = 1 };
76 
77 // Order of modes is significant.
78 // Must fit in the BitField PropertyDetails::ConstnessField.
79 enum class PropertyConstness { kMutable = 0, kConst = 1 };
80 
81 // TODO(ishell): remove once constant field tracking is done.
82 const PropertyConstness kDefaultFieldConstness =
83     FLAG_track_constant_fields ? PropertyConstness::kConst
84                                : PropertyConstness::kMutable;
85 
86 class Representation {
87  public:
88   enum Kind {
89     kNone,
90     kInteger8,
91     kUInteger8,
92     kInteger16,
93     kUInteger16,
94     kSmi,
95     kInteger32,
96     kDouble,
97     kHeapObject,
98     kTagged,
99     kExternal,
100     kNumRepresentations
101   };
102 
Representation()103   Representation() : kind_(kNone) { }
104 
None()105   static Representation None() { return Representation(kNone); }
Tagged()106   static Representation Tagged() { return Representation(kTagged); }
Integer8()107   static Representation Integer8() { return Representation(kInteger8); }
UInteger8()108   static Representation UInteger8() { return Representation(kUInteger8); }
Integer16()109   static Representation Integer16() { return Representation(kInteger16); }
UInteger16()110   static Representation UInteger16() { return Representation(kUInteger16); }
Smi()111   static Representation Smi() { return Representation(kSmi); }
Integer32()112   static Representation Integer32() { return Representation(kInteger32); }
Double()113   static Representation Double() { return Representation(kDouble); }
HeapObject()114   static Representation HeapObject() { return Representation(kHeapObject); }
External()115   static Representation External() { return Representation(kExternal); }
116 
FromKind(Kind kind)117   static Representation FromKind(Kind kind) { return Representation(kind); }
118 
Equals(const Representation & other)119   bool Equals(const Representation& other) const {
120     return kind_ == other.kind_;
121   }
122 
IsCompatibleForLoad(const Representation & other)123   bool IsCompatibleForLoad(const Representation& other) const {
124     return (IsDouble() && other.IsDouble()) ||
125         (!IsDouble() && !other.IsDouble());
126   }
127 
IsCompatibleForStore(const Representation & other)128   bool IsCompatibleForStore(const Representation& other) const {
129     return Equals(other);
130   }
131 
is_more_general_than(const Representation & other)132   bool is_more_general_than(const Representation& other) const {
133     if (kind_ == kExternal && other.kind_ == kNone) return true;
134     if (kind_ == kExternal && other.kind_ == kExternal) return false;
135     if (kind_ == kNone && other.kind_ == kExternal) return false;
136 
137     DCHECK_NE(kind_, kExternal);
138     DCHECK_NE(other.kind_, kExternal);
139     if (IsHeapObject()) return other.IsNone();
140     if (kind_ == kUInteger8 && other.kind_ == kInteger8) return false;
141     if (kind_ == kUInteger16 && other.kind_ == kInteger16) return false;
142     return kind_ > other.kind_;
143   }
144 
fits_into(const Representation & other)145   bool fits_into(const Representation& other) const {
146     return other.is_more_general_than(*this) || other.Equals(*this);
147   }
148 
generalize(Representation other)149   Representation generalize(Representation other) {
150     if (other.fits_into(*this)) return *this;
151     if (other.is_more_general_than(*this)) return other;
152     return Representation::Tagged();
153   }
154 
size()155   int size() const {
156     DCHECK(!IsNone());
157     if (IsInteger8() || IsUInteger8()) {
158       return sizeof(uint8_t);
159     }
160     if (IsInteger16() || IsUInteger16()) {
161       return sizeof(uint16_t);
162     }
163     if (IsInteger32()) {
164       return sizeof(uint32_t);
165     }
166     return kPointerSize;
167   }
168 
kind()169   Kind kind() const { return static_cast<Kind>(kind_); }
IsNone()170   bool IsNone() const { return kind_ == kNone; }
IsInteger8()171   bool IsInteger8() const { return kind_ == kInteger8; }
IsUInteger8()172   bool IsUInteger8() const { return kind_ == kUInteger8; }
IsInteger16()173   bool IsInteger16() const { return kind_ == kInteger16; }
IsUInteger16()174   bool IsUInteger16() const { return kind_ == kUInteger16; }
IsTagged()175   bool IsTagged() const { return kind_ == kTagged; }
IsSmi()176   bool IsSmi() const { return kind_ == kSmi; }
IsSmiOrTagged()177   bool IsSmiOrTagged() const { return IsSmi() || IsTagged(); }
IsInteger32()178   bool IsInteger32() const { return kind_ == kInteger32; }
IsSmiOrInteger32()179   bool IsSmiOrInteger32() const { return IsSmi() || IsInteger32(); }
IsDouble()180   bool IsDouble() const { return kind_ == kDouble; }
IsHeapObject()181   bool IsHeapObject() const { return kind_ == kHeapObject; }
IsExternal()182   bool IsExternal() const { return kind_ == kExternal; }
IsSpecialization()183   bool IsSpecialization() const {
184     return IsInteger8() || IsUInteger8() ||
185       IsInteger16() || IsUInteger16() ||
186       IsSmi() || IsInteger32() || IsDouble();
187   }
188   const char* Mnemonic() const;
189 
190  private:
Representation(Kind k)191   explicit Representation(Kind k) : kind_(k) { }
192 
193   // Make sure kind fits in int8.
194   STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte));
195 
196   int8_t kind_;
197 };
198 
199 
200 static const int kDescriptorIndexBitCount = 10;
201 static const int kFirstInobjectPropertyOffsetBitCount = 7;
202 // The maximum number of descriptors we want in a descriptor array.  It should
203 // fit in a page and also the following should hold:
204 // kMaxNumberOfDescriptors + kFieldsAdded <= PropertyArray::kMaxLength.
205 static const int kMaxNumberOfDescriptors = (1 << kDescriptorIndexBitCount) - 4;
206 static const int kInvalidEnumCacheSentinel =
207     (1 << kDescriptorIndexBitCount) - 1;
208 
209 enum class PropertyCellType {
210   // Meaningful when a property cell does not contain the hole.
211   kUndefined,     // The PREMONOMORPHIC of property cells.
212   kConstant,      // Cell has been assigned only once.
213   kConstantType,  // Cell has been assigned only one type.
214   kMutable,       // Cell will no longer be tracked as constant.
215 
216   // Meaningful when a property cell contains the hole.
217   kUninitialized = kUndefined,  // Cell has never been initialized.
218   kInvalidated = kConstant,     // Cell has been deleted, invalidated or never
219                                 // existed.
220 
221   // For dictionaries not holding cells.
222   kNoCell = kMutable,
223 };
224 
225 enum class PropertyCellConstantType {
226   kSmi,
227   kStableMap,
228 };
229 
230 
231 // PropertyDetails captures type and attributes for a property.
232 // They are used both in property dictionaries and instance descriptors.
233 class PropertyDetails BASE_EMBEDDED {
234  public:
235   // Property details for dictionary mode properties/elements.
236   PropertyDetails(PropertyKind kind, PropertyAttributes attributes,
237                   PropertyCellType cell_type, int dictionary_index = 0) {
238     value_ = KindField::encode(kind) | LocationField::encode(kField) |
239              AttributesField::encode(attributes) |
240              DictionaryStorageField::encode(dictionary_index) |
241              PropertyCellTypeField::encode(cell_type);
242   }
243 
244   // Property details for fast mode properties.
245   PropertyDetails(PropertyKind kind, PropertyAttributes attributes,
246                   PropertyLocation location, PropertyConstness constness,
247                   Representation representation, int field_index = 0) {
248     value_ = KindField::encode(kind) | AttributesField::encode(attributes) |
249              LocationField::encode(location) |
250              ConstnessField::encode(constness) |
251              RepresentationField::encode(EncodeRepresentation(representation)) |
252              FieldIndexField::encode(field_index);
253   }
254 
255   static PropertyDetails Empty(
256       PropertyCellType cell_type = PropertyCellType::kNoCell) {
257     return PropertyDetails(kData, NONE, cell_type);
258   }
259 
pointer()260   int pointer() const { return DescriptorPointer::decode(value_); }
261 
set_pointer(int i)262   PropertyDetails set_pointer(int i) const {
263     return PropertyDetails(value_, i);
264   }
265 
set_cell_type(PropertyCellType type)266   PropertyDetails set_cell_type(PropertyCellType type) const {
267     PropertyDetails details = *this;
268     details.value_ = PropertyCellTypeField::update(details.value_, type);
269     return details;
270   }
271 
set_index(int index)272   PropertyDetails set_index(int index) const {
273     PropertyDetails details = *this;
274     details.value_ = DictionaryStorageField::update(details.value_, index);
275     return details;
276   }
277 
CopyWithRepresentation(Representation representation)278   PropertyDetails CopyWithRepresentation(Representation representation) const {
279     return PropertyDetails(value_, representation);
280   }
CopyWithConstness(PropertyConstness constness)281   PropertyDetails CopyWithConstness(PropertyConstness constness) const {
282     return PropertyDetails(value_, constness);
283   }
CopyAddAttributes(PropertyAttributes new_attributes)284   PropertyDetails CopyAddAttributes(PropertyAttributes new_attributes) const {
285     new_attributes =
286         static_cast<PropertyAttributes>(attributes() | new_attributes);
287     return PropertyDetails(value_, new_attributes);
288   }
289 
290   // Conversion for storing details as Object*.
291   explicit inline PropertyDetails(Smi* smi);
292   inline Smi* AsSmi() const;
293 
EncodeRepresentation(Representation representation)294   static uint8_t EncodeRepresentation(Representation representation) {
295     return representation.kind();
296   }
297 
DecodeRepresentation(uint32_t bits)298   static Representation DecodeRepresentation(uint32_t bits) {
299     return Representation::FromKind(static_cast<Representation::Kind>(bits));
300   }
301 
kind()302   PropertyKind kind() const { return KindField::decode(value_); }
location()303   PropertyLocation location() const { return LocationField::decode(value_); }
constness()304   PropertyConstness constness() const { return ConstnessField::decode(value_); }
305 
attributes()306   PropertyAttributes attributes() const {
307     return AttributesField::decode(value_);
308   }
309 
dictionary_index()310   int dictionary_index() const {
311     return DictionaryStorageField::decode(value_);
312   }
313 
representation()314   Representation representation() const {
315     return DecodeRepresentation(RepresentationField::decode(value_));
316   }
317 
field_index()318   int field_index() const { return FieldIndexField::decode(value_); }
319 
320   inline int field_width_in_words() const;
321 
IsValidIndex(int index)322   static bool IsValidIndex(int index) {
323     return DictionaryStorageField::is_valid(index);
324   }
325 
IsReadOnly()326   bool IsReadOnly() const { return (attributes() & READ_ONLY) != 0; }
IsConfigurable()327   bool IsConfigurable() const { return (attributes() & DONT_DELETE) == 0; }
IsDontEnum()328   bool IsDontEnum() const { return (attributes() & DONT_ENUM) != 0; }
IsEnumerable()329   bool IsEnumerable() const { return !IsDontEnum(); }
cell_type()330   PropertyCellType cell_type() const {
331     return PropertyCellTypeField::decode(value_);
332   }
333 
334   // Bit fields in value_ (type, shift, size). Must be public so the
335   // constants can be embedded in generated code.
336   class KindField : public BitField<PropertyKind, 0, 1> {};
337   class LocationField : public BitField<PropertyLocation, KindField::kNext, 1> {
338   };
339   class ConstnessField
340       : public BitField<PropertyConstness, LocationField::kNext, 1> {};
341   class AttributesField
342       : public BitField<PropertyAttributes, ConstnessField::kNext, 3> {};
343   static const int kAttributesReadOnlyMask =
344       (READ_ONLY << AttributesField::kShift);
345   static const int kAttributesDontDeleteMask =
346       (DONT_DELETE << AttributesField::kShift);
347   static const int kAttributesDontEnumMask =
348       (DONT_ENUM << AttributesField::kShift);
349 
350   // Bit fields for normalized objects.
351   class PropertyCellTypeField
352       : public BitField<PropertyCellType, AttributesField::kNext, 2> {};
353   class DictionaryStorageField
354       : public BitField<uint32_t, PropertyCellTypeField::kNext, 23> {};
355 
356   // Bit fields for fast objects.
357   class RepresentationField
358       : public BitField<uint32_t, AttributesField::kNext, 4> {};
359   class DescriptorPointer
360       : public BitField<uint32_t, RepresentationField::kNext,
361                         kDescriptorIndexBitCount> {};  // NOLINT
362   class FieldIndexField : public BitField<uint32_t, DescriptorPointer::kNext,
363                                           kDescriptorIndexBitCount> {
364   };  // NOLINT
365 
366   // All bits for both fast and slow objects must fit in a smi.
367   STATIC_ASSERT(DictionaryStorageField::kNext <= 31);
368   STATIC_ASSERT(FieldIndexField::kNext <= 31);
369 
370   static const int kInitialIndex = 1;
371 
372 #ifdef OBJECT_PRINT
373   // For our gdb macros, we should perhaps change these in the future.
374   void Print(bool dictionary_mode);
375 #endif
376 
377   enum PrintMode {
378     kPrintAttributes = 1 << 0,
379     kPrintFieldIndex = 1 << 1,
380     kPrintRepresentation = 1 << 2,
381     kPrintPointer = 1 << 3,
382 
383     kForProperties = kPrintFieldIndex,
384     kForTransitions = kPrintAttributes,
385     kPrintFull = -1,
386   };
387   void PrintAsSlowTo(std::ostream& out);
388   void PrintAsFastTo(std::ostream& out, PrintMode mode = kPrintFull);
389 
390  private:
PropertyDetails(int value,int pointer)391   PropertyDetails(int value, int pointer) {
392     value_ = DescriptorPointer::update(value, pointer);
393   }
PropertyDetails(int value,Representation representation)394   PropertyDetails(int value, Representation representation) {
395     value_ = RepresentationField::update(
396         value, EncodeRepresentation(representation));
397   }
PropertyDetails(int value,PropertyConstness constness)398   PropertyDetails(int value, PropertyConstness constness) {
399     value_ = ConstnessField::update(value, constness);
400   }
PropertyDetails(int value,PropertyAttributes attributes)401   PropertyDetails(int value, PropertyAttributes attributes) {
402     value_ = AttributesField::update(value, attributes);
403   }
404 
405   uint32_t value_;
406 };
407 
408 // kField location is more general than kDescriptor, kDescriptor generalizes
409 // only to itself.
IsGeneralizableTo(PropertyLocation a,PropertyLocation b)410 inline bool IsGeneralizableTo(PropertyLocation a, PropertyLocation b) {
411   return b == kField || a == kDescriptor;
412 }
413 
414 // PropertyConstness::kMutable constness is more general than
415 // VariableMode::kConst, VariableMode::kConst generalizes only to itself.
IsGeneralizableTo(PropertyConstness a,PropertyConstness b)416 inline bool IsGeneralizableTo(PropertyConstness a, PropertyConstness b) {
417   return b == PropertyConstness::kMutable || a == PropertyConstness::kConst;
418 }
419 
GeneralizeConstness(PropertyConstness a,PropertyConstness b)420 inline PropertyConstness GeneralizeConstness(PropertyConstness a,
421                                              PropertyConstness b) {
422   return a == PropertyConstness::kMutable ? PropertyConstness::kMutable : b;
423 }
424 
425 std::ostream& operator<<(std::ostream& os,
426                          const PropertyAttributes& attributes);
427 }  // namespace internal
428 }  // namespace v8
429 
430 #endif  // V8_PROPERTY_DETAILS_H_
431