1 /* Copyright (c) 2018-2019 The Khronos Group Inc.
2  * Copyright (c) 2018-2019 Valve Corporation
3  * Copyright (c) 2018-2019 LunarG, Inc.
4  * Copyright (C) 2018-2019 Google Inc.
5  *
6  * Licensed under the Apache License, Version 2.0 (the "License");
7  * you may not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  *     http://www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an "AS IS" BASIS,
14  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  *
18  */
19 
20 // Allow use of STL min and max functions in Windows
21 #define NOMINMAX
22 
23 #include "chassis.h"
24 #include "core_validation.h"
25 #include "gpu_validation.h"
26 #include "shader_validation.h"
27 #include "spirv-tools/libspirv.h"
28 #include "spirv-tools/optimizer.hpp"
29 #include "spirv-tools/instrument.hpp"
30 #include <SPIRV/spirv.hpp>
31 #include <algorithm>
32 #include <regex>
33 
34 // This is the number of bindings in the debug descriptor set.
35 static const uint32_t kNumBindingsInSet = 1;
36 
37 // Implementation for Device Memory Manager class
GpuDeviceMemoryManager(layer_data * dev_data,uint32_t data_size)38 GpuDeviceMemoryManager::GpuDeviceMemoryManager(layer_data *dev_data, uint32_t data_size) {
39     uint32_t align = static_cast<uint32_t>(dev_data->GetPDProperties()->limits.minStorageBufferOffsetAlignment);
40     if (0 == align) {
41         align = 1;
42     }
43     record_size_ = data_size;
44     // Round the requested size up to the next multiple of the storage buffer offset alignment
45     // so that we can address each block in the storage buffer using the offset.
46     block_size_ = ((record_size_ + align - 1) / align) * align;
47     blocks_per_chunk_ = kItemsPerChunk;
48     chunk_size_ = blocks_per_chunk_ * block_size_;
49     dev_data_ = dev_data;
50 }
51 
~GpuDeviceMemoryManager()52 GpuDeviceMemoryManager::~GpuDeviceMemoryManager() {
53     for (auto &chunk : chunk_list_) {
54         FreeMemoryChunk(chunk);
55     }
56     chunk_list_.clear();
57 }
58 
GetBlock(GpuDeviceMemoryBlock * block)59 VkResult GpuDeviceMemoryManager::GetBlock(GpuDeviceMemoryBlock *block) {
60     assert(block->buffer == VK_NULL_HANDLE);  // avoid possible overwrite/leak of an allocated block
61     VkResult result = VK_SUCCESS;
62     MemoryChunk *pChunk = nullptr;
63     // Look for a chunk with available offsets.
64     for (auto &chunk : chunk_list_) {
65         if (!chunk.available_offsets.empty()) {
66             pChunk = &chunk;
67             break;
68         }
69     }
70     // If no chunks with available offsets, allocate device memory and set up offsets.
71     if (pChunk == nullptr) {
72         MemoryChunk new_chunk;
73         result = AllocMemoryChunk(new_chunk);
74         if (result == VK_SUCCESS) {
75             new_chunk.available_offsets.resize(blocks_per_chunk_);
76             for (uint32_t offset = 0, i = 0; i < blocks_per_chunk_; offset += block_size_, ++i) {
77                 new_chunk.available_offsets[i] = offset;
78             }
79             chunk_list_.push_front(std::move(new_chunk));
80             pChunk = &chunk_list_.front();
81         } else {
82             // Indicate failure
83             block->buffer = VK_NULL_HANDLE;
84             block->memory = VK_NULL_HANDLE;
85             return result;
86         }
87     }
88     // Give the requester an available offset
89     block->buffer = pChunk->buffer;
90     block->memory = pChunk->memory;
91     block->offset = pChunk->available_offsets.back();
92     pChunk->available_offsets.pop_back();
93     return result;
94 }
95 
PutBackBlock(VkBuffer buffer,VkDeviceMemory memory,uint32_t offset)96 void GpuDeviceMemoryManager::PutBackBlock(VkBuffer buffer, VkDeviceMemory memory, uint32_t offset) {
97     GpuDeviceMemoryBlock block = {buffer, memory, offset};
98     PutBackBlock(block);
99 }
100 
PutBackBlock(GpuDeviceMemoryBlock & block)101 void GpuDeviceMemoryManager::PutBackBlock(GpuDeviceMemoryBlock &block) {
102     // Find the chunk belonging to the allocated offset and make the offset available again
103     auto chunk = std::find_if(std::begin(chunk_list_), std::end(chunk_list_),
104                               [&block](const MemoryChunk &c) { return c.buffer == block.buffer; });
105     if (chunk_list_.end() == chunk) {
106         assert(false);
107     } else {
108         chunk->available_offsets.push_back(block.offset);
109         if (chunk->available_offsets.size() == blocks_per_chunk_) {
110             // All offsets have been returned
111             FreeMemoryChunk(*chunk);
112             chunk_list_.erase(chunk);
113         }
114     }
115 }
116 
ResetBlock(GpuDeviceMemoryBlock & block)117 void ResetBlock(GpuDeviceMemoryBlock &block) {
118     block.buffer = VK_NULL_HANDLE;
119     block.memory = VK_NULL_HANDLE;
120     block.offset = 0;
121 }
122 
BlockUsed(GpuDeviceMemoryBlock & block)123 bool BlockUsed(GpuDeviceMemoryBlock &block) { return (block.buffer != VK_NULL_HANDLE) && (block.memory != VK_NULL_HANDLE); }
124 
MemoryTypeFromProperties(uint32_t typeBits,VkFlags requirements_mask,uint32_t * typeIndex)125 bool GpuDeviceMemoryManager::MemoryTypeFromProperties(uint32_t typeBits, VkFlags requirements_mask, uint32_t *typeIndex) {
126     // Search memtypes to find first index with those properties
127     const VkPhysicalDeviceMemoryProperties *props = dev_data_->GetPhysicalDeviceMemoryProperties();
128     for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; i++) {
129         if ((typeBits & 1) == 1) {
130             // Type is available, does it match user properties?
131             if ((props->memoryTypes[i].propertyFlags & requirements_mask) == requirements_mask) {
132                 *typeIndex = i;
133                 return true;
134             }
135         }
136         typeBits >>= 1;
137     }
138     // No memory types matched, return failure
139     return false;
140 }
141 
AllocMemoryChunk(MemoryChunk & chunk)142 VkResult GpuDeviceMemoryManager::AllocMemoryChunk(MemoryChunk &chunk) {
143     VkBuffer buffer;
144     VkDeviceMemory memory;
145     VkBufferCreateInfo buffer_create_info = {};
146     VkMemoryRequirements mem_reqs = {};
147     VkMemoryAllocateInfo mem_alloc = {};
148     VkResult result = VK_SUCCESS;
149     bool pass;
150     void *pData;
151     const auto *dispatch_table = dev_data_->GetDispatchTable();
152 
153     buffer_create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
154     buffer_create_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
155     buffer_create_info.size = chunk_size_;
156     result = dispatch_table->CreateBuffer(dev_data_->GetDevice(), &buffer_create_info, NULL, &buffer);
157     if (result != VK_SUCCESS) {
158         return result;
159     }
160 
161     dispatch_table->GetBufferMemoryRequirements(dev_data_->GetDevice(), buffer, &mem_reqs);
162 
163     mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
164     mem_alloc.pNext = NULL;
165     mem_alloc.allocationSize = mem_reqs.size;
166     pass = MemoryTypeFromProperties(mem_reqs.memoryTypeBits,
167                                     VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
168                                     &mem_alloc.memoryTypeIndex);
169     if (!pass) {
170         dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
171         return result;
172     }
173     result = dispatch_table->AllocateMemory(dev_data_->GetDevice(), &mem_alloc, NULL, &memory);
174     if (result != VK_SUCCESS) {
175         dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
176         return result;
177     }
178 
179     result = dispatch_table->BindBufferMemory(dev_data_->GetDevice(), buffer, memory, 0);
180     if (result != VK_SUCCESS) {
181         dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
182         dispatch_table->FreeMemory(dev_data_->GetDevice(), memory, NULL);
183         return result;
184     }
185 
186     result = dispatch_table->MapMemory(dev_data_->GetDevice(), memory, 0, mem_alloc.allocationSize, 0, &pData);
187     if (result == VK_SUCCESS) {
188         memset(pData, 0, chunk_size_);
189         dispatch_table->UnmapMemory(dev_data_->GetDevice(), memory);
190     } else {
191         dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
192         dispatch_table->FreeMemory(dev_data_->GetDevice(), memory, NULL);
193         return result;
194     }
195     chunk.buffer = buffer;
196     chunk.memory = memory;
197     return result;
198 }
199 
FreeMemoryChunk(MemoryChunk & chunk)200 void GpuDeviceMemoryManager::FreeMemoryChunk(MemoryChunk &chunk) {
201     dev_data_->GetDispatchTable()->DestroyBuffer(dev_data_->GetDevice(), chunk.buffer, NULL);
202     dev_data_->GetDispatchTable()->FreeMemory(dev_data_->GetDevice(), chunk.memory, NULL);
203 }
204 
FreeAllBlocks()205 void GpuDeviceMemoryManager::FreeAllBlocks() {
206     for (auto &chunk : chunk_list_) {
207         FreeMemoryChunk(chunk);
208     }
209     chunk_list_.clear();
210 }
211 
212 // Implementation for Descriptor Set Manager class
GpuDescriptorSetManager(layer_data * dev_data)213 GpuDescriptorSetManager::GpuDescriptorSetManager(layer_data *dev_data) { dev_data_ = dev_data; }
214 
~GpuDescriptorSetManager()215 GpuDescriptorSetManager::~GpuDescriptorSetManager() {
216     for (auto &pool : desc_pool_map_) {
217         dev_data_->GetDispatchTable()->DestroyDescriptorPool(dev_data_->GetDevice(), pool.first, NULL);
218     }
219     desc_pool_map_.clear();
220 }
221 
GetDescriptorSets(uint32_t count,VkDescriptorPool * pool,std::vector<VkDescriptorSet> * desc_sets)222 VkResult GpuDescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *pool,
223                                                     std::vector<VkDescriptorSet> *desc_sets) {
224     auto gpu_state = dev_data_->GetGpuValidationState();
225     const uint32_t default_pool_size = kItemsPerChunk;
226     VkResult result = VK_SUCCESS;
227     VkDescriptorPool pool_to_use = VK_NULL_HANDLE;
228 
229     if (0 == count) {
230         return result;
231     }
232     desc_sets->clear();
233     desc_sets->resize(count);
234 
235     for (auto &pool : desc_pool_map_) {
236         if (pool.second.used + count < pool.second.size) {
237             pool_to_use = pool.first;
238             break;
239         }
240     }
241     if (VK_NULL_HANDLE == pool_to_use) {
242         uint32_t pool_count = default_pool_size;
243         if (count > default_pool_size) {
244             pool_count = count;
245         }
246         const VkDescriptorPoolSize size_counts = {
247             VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
248             pool_count * kNumBindingsInSet,
249         };
250         VkDescriptorPoolCreateInfo desc_pool_info = {};
251         desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
252         desc_pool_info.pNext = NULL;
253         desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
254         desc_pool_info.maxSets = pool_count;
255         desc_pool_info.poolSizeCount = 1;
256         desc_pool_info.pPoolSizes = &size_counts;
257         result = dev_data_->GetDispatchTable()->CreateDescriptorPool(dev_data_->GetDevice(), &desc_pool_info, NULL, &pool_to_use);
258         assert(result == VK_SUCCESS);
259         if (result != VK_SUCCESS) {
260             return result;
261         }
262         desc_pool_map_[pool_to_use].size = desc_pool_info.maxSets;
263         desc_pool_map_[pool_to_use].used = 0;
264     }
265     std::vector<VkDescriptorSetLayout> desc_layouts(count, gpu_state->debug_desc_layout);
266 
267     VkDescriptorSetAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, NULL, pool_to_use, count,
268                                               desc_layouts.data()};
269 
270     result = dev_data_->GetDispatchTable()->AllocateDescriptorSets(dev_data_->GetDevice(), &alloc_info, desc_sets->data());
271     assert(result == VK_SUCCESS);
272     if (result != VK_SUCCESS) {
273         return result;
274     }
275     *pool = pool_to_use;
276     desc_pool_map_[pool_to_use].used += count;
277     return result;
278 }
279 
PutBackDescriptorSet(VkDescriptorPool desc_pool,VkDescriptorSet desc_set)280 void GpuDescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) {
281     auto iter = desc_pool_map_.find(desc_pool);
282     if (iter != desc_pool_map_.end()) {
283         VkResult result = dev_data_->GetDispatchTable()->FreeDescriptorSets(dev_data_->GetDevice(), desc_pool, 1, &desc_set);
284         assert(result == VK_SUCCESS);
285         if (result != VK_SUCCESS) {
286             return;
287         }
288         desc_pool_map_[desc_pool].used--;
289         if (0 == desc_pool_map_[desc_pool].used) {
290             dev_data_->GetDispatchTable()->DestroyDescriptorPool(dev_data_->GetDevice(), desc_pool, NULL);
291             desc_pool_map_.erase(desc_pool);
292         }
293     }
294     return;
295 }
296 
DestroyDescriptorPools()297 void GpuDescriptorSetManager::DestroyDescriptorPools() {
298     for (auto &pool : desc_pool_map_) {
299         dev_data_->GetDispatchTable()->DestroyDescriptorPool(dev_data_->GetDevice(), pool.first, NULL);
300     }
301     desc_pool_map_.clear();
302 }
303 
304 // Convenience function for reporting problems with setting up GPU Validation.
ReportSetupProblem(const layer_data * dev_data,VkDebugReportObjectTypeEXT object_type,uint64_t object_handle,const char * const specific_message)305 void CoreChecks::ReportSetupProblem(const layer_data *dev_data, VkDebugReportObjectTypeEXT object_type, uint64_t object_handle,
306                                     const char *const specific_message) {
307     log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, object_type, object_handle, "UNASSIGNED-GPU-Assisted Validation Error. ",
308             "Detail: (%s)", specific_message);
309 }
310 
311 // Turn on necessary device features.
GpuPreCallRecordCreateDevice(VkPhysicalDevice gpu,std::unique_ptr<safe_VkDeviceCreateInfo> & create_info,VkPhysicalDeviceFeatures * supported_features)312 void CoreChecks::GpuPreCallRecordCreateDevice(VkPhysicalDevice gpu, std::unique_ptr<safe_VkDeviceCreateInfo> &create_info,
313                                               VkPhysicalDeviceFeatures *supported_features) {
314     if (supported_features->fragmentStoresAndAtomics || supported_features->vertexPipelineStoresAndAtomics) {
315         VkPhysicalDeviceFeatures new_features = {};
316         if (create_info->pEnabledFeatures) {
317             new_features = *create_info->pEnabledFeatures;
318         }
319         new_features.fragmentStoresAndAtomics = supported_features->fragmentStoresAndAtomics;
320         new_features.vertexPipelineStoresAndAtomics = supported_features->vertexPipelineStoresAndAtomics;
321         delete create_info->pEnabledFeatures;
322         create_info->pEnabledFeatures = new VkPhysicalDeviceFeatures(new_features);
323     }
324 }
325 
326 // Perform initializations that can be done at Create Device time.
GpuPostCallRecordCreateDevice(layer_data * dev_data)327 void CoreChecks::GpuPostCallRecordCreateDevice(layer_data *dev_data) {
328     auto gpu_state = GetGpuValidationState();
329     const auto *dispatch_table = GetDispatchTable();
330 
331     gpu_state->aborted = false;
332     gpu_state->reserve_binding_slot = false;
333     gpu_state->barrier_command_pool = VK_NULL_HANDLE;
334     gpu_state->barrier_command_buffer = VK_NULL_HANDLE;
335 
336     if (GetPDProperties()->apiVersion < VK_API_VERSION_1_1) {
337         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
338                            "GPU-Assisted validation requires Vulkan 1.1 or later.  GPU-Assisted Validation disabled.");
339         gpu_state->aborted = true;
340         return;
341     }
342     // Some devices have extremely high limits here, so set a reasonable max because we have to pad
343     // the pipeline layout with dummy descriptor set layouts.
344     gpu_state->adjusted_max_desc_sets = GetPDProperties()->limits.maxBoundDescriptorSets;
345     gpu_state->adjusted_max_desc_sets = std::min(33U, gpu_state->adjusted_max_desc_sets);
346 
347     // We can't do anything if there is only one.
348     // Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves.
349     if (gpu_state->adjusted_max_desc_sets == 1) {
350         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
351                            "Device can bind only a single descriptor set.  GPU-Assisted Validation disabled.");
352         gpu_state->aborted = true;
353         return;
354     }
355     gpu_state->desc_set_bind_index = gpu_state->adjusted_max_desc_sets - 1;
356     log_msg(GetReportData(), VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
357             HandleToUint64(GetDevice()), "UNASSIGNED-GPU-Assisted Validation. ", "Shaders using descriptor set at index %d. ",
358             gpu_state->desc_set_bind_index);
359 
360     std::unique_ptr<GpuDeviceMemoryManager> memory_manager(
361         new GpuDeviceMemoryManager(dev_data, sizeof(uint32_t) * (spvtools::kInstMaxOutCnt + 1)));
362     std::unique_ptr<GpuDescriptorSetManager> desc_set_manager(new GpuDescriptorSetManager(dev_data));
363 
364     // The descriptor indexing checks require only the first "output" binding.
365     const VkDescriptorSetLayoutBinding debug_desc_layout_bindings[kNumBindingsInSet] = {
366         {
367             0,  // output
368             VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
369             1,
370             VK_SHADER_STAGE_ALL_GRAPHICS,
371             NULL,
372         },
373     };
374 
375     const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0,
376                                                                     kNumBindingsInSet, debug_desc_layout_bindings};
377 
378     const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, 0,
379                                                                     NULL};
380 
381     VkResult result =
382         dispatch_table->CreateDescriptorSetLayout(GetDevice(), &debug_desc_layout_info, NULL, &gpu_state->debug_desc_layout);
383 
384     // This is a layout used to "pad" a pipeline layout to fill in any gaps to the selected bind index.
385     VkResult result2 =
386         dispatch_table->CreateDescriptorSetLayout(GetDevice(), &dummy_desc_layout_info, NULL, &gpu_state->dummy_desc_layout);
387     assert((result == VK_SUCCESS) && (result2 == VK_SUCCESS));
388     if ((result != VK_SUCCESS) || (result2 != VK_SUCCESS)) {
389         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
390                            "Unable to create descriptor set layout.  GPU-Assisted Validation disabled.");
391         if (result == VK_SUCCESS) {
392             dispatch_table->DestroyDescriptorSetLayout(GetDevice(), gpu_state->debug_desc_layout, NULL);
393         }
394         if (result2 == VK_SUCCESS) {
395             dispatch_table->DestroyDescriptorSetLayout(GetDevice(), gpu_state->dummy_desc_layout, NULL);
396         }
397         gpu_state->debug_desc_layout = VK_NULL_HANDLE;
398         gpu_state->dummy_desc_layout = VK_NULL_HANDLE;
399         gpu_state->aborted = true;
400         return;
401     }
402     gpu_state->memory_manager = std::move(memory_manager);
403     gpu_state->desc_set_manager = std::move(desc_set_manager);
404 }
405 
406 // Clean up device-related resources
GpuPreCallRecordDestroyDevice(layer_data * dev_data)407 void CoreChecks::GpuPreCallRecordDestroyDevice(layer_data *dev_data) {
408     auto gpu_state = GetGpuValidationState();
409 
410     if (gpu_state->barrier_command_buffer) {
411         GetDispatchTable()->FreeCommandBuffers(GetDevice(), gpu_state->barrier_command_pool, 1, &gpu_state->barrier_command_buffer);
412         gpu_state->barrier_command_buffer = VK_NULL_HANDLE;
413     }
414     if (gpu_state->barrier_command_pool) {
415         GetDispatchTable()->DestroyCommandPool(GetDevice(), gpu_state->barrier_command_pool, NULL);
416         gpu_state->barrier_command_pool = VK_NULL_HANDLE;
417     }
418     if (gpu_state->debug_desc_layout) {
419         GetDispatchTable()->DestroyDescriptorSetLayout(GetDevice(), gpu_state->debug_desc_layout, NULL);
420         gpu_state->debug_desc_layout = VK_NULL_HANDLE;
421     }
422     if (gpu_state->dummy_desc_layout) {
423         GetDispatchTable()->DestroyDescriptorSetLayout(GetDevice(), gpu_state->dummy_desc_layout, NULL);
424         gpu_state->dummy_desc_layout = VK_NULL_HANDLE;
425     }
426     gpu_state->memory_manager->FreeAllBlocks();
427     gpu_state->desc_set_manager->DestroyDescriptorPools();
428 }
429 
430 // Modify the pipeline layout to include our debug descriptor set and any needed padding with the dummy descriptor set.
GpuPreCallCreatePipelineLayout(layer_data * device_data,const VkPipelineLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipelineLayout * pPipelineLayout,std::vector<VkDescriptorSetLayout> * new_layouts,VkPipelineLayoutCreateInfo * modified_create_info)431 bool CoreChecks::GpuPreCallCreatePipelineLayout(layer_data *device_data, const VkPipelineLayoutCreateInfo *pCreateInfo,
432                                                 const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
433                                                 std::vector<VkDescriptorSetLayout> *new_layouts,
434                                                 VkPipelineLayoutCreateInfo *modified_create_info) {
435     auto gpu_state = GetGpuValidationState();
436     if (gpu_state->aborted) {
437         return false;
438     }
439 
440     if (modified_create_info->setLayoutCount >= gpu_state->adjusted_max_desc_sets) {
441         std::ostringstream strm;
442         strm << "Pipeline Layout conflict with validation's descriptor set at slot " << gpu_state->desc_set_bind_index << ". "
443              << "Application has too many descriptor sets in the pipeline layout to continue with gpu validation. "
444              << "Validation is not modifying the pipeline layout. "
445              << "Instrumented shaders are replaced with non-instrumented shaders.";
446         ReportSetupProblem(device_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()), strm.str().c_str());
447     } else {
448         // Modify the pipeline layout by:
449         // 1. Copying the caller's descriptor set desc_layouts
450         // 2. Fill in dummy descriptor layouts up to the max binding
451         // 3. Fill in with the debug descriptor layout at the max binding slot
452         new_layouts->reserve(gpu_state->adjusted_max_desc_sets);
453         new_layouts->insert(new_layouts->end(), &pCreateInfo->pSetLayouts[0],
454                             &pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]);
455         for (uint32_t i = pCreateInfo->setLayoutCount; i < gpu_state->adjusted_max_desc_sets - 1; ++i) {
456             new_layouts->push_back(gpu_state->dummy_desc_layout);
457         }
458         new_layouts->push_back(gpu_state->debug_desc_layout);
459         modified_create_info->pSetLayouts = new_layouts->data();
460         modified_create_info->setLayoutCount = gpu_state->adjusted_max_desc_sets;
461     }
462     return true;
463 }
464 
465 // Clean up GPU validation after the CreatePipelineLayout call is made
GpuPostCallCreatePipelineLayout(layer_data * device_data,VkResult result)466 void CoreChecks::GpuPostCallCreatePipelineLayout(layer_data *device_data, VkResult result) {
467     auto gpu_state = GetGpuValidationState();
468     // Clean up GPU validation
469     if (result != VK_SUCCESS) {
470         ReportSetupProblem(device_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
471                            "Unable to create pipeline layout.  Device could become unstable.");
472         gpu_state->aborted = true;
473     }
474 }
475 
476 // Free the device memory and descriptor set associated with a command buffer.
GpuPreCallRecordFreeCommandBuffers(layer_data * dev_data,uint32_t commandBufferCount,const VkCommandBuffer * pCommandBuffers)477 void CoreChecks::GpuPreCallRecordFreeCommandBuffers(layer_data *dev_data, uint32_t commandBufferCount,
478                                                     const VkCommandBuffer *pCommandBuffers) {
479     auto gpu_state = GetGpuValidationState();
480     if (gpu_state->aborted) {
481         return;
482     }
483     for (uint32_t i = 0; i < commandBufferCount; ++i) {
484         auto cb_node = GetCBNode(pCommandBuffers[i]);
485         if (cb_node) {
486             for (auto &buffer_info : cb_node->gpu_buffer_list) {
487                 if (BlockUsed(buffer_info.mem_block)) {
488                     gpu_state->memory_manager->PutBackBlock(buffer_info.mem_block);
489                     ResetBlock(buffer_info.mem_block);
490                 }
491                 if (buffer_info.desc_set != VK_NULL_HANDLE) {
492                     gpu_state->desc_set_manager->PutBackDescriptorSet(buffer_info.desc_pool, buffer_info.desc_set);
493                 }
494             }
495             cb_node->gpu_buffer_list.clear();
496         }
497     }
498 }
499 
500 // Just gives a warning about a possible deadlock.
GpuPreCallValidateCmdWaitEvents(layer_data * dev_data,VkPipelineStageFlags sourceStageMask)501 void CoreChecks::GpuPreCallValidateCmdWaitEvents(layer_data *dev_data, VkPipelineStageFlags sourceStageMask) {
502     if (sourceStageMask & VK_PIPELINE_STAGE_HOST_BIT) {
503         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
504                            "CmdWaitEvents recorded with VK_PIPELINE_STAGE_HOST_BIT set. "
505                            "GPU_Assisted validation waits on queue completion. "
506                            "This wait could block the host's signaling of this event, resulting in deadlock.");
507     }
508 }
509 
510 // Examine the pipelines to see if they use the debug descriptor set binding index.
511 // If any do, create new non-instrumented shader modules and use them to replace the instrumented
512 // shaders in the pipeline.  Return the (possibly) modified create infos to the caller.
GpuPreCallRecordCreateGraphicsPipelines(layer_data * dev_data,VkPipelineCache pipelineCache,uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines,std::vector<std::unique_ptr<PIPELINE_STATE>> & pipe_state)513 std::vector<safe_VkGraphicsPipelineCreateInfo> CoreChecks::GpuPreCallRecordCreateGraphicsPipelines(
514     layer_data *dev_data, VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos,
515     const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
516     auto gpu_state = GetGpuValidationState();
517 
518     std::vector<safe_VkGraphicsPipelineCreateInfo> new_pipeline_create_infos;
519     std::vector<unsigned int> pipeline_uses_debug_index(count);
520 
521     // Walk through all the pipelines, make a copy of each and flag each pipeline that contains a shader that uses the debug
522     // descriptor set index.
523     for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
524         new_pipeline_create_infos.push_back(pipe_state[pipeline]->graphicsPipelineCI);
525         if (pipe_state[pipeline]->active_slots.find(gpu_state->desc_set_bind_index) != pipe_state[pipeline]->active_slots.end()) {
526             pipeline_uses_debug_index[pipeline] = 1;
527         }
528     }
529 
530     // See if any pipeline has shaders using the debug descriptor set index
531     if (std::all_of(pipeline_uses_debug_index.begin(), pipeline_uses_debug_index.end(), [](unsigned int i) { return i == 0; })) {
532         // None of the shaders in all the pipelines use the debug descriptor set index, so use the pipelines
533         // as they stand with the instrumented shaders.
534         return new_pipeline_create_infos;
535     }
536 
537     // At least one pipeline has a shader that uses the debug descriptor set index.
538     for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
539         if (pipeline_uses_debug_index[pipeline]) {
540             for (uint32_t stage = 0; stage < pCreateInfos[pipeline].stageCount; ++stage) {
541                 const shader_module *shader = GetShaderModuleState(pCreateInfos[pipeline].pStages[stage].module);
542                 VkShaderModuleCreateInfo create_info = {};
543                 VkShaderModule shader_module;
544                 create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
545                 create_info.pCode = shader->words.data();
546                 create_info.codeSize = shader->words.size() * sizeof(uint32_t);
547                 VkResult result = GetDispatchTable()->CreateShaderModule(GetDevice(), &create_info, pAllocator, &shader_module);
548                 if (result == VK_SUCCESS) {
549                     new_pipeline_create_infos[pipeline].pStages[stage].module = shader_module;
550                 } else {
551                     ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
552                                        HandleToUint64(pCreateInfos[pipeline].pStages[stage].module),
553                                        "Unable to replace instrumented shader with non-instrumented one.  "
554                                        "Device could become unstable.");
555                 }
556             }
557         }
558     }
559     return new_pipeline_create_infos;
560 }
561 
562 // For every pipeline:
563 // - For every shader in a pipeline:
564 //   - If the shader had to be replaced in PreCallRecord (because the pipeline is using the debug desc set index):
565 //     - Destroy it since it has been bound into the pipeline by now.  This is our only chance to delete it.
566 //   - Track the shader in the shader_map
567 //   - Save the shader binary if it contains debug code
GpuPostCallRecordCreateGraphicsPipelines(layer_data * dev_data,const uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)568 void CoreChecks::GpuPostCallRecordCreateGraphicsPipelines(layer_data *dev_data, const uint32_t count,
569                                                           const VkGraphicsPipelineCreateInfo *pCreateInfos,
570                                                           const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
571     auto gpu_state = GetGpuValidationState();
572     for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
573         auto pipeline_state = GetPipelineState(pPipelines[pipeline]);
574         if (nullptr == pipeline_state) continue;
575         for (uint32_t stage = 0; stage < pipeline_state->graphicsPipelineCI.stageCount; ++stage) {
576             if (pipeline_state->active_slots.find(gpu_state->desc_set_bind_index) != pipeline_state->active_slots.end()) {
577                 GetDispatchTable()->DestroyShaderModule(GetDevice(), pCreateInfos->pStages[stage].module, pAllocator);
578             }
579             auto shader_state = GetShaderModuleState(pipeline_state->graphicsPipelineCI.pStages[stage].module);
580             std::vector<unsigned int> code;
581             // Save the shader binary if debug info is present.
582             // The core_validation ShaderModule tracker saves the binary too, but discards it when the ShaderModule
583             // is destroyed.  Applications may destroy ShaderModules after they are placed in a pipeline and before
584             // the pipeline is used, so we have to keep another copy.
585             if (shader_state && shader_state->has_valid_spirv) {  // really checking for presense of SPIR-V code.
586                 for (auto insn : *shader_state) {
587                     if (insn.opcode() == spv::OpLine) {
588                         code = shader_state->words;
589                         break;
590                     }
591                 }
592             }
593             gpu_state->shader_map[shader_state->gpu_validation_shader_id].pipeline = pipeline_state->pipeline;
594             // Be careful to use the originally bound (instrumented) shader here, even if PreCallRecord had to back it
595             // out with a non-instrumented shader.  The non-instrumented shader (found in pCreateInfo) was destroyed above.
596             gpu_state->shader_map[shader_state->gpu_validation_shader_id].shader_module =
597                 pipeline_state->graphicsPipelineCI.pStages[stage].module;
598             gpu_state->shader_map[shader_state->gpu_validation_shader_id].pgm = std::move(code);
599         }
600     }
601 }
602 
603 // Remove all the shader trackers associated with this destroyed pipeline.
GpuPreCallRecordDestroyPipeline(layer_data * dev_data,const VkPipeline pipeline)604 void CoreChecks::GpuPreCallRecordDestroyPipeline(layer_data *dev_data, const VkPipeline pipeline) {
605     auto gpu_state = GetGpuValidationState();
606     for (auto it = gpu_state->shader_map.begin(); it != gpu_state->shader_map.end();) {
607         if (it->second.pipeline == pipeline) {
608             it = gpu_state->shader_map.erase(it);
609         } else {
610             ++it;
611         }
612     }
613 }
614 
615 // Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
GpuInstrumentShader(layer_data * dev_data,const VkShaderModuleCreateInfo * pCreateInfo,std::vector<unsigned int> & new_pgm,uint32_t * unique_shader_id)616 bool CoreChecks::GpuInstrumentShader(layer_data *dev_data, const VkShaderModuleCreateInfo *pCreateInfo,
617                                      std::vector<unsigned int> &new_pgm, uint32_t *unique_shader_id) {
618     auto gpu_state = GetGpuValidationState();
619     if (gpu_state->aborted) return false;
620     if (pCreateInfo->pCode[0] != spv::MagicNumber) return false;
621 
622     // Load original shader SPIR-V
623     uint32_t num_words = static_cast<uint32_t>(pCreateInfo->codeSize / 4);
624     new_pgm.clear();
625     new_pgm.reserve(num_words);
626     new_pgm.insert(new_pgm.end(), &pCreateInfo->pCode[0], &pCreateInfo->pCode[num_words]);
627 
628     // Call the optimizer to instrument the shader.
629     // Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map.
630     using namespace spvtools;
631     spv_target_env target_env = SPV_ENV_VULKAN_1_1;
632     Optimizer optimizer(target_env);
633     optimizer.RegisterPass(CreateInstBindlessCheckPass(gpu_state->desc_set_bind_index, gpu_state->unique_shader_module_id));
634     optimizer.RegisterPass(CreateAggressiveDCEPass());
635     bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm);
636     if (!pass) {
637         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, VK_NULL_HANDLE,
638                            "Failure to instrument shader.  Proceeding with non-instrumented shader.");
639     }
640     *unique_shader_id = gpu_state->unique_shader_module_id++;
641     return pass;
642 }
643 
644 // Create the instrumented shader data to provide to the driver.
GpuPreCallCreateShaderModule(layer_data * dev_data,const VkShaderModuleCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkShaderModule * pShaderModule,uint32_t * unique_shader_id,VkShaderModuleCreateInfo * instrumented_create_info,std::vector<unsigned int> * instrumented_pgm)645 bool CoreChecks::GpuPreCallCreateShaderModule(layer_data *dev_data, const VkShaderModuleCreateInfo *pCreateInfo,
646                                               const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule,
647                                               uint32_t *unique_shader_id, VkShaderModuleCreateInfo *instrumented_create_info,
648                                               std::vector<unsigned int> *instrumented_pgm) {
649     bool pass = GpuInstrumentShader(dev_data, pCreateInfo, *instrumented_pgm, unique_shader_id);
650     if (pass) {
651         instrumented_create_info->pCode = instrumented_pgm->data();
652         instrumented_create_info->codeSize = instrumented_pgm->size() * sizeof(unsigned int);
653     }
654     return pass;
655 }
656 
657 // Generate the stage-specific part of the message.
GenerateStageMessage(const uint32_t * debug_record,std::string & msg)658 static void GenerateStageMessage(const uint32_t *debug_record, std::string &msg) {
659     using namespace spvtools;
660     std::ostringstream strm;
661     switch (debug_record[kInstCommonOutStageIdx]) {
662         case 0: {
663             strm << "Stage = Vertex. Vertex Index = " << debug_record[kInstVertOutVertexIndex]
664                  << " Instance Index = " << debug_record[kInstVertOutInstanceIndex] << ". ";
665         } break;
666         case 1: {
667             strm << "Stage = Tessellation Control.  Invocation ID = " << debug_record[kInstTessOutInvocationId] << ". ";
668         } break;
669         case 2: {
670             strm << "Stage = Tessellation Eval.  Invocation ID = " << debug_record[kInstTessOutInvocationId] << ". ";
671         } break;
672         case 3: {
673             strm << "Stage = Geometry.  Primitive ID = " << debug_record[kInstGeomOutPrimitiveId]
674                  << " Invocation ID = " << debug_record[kInstGeomOutInvocationId] << ". ";
675         } break;
676         case 4: {
677             strm << "Stage = Fragment.  Fragment coord (x,y) = ("
678                  << *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordX]) << ", "
679                  << *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordY]) << "). ";
680         } break;
681         case 5: {
682             strm << "Stage = Compute.  Global invocation ID = " << debug_record[kInstCompOutGlobalInvocationId] << ". ";
683         } break;
684         default: {
685             strm << "Internal Error (unexpected stage = " << debug_record[kInstCommonOutStageIdx] << "). ";
686             assert(false);
687         } break;
688     }
689     msg = strm.str();
690 }
691 
692 // Generate the part of the message describing the violation.
GenerateValidationMessage(const uint32_t * debug_record,std::string & msg,std::string & vuid_msg)693 static void GenerateValidationMessage(const uint32_t *debug_record, std::string &msg, std::string &vuid_msg) {
694     using namespace spvtools;
695     std::ostringstream strm;
696     switch (debug_record[kInstValidationOutError]) {
697         case 0: {
698             strm << "Index of " << debug_record[kInstBindlessOutDescIndex] << " used to index descriptor array of length "
699                  << debug_record[kInstBindlessOutDescBound] << ". ";
700             vuid_msg = "UNASSIGNED-Descriptor index out of bounds";
701         } break;
702         case 1: {
703             strm << "Descriptor index " << debug_record[kInstBindlessOutDescIndex] << " is uninitialized. ";
704             vuid_msg = "UNASSIGNED-Descriptor uninitialized";
705         } break;
706         default: {
707             strm << "Internal Error (unexpected error type = " << debug_record[kInstValidationOutError] << "). ";
708             vuid_msg = "UNASSIGNED-Internal Error";
709             assert(false);
710         } break;
711     }
712     msg = strm.str();
713 }
714 
LookupDebugUtilsName(const debug_report_data * report_data,const uint64_t object)715 static std::string LookupDebugUtilsName(const debug_report_data *report_data, const uint64_t object) {
716     auto object_label = report_data->DebugReportGetUtilsObjectName(object);
717     if (object_label != "") {
718         object_label = "(" + object_label + ")";
719     }
720     return object_label;
721 }
722 
723 // Generate message from the common portion of the debug report record.
GenerateCommonMessage(const debug_report_data * report_data,const GLOBAL_CB_NODE * cb_node,const uint32_t * debug_record,const VkShaderModule shader_module_handle,const VkPipeline pipeline_handle,const uint32_t draw_index,std::string & msg)724 static void GenerateCommonMessage(const debug_report_data *report_data, const GLOBAL_CB_NODE *cb_node, const uint32_t *debug_record,
725                                   const VkShaderModule shader_module_handle, const VkPipeline pipeline_handle,
726                                   const uint32_t draw_index, std::string &msg) {
727     using namespace spvtools;
728     std::ostringstream strm;
729     if (shader_module_handle == VK_NULL_HANDLE) {
730         strm << std::hex << std::showbase << "Internal Error: Unable to locate information for shader used in command buffer "
731              << LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
732              << HandleToUint64(cb_node->commandBuffer) << "). ";
733         assert(true);
734     } else {
735         strm << std::hex << std::showbase << "Command buffer "
736              << LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
737              << HandleToUint64(cb_node->commandBuffer) << "). "
738              << "Draw Index " << draw_index << ". "
739              << "Pipeline " << LookupDebugUtilsName(report_data, HandleToUint64(pipeline_handle)) << "("
740              << HandleToUint64(pipeline_handle) << "). "
741              << "Shader Module " << LookupDebugUtilsName(report_data, HandleToUint64(shader_module_handle)) << "("
742              << HandleToUint64(shader_module_handle) << "). ";
743     }
744     strm << std::dec << std::noshowbase;
745     strm << "Shader Instruction Index = " << debug_record[kInstCommonOutInstructionIdx] << ". ";
746     msg = strm.str();
747 }
748 
749 // Read the contents of the SPIR-V OpSource instruction and any following continuation instructions.
750 // Split the single string into a vector of strings, one for each line, for easier processing.
ReadOpSource(const shader_module & shader,const uint32_t reported_file_id,std::vector<std::string> & opsource_lines)751 static void ReadOpSource(const shader_module &shader, const uint32_t reported_file_id, std::vector<std::string> &opsource_lines) {
752     for (auto insn : shader) {
753         if ((insn.opcode() == spv::OpSource) && (insn.len() >= 5) && (insn.word(3) == reported_file_id)) {
754             std::istringstream in_stream;
755             std::string cur_line;
756             in_stream.str((char *)&insn.word(4));
757             while (std::getline(in_stream, cur_line)) {
758                 opsource_lines.push_back(cur_line);
759             }
760             while ((++insn).opcode() == spv::OpSourceContinued) {
761                 in_stream.str((char *)&insn.word(1));
762                 while (std::getline(in_stream, cur_line)) {
763                     opsource_lines.push_back(cur_line);
764                 }
765             }
766             break;
767         }
768     }
769 }
770 
771 // The task here is to search the OpSource content to find the #line directive with the
772 // line number that is closest to, but still prior to the reported error line number and
773 // still within the reported filename.
774 // From this known position in the OpSource content we can add the difference between
775 // the #line line number and the reported error line number to determine the location
776 // in the OpSource content of the reported error line.
777 //
778 // Considerations:
779 // - Look only at #line directives that specify the reported_filename since
780 //   the reported error line number refers to its location in the reported filename.
781 // - If a #line directive does not have a filename, the file is the reported filename, or
782 //   the filename found in a prior #line directive.  (This is C-preprocessor behavior)
783 // - It is possible (e.g., inlining) for blocks of code to get shuffled out of their
784 //   original order and the #line directives are used to keep the numbering correct.  This
785 //   is why we need to examine the entire contents of the source, instead of leaving early
786 //   when finding a #line line number larger than the reported error line number.
787 //
788 
789 // GCC 4.8 has a problem with std::regex that is fixed in GCC 4.9.  Provide fallback code for 4.8
790 #define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
791 
792 #if defined(__GNUC__) && GCC_VERSION < 40900
GetLineAndFilename(const std::string string,uint32_t * linenumber,std::string & filename)793 static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
794     // # line <linenumber> "<filename>" or
795     // #line <linenumber> "<filename>"
796     std::vector<std::string> tokens;
797     std::stringstream stream(string);
798     std::string temp;
799     uint32_t line_index = 0;
800 
801     while (stream >> temp) tokens.push_back(temp);
802     auto size = tokens.size();
803     if (size > 1) {
804         if (tokens[0] == "#" && tokens[1] == "line") {
805             line_index = 2;
806         } else if (tokens[0] == "#line") {
807             line_index = 1;
808         }
809     }
810     if (0 == line_index) return false;
811     *linenumber = std::stoul(tokens[line_index]);
812     uint32_t filename_index = line_index + 1;
813     // Remove enclosing double quotes around filename
814     if (size > filename_index) filename = tokens[filename_index].substr(1, tokens[filename_index].size() - 2);
815     return true;
816 }
817 #else
GetLineAndFilename(const std::string string,uint32_t * linenumber,std::string & filename)818 static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
819     static const std::regex line_regex(  // matches #line directives
820         "^"                              // beginning of line
821         "\\s*"                           // optional whitespace
822         "#"                              // required text
823         "\\s*"                           // optional whitespace
824         "line"                           // required text
825         "\\s+"                           // required whitespace
826         "([0-9]+)"                       // required first capture - line number
827         "(\\s+)?"                        // optional second capture - whitespace
828         "(\".+\")?"                      // optional third capture - quoted filename with at least one char inside
829         ".*");                           // rest of line (needed when using std::regex_match since the entire line is tested)
830 
831     std::smatch captures;
832 
833     bool found_line = std::regex_match(string, captures, line_regex);
834     if (!found_line) return false;
835 
836     // filename is optional and considered found only if the whitespace and the filename are captured
837     if (captures[2].matched && captures[3].matched) {
838         // Remove enclosing double quotes.  The regex guarantees the quotes and at least one char.
839         filename = captures[3].str().substr(1, captures[3].str().size() - 2);
840     }
841     *linenumber = std::stoul(captures[1]);
842     return true;
843 }
844 #endif  // GCC_VERSION
845 
846 // Extract the filename, line number, and column number from the correct OpLine and build a message string from it.
847 // Scan the source (from OpSource) to find the line of source at the reported line number and place it in another message string.
GenerateSourceMessages(const std::vector<unsigned int> & pgm,const uint32_t * debug_record,std::string & filename_msg,std::string & source_msg)848 static void GenerateSourceMessages(const std::vector<unsigned int> &pgm, const uint32_t *debug_record, std::string &filename_msg,
849                                    std::string &source_msg) {
850     using namespace spvtools;
851     std::ostringstream filename_stream;
852     std::ostringstream source_stream;
853     shader_module shader;
854     shader.words = pgm;
855     // Find the OpLine just before the failing instruction indicated by the debug info.
856     // SPIR-V can only be iterated in the forward direction due to its opcode/length encoding.
857     uint32_t instruction_index = 0;
858     uint32_t reported_file_id = 0;
859     uint32_t reported_line_number = 0;
860     uint32_t reported_column_number = 0;
861     if (shader.words.size() > 0) {
862         for (auto insn : shader) {
863             if (insn.opcode() == spv::OpLine) {
864                 reported_file_id = insn.word(1);
865                 reported_line_number = insn.word(2);
866                 reported_column_number = insn.word(3);
867             }
868             if (instruction_index == debug_record[kInstCommonOutInstructionIdx]) {
869                 break;
870             }
871             instruction_index++;
872         }
873     }
874     // Create message with file information obtained from the OpString pointed to by the discovered OpLine.
875     std::string reported_filename;
876     if (reported_file_id == 0) {
877         filename_stream
878             << "Unable to find SPIR-V OpLine for source information.  Build shader with debug info to get source information.";
879     } else {
880         bool found_opstring = false;
881         for (auto insn : shader) {
882             if ((insn.opcode() == spv::OpString) && (insn.len() >= 3) && (insn.word(1) == reported_file_id)) {
883                 found_opstring = true;
884                 reported_filename = (char *)&insn.word(2);
885                 if (reported_filename.empty()) {
886                     filename_stream << "Shader validation error occurred at line " << reported_line_number;
887                 } else {
888                     filename_stream << "Shader validation error occurred in file: " << reported_filename << " at line "
889                                     << reported_line_number;
890                 }
891                 if (reported_column_number > 0) {
892                     filename_stream << ", column " << reported_column_number;
893                 }
894                 filename_stream << ".";
895                 break;
896             }
897         }
898         if (!found_opstring) {
899             filename_stream << "Unable to find SPIR-V OpString for file id " << reported_file_id << " from OpLine instruction.";
900         }
901     }
902     filename_msg = filename_stream.str();
903 
904     // Create message to display source code line containing error.
905     if ((reported_file_id != 0)) {
906         // Read the source code and split it up into separate lines.
907         std::vector<std::string> opsource_lines;
908         ReadOpSource(shader, reported_file_id, opsource_lines);
909         // Find the line in the OpSource content that corresponds to the reported error file and line.
910         if (!opsource_lines.empty()) {
911             uint32_t saved_line_number = 0;
912             std::string current_filename = reported_filename;  // current "preprocessor" filename state.
913             std::vector<std::string>::size_type saved_opsource_offset = 0;
914             bool found_best_line = false;
915             for (auto it = opsource_lines.begin(); it != opsource_lines.end(); ++it) {
916                 uint32_t parsed_line_number;
917                 std::string parsed_filename;
918                 bool found_line = GetLineAndFilename(*it, &parsed_line_number, parsed_filename);
919                 if (!found_line) continue;
920 
921                 bool found_filename = parsed_filename.size() > 0;
922                 if (found_filename) {
923                     current_filename = parsed_filename;
924                 }
925                 if ((!found_filename) || (current_filename == reported_filename)) {
926                     // Update the candidate best line directive, if the current one is prior and closer to the reported line
927                     if (reported_line_number >= parsed_line_number) {
928                         if (!found_best_line ||
929                             (reported_line_number - parsed_line_number <= reported_line_number - saved_line_number)) {
930                             saved_line_number = parsed_line_number;
931                             saved_opsource_offset = std::distance(opsource_lines.begin(), it);
932                             found_best_line = true;
933                         }
934                     }
935                 }
936             }
937             if (found_best_line) {
938                 assert(reported_line_number >= saved_line_number);
939                 std::vector<std::string>::size_type opsource_index =
940                     (reported_line_number - saved_line_number) + 1 + saved_opsource_offset;
941                 if (opsource_index < opsource_lines.size()) {
942                     source_stream << "\n" << reported_line_number << ": " << opsource_lines[opsource_index].c_str();
943                 } else {
944                     source_stream << "Internal error: calculated source line of " << opsource_index << " for source size of "
945                                   << opsource_lines.size() << " lines.";
946                 }
947             } else {
948                 source_stream << "Unable to find suitable #line directive in SPIR-V OpSource.";
949             }
950         } else {
951             source_stream << "Unable to find SPIR-V OpSource.";
952         }
953     }
954     source_msg = source_stream.str();
955 }
956 
957 // Pull together all the information from the debug record to build the error message strings,
958 // and then assemble them into a single message string.
959 // Retrieve the shader program referenced by the unique shader ID provided in the debug record.
960 // We had to keep a copy of the shader program with the same lifecycle as the pipeline to make
961 // sure it is available when the pipeline is submitted.  (The ShaderModule tracking object also
962 // keeps a copy, but it can be destroyed after the pipeline is created and before it is submitted.)
963 //
AnalyzeAndReportError(const layer_data * dev_data,GLOBAL_CB_NODE * cb_node,VkQueue queue,uint32_t draw_index,uint32_t * const debug_output_buffer)964 void CoreChecks::AnalyzeAndReportError(const layer_data *dev_data, GLOBAL_CB_NODE *cb_node, VkQueue queue, uint32_t draw_index,
965                                        uint32_t *const debug_output_buffer) {
966     using namespace spvtools;
967     const uint32_t total_words = debug_output_buffer[0];
968     // A zero here means that the shader instrumentation didn't write anything.
969     // If you have nothing to say, don't say it here.
970     if (0 == total_words) {
971         return;
972     }
973     // The first word in the debug output buffer is the number of words that would have
974     // been written by the shader instrumentation, if there was enough room in the buffer we provided.
975     // The number of words actually written by the shaders is determined by the size of the buffer
976     // we provide via the descriptor.  So, we process only the number of words that can fit in the
977     // buffer.
978     // Each "report" written by the shader instrumentation is considered a "record".  This function
979     // is hard-coded to process only one record because it expects the buffer to be large enough to
980     // hold only one record.  If there is a desire to process more than one record, this function needs
981     // to be modified to loop over records and the buffer size increased.
982     auto gpu_state = GetGpuValidationState();
983     std::string validation_message;
984     std::string stage_message;
985     std::string common_message;
986     std::string filename_message;
987     std::string source_message;
988     std::string vuid_msg;
989     VkShaderModule shader_module_handle = VK_NULL_HANDLE;
990     VkPipeline pipeline_handle = VK_NULL_HANDLE;
991     std::vector<unsigned int> pgm;
992     // The first record starts at this offset after the total_words.
993     const uint32_t *debug_record = &debug_output_buffer[kDebugOutputDataOffset];
994     // Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned
995     // by the instrumented shader.
996     auto it = gpu_state->shader_map.find(debug_record[kInstCommonOutShaderId]);
997     if (it != gpu_state->shader_map.end()) {
998         shader_module_handle = it->second.shader_module;
999         pipeline_handle = it->second.pipeline;
1000         pgm = it->second.pgm;
1001     }
1002     GenerateValidationMessage(debug_record, validation_message, vuid_msg);
1003     GenerateStageMessage(debug_record, stage_message);
1004     GenerateCommonMessage(report_data, cb_node, debug_record, shader_module_handle, pipeline_handle, draw_index, common_message);
1005     GenerateSourceMessages(pgm, debug_record, filename_message, source_message);
1006     log_msg(GetReportData(), VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, HandleToUint64(queue),
1007             vuid_msg.c_str(), "%s %s %s %s%s", validation_message.c_str(), common_message.c_str(), stage_message.c_str(),
1008             filename_message.c_str(), source_message.c_str());
1009     // The debug record at word kInstCommonOutSize is the number of words in the record
1010     // written by the shader.  Clear the entire record plus the total_words word at the start.
1011     const uint32_t words_to_clear = 1 + std::min(debug_record[kInstCommonOutSize], (uint32_t)kInstMaxOutCnt);
1012     memset(debug_output_buffer, 0, sizeof(uint32_t) * words_to_clear);
1013 }
1014 
1015 // For the given command buffer, map its debug data buffers and read their contents for analysis.
ProcessInstrumentationBuffer(const layer_data * dev_data,VkQueue queue,GLOBAL_CB_NODE * cb_node)1016 void CoreChecks::ProcessInstrumentationBuffer(const layer_data *dev_data, VkQueue queue, GLOBAL_CB_NODE *cb_node) {
1017     auto gpu_state = GetGpuValidationState();
1018     if (cb_node && cb_node->hasDrawCmd && cb_node->gpu_buffer_list.size() > 0) {
1019         VkResult result;
1020         char *pData;
1021         uint32_t draw_index = 0;
1022         for (auto &buffer_info : cb_node->gpu_buffer_list) {
1023             uint32_t block_offset = buffer_info.mem_block.offset;
1024             uint32_t block_size = gpu_state->memory_manager->GetBlockSize();
1025             uint32_t offset_to_data = 0;
1026             const uint32_t map_align = std::max(1U, static_cast<uint32_t>(GetPDProperties()->limits.minMemoryMapAlignment));
1027 
1028             // Adjust the offset to the alignment required for mapping.
1029             block_offset = (block_offset / map_align) * map_align;
1030             offset_to_data = buffer_info.mem_block.offset - block_offset;
1031             block_size += offset_to_data;
1032             result = GetDispatchTable()->MapMemory(cb_node->device, buffer_info.mem_block.memory, block_offset, block_size, 0,
1033                                                    (void **)&pData);
1034             // Analyze debug output buffer
1035             if (result == VK_SUCCESS) {
1036                 AnalyzeAndReportError(dev_data, cb_node, queue, draw_index, (uint32_t *)(pData + offset_to_data));
1037                 GetDispatchTable()->UnmapMemory(cb_node->device, buffer_info.mem_block.memory);
1038             }
1039             draw_index++;
1040         }
1041     }
1042 }
1043 
1044 // Submit a memory barrier on graphics queues.
1045 // Lazy-create and record the needed command buffer.
SubmitBarrier(layer_data * dev_data,VkQueue queue)1046 void CoreChecks::SubmitBarrier(layer_data *dev_data, VkQueue queue) {
1047     auto gpu_state = GetGpuValidationState();
1048     const auto *dispatch_table = GetDispatchTable();
1049     uint32_t queue_family_index = 0;
1050 
1051     auto it = dev_data->queueMap.find(queue);
1052     if (it != dev_data->queueMap.end()) {
1053         queue_family_index = it->second.queueFamilyIndex;
1054     }
1055 
1056     // Pay attention only to queues that support graphics.
1057     // This ensures that the command buffer pool is created so that it can be used on a graphics queue.
1058     VkQueueFlags queue_flags = GetPhysicalDeviceState()->queue_family_properties[queue_family_index].queueFlags;
1059     if (!(queue_flags & VK_QUEUE_GRAPHICS_BIT)) {
1060         return;
1061     }
1062 
1063     // Lazy-allocate and record the command buffer.
1064     if (gpu_state->barrier_command_buffer == VK_NULL_HANDLE) {
1065         VkResult result;
1066         VkCommandPoolCreateInfo pool_create_info = {};
1067         pool_create_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
1068         pool_create_info.queueFamilyIndex = queue_family_index;
1069         result = dispatch_table->CreateCommandPool(GetDevice(), &pool_create_info, nullptr, &gpu_state->barrier_command_pool);
1070         if (result != VK_SUCCESS) {
1071             ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
1072                                "Unable to create command pool for barrier CB.");
1073             gpu_state->barrier_command_pool = VK_NULL_HANDLE;
1074             return;
1075         }
1076 
1077         VkCommandBufferAllocateInfo command_buffer_alloc_info = {};
1078         command_buffer_alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
1079         command_buffer_alloc_info.commandPool = gpu_state->barrier_command_pool;
1080         command_buffer_alloc_info.commandBufferCount = 1;
1081         command_buffer_alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
1082         result =
1083             dispatch_table->AllocateCommandBuffers(GetDevice(), &command_buffer_alloc_info, &gpu_state->barrier_command_buffer);
1084         if (result != VK_SUCCESS) {
1085             ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
1086                                "Unable to create barrier command buffer.");
1087             dispatch_table->DestroyCommandPool(GetDevice(), gpu_state->barrier_command_pool, nullptr);
1088             gpu_state->barrier_command_pool = VK_NULL_HANDLE;
1089             gpu_state->barrier_command_buffer = VK_NULL_HANDLE;
1090             return;
1091         }
1092 
1093         // Hook up command buffer dispatch
1094         *((const void **)gpu_state->barrier_command_buffer) = *(void **)(GetDevice());
1095 
1096         // Record a global memory barrier to force availability of device memory operations to the host domain.
1097         VkCommandBufferBeginInfo command_buffer_begin_info = {};
1098         command_buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
1099         result = dispatch_table->BeginCommandBuffer(gpu_state->barrier_command_buffer, &command_buffer_begin_info);
1100 
1101         if (result == VK_SUCCESS) {
1102             VkMemoryBarrier memory_barrier = {};
1103             memory_barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
1104             memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
1105             memory_barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT;
1106 
1107             dispatch_table->CmdPipelineBarrier(gpu_state->barrier_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
1108                                                VK_PIPELINE_STAGE_HOST_BIT, 0, 1, &memory_barrier, 0, nullptr, 0, nullptr);
1109             dispatch_table->EndCommandBuffer(gpu_state->barrier_command_buffer);
1110         }
1111     }
1112 
1113     if (gpu_state->barrier_command_buffer) {
1114         VkSubmitInfo submit_info = {};
1115         submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
1116         submit_info.commandBufferCount = 1;
1117         submit_info.pCommandBuffers = &gpu_state->barrier_command_buffer;
1118         dispatch_table->QueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);
1119     }
1120 }
1121 
1122 // Issue a memory barrier to make GPU-written data available to host.
1123 // Wait for the queue to complete execution.
1124 // Check the debug buffers for all the command buffers that were submitted.
GpuPostCallQueueSubmit(layer_data * dev_data,VkQueue queue,uint32_t submitCount,const VkSubmitInfo * pSubmits,VkFence fence)1125 void CoreChecks::GpuPostCallQueueSubmit(layer_data *dev_data, VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits,
1126                                         VkFence fence) {
1127     auto gpu_state = GetGpuValidationState();
1128     if (gpu_state->aborted) return;
1129 
1130     SubmitBarrier(dev_data, queue);
1131 
1132     dev_data->device_dispatch_table.QueueWaitIdle(queue);
1133 
1134     for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
1135         const VkSubmitInfo *submit = &pSubmits[submit_idx];
1136         for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
1137             auto cb_node = GetCBNode(submit->pCommandBuffers[i]);
1138             ProcessInstrumentationBuffer(dev_data, queue, cb_node);
1139             for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
1140                 ProcessInstrumentationBuffer(dev_data, queue, secondaryCmdBuffer);
1141             }
1142         }
1143     }
1144 }
1145 
GpuAllocateValidationResources(layer_data * dev_data,const VkCommandBuffer cmd_buffer,const VkPipelineBindPoint bind_point)1146 void CoreChecks::GpuAllocateValidationResources(layer_data *dev_data, const VkCommandBuffer cmd_buffer,
1147                                                 const VkPipelineBindPoint bind_point) {
1148     VkResult result;
1149 
1150     if (!(GetEnables()->gpu_validation)) return;
1151 
1152     auto gpu_state = GetGpuValidationState();
1153     if (gpu_state->aborted) return;
1154 
1155     std::vector<VkDescriptorSet> desc_sets;
1156     VkDescriptorPool desc_pool = VK_NULL_HANDLE;
1157     result = gpu_state->desc_set_manager->GetDescriptorSets(1, &desc_pool, &desc_sets);
1158     assert(result == VK_SUCCESS);
1159     if (result != VK_SUCCESS) {
1160         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
1161                            "Unable to allocate descriptor sets.  Device could become unstable.");
1162         gpu_state->aborted = true;
1163         return;
1164     }
1165 
1166     VkDescriptorBufferInfo desc_buffer_info = {};
1167     desc_buffer_info.range = gpu_state->memory_manager->GetBlockSize();
1168 
1169     auto cb_node = GetCBNode(cmd_buffer);
1170     if (!cb_node) {
1171         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
1172                            "Unrecognized command buffer");
1173         gpu_state->aborted = true;
1174         return;
1175     }
1176 
1177     GpuDeviceMemoryBlock block = {};
1178     result = gpu_state->memory_manager->GetBlock(&block);
1179     if (result != VK_SUCCESS) {
1180         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
1181                            "Unable to allocate device memory.  Device could become unstable.");
1182         gpu_state->aborted = true;
1183         return;
1184     }
1185 
1186     // Record buffer and memory info in CB state tracking
1187     cb_node->gpu_buffer_list.emplace_back(block, desc_sets[0], desc_pool);
1188 
1189     // Write the descriptor
1190     desc_buffer_info.buffer = block.buffer;
1191     desc_buffer_info.offset = block.offset;
1192 
1193     VkWriteDescriptorSet desc_write = {};
1194     desc_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
1195     desc_write.descriptorCount = 1;
1196     desc_write.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
1197     desc_write.pBufferInfo = &desc_buffer_info;
1198     desc_write.dstSet = desc_sets[0];
1199     GetDispatchTable()->UpdateDescriptorSets(GetDevice(), 1, &desc_write, 0, NULL);
1200 
1201     auto iter = cb_node->lastBound.find(VK_PIPELINE_BIND_POINT_GRAPHICS);  // find() allows read-only access to cb_state
1202     if (iter != cb_node->lastBound.end()) {
1203         auto pipeline_state = iter->second.pipeline_state;
1204         if (pipeline_state && (pipeline_state->pipeline_layout.set_layouts.size() <= gpu_state->desc_set_bind_index)) {
1205             GetDispatchTable()->CmdBindDescriptorSets(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
1206                                                       pipeline_state->pipeline_layout.layout, gpu_state->desc_set_bind_index, 1,
1207                                                       desc_sets.data(), 0, nullptr);
1208         }
1209     } else {
1210         ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
1211                            "Unable to find pipeline state");
1212         gpu_state->aborted = true;
1213         return;
1214     }
1215 }
1216