1 // Copyright 2017, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #include "examples.h"
28 
29 #define __ masm->
30 
GenerateMandelBrot(MacroAssembler * masm)31 void GenerateMandelBrot(MacroAssembler* masm) {
32   const QRegister kCReal = q0;
33   const QRegister kCImag = q1;
34 
35   const QRegister kCRealStep = q13;
36   const QRegister kCImagStep = q14;
37 
38   const QRegister kModSqLimit = q15;
39 
40   // Save register values.
41   __ Push(RegisterList(r4, r5, r6));
42 
43   __ Vmov(F32, kCRealStep, 0.125);
44   __ Vmov(F32, kCImagStep, 0.0625);
45 
46   const Register kZero = r2;
47   __ Mov(kZero, 0);
48 
49   const DRegister kStars = d6;
50   const DRegister kSpaces = d7;
51   // Output characters - packed 4 characters into 32 bits.
52   __ Vmov(I8, kStars, '*');
53   __ Vmov(I8, kSpaces, ' ');
54 
55   const DRegisterLane kNegTwo = DRegisterLane(d7, 1);
56   __ Vmov(s15, -2.0);
57 
58   // Imaginary part of c.
59   __ Vdup(Untyped32, kCImag, kNegTwo);
60 
61   // Max modulus squared.
62   __ Vmov(F32, kModSqLimit, 4.0);
63 
64   // Height of output in characters.
65   __ Mov(r4, 64);
66 
67   // String length will be 129, so need 132 bytes of space.
68   const uint32_t kStringLength = 132;
69 
70   // Make space for our string.
71   __ Sub(sp, sp, kStringLength);
72 
73   // Set up a starting pointer for the string.
74   const Register kStringPtr = r6;
75   __ Mov(kStringPtr, sp);
76 
77   // Loop over imaginary values of c from -2 to 2, taking
78   // 64 equally spaced values in the range.
79   {
80     Label c_imag_loop;
81 
82     __ Bind(&c_imag_loop);
83 
84     // Real part of c.
85     // Store 4 equally spaced values in q0 (kCReal) to use SIMD.
86     __ Vmov(s0, -2.0);
87     __ Vmov(s1, -1.96875);
88     __ Vmov(s2, -1.9375);
89     __ Vmov(s3, -1.90625);
90 
91     // Width of output in terms of sets of 4 characters - twice that
92     // of height to compensate for ratio of character height to width.
93     __ Mov(r5, 32);
94 
95     const Register kWriteCursor = r3;
96     // Set a cursor ready to write the next line.
97     __ Mov(kWriteCursor, kStringPtr);
98 
99     // Loop over real values of c from -2 to 2, processing
100     // 4 different values simultaneously using SIMD.
101     {
102       const QRegister kFlags = q2;
103       const DRegister kLowerFlags = d4;
104 
105       Label c_real_loop;
106       __ Bind(&c_real_loop);
107 
108       // Get number of iterations.
109       __ Add(r1, r0, 1);
110 
111       // Perform the iterations of z(n+1) = zn^2 + c using SIMD.
112       // If the result is that c is in the set, the element of
113       // kFlags will be 0, else ~0.
114       {
115         const QRegister kZReal = q8;
116         const QRegister kZImag = q9;
117 
118         // Real part of z.
119         __ Vmov(F32, kZReal, 0.0);
120 
121         // Imaginary part of z.
122         __ Vmov(F32, kZImag, 0.0);
123 
124         __ Vmov(F32, kFlags, 0.0);
125 
126         Label iterative_formula_start, iterative_formula_end;
127         __ Bind(&iterative_formula_start);
128         __ Subs(r1, r1, 1);
129         __ B(le, &iterative_formula_end);
130 
131         // z(n+1) = zn^2 + c.
132         // re(z(n+1)) = re(c) + re(zn)^2 - im(zn)^2.
133         // im(z(n+1)) = im(c) + 2 * re(zn) * im(zn)
134 
135         __ Vmul(F32, q10, kZReal, kZImag);  // re(zn) * im(zn)
136 
137         __ Vmul(F32, kZReal, kZReal, kZReal);  // re(zn)^2
138         __ Vadd(F32, kZReal, kCReal, kZReal);  // re(c) + re(zn)^2
139         __ Vmls(F32, kZReal, kZImag, kZImag);  // re(c) + re(zn)^2 - im(zn)^2
140 
141         __ Vmov(F32, kZImag, kCImag);        // im(c)
142         __ Vmls(F32, kZImag, q10, kNegTwo);  // im(c) + 2 * re(zn) * im(zn)
143 
144         __ Vmul(F32, q10, kZReal, kZReal);    // re(z(n+1))^2
145         __ Vmla(F32, q10, kZImag, kZImag);    // re(z(n+1))^2 + im(z(n+1))^2
146         __ Vcgt(F32, q10, q10, kModSqLimit);  // |z(n+1)|^2 > 4 ? ~0 : 0
147         __ Vorr(F32, kFlags, kFlags, q10);    // (~0/0) | above result
148 
149         __ B(&iterative_formula_start);
150         __ Bind(&iterative_formula_end);
151       }
152 
153       // Narrow twice so that each mask is 8 bits, packed into
154       // a single 32 bit register s4.
155       // kLowerFlags is the lower half of kFlags, so the second narrow will
156       // be working on the results of the first to halve the size of each
157       // representation again.
158       __ Vmovn(I32, kLowerFlags, kFlags);
159       __ Vmovn(I16, kLowerFlags, kFlags);
160 
161       // '*' if in set, ' ' if not.
162       __ Vbsl(Untyped32, kLowerFlags, kSpaces, kStars);
163 
164       // Add this to the string.
165       __ Vst1(Untyped32,
166               NeonRegisterList(kLowerFlags, 0),
167               AlignedMemOperand(kWriteCursor, k32BitAlign, PostIndex));
168 
169       // Increase real part of c.
170       __ Vadd(F32, kCReal, kCReal, kCRealStep);
171 
172       __ Subs(r5, r5, 1);
173       __ B(ne, &c_real_loop);
174     }
175 
176     // Put terminating character.
177     __ Strb(kZero, MemOperand(kWriteCursor));
178 
179     // Print the string.
180     __ Printf("%s\n", kStringPtr);
181 
182     // Increase imaginary part of c.
183     __ Vadd(F32, kCImag, kCImag, kCImagStep);
184 
185     __ Subs(r4, r4, 1);
186     __ B(ne, &c_imag_loop);
187   }
188   // Restore stack pointer.
189   __ Add(sp, sp, kStringLength);
190   // Restore register values.
191   __ Pop(RegisterList(r4, r5, r6));
192   __ Bx(lr);
193 }
194 
195 #ifndef TEST_EXAMPLES
main()196 int main() {
197   MacroAssembler masm;
198   // Generate the code for the example function.
199   Label mandelbrot;
200   masm.Bind(&mandelbrot);
201   GenerateMandelBrot(&masm);
202   masm.FinalizeCode();
203 #ifdef VIXL_INCLUDE_SIMULATOR_AARCH32
204   // There is no simulator defined for VIXL AArch32.
205   printf("This example cannot be simulated\n");
206 #else
207   byte* code = masm.GetBuffer()->GetStartAddress<byte*>();
208   uint32_t code_size = masm.GetSizeOfCodeGenerated();
209   ExecutableMemory memory(code, code_size);
210   // Run the example function.
211   double (*mandelbrot_func)(uint32_t) =
212       memory.GetEntryPoint<double (*)(uint32_t)>(mandelbrot,
213                                                  masm.GetInstructionSetInUse());
214   uint32_t iterations = 1000;
215   (*mandelbrot_func)(iterations);
216 #endif
217   return 0;
218 }
219 #endif  // TEST_EXAMPLES
220