1 // Copyright 2016 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_CODE_STUB_ASSEMBLER_H_
6 #define V8_CODE_STUB_ASSEMBLER_H_
7 
8 #include <functional>
9 
10 #include "src/base/macros.h"
11 #include "src/compiler/code-assembler.h"
12 #include "src/globals.h"
13 #include "src/objects.h"
14 #include "src/objects/bigint.h"
15 #include "src/roots.h"
16 
17 namespace v8 {
18 namespace internal {
19 
20 class CallInterfaceDescriptor;
21 class CodeStubArguments;
22 class CodeStubAssembler;
23 class StatsCounter;
24 class StubCache;
25 
26 enum class PrimitiveType { kBoolean, kNumber, kString, kSymbol };
27 
28 #define HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V)                              \
29   V(ArraySpeciesProtector, array_species_protector, ArraySpeciesProtector) \
30   V(EmptyPropertyDictionary, empty_property_dictionary,                    \
31     EmptyPropertyDictionary)                                               \
32   V(PromiseSpeciesProtector, promise_species_protector,                    \
33     PromiseSpeciesProtector)                                               \
34   V(TypedArraySpeciesProtector, typed_array_species_protector,             \
35     TypedArraySpeciesProtector)                                            \
36   V(StoreHandler0Map, store_handler0_map, StoreHandler0Map)
37 
38 #define HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V)                              \
39   V(AccessorInfoMap, accessor_info_map, AccessorInfoMap)                     \
40   V(AccessorPairMap, accessor_pair_map, AccessorPairMap)                     \
41   V(AllocationSiteWithWeakNextMap, allocation_site_map, AllocationSiteMap)   \
42   V(AllocationSiteWithoutWeakNextMap, allocation_site_without_weaknext_map,  \
43     AllocationSiteWithoutWeakNextMap)                                        \
44   V(BooleanMap, boolean_map, BooleanMap)                                     \
45   V(CodeMap, code_map, CodeMap)                                              \
46   V(EmptyFixedArray, empty_fixed_array, EmptyFixedArray)                     \
47   V(EmptySlowElementDictionary, empty_slow_element_dictionary,               \
48     EmptySlowElementDictionary)                                              \
49   V(empty_string, empty_string, EmptyString)                                 \
50   V(FalseValue, false_value, False)                                          \
51   V(FeedbackVectorMap, feedback_vector_map, FeedbackVectorMap)               \
52   V(FixedArrayMap, fixed_array_map, FixedArrayMap)                           \
53   V(FixedCOWArrayMap, fixed_cow_array_map, FixedCOWArrayMap)                 \
54   V(FixedDoubleArrayMap, fixed_double_array_map, FixedDoubleArrayMap)        \
55   V(FunctionTemplateInfoMap, function_template_info_map,                     \
56     FunctionTemplateInfoMap)                                                 \
57   V(GlobalPropertyCellMap, global_property_cell_map, PropertyCellMap)        \
58   V(has_instance_symbol, has_instance_symbol, HasInstanceSymbol)             \
59   V(HeapNumberMap, heap_number_map, HeapNumberMap)                           \
60   V(iterator_symbol, iterator_symbol, IteratorSymbol)                        \
61   V(length_string, length_string, LengthString)                              \
62   V(ManyClosuresCellMap, many_closures_cell_map, ManyClosuresCellMap)        \
63   V(MetaMap, meta_map, MetaMap)                                              \
64   V(MinusZeroValue, minus_zero_value, MinusZero)                             \
65   V(MutableHeapNumberMap, mutable_heap_number_map, MutableHeapNumberMap)     \
66   V(NanValue, nan_value, Nan)                                                \
67   V(NoClosuresCellMap, no_closures_cell_map, NoClosuresCellMap)              \
68   V(NullValue, null_value, Null)                                             \
69   V(OneClosureCellMap, one_closure_cell_map, OneClosureCellMap)              \
70   V(PreParsedScopeDataMap, pre_parsed_scope_data_map, PreParsedScopeDataMap) \
71   V(prototype_string, prototype_string, PrototypeString)                     \
72   V(SharedFunctionInfoMap, shared_function_info_map, SharedFunctionInfoMap)  \
73   V(SymbolMap, symbol_map, SymbolMap)                                        \
74   V(TheHoleValue, the_hole_value, TheHole)                                   \
75   V(TransitionArrayMap, transition_array_map, TransitionArrayMap)            \
76   V(TrueValue, true_value, True)                                             \
77   V(Tuple2Map, tuple2_map, Tuple2Map)                                        \
78   V(Tuple3Map, tuple3_map, Tuple3Map)                                        \
79   V(ArrayBoilerplateDescriptionMap, array_boilerplate_description_map,       \
80     ArrayBoilerplateDescriptionMap)                                          \
81   V(UncompiledDataWithoutPreParsedScopeMap,                                  \
82     uncompiled_data_without_pre_parsed_scope_map,                            \
83     UncompiledDataWithoutPreParsedScopeMap)                                  \
84   V(UncompiledDataWithPreParsedScopeMap,                                     \
85     uncompiled_data_with_pre_parsed_scope_map,                               \
86     UncompiledDataWithPreParsedScopeMap)                                     \
87   V(UndefinedValue, undefined_value, Undefined)                              \
88   V(WeakFixedArrayMap, weak_fixed_array_map, WeakFixedArrayMap)
89 
90 #define HEAP_IMMOVABLE_OBJECT_LIST(V)   \
91   HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \
92   HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V)
93 
94 // Returned from IteratorBuiltinsAssembler::GetIterator(). Struct is declared
95 // here to simplify use in other generated builtins.
96 struct IteratorRecord {
97  public:
98   // iteratorRecord.[[Iterator]]
99   compiler::TNode<JSReceiver> object;
100 
101   // iteratorRecord.[[NextMethod]]
102   compiler::TNode<Object> next;
103 };
104 
105 #ifdef DEBUG
106 #define CSA_CHECK(csa, x)                                        \
107   (csa)->Check(                                                  \
108       [&]() -> compiler::Node* {                                 \
109         return implicit_cast<compiler::SloppyTNode<Word32T>>(x); \
110       },                                                         \
111       #x, __FILE__, __LINE__)
112 #else
113 #define CSA_CHECK(csa, x) (csa)->FastCheck(x)
114 #endif
115 
116 #ifdef DEBUG
117 // Add stringified versions to the given values, except the first. That is,
118 // transform
119 //   x, a, b, c, d, e, f
120 // to
121 //   a, "a", b, "b", c, "c", d, "d", e, "e", f, "f"
122 //
123 // __VA_ARGS__  is ignored to allow the caller to pass through too many
124 // parameters, and the first element is ignored to support having no extra
125 // values without empty __VA_ARGS__ (which cause all sorts of problems with
126 // extra commas).
127 #define CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(_, v1, v2, v3, v4, v5, ...) \
128   v1, #v1, v2, #v2, v3, #v3, v4, #v4, v5, #v5
129 
130 // Stringify the given variable number of arguments. The arguments are trimmed
131 // to 5 if there are too many, and padded with nullptr if there are not enough.
132 #define CSA_ASSERT_STRINGIFY_EXTRA_VALUES(...)                                \
133   CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(__VA_ARGS__, nullptr, nullptr, nullptr, \
134                                       nullptr, nullptr)
135 
136 #define CSA_ASSERT_GET_FIRST(x, ...) (x)
137 #define CSA_ASSERT_GET_FIRST_STR(x, ...) #x
138 
139 // CSA_ASSERT(csa, <condition>, <extra values to print...>)
140 
141 // We have to jump through some hoops to allow <extra values to print...> to be
142 // empty.
143 #define CSA_ASSERT(csa, ...)                                             \
144   (csa)->Assert(                                                         \
145       [&]() -> compiler::Node* {                                         \
146         return implicit_cast<compiler::SloppyTNode<Word32T>>(            \
147             EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__)));                  \
148       },                                                                 \
149       EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, __LINE__, \
150       CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))
151 
152 // CSA_ASSERT_BRANCH(csa, [](Label* ok, Label* not_ok) {...},
153 //     <extra values to print...>)
154 
155 #define CSA_ASSERT_BRANCH(csa, ...)                                      \
156   (csa)->Assert(EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__)),               \
157                 EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, \
158                 __LINE__, CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))
159 
160 #define CSA_ASSERT_JS_ARGC_OP(csa, Op, op, expected)                       \
161   (csa)->Assert(                                                           \
162       [&]() -> compiler::Node* {                                           \
163         compiler::Node* const argc =                                       \
164             (csa)->Parameter(Descriptor::kJSActualArgumentsCount);         \
165         return (csa)->Op(argc, (csa)->Int32Constant(expected));            \
166       },                                                                   \
167       "argc " #op " " #expected, __FILE__, __LINE__,                       \
168       SmiFromInt32((csa)->Parameter(Descriptor::kJSActualArgumentsCount)), \
169       "argc")
170 
171 #define CSA_ASSERT_JS_ARGC_EQ(csa, expected) \
172   CSA_ASSERT_JS_ARGC_OP(csa, Word32Equal, ==, expected)
173 
174 #define CSA_DEBUG_INFO(name) \
175   { #name, __FILE__, __LINE__ }
176 #define BIND(label) Bind(label, CSA_DEBUG_INFO(label))
177 #define VARIABLE(name, ...) \
178   Variable name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
179 #define VARIABLE_CONSTRUCTOR(name, ...) \
180   name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
181 #define TYPED_VARIABLE_DEF(type, name, ...) \
182   TVariable<type> name(CSA_DEBUG_INFO(name), __VA_ARGS__)
183 #else  // DEBUG
184 #define CSA_ASSERT(csa, ...) ((void)0)
185 #define CSA_ASSERT_BRANCH(csa, ...) ((void)0)
186 #define CSA_ASSERT_JS_ARGC_EQ(csa, expected) ((void)0)
187 #define BIND(label) Bind(label)
188 #define VARIABLE(name, ...) Variable name(this, __VA_ARGS__)
189 #define VARIABLE_CONSTRUCTOR(name, ...) name(this, __VA_ARGS__)
190 #define TYPED_VARIABLE_DEF(type, name, ...) TVariable<type> name(__VA_ARGS__)
191 #endif  // DEBUG
192 
193 #define TVARIABLE(...) EXPAND(TYPED_VARIABLE_DEF(__VA_ARGS__, this))
194 
195 #ifdef ENABLE_SLOW_DCHECKS
196 #define CSA_SLOW_ASSERT(csa, ...) \
197   if (FLAG_enable_slow_asserts) { \
198     CSA_ASSERT(csa, __VA_ARGS__); \
199   }
200 #else
201 #define CSA_SLOW_ASSERT(csa, ...) ((void)0)
202 #endif
203 
204 class int31_t {
205  public:
int31_t()206   int31_t() : value_(0) {}
int31_t(int value)207   int31_t(int value) : value_(value) {  // NOLINT(runtime/explicit)
208     DCHECK_EQ((value & 0x80000000) != 0, (value & 0x40000000) != 0);
209   }
210   int31_t& operator=(int value) {
211     DCHECK_EQ((value & 0x80000000) != 0, (value & 0x40000000) != 0);
212     value_ = value;
213     return *this;
214   }
value()215   int32_t value() const { return value_; }
int32_t()216   operator int32_t() const { return value_; }
217 
218  private:
219   int32_t value_;
220 };
221 
222 // Provides JavaScript-specific "macro-assembler" functionality on top of the
223 // CodeAssembler. By factoring the JavaScript-isms out of the CodeAssembler,
224 // it's possible to add JavaScript-specific useful CodeAssembler "macros"
225 // without modifying files in the compiler directory (and requiring a review
226 // from a compiler directory OWNER).
227 class V8_EXPORT_PRIVATE CodeStubAssembler : public compiler::CodeAssembler {
228  public:
229   using Node = compiler::Node;
230   template <class T>
231   using TNode = compiler::TNode<T>;
232   template <class T>
233   using SloppyTNode = compiler::SloppyTNode<T>;
234 
235   template <typename T>
236   using LazyNode = std::function<TNode<T>()>;
237 
238   CodeStubAssembler(compiler::CodeAssemblerState* state);
239 
240   enum AllocationFlag : uint8_t {
241     kNone = 0,
242     kDoubleAlignment = 1,
243     kPretenured = 1 << 1,
244     kAllowLargeObjectAllocation = 1 << 2,
245   };
246 
247   enum SlackTrackingMode { kWithSlackTracking, kNoSlackTracking };
248 
249   typedef base::Flags<AllocationFlag> AllocationFlags;
250 
251   enum ParameterMode { SMI_PARAMETERS, INTPTR_PARAMETERS };
252 
253   // On 32-bit platforms, there is a slight performance advantage to doing all
254   // of the array offset/index arithmetic with SMIs, since it's possible
255   // to save a few tag/untag operations without paying an extra expense when
256   // calculating array offset (the smi math can be folded away) and there are
257   // fewer live ranges. Thus only convert indices to untagged value on 64-bit
258   // platforms.
OptimalParameterMode()259   ParameterMode OptimalParameterMode() const {
260     return Is64() ? INTPTR_PARAMETERS : SMI_PARAMETERS;
261   }
262 
ParameterRepresentation(ParameterMode mode)263   MachineRepresentation ParameterRepresentation(ParameterMode mode) const {
264     return mode == INTPTR_PARAMETERS ? MachineType::PointerRepresentation()
265                                      : MachineRepresentation::kTaggedSigned;
266   }
267 
OptimalParameterRepresentation()268   MachineRepresentation OptimalParameterRepresentation() const {
269     return ParameterRepresentation(OptimalParameterMode());
270   }
271 
ParameterToIntPtr(Node * value,ParameterMode mode)272   TNode<IntPtrT> ParameterToIntPtr(Node* value, ParameterMode mode) {
273     if (mode == SMI_PARAMETERS) value = SmiUntag(value);
274     return UncheckedCast<IntPtrT>(value);
275   }
276 
IntPtrToParameter(SloppyTNode<IntPtrT> value,ParameterMode mode)277   Node* IntPtrToParameter(SloppyTNode<IntPtrT> value, ParameterMode mode) {
278     if (mode == SMI_PARAMETERS) return SmiTag(value);
279     return value;
280   }
281 
Int32ToParameter(SloppyTNode<Int32T> value,ParameterMode mode)282   Node* Int32ToParameter(SloppyTNode<Int32T> value, ParameterMode mode) {
283     return IntPtrToParameter(ChangeInt32ToIntPtr(value), mode);
284   }
285 
ParameterToTagged(Node * value,ParameterMode mode)286   TNode<Smi> ParameterToTagged(Node* value, ParameterMode mode) {
287     if (mode != SMI_PARAMETERS) return SmiTag(value);
288     return UncheckedCast<Smi>(value);
289   }
290 
TaggedToParameter(SloppyTNode<Smi> value,ParameterMode mode)291   Node* TaggedToParameter(SloppyTNode<Smi> value, ParameterMode mode) {
292     if (mode != SMI_PARAMETERS) return SmiUntag(value);
293     return value;
294   }
295 
TaggedToSmi(TNode<Object> value,Label * fail)296   TNode<Smi> TaggedToSmi(TNode<Object> value, Label* fail) {
297     GotoIf(TaggedIsNotSmi(value), fail);
298     return UncheckedCast<Smi>(value);
299   }
300 
TaggedToNumber(TNode<Object> value,Label * fail)301   TNode<Number> TaggedToNumber(TNode<Object> value, Label* fail) {
302     GotoIfNot(IsNumber(value), fail);
303     return UncheckedCast<Number>(value);
304   }
305 
TaggedToHeapObject(TNode<Object> value,Label * fail)306   TNode<HeapObject> TaggedToHeapObject(TNode<Object> value, Label* fail) {
307     GotoIf(TaggedIsSmi(value), fail);
308     return UncheckedCast<HeapObject>(value);
309   }
310 
HeapObjectToJSArray(TNode<HeapObject> heap_object,Label * fail)311   TNode<JSArray> HeapObjectToJSArray(TNode<HeapObject> heap_object,
312                                      Label* fail) {
313     GotoIfNot(IsJSArray(heap_object), fail);
314     return UncheckedCast<JSArray>(heap_object);
315   }
316 
TaggedToFastJSArray(TNode<Context> context,TNode<Object> value,Label * fail)317   TNode<JSArray> TaggedToFastJSArray(TNode<Context> context,
318                                      TNode<Object> value, Label* fail) {
319     GotoIf(TaggedIsSmi(value), fail);
320     TNode<HeapObject> heap_object = CAST(value);
321     GotoIfNot(IsFastJSArray(heap_object, context), fail);
322     return UncheckedCast<JSArray>(heap_object);
323   }
324 
HeapObjectToJSDataView(TNode<HeapObject> heap_object,Label * fail)325   TNode<JSDataView> HeapObjectToJSDataView(TNode<HeapObject> heap_object,
326                                            Label* fail) {
327     GotoIfNot(IsJSDataView(heap_object), fail);
328     return CAST(heap_object);
329   }
330 
HeapObjectToCallable(TNode<HeapObject> heap_object,Label * fail)331   TNode<JSReceiver> HeapObjectToCallable(TNode<HeapObject> heap_object,
332                                          Label* fail) {
333     GotoIfNot(IsCallable(heap_object), fail);
334     return CAST(heap_object);
335   }
336 
UnsafeCastNumberToHeapNumber(TNode<Number> p_n)337   TNode<HeapNumber> UnsafeCastNumberToHeapNumber(TNode<Number> p_n) {
338     return CAST(p_n);
339   }
340 
UnsafeCastObjectToFixedArrayBase(TNode<Object> p_o)341   TNode<FixedArrayBase> UnsafeCastObjectToFixedArrayBase(TNode<Object> p_o) {
342     return CAST(p_o);
343   }
344 
UnsafeCastObjectToFixedArray(TNode<Object> p_o)345   TNode<FixedArray> UnsafeCastObjectToFixedArray(TNode<Object> p_o) {
346     return CAST(p_o);
347   }
348 
UnsafeCastObjectToFixedDoubleArray(TNode<Object> p_o)349   TNode<FixedDoubleArray> UnsafeCastObjectToFixedDoubleArray(
350       TNode<Object> p_o) {
351     return CAST(p_o);
352   }
353 
UnsafeCastObjectToHeapNumber(TNode<Object> p_o)354   TNode<HeapNumber> UnsafeCastObjectToHeapNumber(TNode<Object> p_o) {
355     return CAST(p_o);
356   }
357 
UnsafeCastObjectToCallable(TNode<Object> p_o)358   TNode<HeapObject> UnsafeCastObjectToCallable(TNode<Object> p_o) {
359     return CAST(p_o);
360   }
361 
UnsafeCastObjectToSmi(TNode<Object> p_o)362   TNode<Smi> UnsafeCastObjectToSmi(TNode<Object> p_o) { return CAST(p_o); }
363 
UnsafeCastObjectToNumber(TNode<Object> p_o)364   TNode<Number> UnsafeCastObjectToNumber(TNode<Object> p_o) {
365     return CAST(p_o);
366   }
367 
UnsafeCastObjectToHeapObject(TNode<Object> p_o)368   TNode<HeapObject> UnsafeCastObjectToHeapObject(TNode<Object> p_o) {
369     return CAST(p_o);
370   }
371 
UnsafeCastObjectToJSArray(TNode<Object> p_o)372   TNode<JSArray> UnsafeCastObjectToJSArray(TNode<Object> p_o) {
373     return CAST(p_o);
374   }
375 
UnsafeCastObjectToFixedTypedArrayBase(TNode<Object> p_o)376   TNode<FixedTypedArrayBase> UnsafeCastObjectToFixedTypedArrayBase(
377       TNode<Object> p_o) {
378     return CAST(p_o);
379   }
380 
UnsafeCastObjectToCompareBuiltinFn(TNode<Object> p_o)381   TNode<Object> UnsafeCastObjectToCompareBuiltinFn(TNode<Object> p_o) {
382     return p_o;
383   }
384 
UnsafeCastObjectToLoadFn(TNode<Object> p_o)385   TNode<Object> UnsafeCastObjectToLoadFn(TNode<Object> p_o) { return p_o; }
UnsafeCastObjectToStoreFn(TNode<Object> p_o)386   TNode<Object> UnsafeCastObjectToStoreFn(TNode<Object> p_o) { return p_o; }
UnsafeCastObjectToCanUseSameAccessorFn(TNode<Object> p_o)387   TNode<Object> UnsafeCastObjectToCanUseSameAccessorFn(TNode<Object> p_o) {
388     return p_o;
389   }
390 
UnsafeCastObjectToNumberDictionary(TNode<Object> p_o)391   TNode<NumberDictionary> UnsafeCastObjectToNumberDictionary(
392       TNode<Object> p_o) {
393     return CAST(p_o);
394   }
395 
UnsafeCastObjectToJSReceiver(TNode<Object> p_o)396   TNode<JSReceiver> UnsafeCastObjectToJSReceiver(TNode<Object> p_o) {
397     return CAST(p_o);
398   }
399 
UnsafeCastObjectToJSObject(TNode<Object> p_o)400   TNode<JSObject> UnsafeCastObjectToJSObject(TNode<Object> p_o) {
401     return CAST(p_o);
402   }
403 
UnsafeCastObjectToMap(TNode<Object> p_o)404   TNode<Map> UnsafeCastObjectToMap(TNode<Object> p_o) { return CAST(p_o); }
405 
406   Node* MatchesParameterMode(Node* value, ParameterMode mode);
407 
408 #define PARAMETER_BINOP(OpName, IntPtrOpName, SmiOpName) \
409   Node* OpName(Node* a, Node* b, ParameterMode mode) {   \
410     if (mode == SMI_PARAMETERS) {                        \
411       return SmiOpName(CAST(a), CAST(b));                \
412     } else {                                             \
413       DCHECK_EQ(INTPTR_PARAMETERS, mode);                \
414       return IntPtrOpName(a, b);                         \
415     }                                                    \
416   }
417   PARAMETER_BINOP(IntPtrOrSmiMin, IntPtrMin, SmiMin)
418   PARAMETER_BINOP(IntPtrOrSmiAdd, IntPtrAdd, SmiAdd)
419   PARAMETER_BINOP(IntPtrOrSmiSub, IntPtrSub, SmiSub)
420   PARAMETER_BINOP(IntPtrOrSmiLessThan, IntPtrLessThan, SmiLessThan)
421   PARAMETER_BINOP(IntPtrOrSmiLessThanOrEqual, IntPtrLessThanOrEqual,
422                   SmiLessThanOrEqual)
423   PARAMETER_BINOP(IntPtrOrSmiGreaterThan, IntPtrGreaterThan, SmiGreaterThan)
424   PARAMETER_BINOP(IntPtrOrSmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
425                   SmiGreaterThanOrEqual)
426   PARAMETER_BINOP(UintPtrOrSmiLessThan, UintPtrLessThan, SmiBelow)
427   PARAMETER_BINOP(UintPtrOrSmiGreaterThanOrEqual, UintPtrGreaterThanOrEqual,
428                   SmiAboveOrEqual)
429 #undef PARAMETER_BINOP
430 
431   TNode<Object> NoContextConstant();
432 
433 #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
434   compiler::TNode<std::remove_reference<decltype(                     \
435       *std::declval<ReadOnlyRoots>().rootAccessorName())>::type>      \
436       name##Constant();
437   HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
438 #undef HEAP_CONSTANT_ACCESSOR
439 
440 #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
441   compiler::TNode<std::remove_reference<decltype(                     \
442       *std::declval<Heap>().rootAccessorName())>::type>               \
443       name##Constant();
444   HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
445 #undef HEAP_CONSTANT_ACCESSOR
446 
447 #define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \
448   TNode<BoolT> Is##name(SloppyTNode<Object> value);               \
449   TNode<BoolT> IsNot##name(SloppyTNode<Object> value);
450   HEAP_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_TEST)
451 #undef HEAP_CONSTANT_TEST
452 
453   TNode<Int64T> HashSeed();
454   TNode<Int32T> HashSeedHigh();
455   TNode<Int32T> HashSeedLow();
456 
457   Node* IntPtrOrSmiConstant(int value, ParameterMode mode);
LanguageModeConstant(LanguageMode mode)458   TNode<Smi> LanguageModeConstant(LanguageMode mode) {
459     return SmiConstant(static_cast<int>(mode));
460   }
461 
462   bool IsIntPtrOrSmiConstantZero(Node* test, ParameterMode mode);
463   bool TryGetIntPtrOrSmiConstantValue(Node* maybe_constant, int* value,
464                                       ParameterMode mode);
465 
466   // Round the 32bits payload of the provided word up to the next power of two.
467   TNode<IntPtrT> IntPtrRoundUpToPowerOfTwo32(TNode<IntPtrT> value);
468   // Select the maximum of the two provided IntPtr values.
469   TNode<IntPtrT> IntPtrMax(SloppyTNode<IntPtrT> left,
470                            SloppyTNode<IntPtrT> right);
471   // Select the minimum of the two provided IntPtr values.
472   TNode<IntPtrT> IntPtrMin(SloppyTNode<IntPtrT> left,
473                            SloppyTNode<IntPtrT> right);
474 
475   // Float64 operations.
476   TNode<Float64T> Float64Ceil(SloppyTNode<Float64T> x);
477   TNode<Float64T> Float64Floor(SloppyTNode<Float64T> x);
478   TNode<Float64T> Float64Round(SloppyTNode<Float64T> x);
479   TNode<Float64T> Float64RoundToEven(SloppyTNode<Float64T> x);
480   TNode<Float64T> Float64Trunc(SloppyTNode<Float64T> x);
481   // Select the minimum of the two provided Number values.
482   TNode<Object> NumberMax(SloppyTNode<Object> left, SloppyTNode<Object> right);
483   // Select the minimum of the two provided Number values.
484   TNode<Object> NumberMin(SloppyTNode<Object> left, SloppyTNode<Object> right);
485 
486   // After converting an index to an integer, calculate a relative index: if
487   // index < 0, max(length + index, 0); else min(index, length)
488   TNode<IntPtrT> ConvertToRelativeIndex(TNode<Context> context,
489                                         TNode<Object> index,
490                                         TNode<IntPtrT> length);
491 
492   // Returns true iff the given value fits into smi range and is >= 0.
493   TNode<BoolT> IsValidPositiveSmi(TNode<IntPtrT> value);
494 
495   // Tag an IntPtr as a Smi value.
496   TNode<Smi> SmiTag(SloppyTNode<IntPtrT> value);
497   // Untag a Smi value as an IntPtr.
498   TNode<IntPtrT> SmiUntag(SloppyTNode<Smi> value);
499 
500   // Smi conversions.
501   TNode<Float64T> SmiToFloat64(SloppyTNode<Smi> value);
SmiFromIntPtr(SloppyTNode<IntPtrT> value)502   TNode<Smi> SmiFromIntPtr(SloppyTNode<IntPtrT> value) { return SmiTag(value); }
503   TNode<Smi> SmiFromInt32(SloppyTNode<Int32T> value);
SmiToIntPtr(SloppyTNode<Smi> value)504   TNode<IntPtrT> SmiToIntPtr(SloppyTNode<Smi> value) { return SmiUntag(value); }
505   TNode<Int32T> SmiToInt32(SloppyTNode<Smi> value);
506 
507   // Smi operations.
508 #define SMI_ARITHMETIC_BINOP(SmiOpName, IntPtrOpName, Int32OpName)       \
509   TNode<Smi> SmiOpName(TNode<Smi> a, TNode<Smi> b) {                     \
510     if (SmiValuesAre32Bits()) {                                          \
511       return BitcastWordToTaggedSigned(                                  \
512           IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b))); \
513     } else {                                                             \
514       DCHECK(SmiValuesAre31Bits());                                      \
515       if (kPointerSize == kInt64Size) {                                  \
516         CSA_ASSERT(this, IsValidSmi(a));                                 \
517         CSA_ASSERT(this, IsValidSmi(b));                                 \
518       }                                                                  \
519       return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(              \
520           Int32OpName(TruncateIntPtrToInt32(BitcastTaggedToWord(a)),     \
521                       TruncateIntPtrToInt32(BitcastTaggedToWord(b)))));  \
522     }                                                                    \
523   }
SMI_ARITHMETIC_BINOP(SmiAdd,IntPtrAdd,Int32Add)524   SMI_ARITHMETIC_BINOP(SmiAdd, IntPtrAdd, Int32Add)
525   SMI_ARITHMETIC_BINOP(SmiSub, IntPtrSub, Int32Sub)
526   SMI_ARITHMETIC_BINOP(SmiAnd, WordAnd, Word32And)
527   SMI_ARITHMETIC_BINOP(SmiOr, WordOr, Word32Or)
528 #undef SMI_ARITHMETIC_BINOP
529   TNode<Smi> SmiInc(TNode<Smi> value) { return SmiAdd(value, SmiConstant(1)); }
530 
531   TNode<Smi> TrySmiAdd(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);
532   TNode<Smi> TrySmiSub(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);
533 
SmiShl(TNode<Smi> a,int shift)534   TNode<Smi> SmiShl(TNode<Smi> a, int shift) {
535     return BitcastWordToTaggedSigned(WordShl(BitcastTaggedToWord(a), shift));
536   }
537 
SmiShr(TNode<Smi> a,int shift)538   TNode<Smi> SmiShr(TNode<Smi> a, int shift) {
539     return BitcastWordToTaggedSigned(
540         WordAnd(WordShr(BitcastTaggedToWord(a), shift),
541                 BitcastTaggedToWord(SmiConstant(-1))));
542   }
543 
WordOrSmiShl(Node * a,int shift,ParameterMode mode)544   Node* WordOrSmiShl(Node* a, int shift, ParameterMode mode) {
545     if (mode == SMI_PARAMETERS) {
546       return SmiShl(CAST(a), shift);
547     } else {
548       DCHECK_EQ(INTPTR_PARAMETERS, mode);
549       return WordShl(a, shift);
550     }
551   }
552 
WordOrSmiShr(Node * a,int shift,ParameterMode mode)553   Node* WordOrSmiShr(Node* a, int shift, ParameterMode mode) {
554     if (mode == SMI_PARAMETERS) {
555       return SmiShr(CAST(a), shift);
556     } else {
557       DCHECK_EQ(INTPTR_PARAMETERS, mode);
558       return WordShr(a, shift);
559     }
560   }
561 
562 #define SMI_COMPARISON_OP(SmiOpName, IntPtrOpName, Int32OpName)            \
563   TNode<BoolT> SmiOpName(TNode<Smi> a, TNode<Smi> b) {                     \
564     if (SmiValuesAre32Bits()) {                                            \
565       return IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); \
566     } else {                                                               \
567       DCHECK(SmiValuesAre31Bits());                                        \
568       if (kPointerSize == kInt64Size) {                                    \
569         CSA_ASSERT(this, IsValidSmi(a));                                   \
570         CSA_ASSERT(this, IsValidSmi(b));                                   \
571       }                                                                    \
572       return Int32OpName(TruncateIntPtrToInt32(BitcastTaggedToWord(a)),    \
573                          TruncateIntPtrToInt32(BitcastTaggedToWord(b)));   \
574     }                                                                      \
575   }
576   SMI_COMPARISON_OP(SmiEqual, WordEqual, Word32Equal)
577   SMI_COMPARISON_OP(SmiNotEqual, WordNotEqual, Word32NotEqual)
578   SMI_COMPARISON_OP(SmiAbove, UintPtrGreaterThan, Uint32GreaterThan)
579   SMI_COMPARISON_OP(SmiAboveOrEqual, UintPtrGreaterThanOrEqual,
580                     Uint32GreaterThanOrEqual)
581   SMI_COMPARISON_OP(SmiBelow, UintPtrLessThan, Uint32LessThan)
582   SMI_COMPARISON_OP(SmiLessThan, IntPtrLessThan, Int32LessThan)
583   SMI_COMPARISON_OP(SmiLessThanOrEqual, IntPtrLessThanOrEqual,
584                     Int32LessThanOrEqual)
585   SMI_COMPARISON_OP(SmiGreaterThan, IntPtrGreaterThan, Int32GreaterThan)
586   SMI_COMPARISON_OP(SmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
587                     Int32GreaterThanOrEqual)
588 #undef SMI_COMPARISON_OP
589   TNode<Smi> SmiMax(TNode<Smi> a, TNode<Smi> b);
590   TNode<Smi> SmiMin(TNode<Smi> a, TNode<Smi> b);
591   // Computes a % b for Smi inputs a and b; result is not necessarily a Smi.
592   TNode<Number> SmiMod(TNode<Smi> a, TNode<Smi> b);
593   // Computes a * b for Smi inputs a and b; result is not necessarily a Smi.
594   TNode<Number> SmiMul(TNode<Smi> a, TNode<Smi> b);
595   // Tries to compute dividend / divisor for Smi inputs; branching to bailout
596   // if the division needs to be performed as a floating point operation.
597   TNode<Smi> TrySmiDiv(TNode<Smi> dividend, TNode<Smi> divisor, Label* bailout);
598 
599   // Smi | HeapNumber operations.
600   TNode<Number> NumberInc(SloppyTNode<Number> value);
601   TNode<Number> NumberDec(SloppyTNode<Number> value);
602   TNode<Number> NumberAdd(SloppyTNode<Number> a, SloppyTNode<Number> b);
603   TNode<Number> NumberSub(SloppyTNode<Number> a, SloppyTNode<Number> b);
604   void GotoIfNotNumber(Node* value, Label* is_not_number);
605   void GotoIfNumber(Node* value, Label* is_number);
SmiToNumber(TNode<Smi> v)606   TNode<Number> SmiToNumber(TNode<Smi> v) { return v; }
607 
608   TNode<Number> BitwiseOp(Node* left32, Node* right32, Operation bitwise_op);
609 
610   // Allocate an object of the given size.
611   Node* AllocateInNewSpace(Node* size, AllocationFlags flags = kNone);
612   Node* AllocateInNewSpace(int size, AllocationFlags flags = kNone);
613   Node* Allocate(Node* size, AllocationFlags flags = kNone);
614   Node* Allocate(int size, AllocationFlags flags = kNone);
615   Node* InnerAllocate(Node* previous, int offset);
616   Node* InnerAllocate(Node* previous, Node* offset);
617   Node* IsRegularHeapObjectSize(Node* size);
618 
619   typedef std::function<void(Label*, Label*)> BranchGenerator;
620   typedef std::function<Node*()> NodeGenerator;
621 
622   void Assert(const BranchGenerator& branch, const char* message = nullptr,
623               const char* file = nullptr, int line = 0,
624               Node* extra_node1 = nullptr, const char* extra_node1_name = "",
625               Node* extra_node2 = nullptr, const char* extra_node2_name = "",
626               Node* extra_node3 = nullptr, const char* extra_node3_name = "",
627               Node* extra_node4 = nullptr, const char* extra_node4_name = "",
628               Node* extra_node5 = nullptr, const char* extra_node5_name = "");
629   void Assert(const NodeGenerator& condition_body,
630               const char* message = nullptr, const char* file = nullptr,
631               int line = 0, Node* extra_node1 = nullptr,
632               const char* extra_node1_name = "", Node* extra_node2 = nullptr,
633               const char* extra_node2_name = "", Node* extra_node3 = nullptr,
634               const char* extra_node3_name = "", Node* extra_node4 = nullptr,
635               const char* extra_node4_name = "", Node* extra_node5 = nullptr,
636               const char* extra_node5_name = "");
637   void Check(const BranchGenerator& branch, const char* message = nullptr,
638              const char* file = nullptr, int line = 0,
639              Node* extra_node1 = nullptr, const char* extra_node1_name = "",
640              Node* extra_node2 = nullptr, const char* extra_node2_name = "",
641              Node* extra_node3 = nullptr, const char* extra_node3_name = "",
642              Node* extra_node4 = nullptr, const char* extra_node4_name = "",
643              Node* extra_node5 = nullptr, const char* extra_node5_name = "");
644   void Check(const NodeGenerator& condition_body, const char* message = nullptr,
645              const char* file = nullptr, int line = 0,
646              Node* extra_node1 = nullptr, const char* extra_node1_name = "",
647              Node* extra_node2 = nullptr, const char* extra_node2_name = "",
648              Node* extra_node3 = nullptr, const char* extra_node3_name = "",
649              Node* extra_node4 = nullptr, const char* extra_node4_name = "",
650              Node* extra_node5 = nullptr, const char* extra_node5_name = "");
651   void FastCheck(TNode<BoolT> condition);
652 
653   // The following Call wrappers call an object according to the semantics that
654   // one finds in the EcmaScript spec, operating on an Callable (e.g. a
655   // JSFunction or proxy) rather than a Code object.
656   template <class... TArgs>
Call(TNode<Context> context,TNode<Object> callable,TNode<JSReceiver> receiver,TArgs...args)657   TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
658                      TNode<JSReceiver> receiver, TArgs... args) {
659     return UncheckedCast<Object>(CallJS(
660         CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined),
661         context, callable, receiver, args...));
662   }
663   template <class... TArgs>
Call(TNode<Context> context,TNode<Object> callable,TNode<Object> receiver,TArgs...args)664   TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
665                      TNode<Object> receiver, TArgs... args) {
666     if (IsUndefinedConstant(receiver) || IsNullConstant(receiver)) {
667       return UncheckedCast<Object>(CallJS(
668           CodeFactory::Call(isolate(), ConvertReceiverMode::kNullOrUndefined),
669           context, callable, receiver, args...));
670     }
671     return UncheckedCast<Object>(CallJS(CodeFactory::Call(isolate()), context,
672                                         callable, receiver, args...));
673   }
674 
675   template <class A, class F, class G>
Select(SloppyTNode<BoolT> condition,const F & true_body,const G & false_body)676   TNode<A> Select(SloppyTNode<BoolT> condition, const F& true_body,
677                   const G& false_body) {
678     return UncheckedCast<A>(SelectImpl(
679         condition,
680         [&]() -> Node* { return implicit_cast<TNode<A>>(true_body()); },
681         [&]() -> Node* { return implicit_cast<TNode<A>>(false_body()); },
682         MachineRepresentationOf<A>::value));
683   }
684 
685   template <class A>
SelectConstant(TNode<BoolT> condition,TNode<A> true_value,TNode<A> false_value)686   TNode<A> SelectConstant(TNode<BoolT> condition, TNode<A> true_value,
687                           TNode<A> false_value) {
688     return Select<A>(condition, [=] { return true_value; },
689                      [=] { return false_value; });
690   }
691 
692   TNode<Int32T> SelectInt32Constant(SloppyTNode<BoolT> condition,
693                                     int true_value, int false_value);
694   TNode<IntPtrT> SelectIntPtrConstant(SloppyTNode<BoolT> condition,
695                                       int true_value, int false_value);
696   TNode<Oddball> SelectBooleanConstant(SloppyTNode<BoolT> condition);
697   TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi* true_value,
698                                Smi* false_value);
SelectSmiConstant(SloppyTNode<BoolT> condition,int true_value,Smi * false_value)699   TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value,
700                                Smi* false_value) {
701     return SelectSmiConstant(condition, Smi::FromInt(true_value), false_value);
702   }
SelectSmiConstant(SloppyTNode<BoolT> condition,Smi * true_value,int false_value)703   TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi* true_value,
704                                int false_value) {
705     return SelectSmiConstant(condition, true_value, Smi::FromInt(false_value));
706   }
SelectSmiConstant(SloppyTNode<BoolT> condition,int true_value,int false_value)707   TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value,
708                                int false_value) {
709     return SelectSmiConstant(condition, Smi::FromInt(true_value),
710                              Smi::FromInt(false_value));
711   }
712 
713   TNode<Int32T> TruncateIntPtrToInt32(SloppyTNode<IntPtrT> value);
714 
715   // Check a value for smi-ness
716   TNode<BoolT> TaggedIsSmi(SloppyTNode<Object> a);
717   TNode<BoolT> TaggedIsSmi(TNode<MaybeObject> a);
718   TNode<BoolT> TaggedIsNotSmi(SloppyTNode<Object> a);
719   // Check that the value is a non-negative smi.
720   TNode<BoolT> TaggedIsPositiveSmi(SloppyTNode<Object> a);
721   // Check that a word has a word-aligned address.
722   TNode<BoolT> WordIsWordAligned(SloppyTNode<WordT> word);
723   TNode<BoolT> WordIsPowerOfTwo(SloppyTNode<IntPtrT> value);
724 
725 #if DEBUG
726   void Bind(Label* label, AssemblerDebugInfo debug_info);
727 #else
728   void Bind(Label* label);
729 #endif  // DEBUG
730 
BranchIfSmiEqual(TNode<Smi> a,TNode<Smi> b,Label * if_true,Label * if_false)731   void BranchIfSmiEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
732                         Label* if_false) {
733     Branch(SmiEqual(a, b), if_true, if_false);
734   }
735 
BranchIfSmiLessThan(TNode<Smi> a,TNode<Smi> b,Label * if_true,Label * if_false)736   void BranchIfSmiLessThan(TNode<Smi> a, TNode<Smi> b, Label* if_true,
737                            Label* if_false) {
738     Branch(SmiLessThan(a, b), if_true, if_false);
739   }
740 
BranchIfSmiLessThanOrEqual(TNode<Smi> a,TNode<Smi> b,Label * if_true,Label * if_false)741   void BranchIfSmiLessThanOrEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
742                                   Label* if_false) {
743     Branch(SmiLessThanOrEqual(a, b), if_true, if_false);
744   }
745 
BranchIfFloat64IsNaN(Node * value,Label * if_true,Label * if_false)746   void BranchIfFloat64IsNaN(Node* value, Label* if_true, Label* if_false) {
747     Branch(Float64Equal(value, value), if_false, if_true);
748   }
749 
750   // Branches to {if_true} if ToBoolean applied to {value} yields true,
751   // otherwise goes to {if_false}.
752   void BranchIfToBooleanIsTrue(Node* value, Label* if_true, Label* if_false);
753 
754   void BranchIfJSReceiver(Node* object, Label* if_true, Label* if_false);
755 
756   void BranchIfFastJSArray(Node* object, Node* context, Label* if_true,
757                            Label* if_false, bool iteration_only = false);
BranchIfNotFastJSArray(Node * object,Node * context,Label * if_true,Label * if_false)758   void BranchIfNotFastJSArray(Node* object, Node* context, Label* if_true,
759                               Label* if_false) {
760     BranchIfFastJSArray(object, context, if_false, if_true);
761   }
762   void BranchIfFastJSArrayForCopy(Node* object, Node* context, Label* if_true,
763                                   Label* if_false);
764 
765   // Branches to {if_true} when --force-slow-path flag has been passed.
766   // It's used for testing to ensure that slow path implementation behave
767   // equivalent to corresponding fast paths (where applicable).
768   //
769   // Works only with V8_ENABLE_FORCE_SLOW_PATH compile time flag. Nop otherwise.
770   void GotoIfForceSlowPath(Label* if_true);
771 
772   // Load value from current frame by given offset in bytes.
773   Node* LoadFromFrame(int offset, MachineType rep = MachineType::AnyTagged());
774   // Load value from current parent frame by given offset in bytes.
775   Node* LoadFromParentFrame(int offset,
776                             MachineType rep = MachineType::AnyTagged());
777 
778   // Load target function from the current JS frame.
779   // This is an alternative way of getting the target function in addition to
780   // Parameter(Descriptor::kJSTarget). The latter should be used near the
781   // beginning of builtin code while the target value is still in the register
782   // and the former should be used in slow paths in order to reduce register
783   // pressure on the fast path.
784   TNode<JSFunction> LoadTargetFromFrame();
785 
786   // Load an object pointer from a buffer that isn't in the heap.
787   Node* LoadBufferObject(Node* buffer, int offset,
788                          MachineType rep = MachineType::AnyTagged());
789   // Load a field from an object on the heap.
790   Node* LoadObjectField(SloppyTNode<HeapObject> object, int offset,
791                         MachineType rep);
792   template <class T, typename std::enable_if<
793                          std::is_convertible<TNode<T>, TNode<Object>>::value,
794                          int>::type = 0>
LoadObjectField(TNode<HeapObject> object,int offset)795   TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
796     return CAST(LoadObjectField(object, offset, MachineTypeOf<T>::value));
797   }
798   template <class T, typename std::enable_if<
799                          std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
800                          int>::type = 0>
LoadObjectField(TNode<HeapObject> object,int offset)801   TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
802     return UncheckedCast<T>(
803         LoadObjectField(object, offset, MachineTypeOf<T>::value));
804   }
LoadObjectField(SloppyTNode<HeapObject> object,int offset)805   TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object, int offset) {
806     return UncheckedCast<Object>(
807         LoadObjectField(object, offset, MachineType::AnyTagged()));
808   }
809   Node* LoadObjectField(SloppyTNode<HeapObject> object,
810                         SloppyTNode<IntPtrT> offset, MachineType rep);
LoadObjectField(SloppyTNode<HeapObject> object,SloppyTNode<IntPtrT> offset)811   TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object,
812                                 SloppyTNode<IntPtrT> offset) {
813     return UncheckedCast<Object>(
814         LoadObjectField(object, offset, MachineType::AnyTagged()));
815   }
816   // Load a SMI field and untag it.
817   TNode<IntPtrT> LoadAndUntagObjectField(SloppyTNode<HeapObject> object,
818                                          int offset);
819   // Load a SMI field, untag it, and convert to Word32.
820   TNode<Int32T> LoadAndUntagToWord32ObjectField(Node* object, int offset);
821   // Load a SMI and untag it.
822   TNode<IntPtrT> LoadAndUntagSmi(Node* base, int index);
823   // Load a SMI root, untag it, and convert to Word32.
824   TNode<Int32T> LoadAndUntagToWord32Root(Heap::RootListIndex root_index);
825 
LoadMaybeWeakObjectField(SloppyTNode<HeapObject> object,int offset)826   TNode<MaybeObject> LoadMaybeWeakObjectField(SloppyTNode<HeapObject> object,
827                                               int offset) {
828     return UncheckedCast<MaybeObject>(
829         LoadObjectField(object, offset, MachineType::AnyTagged()));
830   }
831 
832   // Tag a smi and store it.
833   Node* StoreAndTagSmi(Node* base, int offset, Node* value);
834 
835   // Load the floating point value of a HeapNumber.
836   TNode<Float64T> LoadHeapNumberValue(SloppyTNode<HeapNumber> object);
837   // Load the Map of an HeapObject.
838   TNode<Map> LoadMap(SloppyTNode<HeapObject> object);
839   // Load the instance type of an HeapObject.
840   TNode<Int32T> LoadInstanceType(SloppyTNode<HeapObject> object);
841   // Compare the instance the type of the object against the provided one.
842   TNode<BoolT> HasInstanceType(SloppyTNode<HeapObject> object,
843                                InstanceType type);
844   TNode<BoolT> DoesntHaveInstanceType(SloppyTNode<HeapObject> object,
845                                       InstanceType type);
846   TNode<BoolT> TaggedDoesntHaveInstanceType(SloppyTNode<HeapObject> any_tagged,
847                                             InstanceType type);
848   // Load the properties backing store of a JSObject.
849   TNode<HeapObject> LoadSlowProperties(SloppyTNode<JSObject> object);
850   TNode<HeapObject> LoadFastProperties(SloppyTNode<JSObject> object);
851   // Load the elements backing store of a JSObject.
852   TNode<FixedArrayBase> LoadElements(SloppyTNode<JSObject> object);
853   // Load the length of a JSArray instance.
854   TNode<Number> LoadJSArrayLength(SloppyTNode<JSArray> array);
855   // Load the length of a fast JSArray instance. Returns a positive Smi.
856   TNode<Smi> LoadFastJSArrayLength(SloppyTNode<JSArray> array);
857   // Load the length of a fixed array base instance.
858   TNode<Smi> LoadFixedArrayBaseLength(SloppyTNode<FixedArrayBase> array);
859   // Load the length of a fixed array base instance.
860   TNode<IntPtrT> LoadAndUntagFixedArrayBaseLength(
861       SloppyTNode<FixedArrayBase> array);
862   // Load the length of a WeakFixedArray.
863   TNode<Smi> LoadWeakFixedArrayLength(TNode<WeakFixedArray> array);
864   TNode<IntPtrT> LoadAndUntagWeakFixedArrayLength(
865       SloppyTNode<WeakFixedArray> array);
866   // Load the length of a JSTypedArray instance.
867   TNode<Smi> LoadTypedArrayLength(TNode<JSTypedArray> typed_array);
868   // Load the bit field of a Map.
869   TNode<Int32T> LoadMapBitField(SloppyTNode<Map> map);
870   // Load bit field 2 of a map.
871   TNode<Int32T> LoadMapBitField2(SloppyTNode<Map> map);
872   // Load bit field 3 of a map.
873   TNode<Uint32T> LoadMapBitField3(SloppyTNode<Map> map);
874   // Load the instance type of a map.
875   TNode<Int32T> LoadMapInstanceType(SloppyTNode<Map> map);
876   // Load the ElementsKind of a map.
877   TNode<Int32T> LoadMapElementsKind(SloppyTNode<Map> map);
878   TNode<Int32T> LoadElementsKind(SloppyTNode<HeapObject> map);
879   // Load the instance descriptors of a map.
880   TNode<DescriptorArray> LoadMapDescriptors(SloppyTNode<Map> map);
881   // Load the prototype of a map.
882   TNode<HeapObject> LoadMapPrototype(SloppyTNode<Map> map);
883   // Load the prototype info of a map. The result has to be checked if it is a
884   // prototype info object or not.
885   TNode<PrototypeInfo> LoadMapPrototypeInfo(SloppyTNode<Map> map,
886                                             Label* if_has_no_proto_info);
887   // Load the instance size of a Map.
888   TNode<IntPtrT> LoadMapInstanceSizeInWords(SloppyTNode<Map> map);
889   // Load the inobject properties start of a Map (valid only for JSObjects).
890   TNode<IntPtrT> LoadMapInobjectPropertiesStartInWords(SloppyTNode<Map> map);
891   // Load the constructor function index of a Map (only for primitive maps).
892   TNode<IntPtrT> LoadMapConstructorFunctionIndex(SloppyTNode<Map> map);
893   // Load the constructor of a Map (equivalent to Map::GetConstructor()).
894   TNode<Object> LoadMapConstructor(SloppyTNode<Map> map);
895   // Load the EnumLength of a Map.
896   Node* LoadMapEnumLength(SloppyTNode<Map> map);
897   // Load the back-pointer of a Map.
898   TNode<Object> LoadMapBackPointer(SloppyTNode<Map> map);
899   // Load the identity hash of a JSRececiver.
900   TNode<IntPtrT> LoadJSReceiverIdentityHash(SloppyTNode<Object> receiver,
901                                             Label* if_no_hash = nullptr);
902 
903   // This is only used on a newly allocated PropertyArray which
904   // doesn't have an existing hash.
905   void InitializePropertyArrayLength(Node* property_array, Node* length,
906                                      ParameterMode mode);
907 
908   // Check if the map is set for slow properties.
909   TNode<BoolT> IsDictionaryMap(SloppyTNode<Map> map);
910 
911   // Load the hash field of a name as an uint32 value.
912   TNode<Uint32T> LoadNameHashField(SloppyTNode<Name> name);
913   // Load the hash value of a name as an uint32 value.
914   // If {if_hash_not_computed} label is specified then it also checks if
915   // hash is actually computed.
916   TNode<Uint32T> LoadNameHash(SloppyTNode<Name> name,
917                               Label* if_hash_not_computed = nullptr);
918 
919   // Load length field of a String object as intptr_t value.
920   TNode<IntPtrT> LoadStringLengthAsWord(SloppyTNode<String> object);
921   // Load length field of a String object as Smi value.
922   TNode<Smi> LoadStringLengthAsSmi(SloppyTNode<String> object);
923   // Loads a pointer to the sequential String char array.
924   Node* PointerToSeqStringData(Node* seq_string);
925   // Load value field of a JSValue object.
926   Node* LoadJSValueValue(Node* object);
927 
928   // Figures out whether the value of maybe_object is:
929   // - a SMI (jump to "if_smi", "extracted" will be the SMI value)
930   // - a cleared weak reference (jump to "if_cleared", "extracted" will be
931   // untouched)
932   // - a weak reference (jump to "if_weak", "extracted" will be the object
933   // pointed to)
934   // - a strong reference (jump to "if_strong", "extracted" will be the object
935   // pointed to)
936   void DispatchMaybeObject(TNode<MaybeObject> maybe_object, Label* if_smi,
937                            Label* if_cleared, Label* if_weak, Label* if_strong,
938                            TVariable<Object>* extracted);
939   // See MaybeObject for semantics of these functions.
940   TNode<BoolT> IsStrongHeapObject(TNode<MaybeObject> value);
941   // This variant is for overzealous checking.
IsStrongHeapObject(TNode<Object> value)942   TNode<BoolT> IsStrongHeapObject(TNode<Object> value) {
943     return IsStrongHeapObject(ReinterpretCast<MaybeObject>(value));
944   }
945   TNode<HeapObject> ToStrongHeapObject(TNode<MaybeObject> value,
946                                        Label* if_not_strong);
947 
948   TNode<BoolT> IsWeakOrClearedHeapObject(TNode<MaybeObject> value);
949   TNode<BoolT> IsClearedWeakHeapObject(TNode<MaybeObject> value);
950   TNode<BoolT> IsNotClearedWeakHeapObject(TNode<MaybeObject> value);
951 
952   // Removes the weak bit + asserts it was set.
953   TNode<HeapObject> ToWeakHeapObject(TNode<MaybeObject> value);
954 
955   TNode<HeapObject> ToWeakHeapObject(TNode<MaybeObject> value,
956                                      Label* if_cleared);
957 
958   TNode<BoolT> IsWeakReferenceTo(TNode<MaybeObject> object,
959                                  TNode<Object> value);
960   TNode<BoolT> IsNotWeakReferenceTo(TNode<MaybeObject> object,
961                                     TNode<Object> value);
962   TNode<BoolT> IsStrongReferenceTo(TNode<MaybeObject> object,
963                                    TNode<Object> value);
964 
965   TNode<MaybeObject> MakeWeak(TNode<HeapObject> value);
966 
967   void FixedArrayBoundsCheck(TNode<FixedArrayBase> array, Node* index,
968                              int additional_offset = 0,
969                              ParameterMode parameter_mode = INTPTR_PARAMETERS);
970 
971   // Load an array element from a FixedArray / WeakFixedArray / PropertyArray.
972   TNode<MaybeObject> LoadArrayElement(
973       SloppyTNode<HeapObject> object, int array_header_size, Node* index,
974       int additional_offset = 0,
975       ParameterMode parameter_mode = INTPTR_PARAMETERS,
976       LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
977 
978   // Load an array element from a FixedArray.
979   TNode<Object> LoadFixedArrayElement(
980       TNode<FixedArray> object, Node* index, int additional_offset = 0,
981       ParameterMode parameter_mode = INTPTR_PARAMETERS,
982       LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
983 
LoadFixedArrayElement(TNode<FixedArray> object,TNode<IntPtrT> index,LoadSensitivity needs_poisoning)984   TNode<Object> LoadFixedArrayElement(TNode<FixedArray> object,
985                                       TNode<IntPtrT> index,
986                                       LoadSensitivity needs_poisoning) {
987     return LoadFixedArrayElement(object, index, 0, INTPTR_PARAMETERS,
988                                  needs_poisoning);
989   }
990 
991   TNode<Object> LoadFixedArrayElement(
992       TNode<FixedArray> object, TNode<IntPtrT> index, int additional_offset = 0,
993       LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
994     return LoadFixedArrayElement(object, index, additional_offset,
995                                  INTPTR_PARAMETERS, needs_poisoning);
996   }
997 
998   TNode<Object> LoadFixedArrayElement(
999       TNode<FixedArray> object, int index, int additional_offset = 0,
1000       LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1001     return LoadFixedArrayElement(object, IntPtrConstant(index),
1002                                  additional_offset, INTPTR_PARAMETERS,
1003                                  needs_poisoning);
1004   }
LoadFixedArrayElement(TNode<FixedArray> object,TNode<Smi> index)1005   TNode<Object> LoadFixedArrayElement(TNode<FixedArray> object,
1006                                       TNode<Smi> index) {
1007     return LoadFixedArrayElement(object, index, 0, SMI_PARAMETERS);
1008   }
1009 
1010   TNode<Object> LoadPropertyArrayElement(SloppyTNode<PropertyArray> object,
1011                                          SloppyTNode<IntPtrT> index);
1012   TNode<IntPtrT> LoadPropertyArrayLength(TNode<PropertyArray> object);
1013 
1014   // Load an array element from a FixedArray / WeakFixedArray, untag it and
1015   // return it as Word32.
1016   TNode<Int32T> LoadAndUntagToWord32ArrayElement(
1017       SloppyTNode<HeapObject> object, int array_header_size, Node* index,
1018       int additional_offset = 0,
1019       ParameterMode parameter_mode = INTPTR_PARAMETERS);
1020 
1021   // Load an array element from a FixedArray, untag it and return it as Word32.
1022   TNode<Int32T> LoadAndUntagToWord32FixedArrayElement(
1023       SloppyTNode<HeapObject> object, Node* index, int additional_offset = 0,
1024       ParameterMode parameter_mode = INTPTR_PARAMETERS);
1025 
1026   TNode<Int32T> LoadAndUntagToWord32FixedArrayElement(
1027       SloppyTNode<HeapObject> object, int index, int additional_offset = 0) {
1028     return LoadAndUntagToWord32FixedArrayElement(
1029         object, IntPtrConstant(index), additional_offset, INTPTR_PARAMETERS);
1030   }
1031 
1032   // Load an array element from a WeakFixedArray.
1033   TNode<MaybeObject> LoadWeakFixedArrayElement(
1034       TNode<WeakFixedArray> object, Node* index, int additional_offset = 0,
1035       ParameterMode parameter_mode = INTPTR_PARAMETERS,
1036       LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
1037 
1038   TNode<MaybeObject> LoadWeakFixedArrayElement(
1039       TNode<WeakFixedArray> object, int index, int additional_offset = 0,
1040       LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1041     return LoadWeakFixedArrayElement(object, IntPtrConstant(index),
1042                                      additional_offset, INTPTR_PARAMETERS,
1043                                      needs_poisoning);
1044   }
1045 
1046   // Load an array element from a FixedDoubleArray.
1047   TNode<Float64T> LoadFixedDoubleArrayElement(
1048       SloppyTNode<FixedDoubleArray> object, Node* index,
1049       MachineType machine_type, int additional_offset = 0,
1050       ParameterMode parameter_mode = INTPTR_PARAMETERS,
1051       Label* if_hole = nullptr);
1052 
LoadFixedDoubleArrayElement(TNode<FixedDoubleArray> object,TNode<Smi> index)1053   Node* LoadFixedDoubleArrayElement(TNode<FixedDoubleArray> object,
1054                                     TNode<Smi> index) {
1055     return LoadFixedDoubleArrayElement(object, index, MachineType::Float64(), 0,
1056                                        SMI_PARAMETERS);
1057   }
1058 
1059   // Load an array element from a FixedArray, FixedDoubleArray or a
1060   // NumberDictionary (depending on the |elements_kind|) and return
1061   // it as a tagged value. Assumes that the |index| passed a length
1062   // check before. Bails out to |if_accessor| if the element that
1063   // was found is an accessor, or to |if_hole| if the element at
1064   // the given |index| is not found in |elements|.
1065   TNode<Object> LoadFixedArrayBaseElementAsTagged(
1066       TNode<FixedArrayBase> elements, TNode<IntPtrT> index,
1067       TNode<Int32T> elements_kind, Label* if_accessor, Label* if_hole);
1068 
1069   // Load a feedback slot from a FeedbackVector.
1070   TNode<MaybeObject> LoadFeedbackVectorSlot(
1071       Node* object, Node* index, int additional_offset = 0,
1072       ParameterMode parameter_mode = INTPTR_PARAMETERS);
1073 
1074   TNode<IntPtrT> LoadFeedbackVectorLength(TNode<FeedbackVector>);
1075   TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array,
1076                                           TNode<Smi> index,
1077                                           Label* if_hole = nullptr);
1078 
1079   // Load Float64 value by |base| + |offset| address. If the value is a double
1080   // hole then jump to |if_hole|. If |machine_type| is None then only the hole
1081   // check is generated.
1082   TNode<Float64T> LoadDoubleWithHoleCheck(
1083       SloppyTNode<Object> base, SloppyTNode<IntPtrT> offset, Label* if_hole,
1084       MachineType machine_type = MachineType::Float64());
1085   TNode<RawPtrT> LoadFixedTypedArrayBackingStore(
1086       TNode<FixedTypedArrayBase> typed_array);
1087   Node* LoadFixedTypedArrayElementAsTagged(
1088       Node* data_pointer, Node* index_node, ElementsKind elements_kind,
1089       ParameterMode parameter_mode = INTPTR_PARAMETERS);
1090   TNode<Numeric> LoadFixedTypedArrayElementAsTagged(
1091       TNode<WordT> data_pointer, TNode<Smi> index, TNode<Int32T> elements_kind);
1092   // Parts of the above, factored out for readability:
1093   Node* LoadFixedBigInt64ArrayElementAsTagged(Node* data_pointer, Node* offset);
1094   Node* LoadFixedBigUint64ArrayElementAsTagged(Node* data_pointer,
1095                                                Node* offset);
1096 
1097   void StoreFixedTypedArrayElementFromTagged(
1098       TNode<Context> context, TNode<FixedTypedArrayBase> elements,
1099       TNode<Object> index_node, TNode<Object> value, ElementsKind elements_kind,
1100       ParameterMode parameter_mode);
1101 
1102   // Context manipulation
1103   TNode<Object> LoadContextElement(SloppyTNode<Context> context,
1104                                    int slot_index);
1105   TNode<Object> LoadContextElement(SloppyTNode<Context> context,
1106                                    SloppyTNode<IntPtrT> slot_index);
1107   void StoreContextElement(SloppyTNode<Context> context, int slot_index,
1108                            SloppyTNode<Object> value);
1109   void StoreContextElement(SloppyTNode<Context> context,
1110                            SloppyTNode<IntPtrT> slot_index,
1111                            SloppyTNode<Object> value);
1112   void StoreContextElementNoWriteBarrier(SloppyTNode<Context> context,
1113                                          int slot_index,
1114                                          SloppyTNode<Object> value);
1115   TNode<Context> LoadNativeContext(SloppyTNode<Context> context);
1116   // Calling this is only valid if there's a module context in the chain.
1117   TNode<Context> LoadModuleContext(SloppyTNode<Context> context);
1118 
GotoIfContextElementEqual(Node * value,Node * native_context,int slot_index,Label * if_equal)1119   void GotoIfContextElementEqual(Node* value, Node* native_context,
1120                                  int slot_index, Label* if_equal) {
1121     GotoIf(WordEqual(value, LoadContextElement(native_context, slot_index)),
1122            if_equal);
1123   }
1124 
1125   TNode<Map> LoadJSArrayElementsMap(ElementsKind kind,
1126                                     SloppyTNode<Context> native_context);
1127   TNode<Map> LoadJSArrayElementsMap(SloppyTNode<Int32T> kind,
1128                                     SloppyTNode<Context> native_context);
1129 
1130   TNode<BoolT> IsGeneratorFunction(TNode<JSFunction> function);
1131   TNode<BoolT> HasPrototypeProperty(TNode<JSFunction> function, TNode<Map> map);
1132   void GotoIfPrototypeRequiresRuntimeLookup(TNode<JSFunction> function,
1133                                             TNode<Map> map, Label* runtime);
1134   // Load the "prototype" property of a JSFunction.
1135   Node* LoadJSFunctionPrototype(Node* function, Label* if_bailout);
1136 
1137   Node* LoadSharedFunctionInfoBytecodeArray(Node* shared);
1138 
1139   void StoreObjectByteNoWriteBarrier(TNode<HeapObject> object, int offset,
1140                                      TNode<Word32T> value);
1141 
1142   // Store the floating point value of a HeapNumber.
1143   void StoreHeapNumberValue(SloppyTNode<HeapNumber> object,
1144                             SloppyTNode<Float64T> value);
1145   void StoreMutableHeapNumberValue(SloppyTNode<MutableHeapNumber> object,
1146                                    SloppyTNode<Float64T> value);
1147   // Store a field to an object on the heap.
1148   Node* StoreObjectField(Node* object, int offset, Node* value);
1149   Node* StoreObjectField(Node* object, Node* offset, Node* value);
1150   Node* StoreObjectFieldNoWriteBarrier(
1151       Node* object, int offset, Node* value,
1152       MachineRepresentation rep = MachineRepresentation::kTagged);
1153   Node* StoreObjectFieldNoWriteBarrier(
1154       Node* object, Node* offset, Node* value,
1155       MachineRepresentation rep = MachineRepresentation::kTagged);
1156   // Store the Map of an HeapObject.
1157   Node* StoreMap(Node* object, Node* map);
1158   Node* StoreMapNoWriteBarrier(Node* object,
1159                                Heap::RootListIndex map_root_index);
1160   Node* StoreMapNoWriteBarrier(Node* object, Node* map);
1161   Node* StoreObjectFieldRoot(Node* object, int offset,
1162                              Heap::RootListIndex root);
1163   // Store an array element to a FixedArray.
1164   void StoreFixedArrayElement(
1165       TNode<FixedArray> object, int index, SloppyTNode<Object> value,
1166       WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
1167     return StoreFixedArrayElement(object, IntPtrConstant(index), value,
1168                                   barrier_mode);
1169   }
1170 
1171   Node* StoreJSArrayLength(TNode<JSArray> array, TNode<Smi> length);
1172   Node* StoreElements(TNode<Object> object, TNode<FixedArrayBase> elements);
1173 
1174   void StoreFixedArrayOrPropertyArrayElement(
1175       Node* array, Node* index, Node* value,
1176       WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1177       int additional_offset = 0,
1178       ParameterMode parameter_mode = INTPTR_PARAMETERS);
1179 
1180   void StoreFixedArrayElement(
1181       TNode<FixedArray> array, Node* index, SloppyTNode<Object> value,
1182       WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1183       int additional_offset = 0,
1184       ParameterMode parameter_mode = INTPTR_PARAMETERS) {
1185     FixedArrayBoundsCheck(array, index, additional_offset, parameter_mode);
1186     StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode,
1187                                           additional_offset, parameter_mode);
1188   }
1189 
1190   void StorePropertyArrayElement(
1191       TNode<PropertyArray> array, Node* index, SloppyTNode<Object> value,
1192       WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1193       int additional_offset = 0,
1194       ParameterMode parameter_mode = INTPTR_PARAMETERS) {
1195     StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode,
1196                                           additional_offset, parameter_mode);
1197   }
1198 
1199   void StoreFixedArrayElementSmi(
1200       TNode<FixedArray> array, TNode<Smi> index, TNode<Object> value,
1201       WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
1202     StoreFixedArrayElement(array, index, value, barrier_mode, 0,
1203                            SMI_PARAMETERS);
1204   }
1205 
1206   void StoreFixedDoubleArrayElement(
1207       TNode<FixedDoubleArray> object, Node* index, TNode<Float64T> value,
1208       ParameterMode parameter_mode = INTPTR_PARAMETERS);
1209 
1210   Node* StoreFeedbackVectorSlot(
1211       Node* object, Node* index, Node* value,
1212       WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1213       int additional_offset = 0,
1214       ParameterMode parameter_mode = INTPTR_PARAMETERS);
1215 
1216   void EnsureArrayLengthWritable(TNode<Map> map, Label* bailout);
1217 
1218   // EnsureArrayPushable verifies that receiver with this map is:
1219   //   1. Is not a prototype.
1220   //   2. Is not a dictionary.
1221   //   3. Has a writeable length property.
1222   // It returns ElementsKind as a node for further division into cases.
1223   TNode<Int32T> EnsureArrayPushable(TNode<Map> map, Label* bailout);
1224 
1225   void TryStoreArrayElement(ElementsKind kind, ParameterMode mode,
1226                             Label* bailout, Node* elements, Node* index,
1227                             Node* value);
1228   // Consumes args into the array, and returns tagged new length.
1229   TNode<Smi> BuildAppendJSArray(ElementsKind kind, SloppyTNode<JSArray> array,
1230                                 CodeStubArguments* args,
1231                                 TVariable<IntPtrT>* arg_index, Label* bailout);
1232   // Pushes value onto the end of array.
1233   void BuildAppendJSArray(ElementsKind kind, Node* array, Node* value,
1234                           Label* bailout);
1235 
1236   void StoreFieldsNoWriteBarrier(Node* start_address, Node* end_address,
1237                                  Node* value);
1238 
1239   Node* AllocateCellWithValue(Node* value,
1240                               WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
1241   Node* AllocateSmiCell(int value = 0) {
1242     return AllocateCellWithValue(SmiConstant(value), SKIP_WRITE_BARRIER);
1243   }
1244 
1245   Node* LoadCellValue(Node* cell);
1246 
1247   Node* StoreCellValue(Node* cell, Node* value,
1248                        WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
1249 
1250   // Allocate a HeapNumber without initializing its value.
1251   TNode<HeapNumber> AllocateHeapNumber();
1252   // Allocate a HeapNumber with a specific value.
1253   TNode<HeapNumber> AllocateHeapNumberWithValue(SloppyTNode<Float64T> value);
AllocateHeapNumberWithValue(double value)1254   TNode<HeapNumber> AllocateHeapNumberWithValue(double value) {
1255     return AllocateHeapNumberWithValue(Float64Constant(value));
1256   }
1257 
1258   // Allocate a MutableHeapNumber with a specific value.
1259   TNode<MutableHeapNumber> AllocateMutableHeapNumberWithValue(
1260       SloppyTNode<Float64T> value);
1261 
1262   // Allocate a BigInt with {length} digits. Sets the sign bit to {false}.
1263   // Does not initialize the digits.
1264   TNode<BigInt> AllocateBigInt(TNode<IntPtrT> length);
1265   // Like above, but allowing custom bitfield initialization.
1266   TNode<BigInt> AllocateRawBigInt(TNode<IntPtrT> length);
1267   void StoreBigIntBitfield(TNode<BigInt> bigint, TNode<WordT> bitfield);
1268   void StoreBigIntDigit(TNode<BigInt> bigint, int digit_index,
1269                         TNode<UintPtrT> digit);
1270   TNode<WordT> LoadBigIntBitfield(TNode<BigInt> bigint);
1271   TNode<UintPtrT> LoadBigIntDigit(TNode<BigInt> bigint, int digit_index);
1272 
1273   // Allocate a SeqOneByteString with the given length.
1274   TNode<String> AllocateSeqOneByteString(int length,
1275                                          AllocationFlags flags = kNone);
1276   TNode<String> AllocateSeqOneByteString(Node* context, TNode<Smi> length,
1277                                          AllocationFlags flags = kNone);
1278   // Allocate a SeqTwoByteString with the given length.
1279   TNode<String> AllocateSeqTwoByteString(int length,
1280                                          AllocationFlags flags = kNone);
1281   TNode<String> AllocateSeqTwoByteString(Node* context, TNode<Smi> length,
1282                                          AllocationFlags flags = kNone);
1283 
1284   // Allocate a SlicedOneByteString with the given length, parent and offset.
1285   // |length| and |offset| are expected to be tagged.
1286 
1287   TNode<String> AllocateSlicedOneByteString(TNode<Smi> length,
1288                                             TNode<String> parent,
1289                                             TNode<Smi> offset);
1290   // Allocate a SlicedTwoByteString with the given length, parent and offset.
1291   // |length| and |offset| are expected to be tagged.
1292   TNode<String> AllocateSlicedTwoByteString(TNode<Smi> length,
1293                                             TNode<String> parent,
1294                                             TNode<Smi> offset);
1295 
1296   // Allocate a one-byte ConsString with the given length, first and second
1297   // parts. |length| is expected to be tagged, and |first| and |second| are
1298   // expected to be one-byte strings.
1299   TNode<String> AllocateOneByteConsString(TNode<Smi> length,
1300                                           TNode<String> first,
1301                                           TNode<String> second,
1302                                           AllocationFlags flags = kNone);
1303   // Allocate a two-byte ConsString with the given length, first and second
1304   // parts. |length| is expected to be tagged, and |first| and |second| are
1305   // expected to be two-byte strings.
1306   TNode<String> AllocateTwoByteConsString(TNode<Smi> length,
1307                                           TNode<String> first,
1308                                           TNode<String> second,
1309                                           AllocationFlags flags = kNone);
1310 
1311   // Allocate an appropriate one- or two-byte ConsString with the first and
1312   // second parts specified by |left| and |right|.
1313   TNode<String> NewConsString(Node* context, TNode<Smi> length,
1314                               TNode<String> left, TNode<String> right,
1315                               AllocationFlags flags = kNone);
1316 
1317   TNode<NameDictionary> AllocateNameDictionary(int at_least_space_for);
1318   TNode<NameDictionary> AllocateNameDictionary(
1319       TNode<IntPtrT> at_least_space_for);
1320   TNode<NameDictionary> AllocateNameDictionaryWithCapacity(
1321       TNode<IntPtrT> capacity);
1322   TNode<NameDictionary> CopyNameDictionary(TNode<NameDictionary> dictionary,
1323                                            Label* large_object_fallback);
1324 
1325   template <typename CollectionType>
1326   Node* AllocateOrderedHashTable();
1327 
1328   // Builds code that finds OrderedHashTable entry for a key with hash code
1329   // {hash} with using the comparison code generated by {key_compare}. The code
1330   // jumps to {entry_found} if the key is found, or to {not_found} if the key
1331   // was not found. In the {entry_found} branch, the variable
1332   // entry_start_position will be bound to the index of the entry (relative to
1333   // OrderedHashTable::kHashTableStartIndex).
1334   //
1335   // The {CollectionType} template parameter stands for the particular instance
1336   // of OrderedHashTable, it should be OrderedHashMap or OrderedHashSet.
1337   template <typename CollectionType>
1338   void FindOrderedHashTableEntry(
1339       Node* table, Node* hash,
1340       std::function<void(Node*, Label*, Label*)> key_compare,
1341       Variable* entry_start_position, Label* entry_found, Label* not_found);
1342 
1343   template <typename CollectionType>
1344   TNode<CollectionType> AllocateSmallOrderedHashTable(TNode<IntPtrT> capacity);
1345 
1346   Node* AllocateStruct(Node* map, AllocationFlags flags = kNone);
1347   void InitializeStructBody(Node* object, Node* map, Node* size,
1348                             int start_offset = Struct::kHeaderSize);
1349 
1350   Node* AllocateJSObjectFromMap(
1351       Node* map, Node* properties = nullptr, Node* elements = nullptr,
1352       AllocationFlags flags = kNone,
1353       SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
1354 
1355   void InitializeJSObjectFromMap(
1356       Node* object, Node* map, Node* instance_size, Node* properties = nullptr,
1357       Node* elements = nullptr,
1358       SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
1359 
1360   void InitializeJSObjectBodyWithSlackTracking(Node* object, Node* map,
1361                                                Node* instance_size);
1362   void InitializeJSObjectBodyNoSlackTracking(
1363       Node* object, Node* map, Node* instance_size,
1364       int start_offset = JSObject::kHeaderSize);
1365 
1366   // Allocate a JSArray without elements and initialize the header fields.
1367   Node* AllocateUninitializedJSArrayWithoutElements(
1368       Node* array_map, Node* length, Node* allocation_site = nullptr);
1369   // Allocate and return a JSArray with initialized header fields and its
1370   // uninitialized elements.
1371   // The ParameterMode argument is only used for the capacity parameter.
1372   std::pair<Node*, Node*> AllocateUninitializedJSArrayWithElements(
1373       ElementsKind kind, Node* array_map, Node* length, Node* allocation_site,
1374       Node* capacity, ParameterMode capacity_mode = INTPTR_PARAMETERS);
1375   // Allocate a JSArray and fill elements with the hole.
1376   // The ParameterMode argument is only used for the capacity parameter.
1377   Node* AllocateJSArray(ElementsKind kind, Node* array_map, Node* capacity,
1378                         Node* length, Node* allocation_site = nullptr,
1379                         ParameterMode capacity_mode = INTPTR_PARAMETERS);
1380 
AllocateJSArray(ElementsKind kind,TNode<Map> array_map,TNode<Smi> capacity,TNode<Smi> length)1381   Node* AllocateJSArray(ElementsKind kind, TNode<Map> array_map,
1382                         TNode<Smi> capacity, TNode<Smi> length) {
1383     return AllocateJSArray(kind, array_map, capacity, length, nullptr,
1384                            SMI_PARAMETERS);
1385   }
1386 
AllocateJSArray(ElementsKind kind,TNode<Map> array_map,TNode<IntPtrT> capacity,TNode<Smi> length)1387   Node* AllocateJSArray(ElementsKind kind, TNode<Map> array_map,
1388                         TNode<IntPtrT> capacity, TNode<Smi> length) {
1389     return AllocateJSArray(kind, array_map, capacity, length, nullptr,
1390                            INTPTR_PARAMETERS);
1391   }
1392 
1393   Node* CloneFastJSArray(Node* context, Node* array,
1394                          ParameterMode mode = INTPTR_PARAMETERS,
1395                          Node* allocation_site = nullptr);
1396 
1397   Node* ExtractFastJSArray(Node* context, Node* array, Node* begin, Node* count,
1398                            ParameterMode mode = INTPTR_PARAMETERS,
1399                            Node* capacity = nullptr,
1400                            Node* allocation_site = nullptr);
1401 
1402   TNode<FixedArrayBase> AllocateFixedArray(
1403       ElementsKind kind, Node* capacity, ParameterMode mode = INTPTR_PARAMETERS,
1404       AllocationFlags flags = kNone,
1405       SloppyTNode<Map> fixed_array_map = nullptr);
1406 
1407   TNode<FixedArrayBase> AllocateFixedArray(
1408       ElementsKind kind, TNode<IntPtrT> capacity, AllocationFlags flags,
1409       SloppyTNode<Map> fixed_array_map = nullptr) {
1410     return AllocateFixedArray(kind, capacity, INTPTR_PARAMETERS, flags,
1411                               fixed_array_map);
1412   }
1413 
AllocateZeroedFixedArray(TNode<IntPtrT> capacity)1414   TNode<FixedArray> AllocateZeroedFixedArray(TNode<IntPtrT> capacity) {
1415     TNode<FixedArray> result = UncheckedCast<FixedArray>(
1416         AllocateFixedArray(PACKED_ELEMENTS, capacity,
1417                            AllocationFlag::kAllowLargeObjectAllocation));
1418     FillFixedArrayWithSmiZero(result, capacity);
1419     return result;
1420   }
1421 
AllocateZeroedFixedDoubleArray(TNode<IntPtrT> capacity)1422   TNode<FixedDoubleArray> AllocateZeroedFixedDoubleArray(
1423       TNode<IntPtrT> capacity) {
1424     TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>(
1425         AllocateFixedArray(FLOAT64_ELEMENTS, capacity,
1426                            AllocationFlag::kAllowLargeObjectAllocation));
1427     FillFixedDoubleArrayWithZero(result, capacity);
1428     return result;
1429   }
1430 
1431   Node* AllocatePropertyArray(Node* capacity,
1432                               ParameterMode mode = INTPTR_PARAMETERS,
1433                               AllocationFlags flags = kNone);
1434 
1435   // Perform CreateArrayIterator (ES #sec-createarrayiterator).
1436   TNode<JSArrayIterator> CreateArrayIterator(TNode<Context> context,
1437                                              TNode<Object> object,
1438                                              IterationKind mode);
1439 
1440   Node* AllocateJSIteratorResult(Node* context, Node* value, Node* done);
1441   Node* AllocateJSIteratorResultForEntry(Node* context, Node* key, Node* value);
1442 
1443   Node* ArraySpeciesCreate(TNode<Context> context, TNode<Object> originalArray,
1444                            TNode<Number> len);
1445 
1446   void FillFixedArrayWithValue(ElementsKind kind, Node* array, Node* from_index,
1447                                Node* to_index,
1448                                Heap::RootListIndex value_root_index,
1449                                ParameterMode mode = INTPTR_PARAMETERS);
1450 
1451   // Uses memset to effectively initialize the given FixedArray with zeroes.
1452   void FillFixedArrayWithSmiZero(TNode<FixedArray> array,
1453                                  TNode<IntPtrT> length);
1454   void FillFixedDoubleArrayWithZero(TNode<FixedDoubleArray> array,
1455                                     TNode<IntPtrT> length);
1456 
1457   void FillPropertyArrayWithUndefined(Node* array, Node* from_index,
1458                                       Node* to_index,
1459                                       ParameterMode mode = INTPTR_PARAMETERS);
1460 
1461   void CopyPropertyArrayValues(
1462       Node* from_array, Node* to_array, Node* length,
1463       WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1464       ParameterMode mode = INTPTR_PARAMETERS);
1465 
1466   // Copies all elements from |from_array| of |length| size to
1467   // |to_array| of the same size respecting the elements kind.
1468   void CopyFixedArrayElements(
1469       ElementsKind kind, Node* from_array, Node* to_array, Node* length,
1470       WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1471       ParameterMode mode = INTPTR_PARAMETERS) {
1472     CopyFixedArrayElements(kind, from_array, kind, to_array,
1473                            IntPtrOrSmiConstant(0, mode), length, length,
1474                            barrier_mode, mode);
1475   }
1476 
1477   // Copies |element_count| elements from |from_array| starting from element
1478   // zero to |to_array| of |capacity| size respecting both array's elements
1479   // kinds.
1480   void CopyFixedArrayElements(
1481       ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
1482       Node* to_array, Node* element_count, Node* capacity,
1483       WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1484       ParameterMode mode = INTPTR_PARAMETERS) {
1485     CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
1486                            IntPtrOrSmiConstant(0, mode), element_count,
1487                            capacity, barrier_mode, mode);
1488   }
1489 
1490   // Copies |element_count| elements from |from_array| starting from element
1491   // |first_element| to |to_array| of |capacity| size respecting both array's
1492   // elements kinds.
1493   void CopyFixedArrayElements(
1494       ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
1495       Node* to_array, Node* first_element, Node* element_count, Node* capacity,
1496       WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1497       ParameterMode mode = INTPTR_PARAMETERS);
1498 
1499   void CopyFixedArrayElements(
1500       ElementsKind from_kind, TNode<FixedArrayBase> from_array,
1501       ElementsKind to_kind, TNode<FixedArrayBase> to_array,
1502       TNode<Smi> first_element, TNode<Smi> element_count, TNode<Smi> capacity,
1503       WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
1504     CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
1505                            first_element, element_count, capacity, barrier_mode,
1506                            SMI_PARAMETERS);
1507   }
1508 
1509   TNode<FixedArray> HeapObjectToFixedArray(TNode<HeapObject> base,
1510                                            Label* cast_fail);
1511 
HeapObjectToFixedDoubleArray(TNode<HeapObject> base,Label * cast_fail)1512   TNode<FixedDoubleArray> HeapObjectToFixedDoubleArray(TNode<HeapObject> base,
1513                                                        Label* cast_fail) {
1514     GotoIf(WordNotEqual(LoadMap(base),
1515                         LoadRoot(Heap::kFixedDoubleArrayMapRootIndex)),
1516            cast_fail);
1517     return UncheckedCast<FixedDoubleArray>(base);
1518   }
1519 
1520   enum class ExtractFixedArrayFlag {
1521     kFixedArrays = 1,
1522     kFixedDoubleArrays = 2,
1523     kDontCopyCOW = 4,
1524     kNewSpaceAllocationOnly = 8,
1525     kAllFixedArrays = kFixedArrays | kFixedDoubleArrays,
1526     kAllFixedArraysDontCopyCOW = kAllFixedArrays | kDontCopyCOW
1527   };
1528 
1529   typedef base::Flags<ExtractFixedArrayFlag> ExtractFixedArrayFlags;
1530 
1531   // Copy a portion of an existing FixedArray or FixedDoubleArray into a new
1532   // FixedArray, including special appropriate handling for empty arrays and COW
1533   // arrays.
1534   //
1535   // * |source| is either a FixedArray or FixedDoubleArray from which to copy
1536   // elements.
1537   // * |first| is the starting element index to copy from, if nullptr is passed
1538   // then index zero is used by default.
1539   // * |count| is the number of elements to copy out of the source array
1540   // starting from and including the element indexed by |start|. If |count| is
1541   // nullptr, then all of the elements from |start| to the end of |source| are
1542   // copied.
1543   // * |capacity| determines the size of the allocated result array, with
1544   // |capacity| >= |count|. If |capacity| is nullptr, then |count| is used as
1545   // the destination array's capacity.
1546   // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
1547   // are detected and copied. Although it's always correct to pass
1548   // kAllFixedArrays, the generated code is more compact and efficient if the
1549   // caller can specify whether only FixedArrays or FixedDoubleArrays will be
1550   // passed as the |source| parameter.
1551   // * |parameter_mode| determines the parameter mode of |first|, |count| and
1552   // |capacity|.
1553   TNode<FixedArrayBase> ExtractFixedArray(
1554       Node* source, Node* first, Node* count = nullptr,
1555       Node* capacity = nullptr,
1556       ExtractFixedArrayFlags extract_flags =
1557           ExtractFixedArrayFlag::kAllFixedArrays,
1558       ParameterMode parameter_mode = INTPTR_PARAMETERS);
1559 
1560   TNode<FixedArrayBase> ExtractFixedArray(
1561       TNode<FixedArrayBase> source, TNode<Smi> first, TNode<Smi> count,
1562       TNode<Smi> capacity,
1563       ExtractFixedArrayFlags extract_flags =
1564           ExtractFixedArrayFlag::kAllFixedArrays) {
1565     return ExtractFixedArray(source, first, count, capacity, extract_flags,
1566                              SMI_PARAMETERS);
1567   }
1568 
1569   // Copy the entire contents of a FixedArray or FixedDoubleArray to a new
1570   // array, including special appropriate handling for empty arrays and COW
1571   // arrays.
1572   //
1573   // * |source| is either a FixedArray or FixedDoubleArray from which to copy
1574   // elements.
1575   // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
1576   // are detected and copied. Although it's always correct to pass
1577   // kAllFixedArrays, the generated code is more compact and efficient if the
1578   // caller can specify whether only FixedArrays or FixedDoubleArrays will be
1579   // passed as the |source| parameter.
1580   Node* CloneFixedArray(Node* source,
1581                         ExtractFixedArrayFlags flags =
1582                             ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW) {
1583     ParameterMode mode = OptimalParameterMode();
1584     return ExtractFixedArray(source, IntPtrOrSmiConstant(0, mode), nullptr,
1585                              nullptr, flags, mode);
1586   }
1587 
1588   // Copies |character_count| elements from |from_string| to |to_string|
1589   // starting at the |from_index|'th character. |from_string| and |to_string|
1590   // can either be one-byte strings or two-byte strings, although if
1591   // |from_string| is two-byte, then |to_string| must be two-byte.
1592   // |from_index|, |to_index| and |character_count| must be intptr_ts s.t. 0 <=
1593   // |from_index| <= |from_index| + |character_count| <= from_string.length and
1594   // 0 <= |to_index| <= |to_index| + |character_count| <= to_string.length.
1595   void CopyStringCharacters(Node* from_string, Node* to_string,
1596                             TNode<IntPtrT> from_index, TNode<IntPtrT> to_index,
1597                             TNode<IntPtrT> character_count,
1598                             String::Encoding from_encoding,
1599                             String::Encoding to_encoding);
1600 
1601   // Loads an element from |array| of |from_kind| elements by given |offset|
1602   // (NOTE: not index!), does a hole check if |if_hole| is provided and
1603   // converts the value so that it becomes ready for storing to array of
1604   // |to_kind| elements.
1605   Node* LoadElementAndPrepareForStore(Node* array, Node* offset,
1606                                       ElementsKind from_kind,
1607                                       ElementsKind to_kind, Label* if_hole);
1608 
1609   Node* CalculateNewElementsCapacity(Node* old_capacity,
1610                                      ParameterMode mode = INTPTR_PARAMETERS);
1611 
1612   // Tries to grow the |elements| array of given |object| to store the |key|
1613   // or bails out if the growing gap is too big. Returns new elements.
1614   Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
1615                                 Node* key, Label* bailout);
1616 
1617   // Tries to grow the |capacity|-length |elements| array of given |object|
1618   // to store the |key| or bails out if the growing gap is too big. Returns
1619   // new elements.
1620   Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
1621                                 Node* key, Node* capacity, ParameterMode mode,
1622                                 Label* bailout);
1623 
1624   // Grows elements capacity of given object. Returns new elements.
1625   Node* GrowElementsCapacity(Node* object, Node* elements,
1626                              ElementsKind from_kind, ElementsKind to_kind,
1627                              Node* capacity, Node* new_capacity,
1628                              ParameterMode mode, Label* bailout);
1629 
1630   // Given a need to grow by |growth|, allocate an appropriate new capacity
1631   // if necessary, and return a new elements FixedArray object. Label |bailout|
1632   // is followed for allocation failure.
1633   void PossiblyGrowElementsCapacity(ParameterMode mode, ElementsKind kind,
1634                                     Node* array, Node* length,
1635                                     Variable* var_elements, Node* growth,
1636                                     Label* bailout);
1637 
1638   // Allocation site manipulation
1639   void InitializeAllocationMemento(Node* base_allocation,
1640                                    Node* base_allocation_size,
1641                                    Node* allocation_site);
1642 
1643   Node* TryTaggedToFloat64(Node* value, Label* if_valueisnotnumber);
1644   Node* TruncateTaggedToFloat64(Node* context, Node* value);
1645   Node* TruncateTaggedToWord32(Node* context, Node* value);
1646   void TaggedToWord32OrBigInt(Node* context, Node* value, Label* if_number,
1647                               Variable* var_word32, Label* if_bigint,
1648                               Variable* var_bigint);
1649   void TaggedToWord32OrBigIntWithFeedback(
1650       Node* context, Node* value, Label* if_number, Variable* var_word32,
1651       Label* if_bigint, Variable* var_bigint, Variable* var_feedback);
1652 
1653   // Truncate the floating point value of a HeapNumber to an Int32.
1654   Node* TruncateHeapNumberValueToWord32(Node* object);
1655 
1656   // Conversions.
1657   void TryHeapNumberToSmi(TNode<HeapNumber> number, TVariable<Smi>& output,
1658                           Label* if_smi);
1659   void TryFloat64ToSmi(TNode<Float64T> number, TVariable<Smi>& output,
1660                        Label* if_smi);
1661   TNode<Number> ChangeFloat64ToTagged(SloppyTNode<Float64T> value);
1662   TNode<Number> ChangeInt32ToTagged(SloppyTNode<Int32T> value);
1663   TNode<Number> ChangeUint32ToTagged(SloppyTNode<Uint32T> value);
1664   TNode<Uint32T> ChangeNumberToUint32(TNode<Number> value);
1665   TNode<Float64T> ChangeNumberToFloat64(SloppyTNode<Number> value);
1666   TNode<UintPtrT> ChangeNonnegativeNumberToUintPtr(TNode<Number> value);
1667 
1668   void TaggedToNumeric(Node* context, Node* value, Label* done,
1669                        Variable* var_numeric);
1670   void TaggedToNumericWithFeedback(Node* context, Node* value, Label* done,
1671                                    Variable* var_numeric,
1672                                    Variable* var_feedback);
1673 
1674   TNode<WordT> TimesPointerSize(SloppyTNode<WordT> value);
TimesPointerSize(TNode<IntPtrT> value)1675   TNode<IntPtrT> TimesPointerSize(TNode<IntPtrT> value) {
1676     return Signed(TimesPointerSize(implicit_cast<TNode<WordT>>(value)));
1677   }
TimesPointerSize(TNode<UintPtrT> value)1678   TNode<UintPtrT> TimesPointerSize(TNode<UintPtrT> value) {
1679     return Unsigned(TimesPointerSize(implicit_cast<TNode<WordT>>(value)));
1680   }
1681   TNode<WordT> TimesDoubleSize(SloppyTNode<WordT> value);
TimesDoubleSize(TNode<UintPtrT> value)1682   TNode<UintPtrT> TimesDoubleSize(TNode<UintPtrT> value) {
1683     return Unsigned(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
1684   }
TimesDoubleSize(TNode<IntPtrT> value)1685   TNode<IntPtrT> TimesDoubleSize(TNode<IntPtrT> value) {
1686     return Signed(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
1687   }
1688 
1689   // Type conversions.
1690   // Throws a TypeError for {method_name} if {value} is not coercible to Object,
1691   // or returns the {value} converted to a String otherwise.
1692   TNode<String> ToThisString(Node* context, Node* value,
1693                              char const* method_name);
1694   // Throws a TypeError for {method_name} if {value} is neither of the given
1695   // {primitive_type} nor a JSValue wrapping a value of {primitive_type}, or
1696   // returns the {value} (or wrapped value) otherwise.
1697   Node* ToThisValue(Node* context, Node* value, PrimitiveType primitive_type,
1698                     char const* method_name);
1699 
1700   // Throws a TypeError for {method_name} if {value} is not of the given
1701   // instance type. Returns {value}'s map.
1702   Node* ThrowIfNotInstanceType(Node* context, Node* value,
1703                                InstanceType instance_type,
1704                                char const* method_name);
1705   // Throws a TypeError for {method_name} if {value} is not a JSReceiver.
1706   // Returns the {value}'s map.
1707   Node* ThrowIfNotJSReceiver(Node* context, Node* value,
1708                              MessageTemplate::Template msg_template,
1709                              const char* method_name = nullptr);
1710 
1711   void ThrowRangeError(Node* context, MessageTemplate::Template message,
1712                        Node* arg0 = nullptr, Node* arg1 = nullptr,
1713                        Node* arg2 = nullptr);
1714   void ThrowTypeError(Node* context, MessageTemplate::Template message,
1715                       char const* arg0 = nullptr, char const* arg1 = nullptr);
1716   void ThrowTypeError(Node* context, MessageTemplate::Template message,
1717                       Node* arg0, Node* arg1 = nullptr, Node* arg2 = nullptr);
1718 
1719   // Type checks.
1720   // Check whether the map is for an object with special properties, such as a
1721   // JSProxy or an object with interceptors.
1722   TNode<BoolT> InstanceTypeEqual(SloppyTNode<Int32T> instance_type, int type);
1723   TNode<BoolT> IsAccessorInfo(SloppyTNode<HeapObject> object);
1724   TNode<BoolT> IsAccessorPair(SloppyTNode<HeapObject> object);
1725   TNode<BoolT> IsAllocationSite(SloppyTNode<HeapObject> object);
1726   TNode<BoolT> IsAnyHeapNumber(SloppyTNode<HeapObject> object);
1727   TNode<BoolT> IsNoElementsProtectorCellInvalid();
1728   TNode<BoolT> IsBigIntInstanceType(SloppyTNode<Int32T> instance_type);
1729   TNode<BoolT> IsBigInt(SloppyTNode<HeapObject> object);
1730   TNode<BoolT> IsBoolean(SloppyTNode<HeapObject> object);
1731   TNode<BoolT> IsCallableMap(SloppyTNode<Map> map);
1732   TNode<BoolT> IsCallable(SloppyTNode<HeapObject> object);
1733   TNode<BoolT> TaggedIsCallable(TNode<Object> object);
1734   TNode<BoolT> IsCell(SloppyTNode<HeapObject> object);
1735   TNode<BoolT> IsCode(SloppyTNode<HeapObject> object);
1736   TNode<BoolT> IsConsStringInstanceType(SloppyTNode<Int32T> instance_type);
1737   TNode<BoolT> IsConstructorMap(SloppyTNode<Map> map);
1738   TNode<BoolT> IsConstructor(SloppyTNode<HeapObject> object);
1739   TNode<BoolT> IsDeprecatedMap(SloppyTNode<Map> map);
1740   TNode<BoolT> IsNameDictionary(SloppyTNode<HeapObject> object);
1741   TNode<BoolT> IsGlobalDictionary(SloppyTNode<HeapObject> object);
1742   TNode<BoolT> IsExtensibleMap(SloppyTNode<Map> map);
1743   TNode<BoolT> IsExternalStringInstanceType(SloppyTNode<Int32T> instance_type);
1744   TNode<BoolT> IsFastJSArray(SloppyTNode<Object> object,
1745                              SloppyTNode<Context> context);
1746   TNode<BoolT> IsFastJSArrayWithNoCustomIteration(TNode<Object> object,
1747                                                   TNode<Context> context);
1748   TNode<BoolT> IsFeedbackCell(SloppyTNode<HeapObject> object);
1749   TNode<BoolT> IsFeedbackVector(SloppyTNode<HeapObject> object);
1750   TNode<BoolT> IsContext(SloppyTNode<HeapObject> object);
1751   TNode<BoolT> IsFixedArray(SloppyTNode<HeapObject> object);
1752   TNode<BoolT> IsFixedArraySubclass(SloppyTNode<HeapObject> object);
1753   TNode<BoolT> IsFixedArrayWithKind(SloppyTNode<HeapObject> object,
1754                                     ElementsKind kind);
1755   TNode<BoolT> IsFixedArrayWithKindOrEmpty(SloppyTNode<HeapObject> object,
1756                                            ElementsKind kind);
1757   TNode<BoolT> IsFixedDoubleArray(SloppyTNode<HeapObject> object);
1758   TNode<BoolT> IsFixedTypedArray(SloppyTNode<HeapObject> object);
1759   TNode<BoolT> IsFunctionWithPrototypeSlotMap(SloppyTNode<Map> map);
1760   TNode<BoolT> IsHashTable(SloppyTNode<HeapObject> object);
1761   TNode<BoolT> IsEphemeronHashTable(SloppyTNode<HeapObject> object);
1762   TNode<BoolT> IsHeapNumber(SloppyTNode<HeapObject> object);
1763   TNode<BoolT> IsIndirectStringInstanceType(SloppyTNode<Int32T> instance_type);
1764   TNode<BoolT> IsJSArrayBuffer(SloppyTNode<HeapObject> object);
1765   TNode<BoolT> IsJSDataView(TNode<HeapObject> object);
1766   TNode<BoolT> IsJSArrayInstanceType(SloppyTNode<Int32T> instance_type);
1767   TNode<BoolT> IsJSArrayMap(SloppyTNode<Map> map);
1768   TNode<BoolT> IsJSArray(SloppyTNode<HeapObject> object);
1769   TNode<BoolT> IsJSArrayIterator(SloppyTNode<HeapObject> object);
1770   TNode<BoolT> IsJSAsyncGeneratorObject(SloppyTNode<HeapObject> object);
1771   TNode<BoolT> IsJSFunctionInstanceType(SloppyTNode<Int32T> instance_type);
1772   TNode<BoolT> IsAllocationSiteInstanceType(SloppyTNode<Int32T> instance_type);
1773   TNode<BoolT> IsJSFunctionMap(SloppyTNode<Map> map);
1774   TNode<BoolT> IsJSFunction(SloppyTNode<HeapObject> object);
1775   TNode<BoolT> IsJSGeneratorObject(SloppyTNode<HeapObject> object);
1776   TNode<BoolT> IsJSGlobalProxyInstanceType(SloppyTNode<Int32T> instance_type);
1777   TNode<BoolT> IsJSGlobalProxy(SloppyTNode<HeapObject> object);
1778   TNode<BoolT> IsJSObjectInstanceType(SloppyTNode<Int32T> instance_type);
1779   TNode<BoolT> IsJSObjectMap(SloppyTNode<Map> map);
1780   TNode<BoolT> IsJSObject(SloppyTNode<HeapObject> object);
1781   TNode<BoolT> IsJSPromiseMap(SloppyTNode<Map> map);
1782   TNode<BoolT> IsJSPromise(SloppyTNode<HeapObject> object);
1783   TNode<BoolT> IsJSProxy(SloppyTNode<HeapObject> object);
1784   TNode<BoolT> IsJSReceiverInstanceType(SloppyTNode<Int32T> instance_type);
1785   TNode<BoolT> IsJSReceiverMap(SloppyTNode<Map> map);
1786   TNode<BoolT> IsJSReceiver(SloppyTNode<HeapObject> object);
1787   TNode<BoolT> IsJSRegExp(SloppyTNode<HeapObject> object);
1788   TNode<BoolT> IsJSTypedArray(SloppyTNode<HeapObject> object);
1789   TNode<BoolT> IsJSValueInstanceType(SloppyTNode<Int32T> instance_type);
1790   TNode<BoolT> IsJSValueMap(SloppyTNode<Map> map);
1791   TNode<BoolT> IsJSValue(SloppyTNode<HeapObject> object);
1792   TNode<BoolT> IsMap(SloppyTNode<HeapObject> object);
1793   TNode<BoolT> IsMutableHeapNumber(SloppyTNode<HeapObject> object);
1794   TNode<BoolT> IsName(SloppyTNode<HeapObject> object);
1795   TNode<BoolT> IsNativeContext(SloppyTNode<HeapObject> object);
1796   TNode<BoolT> IsNullOrJSReceiver(SloppyTNode<HeapObject> object);
1797   TNode<BoolT> IsNullOrUndefined(SloppyTNode<Object> object);
1798   TNode<BoolT> IsNumberDictionary(SloppyTNode<HeapObject> object);
1799   TNode<BoolT> IsOneByteStringInstanceType(SloppyTNode<Int32T> instance_type);
1800   TNode<BoolT> IsPrimitiveInstanceType(SloppyTNode<Int32T> instance_type);
1801   TNode<BoolT> IsPrivateSymbol(SloppyTNode<HeapObject> object);
1802   TNode<BoolT> IsPromiseCapability(SloppyTNode<HeapObject> object);
1803   TNode<BoolT> IsPropertyArray(SloppyTNode<HeapObject> object);
1804   TNode<BoolT> IsPropertyCell(SloppyTNode<HeapObject> object);
1805   TNode<BoolT> IsPrototypeInitialArrayPrototype(SloppyTNode<Context> context,
1806                                                 SloppyTNode<Map> map);
1807   TNode<BoolT> IsPrototypeTypedArrayPrototype(SloppyTNode<Context> context,
1808                                               SloppyTNode<Map> map);
1809   TNode<BoolT> IsSequentialStringInstanceType(
1810       SloppyTNode<Int32T> instance_type);
1811   TNode<BoolT> IsShortExternalStringInstanceType(
1812       SloppyTNode<Int32T> instance_type);
1813   TNode<BoolT> IsSpecialReceiverInstanceType(TNode<Int32T> instance_type);
1814   TNode<BoolT> IsCustomElementsReceiverInstanceType(
1815       TNode<Int32T> instance_type);
1816   TNode<BoolT> IsSpecialReceiverMap(SloppyTNode<Map> map);
1817   // Returns true if the map corresponds to non-special fast or dictionary
1818   // object.
1819   TNode<BoolT> IsSimpleObjectMap(TNode<Map> map);
1820   TNode<BoolT> IsStringInstanceType(SloppyTNode<Int32T> instance_type);
1821   TNode<BoolT> IsString(SloppyTNode<HeapObject> object);
1822   TNode<BoolT> IsSymbolInstanceType(SloppyTNode<Int32T> instance_type);
1823   TNode<BoolT> IsSymbol(SloppyTNode<HeapObject> object);
1824   TNode<BoolT> IsUndetectableMap(SloppyTNode<Map> map);
1825   TNode<BoolT> IsNotWeakFixedArraySubclass(SloppyTNode<HeapObject> object);
1826   TNode<BoolT> IsZeroOrContext(SloppyTNode<Object> object);
1827 
IsSharedFunctionInfo(Node * object)1828   inline Node* IsSharedFunctionInfo(Node* object) {
1829     return IsSharedFunctionInfoMap(LoadMap(object));
1830   }
1831 
1832   TNode<BoolT> IsPromiseResolveProtectorCellInvalid();
1833   TNode<BoolT> IsPromiseThenProtectorCellInvalid();
1834   TNode<BoolT> IsArraySpeciesProtectorCellInvalid();
1835   TNode<BoolT> IsTypedArraySpeciesProtectorCellInvalid();
1836   TNode<BoolT> IsPromiseSpeciesProtectorCellInvalid();
1837 
1838   // True iff |object| is a Smi or a HeapNumber.
1839   TNode<BoolT> IsNumber(SloppyTNode<Object> object);
1840   // True iff |object| is a Smi or a HeapNumber or a BigInt.
1841   TNode<BoolT> IsNumeric(SloppyTNode<Object> object);
1842 
1843   // True iff |number| is either a Smi, or a HeapNumber whose value is not
1844   // within Smi range.
1845   TNode<BoolT> IsNumberNormalized(SloppyTNode<Number> number);
1846   TNode<BoolT> IsNumberPositive(SloppyTNode<Number> number);
1847   TNode<BoolT> IsHeapNumberPositive(TNode<HeapNumber> number);
1848 
1849   // True iff {number} is non-negative and less or equal than 2**53-1.
1850   TNode<BoolT> IsNumberNonNegativeSafeInteger(TNode<Number> number);
1851 
1852   // True iff {number} represents an integer value.
1853   TNode<BoolT> IsInteger(TNode<Object> number);
1854   TNode<BoolT> IsInteger(TNode<HeapNumber> number);
1855 
1856   // True iff abs({number}) <= 2**53 -1
1857   TNode<BoolT> IsSafeInteger(TNode<Object> number);
1858   TNode<BoolT> IsSafeInteger(TNode<HeapNumber> number);
1859 
1860   // True iff {number} represents a valid uint32t value.
1861   TNode<BoolT> IsHeapNumberUint32(TNode<HeapNumber> number);
1862 
1863   // True iff {number} is a positive number and a valid array index in the range
1864   // [0, 2^32-1).
1865   TNode<BoolT> IsNumberArrayIndex(TNode<Number> number);
1866 
1867   Node* FixedArraySizeDoesntFitInNewSpace(
1868       Node* element_count, int base_size = FixedArray::kHeaderSize,
1869       ParameterMode mode = INTPTR_PARAMETERS);
1870 
1871   // ElementsKind helpers:
ElementsKindEqual(TNode<Int32T> a,TNode<Int32T> b)1872   TNode<BoolT> ElementsKindEqual(TNode<Int32T> a, TNode<Int32T> b) {
1873     return Word32Equal(a, b);
1874   }
ElementsKindEqual(ElementsKind a,ElementsKind b)1875   bool ElementsKindEqual(ElementsKind a, ElementsKind b) { return a == b; }
1876   Node* IsFastElementsKind(Node* elements_kind);
IsFastElementsKind(ElementsKind kind)1877   bool IsFastElementsKind(ElementsKind kind) {
1878     return v8::internal::IsFastElementsKind(kind);
1879   }
IsDictionaryElementsKind(TNode<Int32T> elements_kind)1880   TNode<BoolT> IsDictionaryElementsKind(TNode<Int32T> elements_kind) {
1881     return ElementsKindEqual(elements_kind, Int32Constant(DICTIONARY_ELEMENTS));
1882   }
1883   TNode<BoolT> IsDoubleElementsKind(TNode<Int32T> elements_kind);
IsDoubleElementsKind(ElementsKind kind)1884   bool IsDoubleElementsKind(ElementsKind kind) {
1885     return v8::internal::IsDoubleElementsKind(kind);
1886   }
1887   Node* IsFastSmiOrTaggedElementsKind(Node* elements_kind);
1888   Node* IsFastSmiElementsKind(Node* elements_kind);
1889   Node* IsHoleyFastElementsKind(Node* elements_kind);
1890   Node* IsElementsKindGreaterThan(Node* target_kind,
1891                                   ElementsKind reference_kind);
1892 
1893   // String helpers.
1894   // Load a character from a String (might flatten a ConsString).
1895   TNode<Int32T> StringCharCodeAt(SloppyTNode<String> string,
1896                                  SloppyTNode<IntPtrT> index);
1897   // Return the single character string with only {code}.
1898   TNode<String> StringFromSingleCharCode(TNode<Int32T> code);
1899 
1900   // Return a new string object which holds a substring containing the range
1901   // [from,to[ of string.
1902   TNode<String> SubString(TNode<String> string, TNode<IntPtrT> from,
1903                           TNode<IntPtrT> to);
1904 
1905   // Return a new string object produced by concatenating |first| with |second|.
1906   TNode<String> StringAdd(Node* context, TNode<String> first,
1907                           TNode<String> second, AllocationFlags flags = kNone);
1908 
1909   // Check if |string| is an indirect (thin or flat cons) string type that can
1910   // be dereferenced by DerefIndirectString.
1911   void BranchIfCanDerefIndirectString(Node* string, Node* instance_type,
1912                                       Label* can_deref, Label* cannot_deref);
1913   // Unpack an indirect (thin or flat cons) string type.
1914   void DerefIndirectString(Variable* var_string, Node* instance_type);
1915   // Check if |var_string| has an indirect (thin or flat cons) string type,
1916   // and unpack it if so.
1917   void MaybeDerefIndirectString(Variable* var_string, Node* instance_type,
1918                                 Label* did_deref, Label* cannot_deref);
1919   // Check if |var_left| or |var_right| has an indirect (thin or flat cons)
1920   // string type, and unpack it/them if so. Fall through if nothing was done.
1921   void MaybeDerefIndirectStrings(Variable* var_left, Node* left_instance_type,
1922                                  Variable* var_right, Node* right_instance_type,
1923                                  Label* did_something);
1924   Node* DerefIndirectString(TNode<String> string, TNode<Int32T> instance_type,
1925                             Label* cannot_deref);
1926 
1927   TNode<String> StringFromSingleCodePoint(TNode<Int32T> codepoint,
1928                                           UnicodeEncoding encoding);
1929 
1930   // Type conversion helpers.
1931   enum class BigIntHandling { kConvertToNumber, kThrow };
1932   // Convert a String to a Number.
1933   TNode<Number> StringToNumber(TNode<String> input);
1934   // Convert a Number to a String.
1935   TNode<String> NumberToString(TNode<Number> input);
1936   // Convert an object to a name.
1937   TNode<Name> ToName(SloppyTNode<Context> context, SloppyTNode<Object> value);
1938   // Convert a Non-Number object to a Number.
1939   TNode<Number> NonNumberToNumber(
1940       SloppyTNode<Context> context, SloppyTNode<HeapObject> input,
1941       BigIntHandling bigint_handling = BigIntHandling::kThrow);
1942   // Convert a Non-Number object to a Numeric.
1943   TNode<Numeric> NonNumberToNumeric(SloppyTNode<Context> context,
1944                                     SloppyTNode<HeapObject> input);
1945   // Convert any object to a Number.
1946   // Conforms to ES#sec-tonumber if {bigint_handling} == kThrow.
1947   // With {bigint_handling} == kConvertToNumber, matches behavior of
1948   // tc39.github.io/proposal-bigint/#sec-number-constructor-number-value.
1949   TNode<Number> ToNumber(
1950       SloppyTNode<Context> context, SloppyTNode<Object> input,
1951       BigIntHandling bigint_handling = BigIntHandling::kThrow);
1952   TNode<Number> ToNumber_Inline(SloppyTNode<Context> context,
1953                                 SloppyTNode<Object> input);
1954 
1955   // Try to convert an object to a BigInt. Throws on failure (e.g. for Numbers).
1956   // https://tc39.github.io/proposal-bigint/#sec-to-bigint
1957   TNode<BigInt> ToBigInt(SloppyTNode<Context> context,
1958                          SloppyTNode<Object> input);
1959 
1960   // Converts |input| to one of 2^32 integer values in the range 0 through
1961   // 2^32-1, inclusive.
1962   // ES#sec-touint32
1963   TNode<Number> ToUint32(SloppyTNode<Context> context,
1964                          SloppyTNode<Object> input);
1965 
1966   // Convert any object to a String.
1967   TNode<String> ToString(SloppyTNode<Context> context,
1968                          SloppyTNode<Object> input);
1969   TNode<String> ToString_Inline(SloppyTNode<Context> context,
1970                                 SloppyTNode<Object> input);
1971 
1972   // Convert any object to a Primitive.
1973   Node* JSReceiverToPrimitive(Node* context, Node* input);
1974 
1975   TNode<JSReceiver> ToObject(SloppyTNode<Context> context,
1976                              SloppyTNode<Object> input);
1977 
1978   // Same as ToObject but avoids the Builtin call if |input| is already a
1979   // JSReceiver.
1980   TNode<JSReceiver> ToObject_Inline(TNode<Context> context,
1981                                     TNode<Object> input);
1982 
1983   enum ToIntegerTruncationMode {
1984     kNoTruncation,
1985     kTruncateMinusZero,
1986   };
1987 
1988   // ES6 7.1.17 ToIndex, but jumps to range_error if the result is not a Smi.
1989   TNode<Smi> ToSmiIndex(TNode<Object> input, TNode<Context> context,
1990                         Label* range_error);
1991 
1992   // ES6 7.1.15 ToLength, but jumps to range_error if the result is not a Smi.
1993   TNode<Smi> ToSmiLength(TNode<Object> input, TNode<Context> context,
1994                          Label* range_error);
1995 
1996   // ES6 7.1.15 ToLength, but with inlined fast path.
1997   TNode<Number> ToLength_Inline(SloppyTNode<Context> context,
1998                                 SloppyTNode<Object> input);
1999 
2000   // ES6 7.1.4 ToInteger ( argument )
2001   TNode<Number> ToInteger_Inline(SloppyTNode<Context> context,
2002                                  SloppyTNode<Object> input,
2003                                  ToIntegerTruncationMode mode = kNoTruncation);
2004   TNode<Number> ToInteger(SloppyTNode<Context> context,
2005                           SloppyTNode<Object> input,
2006                           ToIntegerTruncationMode mode = kNoTruncation);
2007 
2008   // Returns a node that contains a decoded (unsigned!) value of a bit
2009   // field |BitField| in |word32|. Returns result as an uint32 node.
2010   template <typename BitField>
DecodeWord32(SloppyTNode<Word32T> word32)2011   TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32) {
2012     return DecodeWord32(word32, BitField::kShift, BitField::kMask);
2013   }
2014 
2015   // Returns a node that contains a decoded (unsigned!) value of a bit
2016   // field |BitField| in |word|. Returns result as a word-size node.
2017   template <typename BitField>
DecodeWord(SloppyTNode<WordT> word)2018   TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word) {
2019     return DecodeWord(word, BitField::kShift, BitField::kMask);
2020   }
2021 
2022   // Returns a node that contains a decoded (unsigned!) value of a bit
2023   // field |BitField| in |word32|. Returns result as a word-size node.
2024   template <typename BitField>
DecodeWordFromWord32(SloppyTNode<Word32T> word32)2025   TNode<UintPtrT> DecodeWordFromWord32(SloppyTNode<Word32T> word32) {
2026     return DecodeWord<BitField>(ChangeUint32ToWord(word32));
2027   }
2028 
2029   // Returns a node that contains a decoded (unsigned!) value of a bit
2030   // field |BitField| in |word|. Returns result as an uint32 node.
2031   template <typename BitField>
DecodeWord32FromWord(SloppyTNode<WordT> word)2032   TNode<Uint32T> DecodeWord32FromWord(SloppyTNode<WordT> word) {
2033     return UncheckedCast<Uint32T>(
2034         TruncateIntPtrToInt32(Signed(DecodeWord<BitField>(word))));
2035   }
2036 
2037   // Decodes an unsigned (!) value from |word32| to an uint32 node.
2038   TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32, uint32_t shift,
2039                               uint32_t mask);
2040 
2041   // Decodes an unsigned (!) value from |word| to a word-size node.
2042   TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word, uint32_t shift,
2043                              uint32_t mask);
2044 
2045   // Returns a node that contains the updated values of a |BitField|.
2046   template <typename BitField>
UpdateWord(TNode<WordT> word,TNode<WordT> value)2047   TNode<WordT> UpdateWord(TNode<WordT> word, TNode<WordT> value) {
2048     return UpdateWord(word, value, BitField::kShift, BitField::kMask);
2049   }
2050 
2051   // Returns a node that contains the updated {value} inside {word} starting
2052   // at {shift} and fitting in {mask}.
2053   TNode<WordT> UpdateWord(TNode<WordT> word, TNode<WordT> value, uint32_t shift,
2054                           uint32_t mask);
2055 
2056   // Returns true if any of the |T|'s bits in given |word32| are set.
2057   template <typename T>
IsSetWord32(SloppyTNode<Word32T> word32)2058   TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32) {
2059     return IsSetWord32(word32, T::kMask);
2060   }
2061 
2062   // Returns true if any of the mask's bits in given |word32| are set.
IsSetWord32(SloppyTNode<Word32T> word32,uint32_t mask)2063   TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2064     return Word32NotEqual(Word32And(word32, Int32Constant(mask)),
2065                           Int32Constant(0));
2066   }
2067 
2068   // Returns true if none of the mask's bits in given |word32| are set.
IsNotSetWord32(SloppyTNode<Word32T> word32,uint32_t mask)2069   TNode<BoolT> IsNotSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2070     return Word32Equal(Word32And(word32, Int32Constant(mask)),
2071                        Int32Constant(0));
2072   }
2073 
2074   // Returns true if all of the mask's bits in a given |word32| are set.
IsAllSetWord32(SloppyTNode<Word32T> word32,uint32_t mask)2075   TNode<BoolT> IsAllSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2076     TNode<Int32T> const_mask = Int32Constant(mask);
2077     return Word32Equal(Word32And(word32, const_mask), const_mask);
2078   }
2079 
2080   // Returns true if any of the |T|'s bits in given |word| are set.
2081   template <typename T>
IsSetWord(SloppyTNode<WordT> word)2082   TNode<BoolT> IsSetWord(SloppyTNode<WordT> word) {
2083     return IsSetWord(word, T::kMask);
2084   }
2085 
2086   // Returns true if any of the mask's bits in given |word| are set.
IsSetWord(SloppyTNode<WordT> word,uint32_t mask)2087   TNode<BoolT> IsSetWord(SloppyTNode<WordT> word, uint32_t mask) {
2088     return WordNotEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
2089   }
2090 
2091   // Returns true if any of the mask's bit are set in the given Smi.
2092   // Smi-encoding of the mask is performed implicitly!
IsSetSmi(SloppyTNode<Smi> smi,int untagged_mask)2093   TNode<BoolT> IsSetSmi(SloppyTNode<Smi> smi, int untagged_mask) {
2094     intptr_t mask_word = bit_cast<intptr_t>(Smi::FromInt(untagged_mask));
2095     return WordNotEqual(
2096         WordAnd(BitcastTaggedToWord(smi), IntPtrConstant(mask_word)),
2097         IntPtrConstant(0));
2098   }
2099 
2100   // Returns true if all of the |T|'s bits in given |word32| are clear.
2101   template <typename T>
IsClearWord32(SloppyTNode<Word32T> word32)2102   TNode<BoolT> IsClearWord32(SloppyTNode<Word32T> word32) {
2103     return IsClearWord32(word32, T::kMask);
2104   }
2105 
2106   // Returns true if all of the mask's bits in given |word32| are clear.
IsClearWord32(SloppyTNode<Word32T> word32,uint32_t mask)2107   TNode<BoolT> IsClearWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2108     return Word32Equal(Word32And(word32, Int32Constant(mask)),
2109                        Int32Constant(0));
2110   }
2111 
2112   // Returns true if all of the |T|'s bits in given |word| are clear.
2113   template <typename T>
IsClearWord(SloppyTNode<WordT> word)2114   TNode<BoolT> IsClearWord(SloppyTNode<WordT> word) {
2115     return IsClearWord(word, T::kMask);
2116   }
2117 
2118   // Returns true if all of the mask's bits in given |word| are clear.
IsClearWord(SloppyTNode<WordT> word,uint32_t mask)2119   TNode<BoolT> IsClearWord(SloppyTNode<WordT> word, uint32_t mask) {
2120     return WordEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
2121   }
2122 
2123   void SetCounter(StatsCounter* counter, int value);
2124   void IncrementCounter(StatsCounter* counter, int delta);
2125   void DecrementCounter(StatsCounter* counter, int delta);
2126 
2127   void Increment(Variable* variable, int value = 1,
2128                  ParameterMode mode = INTPTR_PARAMETERS);
2129   void Decrement(Variable* variable, int value = 1,
2130                  ParameterMode mode = INTPTR_PARAMETERS) {
2131     Increment(variable, -value, mode);
2132   }
2133 
2134   // Generates "if (false) goto label" code. Useful for marking a label as
2135   // "live" to avoid assertion failures during graph building. In the resulting
2136   // code this check will be eliminated.
2137   void Use(Label* label);
2138 
2139   // Various building blocks for stubs doing property lookups.
2140 
2141   // |if_notinternalized| is optional; |if_bailout| will be used by default.
2142   void TryToName(Node* key, Label* if_keyisindex, Variable* var_index,
2143                  Label* if_keyisunique, Variable* var_unique, Label* if_bailout,
2144                  Label* if_notinternalized = nullptr);
2145 
2146   // Performs a hash computation and string table lookup for the given string,
2147   // and jumps to:
2148   // - |if_index| if the string is an array index like "123"; |var_index|
2149   //              will contain the intptr representation of that index.
2150   // - |if_internalized| if the string exists in the string table; the
2151   //                     internalized version will be in |var_internalized|.
2152   // - |if_not_internalized| if the string is not in the string table (but
2153   //                         does not add it).
2154   // - |if_bailout| for unsupported cases (e.g. uncachable array index).
2155   void TryInternalizeString(Node* string, Label* if_index, Variable* var_index,
2156                             Label* if_internalized, Variable* var_internalized,
2157                             Label* if_not_internalized, Label* if_bailout);
2158 
2159   // Calculates array index for given dictionary entry and entry field.
2160   // See Dictionary::EntryToIndex().
2161   template <typename Dictionary>
2162   TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry, int field_index);
2163   template <typename Dictionary>
EntryToIndex(TNode<IntPtrT> entry)2164   TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry) {
2165     return EntryToIndex<Dictionary>(entry, Dictionary::kEntryKeyIndex);
2166   }
2167 
2168   // Loads the details for the entry with the given key_index.
2169   // Returns an untagged int32.
2170   template <class ContainerType>
LoadDetailsByKeyIndex(Node * container,Node * key_index)2171   TNode<Uint32T> LoadDetailsByKeyIndex(Node* container, Node* key_index) {
2172     static_assert(!std::is_same<ContainerType, DescriptorArray>::value,
2173                   "Use the non-templatized version for DescriptorArray");
2174     const int kKeyToDetailsOffset =
2175         (ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
2176         kPointerSize;
2177     return Unsigned(LoadAndUntagToWord32FixedArrayElement(
2178         CAST(container), key_index, kKeyToDetailsOffset));
2179   }
2180 
2181   // Loads the value for the entry with the given key_index.
2182   // Returns a tagged value.
2183   template <class ContainerType>
LoadValueByKeyIndex(Node * container,Node * key_index)2184   TNode<Object> LoadValueByKeyIndex(Node* container, Node* key_index) {
2185     static_assert(!std::is_same<ContainerType, DescriptorArray>::value,
2186                   "Use the non-templatized version for DescriptorArray");
2187     const int kKeyToValueOffset =
2188         (ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
2189         kPointerSize;
2190     return LoadFixedArrayElement(CAST(container), key_index, kKeyToValueOffset);
2191   }
2192 
2193   TNode<Uint32T> LoadDetailsByKeyIndex(TNode<DescriptorArray> container,
2194                                        TNode<IntPtrT> key_index);
2195   TNode<Object> LoadValueByKeyIndex(TNode<DescriptorArray> container,
2196                                     TNode<IntPtrT> key_index);
2197   TNode<MaybeObject> LoadFieldTypeByKeyIndex(TNode<DescriptorArray> container,
2198                                              TNode<IntPtrT> key_index);
2199 
2200   // Stores the details for the entry with the given key_index.
2201   // |details| must be a Smi.
2202   template <class ContainerType>
StoreDetailsByKeyIndex(TNode<ContainerType> container,TNode<IntPtrT> key_index,TNode<Smi> details)2203   void StoreDetailsByKeyIndex(TNode<ContainerType> container,
2204                               TNode<IntPtrT> key_index, TNode<Smi> details) {
2205     const int kKeyToDetailsOffset =
2206         (ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
2207         kPointerSize;
2208     StoreFixedArrayElement(container, key_index, details, SKIP_WRITE_BARRIER,
2209                            kKeyToDetailsOffset);
2210   }
2211 
2212   // Stores the value for the entry with the given key_index.
2213   template <class ContainerType>
2214   void StoreValueByKeyIndex(
2215       TNode<ContainerType> container, TNode<IntPtrT> key_index,
2216       TNode<Object> value,
2217       WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER) {
2218     const int kKeyToValueOffset =
2219         (ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
2220         kPointerSize;
2221     StoreFixedArrayElement(container, key_index, value, write_barrier,
2222                            kKeyToValueOffset);
2223   }
2224 
2225   // Calculate a valid size for the a hash table.
2226   TNode<IntPtrT> HashTableComputeCapacity(TNode<IntPtrT> at_least_space_for);
2227 
2228   template <class Dictionary>
GetNumberOfElements(TNode<Dictionary> dictionary)2229   TNode<Smi> GetNumberOfElements(TNode<Dictionary> dictionary) {
2230     return CAST(
2231         LoadFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex));
2232   }
2233 
2234   template <class Dictionary>
SetNumberOfElements(TNode<Dictionary> dictionary,TNode<Smi> num_elements_smi)2235   void SetNumberOfElements(TNode<Dictionary> dictionary,
2236                            TNode<Smi> num_elements_smi) {
2237     StoreFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex,
2238                            num_elements_smi, SKIP_WRITE_BARRIER);
2239   }
2240 
2241   template <class Dictionary>
GetNumberOfDeletedElements(TNode<Dictionary> dictionary)2242   TNode<Smi> GetNumberOfDeletedElements(TNode<Dictionary> dictionary) {
2243     return CAST(LoadFixedArrayElement(
2244         dictionary, Dictionary::kNumberOfDeletedElementsIndex));
2245   }
2246 
2247   template <class Dictionary>
SetNumberOfDeletedElements(TNode<Dictionary> dictionary,TNode<Smi> num_deleted_smi)2248   void SetNumberOfDeletedElements(TNode<Dictionary> dictionary,
2249                                   TNode<Smi> num_deleted_smi) {
2250     StoreFixedArrayElement(dictionary,
2251                            Dictionary::kNumberOfDeletedElementsIndex,
2252                            num_deleted_smi, SKIP_WRITE_BARRIER);
2253   }
2254 
2255   template <class Dictionary>
GetCapacity(TNode<Dictionary> dictionary)2256   TNode<Smi> GetCapacity(TNode<Dictionary> dictionary) {
2257     return CAST(LoadFixedArrayElement(dictionary, Dictionary::kCapacityIndex));
2258   }
2259 
2260   template <class Dictionary>
GetNextEnumerationIndex(TNode<Dictionary> dictionary)2261   TNode<Smi> GetNextEnumerationIndex(TNode<Dictionary> dictionary) {
2262     return CAST(LoadFixedArrayElement(dictionary,
2263                                       Dictionary::kNextEnumerationIndexIndex));
2264   }
2265 
2266   template <class Dictionary>
SetNextEnumerationIndex(TNode<Dictionary> dictionary,TNode<Smi> next_enum_index_smi)2267   void SetNextEnumerationIndex(TNode<Dictionary> dictionary,
2268                                TNode<Smi> next_enum_index_smi) {
2269     StoreFixedArrayElement(dictionary, Dictionary::kNextEnumerationIndexIndex,
2270                            next_enum_index_smi, SKIP_WRITE_BARRIER);
2271   }
2272 
2273   // Looks up an entry in a NameDictionaryBase successor. If the entry is found
2274   // control goes to {if_found} and {var_name_index} contains an index of the
2275   // key field of the entry found. If the key is not found control goes to
2276   // {if_not_found}.
2277   static const int kInlinedDictionaryProbes = 4;
2278   enum LookupMode { kFindExisting, kFindInsertionIndex };
2279 
2280   template <typename Dictionary>
2281   TNode<HeapObject> LoadName(TNode<HeapObject> key);
2282 
2283   template <typename Dictionary>
2284   void NameDictionaryLookup(TNode<Dictionary> dictionary,
2285                             TNode<Name> unique_name, Label* if_found,
2286                             TVariable<IntPtrT>* var_name_index,
2287                             Label* if_not_found,
2288                             int inlined_probes = kInlinedDictionaryProbes,
2289                             LookupMode mode = kFindExisting);
2290 
2291   Node* ComputeIntegerHash(Node* key);
2292   Node* ComputeIntegerHash(Node* key, Node* seed);
2293 
2294   void NumberDictionaryLookup(TNode<NumberDictionary> dictionary,
2295                               TNode<IntPtrT> intptr_index, Label* if_found,
2296                               TVariable<IntPtrT>* var_entry,
2297                               Label* if_not_found);
2298 
2299   TNode<Object> BasicLoadNumberDictionaryElement(
2300       TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index,
2301       Label* not_data, Label* if_hole);
2302   void BasicStoreNumberDictionaryElement(TNode<NumberDictionary> dictionary,
2303                                          TNode<IntPtrT> intptr_index,
2304                                          TNode<Object> value, Label* not_data,
2305                                          Label* if_hole, Label* read_only);
2306 
2307   template <class Dictionary>
2308   void FindInsertionEntry(TNode<Dictionary> dictionary, TNode<Name> key,
2309                           TVariable<IntPtrT>* var_key_index);
2310 
2311   template <class Dictionary>
2312   void InsertEntry(TNode<Dictionary> dictionary, TNode<Name> key,
2313                    TNode<Object> value, TNode<IntPtrT> index,
2314                    TNode<Smi> enum_index);
2315 
2316   template <class Dictionary>
2317   void Add(TNode<Dictionary> dictionary, TNode<Name> key, TNode<Object> value,
2318            Label* bailout);
2319 
2320   // Tries to check if {object} has own {unique_name} property.
2321   void TryHasOwnProperty(Node* object, Node* map, Node* instance_type,
2322                          Node* unique_name, Label* if_found,
2323                          Label* if_not_found, Label* if_bailout);
2324 
2325   // Operating mode for TryGetOwnProperty and CallGetterIfAccessor
2326   // kReturnAccessorPair is used when we're only getting the property descriptor
2327   enum GetOwnPropertyMode { kCallJSGetter, kReturnAccessorPair };
2328   // Tries to get {object}'s own {unique_name} property value. If the property
2329   // is an accessor then it also calls a getter. If the property is a double
2330   // field it re-wraps value in an immutable heap number.
2331   void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
2332                          Node* instance_type, Node* unique_name,
2333                          Label* if_found, Variable* var_value,
2334                          Label* if_not_found, Label* if_bailout);
2335   void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
2336                          Node* instance_type, Node* unique_name,
2337                          Label* if_found, Variable* var_value,
2338                          Variable* var_details, Variable* var_raw_value,
2339                          Label* if_not_found, Label* if_bailout,
2340                          GetOwnPropertyMode mode);
2341 
GetProperty(SloppyTNode<Context> context,SloppyTNode<Object> receiver,Handle<Name> name)2342   TNode<Object> GetProperty(SloppyTNode<Context> context,
2343                             SloppyTNode<Object> receiver, Handle<Name> name) {
2344     return GetProperty(context, receiver, HeapConstant(name));
2345   }
2346 
GetProperty(SloppyTNode<Context> context,SloppyTNode<Object> receiver,SloppyTNode<Object> name)2347   TNode<Object> GetProperty(SloppyTNode<Context> context,
2348                             SloppyTNode<Object> receiver,
2349                             SloppyTNode<Object> name) {
2350     return CallBuiltin(Builtins::kGetProperty, context, receiver, name);
2351   }
2352 
SetPropertyStrict(TNode<Context> context,TNode<Object> receiver,TNode<Object> key,TNode<Object> value)2353   TNode<Object> SetPropertyStrict(TNode<Context> context,
2354                                   TNode<Object> receiver, TNode<Object> key,
2355                                   TNode<Object> value) {
2356     return CallBuiltin(Builtins::kSetProperty, context, receiver, key, value);
2357   }
2358 
2359   Node* GetMethod(Node* context, Node* object, Handle<Name> name,
2360                   Label* if_null_or_undefined);
2361 
2362   template <class... TArgs>
CallBuiltin(Builtins::Name id,SloppyTNode<Object> context,TArgs...args)2363   TNode<Object> CallBuiltin(Builtins::Name id, SloppyTNode<Object> context,
2364                             TArgs... args) {
2365     DCHECK_IMPLIES(Builtins::KindOf(id) == Builtins::TFJ,
2366                    !Builtins::IsLazy(id));
2367     return CallStub<Object>(Builtins::CallableFor(isolate(), id), context,
2368                             args...);
2369   }
2370 
2371   template <class... TArgs>
TailCallBuiltin(Builtins::Name id,SloppyTNode<Object> context,TArgs...args)2372   void TailCallBuiltin(Builtins::Name id, SloppyTNode<Object> context,
2373                        TArgs... args) {
2374     DCHECK_IMPLIES(Builtins::KindOf(id) == Builtins::TFJ,
2375                    !Builtins::IsLazy(id));
2376     return TailCallStub(Builtins::CallableFor(isolate(), id), context, args...);
2377   }
2378 
2379   void LoadPropertyFromFastObject(Node* object, Node* map,
2380                                   TNode<DescriptorArray> descriptors,
2381                                   Node* name_index, Variable* var_details,
2382                                   Variable* var_value);
2383 
2384   void LoadPropertyFromFastObject(Node* object, Node* map,
2385                                   TNode<DescriptorArray> descriptors,
2386                                   Node* name_index, Node* details,
2387                                   Variable* var_value);
2388 
2389   void LoadPropertyFromNameDictionary(Node* dictionary, Node* entry,
2390                                       Variable* var_details,
2391                                       Variable* var_value);
2392 
2393   void LoadPropertyFromGlobalDictionary(Node* dictionary, Node* entry,
2394                                         Variable* var_details,
2395                                         Variable* var_value, Label* if_deleted);
2396 
2397   // Generic property lookup generator. If the {object} is fast and
2398   // {unique_name} property is found then the control goes to {if_found_fast}
2399   // label and {var_meta_storage} and {var_name_index} will contain
2400   // DescriptorArray and an index of the descriptor's name respectively.
2401   // If the {object} is slow or global then the control goes to {if_found_dict}
2402   // or {if_found_global} and the {var_meta_storage} and {var_name_index} will
2403   // contain a dictionary and an index of the key field of the found entry.
2404   // If property is not found or given lookup is not supported then
2405   // the control goes to {if_not_found} or {if_bailout} respectively.
2406   //
2407   // Note: this code does not check if the global dictionary points to deleted
2408   // entry! This has to be done by the caller.
2409   void TryLookupProperty(SloppyTNode<JSObject> object, SloppyTNode<Map> map,
2410                          SloppyTNode<Int32T> instance_type,
2411                          SloppyTNode<Name> unique_name, Label* if_found_fast,
2412                          Label* if_found_dict, Label* if_found_global,
2413                          TVariable<HeapObject>* var_meta_storage,
2414                          TVariable<IntPtrT>* var_name_index,
2415                          Label* if_not_found, Label* if_bailout);
2416 
2417   // This is a building block for TryLookupProperty() above. Supports only
2418   // non-special fast and dictionary objects.
2419   void TryLookupPropertyInSimpleObject(TNode<JSObject> object, TNode<Map> map,
2420                                        TNode<Name> unique_name,
2421                                        Label* if_found_fast,
2422                                        Label* if_found_dict,
2423                                        TVariable<HeapObject>* var_meta_storage,
2424                                        TVariable<IntPtrT>* var_name_index,
2425                                        Label* if_not_found);
2426 
2427   // This method jumps to if_found if the element is known to exist. To
2428   // if_absent if it's known to not exist. To if_not_found if the prototype
2429   // chain needs to be checked. And if_bailout if the lookup is unsupported.
2430   void TryLookupElement(Node* object, Node* map,
2431                         SloppyTNode<Int32T> instance_type,
2432                         SloppyTNode<IntPtrT> intptr_index, Label* if_found,
2433                         Label* if_absent, Label* if_not_found,
2434                         Label* if_bailout);
2435 
2436   // This is a type of a lookup in holder generator function. In case of a
2437   // property lookup the {key} is guaranteed to be an unique name and in case of
2438   // element lookup the key is an Int32 index.
2439   typedef std::function<void(Node* receiver, Node* holder, Node* map,
2440                              Node* instance_type, Node* key, Label* next_holder,
2441                              Label* if_bailout)>
2442       LookupInHolder;
2443 
2444   // For integer indexed exotic cases, check if the given string cannot be a
2445   // special index. If we are not sure that the given string is not a special
2446   // index with a simple check, return False. Note that "False" return value
2447   // does not mean that the name_string is a special index in the current
2448   // implementation.
2449   void BranchIfMaybeSpecialIndex(TNode<String> name_string,
2450                                  Label* if_maybe_special_index,
2451                                  Label* if_not_special_index);
2452 
2453   // Generic property prototype chain lookup generator.
2454   // For properties it generates lookup using given {lookup_property_in_holder}
2455   // and for elements it uses {lookup_element_in_holder}.
2456   // Upon reaching the end of prototype chain the control goes to {if_end}.
2457   // If it can't handle the case {receiver}/{key} case then the control goes
2458   // to {if_bailout}.
2459   // If {if_proxy} is nullptr, proxies go to if_bailout.
2460   void TryPrototypeChainLookup(Node* receiver, Node* key,
2461                                const LookupInHolder& lookup_property_in_holder,
2462                                const LookupInHolder& lookup_element_in_holder,
2463                                Label* if_end, Label* if_bailout,
2464                                Label* if_proxy = nullptr);
2465 
2466   // Instanceof helpers.
2467   // Returns true if {object} has {prototype} somewhere in it's prototype
2468   // chain, otherwise false is returned. Might cause arbitrary side effects
2469   // due to [[GetPrototypeOf]] invocations.
2470   Node* HasInPrototypeChain(Node* context, Node* object, Node* prototype);
2471   // ES6 section 7.3.19 OrdinaryHasInstance (C, O)
2472   Node* OrdinaryHasInstance(Node* context, Node* callable, Node* object);
2473 
2474   // Load type feedback vector from the stub caller's frame.
2475   TNode<FeedbackVector> LoadFeedbackVectorForStub();
2476 
2477   // Load type feedback vector for the given closure.
2478   TNode<FeedbackVector> LoadFeedbackVector(SloppyTNode<JSFunction> closure,
2479                                            Label* if_undefined = nullptr);
2480 
2481   // Update the type feedback vector.
2482   void UpdateFeedback(Node* feedback, Node* feedback_vector, Node* slot_id);
2483 
2484   // Report that there was a feedback update, performing any tasks that should
2485   // be done after a feedback update.
2486   void ReportFeedbackUpdate(SloppyTNode<FeedbackVector> feedback_vector,
2487                             SloppyTNode<IntPtrT> slot_id, const char* reason);
2488 
2489   // Combine the new feedback with the existing_feedback. Do nothing if
2490   // existing_feedback is nullptr.
2491   void CombineFeedback(Variable* existing_feedback, int feedback);
2492   void CombineFeedback(Variable* existing_feedback, Node* feedback);
2493 
2494   // Overwrite the existing feedback with new_feedback. Do nothing if
2495   // existing_feedback is nullptr.
2496   void OverwriteFeedback(Variable* existing_feedback, int new_feedback);
2497 
2498   // Check if a property name might require protector invalidation when it is
2499   // used for a property store or deletion.
2500   void CheckForAssociatedProtector(Node* name, Label* if_protector);
2501 
2502   TNode<Map> LoadReceiverMap(SloppyTNode<Object> receiver);
2503 
2504   // Emits keyed sloppy arguments load. Returns either the loaded value.
LoadKeyedSloppyArguments(Node * receiver,Node * key,Label * bailout)2505   Node* LoadKeyedSloppyArguments(Node* receiver, Node* key, Label* bailout) {
2506     return EmitKeyedSloppyArguments(receiver, key, nullptr, bailout);
2507   }
2508 
2509   // Emits keyed sloppy arguments store.
StoreKeyedSloppyArguments(Node * receiver,Node * key,Node * value,Label * bailout)2510   void StoreKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
2511                                  Label* bailout) {
2512     DCHECK_NOT_NULL(value);
2513     EmitKeyedSloppyArguments(receiver, key, value, bailout);
2514   }
2515 
2516   // Loads script context from the script context table.
2517   TNode<Context> LoadScriptContext(TNode<Context> context,
2518                                    TNode<IntPtrT> context_index);
2519 
2520   Node* Int32ToUint8Clamped(Node* int32_value);
2521   Node* Float64ToUint8Clamped(Node* float64_value);
2522 
2523   Node* PrepareValueForWriteToTypedArray(TNode<Object> input,
2524                                          ElementsKind elements_kind,
2525                                          TNode<Context> context);
2526 
2527   // Store value to an elements array with given elements kind.
2528   void StoreElement(Node* elements, ElementsKind kind, Node* index, Node* value,
2529                     ParameterMode mode);
2530 
2531   void EmitBigTypedArrayElementStore(TNode<JSTypedArray> object,
2532                                      TNode<FixedTypedArrayBase> elements,
2533                                      TNode<IntPtrT> intptr_key,
2534                                      TNode<Object> value,
2535                                      TNode<Context> context,
2536                                      Label* opt_if_neutered);
2537   // Part of the above, refactored out to reuse in another place
2538   void EmitBigTypedArrayElementStore(TNode<FixedTypedArrayBase> elements,
2539                                      TNode<RawPtrT> backing_store,
2540                                      TNode<IntPtrT> offset,
2541                                      TNode<BigInt> bigint_value);
2542 
2543   void EmitElementStore(Node* object, Node* key, Node* value, bool is_jsarray,
2544                         ElementsKind elements_kind,
2545                         KeyedAccessStoreMode store_mode, Label* bailout,
2546                         Node* context);
2547 
2548   Node* CheckForCapacityGrow(Node* object, Node* elements, ElementsKind kind,
2549                              KeyedAccessStoreMode store_mode, Node* length,
2550                              Node* key, ParameterMode mode, bool is_js_array,
2551                              Label* bailout);
2552 
2553   Node* CopyElementsOnWrite(Node* object, Node* elements, ElementsKind kind,
2554                             Node* length, ParameterMode mode, Label* bailout);
2555 
2556   void TransitionElementsKind(Node* object, Node* map, ElementsKind from_kind,
2557                               ElementsKind to_kind, bool is_jsarray,
2558                               Label* bailout);
2559 
2560   void TrapAllocationMemento(Node* object, Label* memento_found);
2561 
2562   TNode<IntPtrT> PageFromAddress(TNode<IntPtrT> address);
2563 
2564   // Store a weak in-place reference into the FeedbackVector.
2565   TNode<MaybeObject> StoreWeakReferenceInFeedbackVector(
2566       SloppyTNode<FeedbackVector> feedback_vector, Node* slot,
2567       SloppyTNode<HeapObject> value, int additional_offset = 0,
2568       ParameterMode parameter_mode = INTPTR_PARAMETERS);
2569 
2570   // Create a new AllocationSite and install it into a feedback vector.
2571   TNode<AllocationSite> CreateAllocationSiteInFeedbackVector(
2572       SloppyTNode<FeedbackVector> feedback_vector, TNode<Smi> slot);
2573 
2574   // TODO(ishell, cbruni): Change to HasBoilerplate.
2575   TNode<BoolT> NotHasBoilerplate(TNode<Object> maybe_literal_site);
2576   TNode<Smi> LoadTransitionInfo(TNode<AllocationSite> allocation_site);
2577   TNode<JSObject> LoadBoilerplate(TNode<AllocationSite> allocation_site);
2578   TNode<Int32T> LoadElementsKind(TNode<AllocationSite> allocation_site);
2579 
2580   enum class IndexAdvanceMode { kPre, kPost };
2581 
2582   typedef std::function<void(Node* index)> FastLoopBody;
2583 
2584   Node* BuildFastLoop(const VariableList& var_list, Node* start_index,
2585                       Node* end_index, const FastLoopBody& body, int increment,
2586                       ParameterMode parameter_mode,
2587                       IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre);
2588 
2589   Node* BuildFastLoop(Node* start_index, Node* end_index,
2590                       const FastLoopBody& body, int increment,
2591                       ParameterMode parameter_mode,
2592                       IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre) {
2593     return BuildFastLoop(VariableList(0, zone()), start_index, end_index, body,
2594                          increment, parameter_mode, advance_mode);
2595   }
2596 
2597   enum class ForEachDirection { kForward, kReverse };
2598 
2599   typedef std::function<void(Node* fixed_array, Node* offset)>
2600       FastFixedArrayForEachBody;
2601 
2602   void BuildFastFixedArrayForEach(
2603       const CodeStubAssembler::VariableList& vars, Node* fixed_array,
2604       ElementsKind kind, Node* first_element_inclusive,
2605       Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
2606       ParameterMode mode = INTPTR_PARAMETERS,
2607       ForEachDirection direction = ForEachDirection::kReverse);
2608 
2609   void BuildFastFixedArrayForEach(
2610       Node* fixed_array, ElementsKind kind, Node* first_element_inclusive,
2611       Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
2612       ParameterMode mode = INTPTR_PARAMETERS,
2613       ForEachDirection direction = ForEachDirection::kReverse) {
2614     CodeStubAssembler::VariableList list(0, zone());
2615     BuildFastFixedArrayForEach(list, fixed_array, kind, first_element_inclusive,
2616                                last_element_exclusive, body, mode, direction);
2617   }
2618 
GetArrayAllocationSize(Node * element_count,ElementsKind kind,ParameterMode mode,int header_size)2619   TNode<IntPtrT> GetArrayAllocationSize(Node* element_count, ElementsKind kind,
2620                                         ParameterMode mode, int header_size) {
2621     return ElementOffsetFromIndex(element_count, kind, mode, header_size);
2622   }
2623 
GetFixedArrayAllocationSize(Node * element_count,ElementsKind kind,ParameterMode mode)2624   TNode<IntPtrT> GetFixedArrayAllocationSize(Node* element_count,
2625                                              ElementsKind kind,
2626                                              ParameterMode mode) {
2627     return GetArrayAllocationSize(element_count, kind, mode,
2628                                   FixedArray::kHeaderSize);
2629   }
2630 
GetPropertyArrayAllocationSize(Node * element_count,ParameterMode mode)2631   TNode<IntPtrT> GetPropertyArrayAllocationSize(Node* element_count,
2632                                                 ParameterMode mode) {
2633     return GetArrayAllocationSize(element_count, PACKED_ELEMENTS, mode,
2634                                   PropertyArray::kHeaderSize);
2635   }
2636 
2637   void GotoIfFixedArraySizeDoesntFitInNewSpace(Node* element_count,
2638                                                Label* doesnt_fit, int base_size,
2639                                                ParameterMode mode);
2640 
2641   void InitializeFieldsWithRoot(Node* object, Node* start_offset,
2642                                 Node* end_offset, Heap::RootListIndex root);
2643 
2644   Node* RelationalComparison(Operation op, Node* left, Node* right,
2645                              Node* context,
2646                              Variable* var_type_feedback = nullptr);
2647 
2648   void BranchIfNumberRelationalComparison(Operation op, Node* left, Node* right,
2649                                           Label* if_true, Label* if_false);
2650 
BranchIfNumberLessThan(Node * left,Node * right,Label * if_true,Label * if_false)2651   void BranchIfNumberLessThan(Node* left, Node* right, Label* if_true,
2652                               Label* if_false) {
2653     BranchIfNumberRelationalComparison(Operation::kLessThan, left, right,
2654                                        if_true, if_false);
2655   }
2656 
BranchIfNumberLessThanOrEqual(Node * left,Node * right,Label * if_true,Label * if_false)2657   void BranchIfNumberLessThanOrEqual(Node* left, Node* right, Label* if_true,
2658                                      Label* if_false) {
2659     BranchIfNumberRelationalComparison(Operation::kLessThanOrEqual, left, right,
2660                                        if_true, if_false);
2661   }
2662 
BranchIfNumberGreaterThan(Node * left,Node * right,Label * if_true,Label * if_false)2663   void BranchIfNumberGreaterThan(Node* left, Node* right, Label* if_true,
2664                                  Label* if_false) {
2665     BranchIfNumberRelationalComparison(Operation::kGreaterThan, left, right,
2666                                        if_true, if_false);
2667   }
2668 
BranchIfNumberGreaterThanOrEqual(Node * left,Node * right,Label * if_true,Label * if_false)2669   void BranchIfNumberGreaterThanOrEqual(Node* left, Node* right, Label* if_true,
2670                                         Label* if_false) {
2671     BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, left,
2672                                        right, if_true, if_false);
2673   }
2674 
BranchIfAccessorPair(Node * value,Label * if_accessor_pair,Label * if_not_accessor_pair)2675   void BranchIfAccessorPair(Node* value, Label* if_accessor_pair,
2676                             Label* if_not_accessor_pair) {
2677     GotoIf(TaggedIsSmi(value), if_not_accessor_pair);
2678     Branch(IsAccessorPair(value), if_accessor_pair, if_not_accessor_pair);
2679   }
2680 
2681   void GotoIfNumberGreaterThanOrEqual(Node* left, Node* right, Label* if_false);
2682 
2683   Node* Equal(Node* lhs, Node* rhs, Node* context,
2684               Variable* var_type_feedback = nullptr);
2685 
2686   Node* StrictEqual(Node* lhs, Node* rhs,
2687                     Variable* var_type_feedback = nullptr);
2688 
2689   // ECMA#sec-samevalue
2690   // Similar to StrictEqual except that NaNs are treated as equal and minus zero
2691   // differs from positive zero.
2692   void BranchIfSameValue(Node* lhs, Node* rhs, Label* if_true, Label* if_false);
2693 
2694   enum HasPropertyLookupMode { kHasProperty, kForInHasProperty };
2695 
2696   TNode<Oddball> HasProperty(SloppyTNode<Context> context,
2697                              SloppyTNode<Object> object,
2698                              SloppyTNode<Object> key,
2699                              HasPropertyLookupMode mode);
2700 
2701   Node* Typeof(Node* value);
2702 
2703   TNode<Object> GetSuperConstructor(SloppyTNode<Context> context,
2704                                     SloppyTNode<JSFunction> active_function);
2705 
2706   TNode<Object> SpeciesConstructor(SloppyTNode<Context> context,
2707                                    SloppyTNode<Object> object,
2708                                    SloppyTNode<Object> default_constructor);
2709 
2710   Node* InstanceOf(Node* object, Node* callable, Node* context);
2711 
2712   // Debug helpers
2713   Node* IsDebugActive();
2714 
2715   TNode<BoolT> IsRuntimeCallStatsEnabled();
2716 
2717   // TypedArray/ArrayBuffer helpers
2718   Node* IsDetachedBuffer(Node* buffer);
2719   void ThrowIfArrayBufferIsDetached(SloppyTNode<Context> context,
2720                                     TNode<JSArrayBuffer> array_buffer,
2721                                     const char* method_name);
2722   void ThrowIfArrayBufferViewBufferIsDetached(
2723       SloppyTNode<Context> context, TNode<JSArrayBufferView> array_buffer_view,
2724       const char* method_name);
2725   TNode<JSArrayBuffer> LoadArrayBufferViewBuffer(
2726       TNode<JSArrayBufferView> array_buffer_view);
2727   TNode<RawPtrT> LoadArrayBufferBackingStore(TNode<JSArrayBuffer> array_buffer);
2728 
2729   TNode<IntPtrT> ElementOffsetFromIndex(Node* index, ElementsKind kind,
2730                                         ParameterMode mode, int base_size = 0);
2731 
2732   // Check that a field offset is within the bounds of the an object.
2733   TNode<BoolT> IsOffsetInBounds(SloppyTNode<IntPtrT> offset,
2734                                 SloppyTNode<IntPtrT> length, int header_size,
2735                                 ElementsKind kind = HOLEY_ELEMENTS);
2736 
2737   // Load a builtin's code from the builtin array in the isolate.
2738   TNode<Code> LoadBuiltin(TNode<Smi> builtin_id);
2739 
2740   // Figure out the SFI's code object using its data field.
2741   // If |if_compile_lazy| is provided then the execution will go to the given
2742   // label in case of an CompileLazy code object.
2743   TNode<Code> GetSharedFunctionInfoCode(
2744       SloppyTNode<SharedFunctionInfo> shared_info,
2745       Label* if_compile_lazy = nullptr);
2746 
2747   Node* AllocateFunctionWithMapAndContext(Node* map, Node* shared_info,
2748                                           Node* context);
2749 
2750   // Promise helpers
2751   Node* IsPromiseHookEnabled();
2752   Node* HasAsyncEventDelegate();
2753   Node* IsPromiseHookEnabledOrHasAsyncEventDelegate();
2754 
2755   // Helpers for StackFrame markers.
2756   Node* MarkerIsFrameType(Node* marker_or_function,
2757                           StackFrame::Type frame_type);
2758   Node* MarkerIsNotFrameType(Node* marker_or_function,
2759                              StackFrame::Type frame_type);
2760 
2761   // for..in helpers
2762   void CheckPrototypeEnumCache(Node* receiver, Node* receiver_map,
2763                                Label* if_fast, Label* if_slow);
2764   Node* CheckEnumCache(Node* receiver, Label* if_empty, Label* if_runtime);
2765 
2766   TNode<IntPtrT> GetArgumentsLength(CodeStubArguments* args);
2767   TNode<Object> GetArgumentValue(CodeStubArguments* args, TNode<IntPtrT> index);
2768 
2769   // Support for printf-style debugging
2770   void Print(const char* s);
2771   void Print(const char* prefix, Node* tagged_value);
Print(SloppyTNode<Object> tagged_value)2772   inline void Print(SloppyTNode<Object> tagged_value) {
2773     return Print(nullptr, tagged_value);
2774   }
Print(TNode<MaybeObject> tagged_value)2775   inline void Print(TNode<MaybeObject> tagged_value) {
2776     return Print(nullptr, tagged_value);
2777   }
2778 
2779   template <class... TArgs>
MakeTypeError(MessageTemplate::Template message,Node * context,TArgs...args)2780   Node* MakeTypeError(MessageTemplate::Template message, Node* context,
2781                       TArgs... args) {
2782     STATIC_ASSERT(sizeof...(TArgs) <= 3);
2783     Node* const make_type_error = LoadContextElement(
2784         LoadNativeContext(context), Context::MAKE_TYPE_ERROR_INDEX);
2785     return CallJS(CodeFactory::Call(isolate()), context, make_type_error,
2786                   UndefinedConstant(), SmiConstant(message), args...);
2787   }
2788 
Abort(AbortReason reason)2789   void Abort(AbortReason reason) {
2790     CallRuntime(Runtime::kAbort, NoContextConstant(), SmiConstant(reason));
2791     Unreachable();
2792   }
2793 
ConstexprBoolNot(bool value)2794   bool ConstexprBoolNot(bool value) { return !value; }
2795 
ConstexprInt31Equal(int31_t a,int31_t b)2796   bool ConstexprInt31Equal(int31_t a, int31_t b) { return a == b; }
2797 
2798   void PerformStackCheck(TNode<Context> context);
2799 
2800  protected:
2801   // Implements DescriptorArray::Search().
2802   void DescriptorLookup(SloppyTNode<Name> unique_name,
2803                         SloppyTNode<DescriptorArray> descriptors,
2804                         SloppyTNode<Uint32T> bitfield3, Label* if_found,
2805                         TVariable<IntPtrT>* var_name_index,
2806                         Label* if_not_found);
2807 
2808   // Implements TransitionArray::SearchName() - searches for first transition
2809   // entry with given name (note that there could be multiple entries with
2810   // the same name).
2811   void TransitionLookup(SloppyTNode<Name> unique_name,
2812                         SloppyTNode<TransitionArray> transitions,
2813                         Label* if_found, TVariable<IntPtrT>* var_name_index,
2814                         Label* if_not_found);
2815 
2816   // Implements generic search procedure like i::Search<Array>().
2817   template <typename Array>
2818   void Lookup(TNode<Name> unique_name, TNode<Array> array,
2819               TNode<Uint32T> number_of_valid_entries, Label* if_found,
2820               TVariable<IntPtrT>* var_name_index, Label* if_not_found);
2821 
2822   // Implements generic linear search procedure like i::LinearSearch<Array>().
2823   template <typename Array>
2824   void LookupLinear(TNode<Name> unique_name, TNode<Array> array,
2825                     TNode<Uint32T> number_of_valid_entries, Label* if_found,
2826                     TVariable<IntPtrT>* var_name_index, Label* if_not_found);
2827 
2828   // Implements generic binary search procedure like i::BinarySearch<Array>().
2829   template <typename Array>
2830   void LookupBinary(TNode<Name> unique_name, TNode<Array> array,
2831                     TNode<Uint32T> number_of_valid_entries, Label* if_found,
2832                     TVariable<IntPtrT>* var_name_index, Label* if_not_found);
2833 
2834   // Converts [Descriptor/Transition]Array entry number to a fixed array index.
2835   template <typename Array>
2836   TNode<IntPtrT> EntryIndexToIndex(TNode<Uint32T> entry_index);
2837 
2838   // Implements [Descriptor/Transition]Array::ToKeyIndex.
2839   template <typename Array>
2840   TNode<IntPtrT> ToKeyIndex(TNode<Uint32T> entry_index);
2841 
2842   // Implements [Descriptor/Transition]Array::GetKey.
2843   template <typename Array>
2844   TNode<Name> GetKey(TNode<Array> array, TNode<Uint32T> entry_index);
2845 
2846   // Implements DescriptorArray::GetDetails.
2847   TNode<Uint32T> DescriptorArrayGetDetails(TNode<DescriptorArray> descriptors,
2848                                            TNode<Uint32T> descriptor_number);
2849 
2850   typedef std::function<void(TNode<UintPtrT> descriptor_key_index)>
2851       ForEachDescriptorBodyFunction;
2852 
2853   void DescriptorArrayForEach(VariableList& variable_list,
2854                               TNode<Uint32T> start_descriptor,
2855                               TNode<Uint32T> end_descriptor,
2856                               const ForEachDescriptorBodyFunction& body);
2857 
2858   TNode<Object> CallGetterIfAccessor(Node* value, Node* details, Node* context,
2859                                      Node* receiver, Label* if_bailout,
2860                                      GetOwnPropertyMode mode = kCallJSGetter);
2861 
2862   TNode<IntPtrT> TryToIntptr(Node* key, Label* miss);
2863 
2864   void BranchIfPrototypesHaveNoElements(Node* receiver_map,
2865                                         Label* definitely_no_elements,
2866                                         Label* possibly_elements);
2867 
2868   void InitializeFunctionContext(Node* native_context, Node* context,
2869                                  int slots);
2870 
2871  private:
2872   friend class CodeStubArguments;
2873 
2874   void HandleBreakOnNode();
2875 
2876   Node* AllocateRawDoubleAligned(Node* size_in_bytes, AllocationFlags flags,
2877                                  Node* top_address, Node* limit_address);
2878   Node* AllocateRawUnaligned(Node* size_in_bytes, AllocationFlags flags,
2879                              Node* top_adddress, Node* limit_address);
2880   Node* AllocateRaw(Node* size_in_bytes, AllocationFlags flags,
2881                     Node* top_address, Node* limit_address);
2882   // Allocate and return a JSArray of given total size in bytes with header
2883   // fields initialized.
2884   Node* AllocateUninitializedJSArray(Node* array_map, Node* length,
2885                                      Node* allocation_site,
2886                                      Node* size_in_bytes);
2887 
2888   TNode<BoolT> IsValidSmi(TNode<Smi> smi);
2889   Node* SmiShiftBitsConstant();
2890 
2891   // Emits keyed sloppy arguments load if the |value| is nullptr or store
2892   // otherwise. Returns either the loaded value or |value|.
2893   Node* EmitKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
2894                                  Label* bailout);
2895 
2896   TNode<String> AllocateSlicedString(Heap::RootListIndex map_root_index,
2897                                      TNode<Smi> length, TNode<String> parent,
2898                                      TNode<Smi> offset);
2899 
2900   TNode<String> AllocateConsString(Heap::RootListIndex map_root_index,
2901                                    TNode<Smi> length, TNode<String> first,
2902                                    TNode<String> second, AllocationFlags flags);
2903 
2904   // Allocate a MutableHeapNumber without initializing its value.
2905   TNode<MutableHeapNumber> AllocateMutableHeapNumber();
2906 
2907   Node* SelectImpl(TNode<BoolT> condition, const NodeGenerator& true_body,
2908                    const NodeGenerator& false_body, MachineRepresentation rep);
2909 
2910   // Implements [Descriptor/Transition]Array::number_of_entries.
2911   template <typename Array>
2912   TNode<Uint32T> NumberOfEntries(TNode<Array> array);
2913 
2914   // Implements [Descriptor/Transition]Array::GetSortedKeyIndex.
2915   template <typename Array>
2916   TNode<Uint32T> GetSortedKeyIndex(TNode<Array> descriptors,
2917                                    TNode<Uint32T> entry_index);
2918 
2919   TNode<Smi> CollectFeedbackForString(SloppyTNode<Int32T> instance_type);
2920   void GenerateEqual_Same(Node* value, Label* if_equal, Label* if_notequal,
2921                           Variable* var_type_feedback = nullptr);
2922   TNode<String> AllocAndCopyStringCharacters(Node* from,
2923                                              Node* from_instance_type,
2924                                              TNode<IntPtrT> from_index,
2925                                              TNode<Smi> character_count);
2926 
2927   static const int kElementLoopUnrollThreshold = 8;
2928 
2929   // {convert_bigint} is only meaningful when {mode} == kToNumber.
2930   Node* NonNumberToNumberOrNumeric(
2931       Node* context, Node* input, Object::Conversion mode,
2932       BigIntHandling bigint_handling = BigIntHandling::kThrow);
2933 
2934   void TaggedToNumeric(Node* context, Node* value, Label* done,
2935                        Variable* var_numeric, Variable* var_feedback);
2936 
2937   template <Object::Conversion conversion>
2938   void TaggedToWord32OrBigIntImpl(Node* context, Node* value, Label* if_number,
2939                                   Variable* var_word32,
2940                                   Label* if_bigint = nullptr,
2941                                   Variable* var_bigint = nullptr,
2942                                   Variable* var_feedback = nullptr);
2943 };
2944 
2945 class CodeStubArguments {
2946  public:
2947   typedef compiler::Node Node;
2948   template <class T>
2949   using TNode = compiler::TNode<T>;
2950   template <class T>
2951   using SloppyTNode = compiler::SloppyTNode<T>;
2952   enum ReceiverMode { kHasReceiver, kNoReceiver };
2953 
2954   // |argc| is an intptr value which specifies the number of arguments passed
2955   // to the builtin excluding the receiver. The arguments will include a
2956   // receiver iff |receiver_mode| is kHasReceiver.
2957   CodeStubArguments(CodeStubAssembler* assembler, Node* argc,
2958                     ReceiverMode receiver_mode = ReceiverMode::kHasReceiver)
CodeStubArguments(assembler,argc,nullptr,CodeStubAssembler::INTPTR_PARAMETERS,receiver_mode)2959       : CodeStubArguments(assembler, argc, nullptr,
2960                           CodeStubAssembler::INTPTR_PARAMETERS, receiver_mode) {
2961   }
2962 
2963   // |argc| is either a smi or intptr depending on |param_mode|. The arguments
2964   // include a receiver iff |receiver_mode| is kHasReceiver.
2965   CodeStubArguments(CodeStubAssembler* assembler, Node* argc, Node* fp,
2966                     CodeStubAssembler::ParameterMode param_mode,
2967                     ReceiverMode receiver_mode = ReceiverMode::kHasReceiver);
2968 
2969   TNode<Object> GetReceiver() const;
2970   // Replaces receiver argument on the expression stack. Should be used only
2971   // for manipulating arguments in trampoline builtins before tail calling
2972   // further with passing all the JS arguments as is.
2973   void SetReceiver(TNode<Object> object) const;
2974 
2975   TNode<RawPtr<Object>> AtIndexPtr(
2976       Node* index, CodeStubAssembler::ParameterMode mode =
2977                        CodeStubAssembler::INTPTR_PARAMETERS) const;
2978 
2979   // |index| is zero-based and does not include the receiver
2980   TNode<Object> AtIndex(Node* index,
2981                         CodeStubAssembler::ParameterMode mode =
2982                             CodeStubAssembler::INTPTR_PARAMETERS) const;
2983 
2984   TNode<Object> AtIndex(int index) const;
2985 
GetOptionalArgumentValue(int index)2986   TNode<Object> GetOptionalArgumentValue(int index) {
2987     return GetOptionalArgumentValue(index, assembler_->UndefinedConstant());
2988   }
2989   TNode<Object> GetOptionalArgumentValue(int index,
2990                                          TNode<Object> default_value);
2991 
GetLength(CodeStubAssembler::ParameterMode mode)2992   Node* GetLength(CodeStubAssembler::ParameterMode mode) const {
2993     DCHECK_EQ(mode, argc_mode_);
2994     return argc_;
2995   }
2996 
GetOptionalArgumentValue(TNode<IntPtrT> index)2997   TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index) {
2998     return GetOptionalArgumentValue(index, assembler_->UndefinedConstant());
2999   }
3000   TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index,
3001                                          TNode<Object> default_value);
GetLength()3002   TNode<IntPtrT> GetLength() const {
3003     DCHECK_EQ(argc_mode_, CodeStubAssembler::INTPTR_PARAMETERS);
3004     return assembler_->UncheckedCast<IntPtrT>(argc_);
3005   }
3006 
3007   typedef std::function<void(Node* arg)> ForEachBodyFunction;
3008 
3009   // Iteration doesn't include the receiver. |first| and |last| are zero-based.
3010   void ForEach(const ForEachBodyFunction& body, Node* first = nullptr,
3011                Node* last = nullptr,
3012                CodeStubAssembler::ParameterMode mode =
3013                    CodeStubAssembler::INTPTR_PARAMETERS) {
3014     CodeStubAssembler::VariableList list(0, assembler_->zone());
3015     ForEach(list, body, first, last);
3016   }
3017 
3018   // Iteration doesn't include the receiver. |first| and |last| are zero-based.
3019   void ForEach(const CodeStubAssembler::VariableList& vars,
3020                const ForEachBodyFunction& body, Node* first = nullptr,
3021                Node* last = nullptr,
3022                CodeStubAssembler::ParameterMode mode =
3023                    CodeStubAssembler::INTPTR_PARAMETERS);
3024 
3025   void PopAndReturn(Node* value);
3026 
3027  private:
3028   Node* GetArguments();
3029 
3030   CodeStubAssembler* assembler_;
3031   CodeStubAssembler::ParameterMode argc_mode_;
3032   ReceiverMode receiver_mode_;
3033   Node* argc_;
3034   TNode<RawPtr<Object>> arguments_;
3035   Node* fp_;
3036 };
3037 
3038 class ToDirectStringAssembler : public CodeStubAssembler {
3039  private:
3040   enum StringPointerKind { PTR_TO_DATA, PTR_TO_STRING };
3041 
3042  public:
3043   enum Flag {
3044     kDontUnpackSlicedStrings = 1 << 0,
3045   };
3046   typedef base::Flags<Flag> Flags;
3047 
3048   ToDirectStringAssembler(compiler::CodeAssemblerState* state, Node* string,
3049                           Flags flags = Flags());
3050 
3051   // Converts flat cons, thin, and sliced strings and returns the direct
3052   // string. The result can be either a sequential or external string.
3053   // Jumps to if_bailout if the string if the string is indirect and cannot
3054   // be unpacked.
3055   TNode<String> TryToDirect(Label* if_bailout);
3056 
3057   // Returns a pointer to the beginning of the string data.
3058   // Jumps to if_bailout if the external string cannot be unpacked.
PointerToData(Label * if_bailout)3059   TNode<RawPtrT> PointerToData(Label* if_bailout) {
3060     return TryToSequential(PTR_TO_DATA, if_bailout);
3061   }
3062 
3063   // Returns a pointer that, offset-wise, looks like a String.
3064   // Jumps to if_bailout if the external string cannot be unpacked.
PointerToString(Label * if_bailout)3065   TNode<RawPtrT> PointerToString(Label* if_bailout) {
3066     return TryToSequential(PTR_TO_STRING, if_bailout);
3067   }
3068 
string()3069   Node* string() { return var_string_.value(); }
instance_type()3070   Node* instance_type() { return var_instance_type_.value(); }
offset()3071   TNode<IntPtrT> offset() {
3072     return UncheckedCast<IntPtrT>(var_offset_.value());
3073   }
is_external()3074   Node* is_external() { return var_is_external_.value(); }
3075 
3076  private:
3077   TNode<RawPtrT> TryToSequential(StringPointerKind ptr_kind, Label* if_bailout);
3078 
3079   Variable var_string_;
3080   Variable var_instance_type_;
3081   Variable var_offset_;
3082   Variable var_is_external_;
3083 
3084   const Flags flags_;
3085 };
3086 
3087 
3088 DEFINE_OPERATORS_FOR_FLAGS(CodeStubAssembler::AllocationFlags);
3089 
3090 }  // namespace internal
3091 }  // namespace v8
3092 #endif  // V8_CODE_STUB_ASSEMBLER_H_
3093