1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main internal TSan header file.
13 //
14 // Ground rules:
15 //   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16 //     function-scope locals)
17 //   - All functions/classes/etc reside in namespace __tsan, except for those
18 //     declared in tsan_interface.h.
19 //   - Platform-specific files should be used instead of ifdefs (*).
20 //   - No system headers included in header files (*).
21 //   - Platform specific headres included only into platform-specific files (*).
22 //
23 //  (*) Except when inlining is critical for performance.
24 //===----------------------------------------------------------------------===//
25 
26 #ifndef TSAN_RTL_H
27 #define TSAN_RTL_H
28 
29 #include "sanitizer_common/sanitizer_allocator.h"
30 #include "sanitizer_common/sanitizer_allocator_internal.h"
31 #include "sanitizer_common/sanitizer_asm.h"
32 #include "sanitizer_common/sanitizer_common.h"
33 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
34 #include "sanitizer_common/sanitizer_libignore.h"
35 #include "sanitizer_common/sanitizer_suppressions.h"
36 #include "sanitizer_common/sanitizer_thread_registry.h"
37 #include "tsan_clock.h"
38 #include "tsan_defs.h"
39 #include "tsan_flags.h"
40 #include "tsan_sync.h"
41 #include "tsan_trace.h"
42 #include "tsan_vector.h"
43 #include "tsan_report.h"
44 #include "tsan_platform.h"
45 #include "tsan_mutexset.h"
46 #include "tsan_ignoreset.h"
47 #include "tsan_stack_trace.h"
48 
49 #if SANITIZER_WORDSIZE != 64
50 # error "ThreadSanitizer is supported only on 64-bit platforms"
51 #endif
52 
53 namespace __tsan {
54 
55 #ifndef SANITIZER_GO
56 struct MapUnmapCallback;
57 #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
58 static const uptr kAllocatorSpace = 0;
59 static const uptr kAllocatorSize = SANITIZER_MMAP_RANGE_SIZE;
60 static const uptr kAllocatorRegionSizeLog = 20;
61 static const uptr kAllocatorNumRegions =
62     kAllocatorSize >> kAllocatorRegionSizeLog;
63 typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12,
64     MapUnmapCallback> ByteMap;
65 typedef SizeClassAllocator32<kAllocatorSpace, kAllocatorSize, 0,
66     CompactSizeClassMap, kAllocatorRegionSizeLog, ByteMap,
67     MapUnmapCallback> PrimaryAllocator;
68 #else
69 typedef SizeClassAllocator64<Mapping::kHeapMemBeg,
70     Mapping::kHeapMemEnd - Mapping::kHeapMemBeg, 0,
71     DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
72 #endif
73 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
74 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
75 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
76     SecondaryAllocator> Allocator;
77 Allocator *allocator();
78 #endif
79 
80 void TsanCheckFailed(const char *file, int line, const char *cond,
81                      u64 v1, u64 v2);
82 
83 const u64 kShadowRodata = (u64)-1;  // .rodata shadow marker
84 
85 // FastState (from most significant bit):
86 //   ignore          : 1
87 //   tid             : kTidBits
88 //   unused          : -
89 //   history_size    : 3
90 //   epoch           : kClkBits
91 class FastState {
92  public:
FastState(u64 tid,u64 epoch)93   FastState(u64 tid, u64 epoch) {
94     x_ = tid << kTidShift;
95     x_ |= epoch;
96     DCHECK_EQ(tid, this->tid());
97     DCHECK_EQ(epoch, this->epoch());
98     DCHECK_EQ(GetIgnoreBit(), false);
99   }
100 
FastState(u64 x)101   explicit FastState(u64 x)
102       : x_(x) {
103   }
104 
raw()105   u64 raw() const {
106     return x_;
107   }
108 
tid()109   u64 tid() const {
110     u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
111     return res;
112   }
113 
TidWithIgnore()114   u64 TidWithIgnore() const {
115     u64 res = x_ >> kTidShift;
116     return res;
117   }
118 
epoch()119   u64 epoch() const {
120     u64 res = x_ & ((1ull << kClkBits) - 1);
121     return res;
122   }
123 
IncrementEpoch()124   void IncrementEpoch() {
125     u64 old_epoch = epoch();
126     x_ += 1;
127     DCHECK_EQ(old_epoch + 1, epoch());
128     (void)old_epoch;
129   }
130 
SetIgnoreBit()131   void SetIgnoreBit() { x_ |= kIgnoreBit; }
ClearIgnoreBit()132   void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
GetIgnoreBit()133   bool GetIgnoreBit() const { return (s64)x_ < 0; }
134 
SetHistorySize(int hs)135   void SetHistorySize(int hs) {
136     CHECK_GE(hs, 0);
137     CHECK_LE(hs, 7);
138     x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
139   }
140 
141   ALWAYS_INLINE
GetHistorySize()142   int GetHistorySize() const {
143     return (int)((x_ >> kHistoryShift) & kHistoryMask);
144   }
145 
ClearHistorySize()146   void ClearHistorySize() {
147     SetHistorySize(0);
148   }
149 
150   ALWAYS_INLINE
GetTracePos()151   u64 GetTracePos() const {
152     const int hs = GetHistorySize();
153     // When hs == 0, the trace consists of 2 parts.
154     const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
155     return epoch() & mask;
156   }
157 
158  private:
159   friend class Shadow;
160   static const int kTidShift = 64 - kTidBits - 1;
161   static const u64 kIgnoreBit = 1ull << 63;
162   static const u64 kFreedBit = 1ull << 63;
163   static const u64 kHistoryShift = kClkBits;
164   static const u64 kHistoryMask = 7;
165   u64 x_;
166 };
167 
168 // Shadow (from most significant bit):
169 //   freed           : 1
170 //   tid             : kTidBits
171 //   is_atomic       : 1
172 //   is_read         : 1
173 //   size_log        : 2
174 //   addr0           : 3
175 //   epoch           : kClkBits
176 class Shadow : public FastState {
177  public:
Shadow(u64 x)178   explicit Shadow(u64 x)
179       : FastState(x) {
180   }
181 
Shadow(const FastState & s)182   explicit Shadow(const FastState &s)
183       : FastState(s.x_) {
184     ClearHistorySize();
185   }
186 
SetAddr0AndSizeLog(u64 addr0,unsigned kAccessSizeLog)187   void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
188     DCHECK_EQ((x_ >> kClkBits) & 31, 0);
189     DCHECK_LE(addr0, 7);
190     DCHECK_LE(kAccessSizeLog, 3);
191     x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
192     DCHECK_EQ(kAccessSizeLog, size_log());
193     DCHECK_EQ(addr0, this->addr0());
194   }
195 
SetWrite(unsigned kAccessIsWrite)196   void SetWrite(unsigned kAccessIsWrite) {
197     DCHECK_EQ(x_ & kReadBit, 0);
198     if (!kAccessIsWrite)
199       x_ |= kReadBit;
200     DCHECK_EQ(kAccessIsWrite, IsWrite());
201   }
202 
SetAtomic(bool kIsAtomic)203   void SetAtomic(bool kIsAtomic) {
204     DCHECK(!IsAtomic());
205     if (kIsAtomic)
206       x_ |= kAtomicBit;
207     DCHECK_EQ(IsAtomic(), kIsAtomic);
208   }
209 
IsAtomic()210   bool IsAtomic() const {
211     return x_ & kAtomicBit;
212   }
213 
IsZero()214   bool IsZero() const {
215     return x_ == 0;
216   }
217 
TidsAreEqual(const Shadow s1,const Shadow s2)218   static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
219     u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
220     DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
221     return shifted_xor == 0;
222   }
223 
224   static ALWAYS_INLINE
Addr0AndSizeAreEqual(const Shadow s1,const Shadow s2)225   bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
226     u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
227     return masked_xor == 0;
228   }
229 
TwoRangesIntersect(Shadow s1,Shadow s2,unsigned kS2AccessSize)230   static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
231       unsigned kS2AccessSize) {
232     bool res = false;
233     u64 diff = s1.addr0() - s2.addr0();
234     if ((s64)diff < 0) {  // s1.addr0 < s2.addr0  // NOLINT
235       // if (s1.addr0() + size1) > s2.addr0()) return true;
236       if (s1.size() > -diff)
237         res = true;
238     } else {
239       // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
240       if (kS2AccessSize > diff)
241         res = true;
242     }
243     DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
244     DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
245     return res;
246   }
247 
addr0()248   u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
size()249   u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
IsWrite()250   bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
IsRead()251   bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
252 
253   // The idea behind the freed bit is as follows.
254   // When the memory is freed (or otherwise unaccessible) we write to the shadow
255   // values with tid/epoch related to the free and the freed bit set.
256   // During memory accesses processing the freed bit is considered
257   // as msb of tid. So any access races with shadow with freed bit set
258   // (it is as if write from a thread with which we never synchronized before).
259   // This allows us to detect accesses to freed memory w/o additional
260   // overheads in memory access processing and at the same time restore
261   // tid/epoch of free.
MarkAsFreed()262   void MarkAsFreed() {
263      x_ |= kFreedBit;
264   }
265 
IsFreed()266   bool IsFreed() const {
267     return x_ & kFreedBit;
268   }
269 
GetFreedAndReset()270   bool GetFreedAndReset() {
271     bool res = x_ & kFreedBit;
272     x_ &= ~kFreedBit;
273     return res;
274   }
275 
IsBothReadsOrAtomic(bool kIsWrite,bool kIsAtomic)276   bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
277     bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
278         | (u64(kIsAtomic) << kAtomicShift));
279     DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
280     return v;
281   }
282 
IsRWNotWeaker(bool kIsWrite,bool kIsAtomic)283   bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
284     bool v = ((x_ >> kReadShift) & 3)
285         <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
286     DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
287         (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
288     return v;
289   }
290 
IsRWWeakerOrEqual(bool kIsWrite,bool kIsAtomic)291   bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
292     bool v = ((x_ >> kReadShift) & 3)
293         >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
294     DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
295         (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
296     return v;
297   }
298 
299  private:
300   static const u64 kReadShift   = 5 + kClkBits;
301   static const u64 kReadBit     = 1ull << kReadShift;
302   static const u64 kAtomicShift = 6 + kClkBits;
303   static const u64 kAtomicBit   = 1ull << kAtomicShift;
304 
size_log()305   u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
306 
TwoRangesIntersectSlow(const Shadow s1,const Shadow s2)307   static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
308     if (s1.addr0() == s2.addr0()) return true;
309     if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
310       return true;
311     if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
312       return true;
313     return false;
314   }
315 };
316 
317 struct ThreadSignalContext;
318 
319 struct JmpBuf {
320   uptr sp;
321   uptr mangled_sp;
322   int int_signal_send;
323   bool in_blocking_func;
324   uptr in_signal_handler;
325   uptr *shadow_stack_pos;
326 };
327 
328 // A Processor represents a physical thread, or a P for Go.
329 // It is used to store internal resources like allocate cache, and does not
330 // participate in race-detection logic (invisible to end user).
331 // In C++ it is tied to an OS thread just like ThreadState, however ideally
332 // it should be tied to a CPU (this way we will have fewer allocator caches).
333 // In Go it is tied to a P, so there are significantly fewer Processor's than
334 // ThreadState's (which are tied to Gs).
335 // A ThreadState must be wired with a Processor to handle events.
336 struct Processor {
337   ThreadState *thr; // currently wired thread, or nullptr
338 #ifndef SANITIZER_GO
339   AllocatorCache alloc_cache;
340   InternalAllocatorCache internal_alloc_cache;
341 #endif
342   DenseSlabAllocCache block_cache;
343   DenseSlabAllocCache sync_cache;
344   DenseSlabAllocCache clock_cache;
345   DDPhysicalThread *dd_pt;
346 };
347 
348 #ifndef SANITIZER_GO
349 // ScopedGlobalProcessor temporary setups a global processor for the current
350 // thread, if it does not have one. Intended for interceptors that can run
351 // at the very thread end, when we already destroyed the thread processor.
352 struct ScopedGlobalProcessor {
353   ScopedGlobalProcessor();
354   ~ScopedGlobalProcessor();
355 };
356 #endif
357 
358 // This struct is stored in TLS.
359 struct ThreadState {
360   FastState fast_state;
361   // Synch epoch represents the threads's epoch before the last synchronization
362   // action. It allows to reduce number of shadow state updates.
363   // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
364   // if we are processing write to X from the same thread at epoch=200,
365   // we do nothing, because both writes happen in the same 'synch epoch'.
366   // That is, if another memory access does not race with the former write,
367   // it does not race with the latter as well.
368   // QUESTION: can we can squeeze this into ThreadState::Fast?
369   // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
370   // taken by epoch between synchs.
371   // This way we can save one load from tls.
372   u64 fast_synch_epoch;
373   // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
374   // We do not distinguish beteween ignoring reads and writes
375   // for better performance.
376   int ignore_reads_and_writes;
377   int ignore_sync;
378   // Go does not support ignores.
379 #ifndef SANITIZER_GO
380   IgnoreSet mop_ignore_set;
381   IgnoreSet sync_ignore_set;
382 #endif
383   // C/C++ uses fixed size shadow stack embed into Trace.
384   // Go uses malloc-allocated shadow stack with dynamic size.
385   uptr *shadow_stack;
386   uptr *shadow_stack_end;
387   uptr *shadow_stack_pos;
388   u64 *racy_shadow_addr;
389   u64 racy_state[2];
390   MutexSet mset;
391   ThreadClock clock;
392 #ifndef SANITIZER_GO
393   Vector<JmpBuf> jmp_bufs;
394   int ignore_interceptors;
395 #endif
396 #if TSAN_COLLECT_STATS
397   u64 stat[StatCnt];
398 #endif
399   const int tid;
400   const int unique_id;
401   bool in_symbolizer;
402   bool in_ignored_lib;
403   bool is_inited;
404   bool is_dead;
405   bool is_freeing;
406   bool is_vptr_access;
407   const uptr stk_addr;
408   const uptr stk_size;
409   const uptr tls_addr;
410   const uptr tls_size;
411   ThreadContext *tctx;
412 
413 #if SANITIZER_DEBUG && !SANITIZER_GO
414   InternalDeadlockDetector internal_deadlock_detector;
415 #endif
416   DDLogicalThread *dd_lt;
417 
418   // Current wired Processor, or nullptr. Required to handle any events.
419   Processor *proc1;
420 #ifndef SANITIZER_GO
procThreadState421   Processor *proc() { return proc1; }
422 #else
423   Processor *proc();
424 #endif
425 
426   atomic_uintptr_t in_signal_handler;
427   ThreadSignalContext *signal_ctx;
428 
429 #ifndef SANITIZER_GO
430   u32 last_sleep_stack_id;
431   ThreadClock last_sleep_clock;
432 #endif
433 
434   // Set in regions of runtime that must be signal-safe and fork-safe.
435   // If set, malloc must not be called.
436   int nomalloc;
437 
438   const ReportDesc *current_report;
439 
440   explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
441                        unsigned reuse_count,
442                        uptr stk_addr, uptr stk_size,
443                        uptr tls_addr, uptr tls_size);
444 };
445 
446 #ifndef SANITIZER_GO
447 #if SANITIZER_MAC || SANITIZER_ANDROID
448 ThreadState *cur_thread();
449 void cur_thread_finalize();
450 #else
451 __attribute__((tls_model("initial-exec")))
452 extern THREADLOCAL char cur_thread_placeholder[];
cur_thread()453 INLINE ThreadState *cur_thread() {
454   return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
455 }
cur_thread_finalize()456 INLINE void cur_thread_finalize() { }
457 #endif  // SANITIZER_MAC || SANITIZER_ANDROID
458 #endif  // SANITIZER_GO
459 
460 class ThreadContext : public ThreadContextBase {
461  public:
462   explicit ThreadContext(int tid);
463   ~ThreadContext();
464   ThreadState *thr;
465   u32 creation_stack_id;
466   SyncClock sync;
467   // Epoch at which the thread had started.
468   // If we see an event from the thread stamped by an older epoch,
469   // the event is from a dead thread that shared tid with this thread.
470   u64 epoch0;
471   u64 epoch1;
472 
473   // Override superclass callbacks.
474   void OnDead() override;
475   void OnJoined(void *arg) override;
476   void OnFinished() override;
477   void OnStarted(void *arg) override;
478   void OnCreated(void *arg) override;
479   void OnReset() override;
480   void OnDetached(void *arg) override;
481 };
482 
483 struct RacyStacks {
484   MD5Hash hash[2];
485   bool operator==(const RacyStacks &other) const {
486     if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
487       return true;
488     if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
489       return true;
490     return false;
491   }
492 };
493 
494 struct RacyAddress {
495   uptr addr_min;
496   uptr addr_max;
497 };
498 
499 struct FiredSuppression {
500   ReportType type;
501   uptr pc_or_addr;
502   Suppression *supp;
503 };
504 
505 struct Context {
506   Context();
507 
508   bool initialized;
509   bool after_multithreaded_fork;
510 
511   MetaMap metamap;
512 
513   Mutex report_mtx;
514   int nreported;
515   int nmissed_expected;
516   atomic_uint64_t last_symbolize_time_ns;
517 
518   void *background_thread;
519   atomic_uint32_t stop_background_thread;
520 
521   ThreadRegistry *thread_registry;
522 
523   Mutex racy_mtx;
524   Vector<RacyStacks> racy_stacks;
525   Vector<RacyAddress> racy_addresses;
526   // Number of fired suppressions may be large enough.
527   Mutex fired_suppressions_mtx;
528   InternalMmapVector<FiredSuppression> fired_suppressions;
529   DDetector *dd;
530 
531   ClockAlloc clock_alloc;
532 
533   Flags flags;
534 
535   u64 stat[StatCnt];
536   u64 int_alloc_cnt[MBlockTypeCount];
537   u64 int_alloc_siz[MBlockTypeCount];
538 };
539 
540 extern Context *ctx;  // The one and the only global runtime context.
541 
542 struct ScopedIgnoreInterceptors {
ScopedIgnoreInterceptorsScopedIgnoreInterceptors543   ScopedIgnoreInterceptors() {
544 #ifndef SANITIZER_GO
545     cur_thread()->ignore_interceptors++;
546 #endif
547   }
548 
~ScopedIgnoreInterceptorsScopedIgnoreInterceptors549   ~ScopedIgnoreInterceptors() {
550 #ifndef SANITIZER_GO
551     cur_thread()->ignore_interceptors--;
552 #endif
553   }
554 };
555 
556 class ScopedReport {
557  public:
558   explicit ScopedReport(ReportType typ);
559   ~ScopedReport();
560 
561   void AddMemoryAccess(uptr addr, Shadow s, StackTrace stack,
562                        const MutexSet *mset);
563   void AddStack(StackTrace stack, bool suppressable = false);
564   void AddThread(const ThreadContext *tctx, bool suppressable = false);
565   void AddThread(int unique_tid, bool suppressable = false);
566   void AddUniqueTid(int unique_tid);
567   void AddMutex(const SyncVar *s);
568   u64 AddMutex(u64 id);
569   void AddLocation(uptr addr, uptr size);
570   void AddSleep(u32 stack_id);
571   void SetCount(int count);
572 
573   const ReportDesc *GetReport() const;
574 
575  private:
576   ReportDesc *rep_;
577   // Symbolizer makes lots of intercepted calls. If we try to process them,
578   // at best it will cause deadlocks on internal mutexes.
579   ScopedIgnoreInterceptors ignore_interceptors_;
580 
581   void AddDeadMutex(u64 id);
582 
583   ScopedReport(const ScopedReport&);
584   void operator = (const ScopedReport&);
585 };
586 
587 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
588                   MutexSet *mset);
589 
590 template<typename StackTraceTy>
ObtainCurrentStack(ThreadState * thr,uptr toppc,StackTraceTy * stack)591 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack) {
592   uptr size = thr->shadow_stack_pos - thr->shadow_stack;
593   uptr start = 0;
594   if (size + !!toppc > kStackTraceMax) {
595     start = size + !!toppc - kStackTraceMax;
596     size = kStackTraceMax - !!toppc;
597   }
598   stack->Init(&thr->shadow_stack[start], size, toppc);
599 }
600 
601 
602 #if TSAN_COLLECT_STATS
603 void StatAggregate(u64 *dst, u64 *src);
604 void StatOutput(u64 *stat);
605 #endif
606 
607 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
608 #if TSAN_COLLECT_STATS
609   thr->stat[typ] += n;
610 #endif
611 }
StatSet(ThreadState * thr,StatType typ,u64 n)612 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
613 #if TSAN_COLLECT_STATS
614   thr->stat[typ] = n;
615 #endif
616 }
617 
618 void MapShadow(uptr addr, uptr size);
619 void MapThreadTrace(uptr addr, uptr size, const char *name);
620 void DontNeedShadowFor(uptr addr, uptr size);
621 void InitializeShadowMemory();
622 void InitializeInterceptors();
623 void InitializeLibIgnore();
624 void InitializeDynamicAnnotations();
625 
626 void ForkBefore(ThreadState *thr, uptr pc);
627 void ForkParentAfter(ThreadState *thr, uptr pc);
628 void ForkChildAfter(ThreadState *thr, uptr pc);
629 
630 void ReportRace(ThreadState *thr);
631 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
632 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
633 bool IsExpectedReport(uptr addr, uptr size);
634 void PrintMatchedBenignRaces();
635 
636 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
637 # define DPrintf Printf
638 #else
639 # define DPrintf(...)
640 #endif
641 
642 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
643 # define DPrintf2 Printf
644 #else
645 # define DPrintf2(...)
646 #endif
647 
648 u32 CurrentStackId(ThreadState *thr, uptr pc);
649 ReportStack *SymbolizeStackId(u32 stack_id);
650 void PrintCurrentStack(ThreadState *thr, uptr pc);
651 void PrintCurrentStackSlow(uptr pc);  // uses libunwind
652 
653 void Initialize(ThreadState *thr);
654 int Finalize(ThreadState *thr);
655 
656 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
657 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
658 
659 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
660     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
661 void MemoryAccessImpl(ThreadState *thr, uptr addr,
662     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
663     u64 *shadow_mem, Shadow cur);
664 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
665     uptr size, bool is_write);
666 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
667     uptr size, uptr step, bool is_write);
668 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
669     int size, bool kAccessIsWrite, bool kIsAtomic);
670 
671 const int kSizeLog1 = 0;
672 const int kSizeLog2 = 1;
673 const int kSizeLog4 = 2;
674 const int kSizeLog8 = 3;
675 
MemoryRead(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)676 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
677                                      uptr addr, int kAccessSizeLog) {
678   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
679 }
680 
MemoryWrite(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)681 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
682                                       uptr addr, int kAccessSizeLog) {
683   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
684 }
685 
MemoryReadAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)686 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
687                                            uptr addr, int kAccessSizeLog) {
688   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
689 }
690 
MemoryWriteAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)691 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
692                                             uptr addr, int kAccessSizeLog) {
693   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
694 }
695 
696 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
697 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
698 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
699 
700 void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
701 void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
702 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
703 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
704 
705 void FuncEntry(ThreadState *thr, uptr pc);
706 void FuncExit(ThreadState *thr);
707 
708 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
709 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
710 void ThreadFinish(ThreadState *thr);
711 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
712 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
713 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
714 void ThreadFinalize(ThreadState *thr);
715 void ThreadSetName(ThreadState *thr, const char *name);
716 int ThreadCount(ThreadState *thr);
717 void ProcessPendingSignals(ThreadState *thr);
718 
719 Processor *ProcCreate();
720 void ProcDestroy(Processor *proc);
721 void ProcWire(Processor *proc, ThreadState *thr);
722 void ProcUnwire(Processor *proc, ThreadState *thr);
723 
724 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
725                  bool rw, bool recursive, bool linker_init);
726 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
727 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1,
728                bool try_lock = false);
729 int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
730 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false);
731 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
732 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
733 void MutexRepair(ThreadState *thr, uptr pc, uptr addr);  // call on EOWNERDEAD
734 void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
735 
736 void Acquire(ThreadState *thr, uptr pc, uptr addr);
737 // AcquireGlobal synchronizes the current thread with all other threads.
738 // In terms of happens-before relation, it draws a HB edge from all threads
739 // (where they happen to execute right now) to the current thread. We use it to
740 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
741 // right before executing finalizers. This provides a coarse, but simple
742 // approximation of the actual required synchronization.
743 void AcquireGlobal(ThreadState *thr, uptr pc);
744 void Release(ThreadState *thr, uptr pc, uptr addr);
745 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
746 void AfterSleep(ThreadState *thr, uptr pc);
747 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
748 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
749 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
750 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
751 
752 // The hacky call uses custom calling convention and an assembly thunk.
753 // It is considerably faster that a normal call for the caller
754 // if it is not executed (it is intended for slow paths from hot functions).
755 // The trick is that the call preserves all registers and the compiler
756 // does not treat it as a call.
757 // If it does not work for you, use normal call.
758 #if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC
759 // The caller may not create the stack frame for itself at all,
760 // so we create a reserve stack frame for it (1024b must be enough).
761 #define HACKY_CALL(f) \
762   __asm__ __volatile__("sub $1024, %%rsp;" \
763                        CFI_INL_ADJUST_CFA_OFFSET(1024) \
764                        ".hidden " #f "_thunk;" \
765                        "call " #f "_thunk;" \
766                        "add $1024, %%rsp;" \
767                        CFI_INL_ADJUST_CFA_OFFSET(-1024) \
768                        ::: "memory", "cc");
769 #else
770 #define HACKY_CALL(f) f()
771 #endif
772 
773 void TraceSwitch(ThreadState *thr);
774 uptr TraceTopPC(ThreadState *thr);
775 uptr TraceSize();
776 uptr TraceParts();
777 Trace *ThreadTrace(int tid);
778 
779 extern "C" void __tsan_trace_switch();
TraceAddEvent(ThreadState * thr,FastState fs,EventType typ,u64 addr)780 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
781                                         EventType typ, u64 addr) {
782   if (!kCollectHistory)
783     return;
784   DCHECK_GE((int)typ, 0);
785   DCHECK_LE((int)typ, 7);
786   DCHECK_EQ(GetLsb(addr, 61), addr);
787   StatInc(thr, StatEvents);
788   u64 pos = fs.GetTracePos();
789   if (UNLIKELY((pos % kTracePartSize) == 0)) {
790 #ifndef SANITIZER_GO
791     HACKY_CALL(__tsan_trace_switch);
792 #else
793     TraceSwitch(thr);
794 #endif
795   }
796   Event *trace = (Event*)GetThreadTrace(fs.tid());
797   Event *evp = &trace[pos];
798   Event ev = (u64)addr | ((u64)typ << 61);
799   *evp = ev;
800 }
801 
802 #ifndef SANITIZER_GO
HeapEnd()803 uptr ALWAYS_INLINE HeapEnd() {
804   return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
805 }
806 #endif
807 
808 }  // namespace __tsan
809 
810 #endif  // TSAN_RTL_H
811