1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file linker.cpp
26  * GLSL linker implementation
27  *
28  * Given a set of shaders that are to be linked to generate a final program,
29  * there are three distinct stages.
30  *
31  * In the first stage shaders are partitioned into groups based on the shader
32  * type.  All shaders of a particular type (e.g., vertex shaders) are linked
33  * together.
34  *
35  *   - Undefined references in each shader are resolve to definitions in
36  *     another shader.
37  *   - Types and qualifiers of uniforms, outputs, and global variables defined
38  *     in multiple shaders with the same name are verified to be the same.
39  *   - Initializers for uniforms and global variables defined
40  *     in multiple shaders with the same name are verified to be the same.
41  *
42  * The result, in the terminology of the GLSL spec, is a set of shader
43  * executables for each processing unit.
44  *
45  * After the first stage is complete, a series of semantic checks are performed
46  * on each of the shader executables.
47  *
48  *   - Each shader executable must define a \c main function.
49  *   - Each vertex shader executable must write to \c gl_Position.
50  *   - Each fragment shader executable must write to either \c gl_FragData or
51  *     \c gl_FragColor.
52  *
53  * In the final stage individual shader executables are linked to create a
54  * complete exectuable.
55  *
56  *   - Types of uniforms defined in multiple shader stages with the same name
57  *     are verified to be the same.
58  *   - Initializers for uniforms defined in multiple shader stages with the
59  *     same name are verified to be the same.
60  *   - Types and qualifiers of outputs defined in one stage are verified to
61  *     be the same as the types and qualifiers of inputs defined with the same
62  *     name in a later stage.
63  *
64  * \author Ian Romanick <ian.d.romanick@intel.com>
65  */
66 
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86 
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89 
90 
91 namespace {
92 
93 struct find_variable {
94    const char *name;
95    bool found;
96 
find_variable__anon10baf5350111::find_variable97    find_variable(const char *name) : name(name), found(false) {}
98 };
99 
100 /**
101  * Visitor that determines whether or not a variable is ever written.
102  *
103  * Use \ref find_assignments for convenience.
104  */
105 class find_assignment_visitor : public ir_hierarchical_visitor {
106 public:
find_assignment_visitor(unsigned num_vars,find_variable * const * vars)107    find_assignment_visitor(unsigned num_vars,
108                            find_variable * const *vars)
109       : num_variables(num_vars), num_found(0), variables(vars)
110    {
111    }
112 
visit_enter(ir_assignment * ir)113    virtual ir_visitor_status visit_enter(ir_assignment *ir)
114    {
115       ir_variable *const var = ir->lhs->variable_referenced();
116 
117       return check_variable_name(var->name);
118    }
119 
visit_enter(ir_call * ir)120    virtual ir_visitor_status visit_enter(ir_call *ir)
121    {
122       foreach_two_lists(formal_node, &ir->callee->parameters,
123                         actual_node, &ir->actual_parameters) {
124          ir_rvalue *param_rval = (ir_rvalue *) actual_node;
125          ir_variable *sig_param = (ir_variable *) formal_node;
126 
127          if (sig_param->data.mode == ir_var_function_out ||
128              sig_param->data.mode == ir_var_function_inout) {
129             ir_variable *var = param_rval->variable_referenced();
130             if (var && check_variable_name(var->name) == visit_stop)
131                return visit_stop;
132          }
133       }
134 
135       if (ir->return_deref != NULL) {
136          ir_variable *const var = ir->return_deref->variable_referenced();
137 
138          if (check_variable_name(var->name) == visit_stop)
139             return visit_stop;
140       }
141 
142       return visit_continue_with_parent;
143    }
144 
145 private:
check_variable_name(const char * name)146    ir_visitor_status check_variable_name(const char *name)
147    {
148       for (unsigned i = 0; i < num_variables; ++i) {
149          if (strcmp(variables[i]->name, name) == 0) {
150             if (!variables[i]->found) {
151                variables[i]->found = true;
152 
153                assert(num_found < num_variables);
154                if (++num_found == num_variables)
155                   return visit_stop;
156             }
157             break;
158          }
159       }
160 
161       return visit_continue_with_parent;
162    }
163 
164 private:
165    unsigned num_variables;           /**< Number of variables to find */
166    unsigned num_found;               /**< Number of variables already found */
167    find_variable * const *variables; /**< Variables to find */
168 };
169 
170 /**
171  * Determine whether or not any of NULL-terminated list of variables is ever
172  * written to.
173  */
174 static void
find_assignments(exec_list * ir,find_variable * const * vars)175 find_assignments(exec_list *ir, find_variable * const *vars)
176 {
177    unsigned num_variables = 0;
178 
179    for (find_variable * const *v = vars; *v; ++v)
180       num_variables++;
181 
182    find_assignment_visitor visitor(num_variables, vars);
183    visitor.run(ir);
184 }
185 
186 /**
187  * Determine whether or not the given variable is ever written to.
188  */
189 static void
find_assignments(exec_list * ir,find_variable * var)190 find_assignments(exec_list *ir, find_variable *var)
191 {
192    find_assignment_visitor visitor(1, &var);
193    visitor.run(ir);
194 }
195 
196 /**
197  * Visitor that determines whether or not a variable is ever read.
198  */
199 class find_deref_visitor : public ir_hierarchical_visitor {
200 public:
find_deref_visitor(const char * name)201    find_deref_visitor(const char *name)
202       : name(name), found(false)
203    {
204       /* empty */
205    }
206 
visit(ir_dereference_variable * ir)207    virtual ir_visitor_status visit(ir_dereference_variable *ir)
208    {
209       if (strcmp(this->name, ir->var->name) == 0) {
210          this->found = true;
211          return visit_stop;
212       }
213 
214       return visit_continue;
215    }
216 
variable_found() const217    bool variable_found() const
218    {
219       return this->found;
220    }
221 
222 private:
223    const char *name;       /**< Find writes to a variable with this name. */
224    bool found;             /**< Was a write to the variable found? */
225 };
226 
227 
228 /**
229  * A visitor helper that provides methods for updating the types of
230  * ir_dereferences.  Classes that update variable types (say, updating
231  * array sizes) will want to use this so that dereference types stay in sync.
232  */
233 class deref_type_updater : public ir_hierarchical_visitor {
234 public:
visit(ir_dereference_variable * ir)235    virtual ir_visitor_status visit(ir_dereference_variable *ir)
236    {
237       ir->type = ir->var->type;
238       return visit_continue;
239    }
240 
visit_leave(ir_dereference_array * ir)241    virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
242    {
243       const glsl_type *const vt = ir->array->type;
244       if (vt->is_array())
245          ir->type = vt->fields.array;
246       return visit_continue;
247    }
248 
visit_leave(ir_dereference_record * ir)249    virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
250    {
251       ir->type = ir->record->type->fields.structure[ir->field_idx].type;
252       return visit_continue;
253    }
254 };
255 
256 
257 class array_resize_visitor : public deref_type_updater {
258 public:
259    unsigned num_vertices;
260    gl_shader_program *prog;
261    gl_shader_stage stage;
262 
array_resize_visitor(unsigned num_vertices,gl_shader_program * prog,gl_shader_stage stage)263    array_resize_visitor(unsigned num_vertices,
264                         gl_shader_program *prog,
265                         gl_shader_stage stage)
266    {
267       this->num_vertices = num_vertices;
268       this->prog = prog;
269       this->stage = stage;
270    }
271 
~array_resize_visitor()272    virtual ~array_resize_visitor()
273    {
274       /* empty */
275    }
276 
visit(ir_variable * var)277    virtual ir_visitor_status visit(ir_variable *var)
278    {
279       if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
280           var->data.patch)
281          return visit_continue;
282 
283       unsigned size = var->type->length;
284 
285       if (stage == MESA_SHADER_GEOMETRY) {
286          /* Generate a link error if the shader has declared this array with
287           * an incorrect size.
288           */
289          if (!var->data.implicit_sized_array &&
290              size && size != this->num_vertices) {
291             linker_error(this->prog, "size of array %s declared as %u, "
292                          "but number of input vertices is %u\n",
293                          var->name, size, this->num_vertices);
294             return visit_continue;
295          }
296 
297          /* Generate a link error if the shader attempts to access an input
298           * array using an index too large for its actual size assigned at
299           * link time.
300           */
301          if (var->data.max_array_access >= (int)this->num_vertices) {
302             linker_error(this->prog, "%s shader accesses element %i of "
303                          "%s, but only %i input vertices\n",
304                          _mesa_shader_stage_to_string(this->stage),
305                          var->data.max_array_access, var->name, this->num_vertices);
306             return visit_continue;
307          }
308       }
309 
310       var->type = glsl_type::get_array_instance(var->type->fields.array,
311                                                 this->num_vertices);
312       var->data.max_array_access = this->num_vertices - 1;
313 
314       return visit_continue;
315    }
316 };
317 
318 /**
319  * Visitor that determines the highest stream id to which a (geometry) shader
320  * emits vertices. It also checks whether End{Stream}Primitive is ever called.
321  */
322 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
323 public:
find_emit_vertex_visitor(int max_allowed)324    find_emit_vertex_visitor(int max_allowed)
325       : max_stream_allowed(max_allowed),
326         invalid_stream_id(0),
327         invalid_stream_id_from_emit_vertex(false),
328         end_primitive_found(false),
329         uses_non_zero_stream(false)
330    {
331       /* empty */
332    }
333 
visit_leave(ir_emit_vertex * ir)334    virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
335    {
336       int stream_id = ir->stream_id();
337 
338       if (stream_id < 0) {
339          invalid_stream_id = stream_id;
340          invalid_stream_id_from_emit_vertex = true;
341          return visit_stop;
342       }
343 
344       if (stream_id > max_stream_allowed) {
345          invalid_stream_id = stream_id;
346          invalid_stream_id_from_emit_vertex = true;
347          return visit_stop;
348       }
349 
350       if (stream_id != 0)
351          uses_non_zero_stream = true;
352 
353       return visit_continue;
354    }
355 
visit_leave(ir_end_primitive * ir)356    virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
357    {
358       end_primitive_found = true;
359 
360       int stream_id = ir->stream_id();
361 
362       if (stream_id < 0) {
363          invalid_stream_id = stream_id;
364          invalid_stream_id_from_emit_vertex = false;
365          return visit_stop;
366       }
367 
368       if (stream_id > max_stream_allowed) {
369          invalid_stream_id = stream_id;
370          invalid_stream_id_from_emit_vertex = false;
371          return visit_stop;
372       }
373 
374       if (stream_id != 0)
375          uses_non_zero_stream = true;
376 
377       return visit_continue;
378    }
379 
error()380    bool error()
381    {
382       return invalid_stream_id != 0;
383    }
384 
error_func()385    const char *error_func()
386    {
387       return invalid_stream_id_from_emit_vertex ?
388          "EmitStreamVertex" : "EndStreamPrimitive";
389    }
390 
error_stream()391    int error_stream()
392    {
393       return invalid_stream_id;
394    }
395 
uses_streams()396    bool uses_streams()
397    {
398       return uses_non_zero_stream;
399    }
400 
uses_end_primitive()401    bool uses_end_primitive()
402    {
403       return end_primitive_found;
404    }
405 
406 private:
407    int max_stream_allowed;
408    int invalid_stream_id;
409    bool invalid_stream_id_from_emit_vertex;
410    bool end_primitive_found;
411    bool uses_non_zero_stream;
412 };
413 
414 /* Class that finds array derefs and check if indexes are dynamic. */
415 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
416 {
417 public:
dynamic_sampler_array_indexing_visitor()418    dynamic_sampler_array_indexing_visitor() :
419       dynamic_sampler_array_indexing(false)
420    {
421    }
422 
visit_enter(ir_dereference_array * ir)423    ir_visitor_status visit_enter(ir_dereference_array *ir)
424    {
425       if (!ir->variable_referenced())
426          return visit_continue;
427 
428       if (!ir->variable_referenced()->type->contains_sampler())
429          return visit_continue;
430 
431       if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
432          dynamic_sampler_array_indexing = true;
433          return visit_stop;
434       }
435       return visit_continue;
436    }
437 
uses_dynamic_sampler_array_indexing()438    bool uses_dynamic_sampler_array_indexing()
439    {
440       return dynamic_sampler_array_indexing;
441    }
442 
443 private:
444    bool dynamic_sampler_array_indexing;
445 };
446 
447 } /* anonymous namespace */
448 
449 void
linker_error(gl_shader_program * prog,const char * fmt,...)450 linker_error(gl_shader_program *prog, const char *fmt, ...)
451 {
452    va_list ap;
453 
454    ralloc_strcat(&prog->data->InfoLog, "error: ");
455    va_start(ap, fmt);
456    ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
457    va_end(ap);
458 
459    prog->data->LinkStatus = linking_failure;
460 }
461 
462 
463 void
linker_warning(gl_shader_program * prog,const char * fmt,...)464 linker_warning(gl_shader_program *prog, const char *fmt, ...)
465 {
466    va_list ap;
467 
468    ralloc_strcat(&prog->data->InfoLog, "warning: ");
469    va_start(ap, fmt);
470    ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
471    va_end(ap);
472 
473 }
474 
475 
476 /**
477  * Given a string identifying a program resource, break it into a base name
478  * and an optional array index in square brackets.
479  *
480  * If an array index is present, \c out_base_name_end is set to point to the
481  * "[" that precedes the array index, and the array index itself is returned
482  * as a long.
483  *
484  * If no array index is present (or if the array index is negative or
485  * mal-formed), \c out_base_name_end, is set to point to the null terminator
486  * at the end of the input string, and -1 is returned.
487  *
488  * Only the final array index is parsed; if the string contains other array
489  * indices (or structure field accesses), they are left in the base name.
490  *
491  * No attempt is made to check that the base name is properly formed;
492  * typically the caller will look up the base name in a hash table, so
493  * ill-formed base names simply turn into hash table lookup failures.
494  */
495 long
parse_program_resource_name(const GLchar * name,const GLchar ** out_base_name_end)496 parse_program_resource_name(const GLchar *name,
497                             const GLchar **out_base_name_end)
498 {
499    /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
500     *
501     *     "When an integer array element or block instance number is part of
502     *     the name string, it will be specified in decimal form without a "+"
503     *     or "-" sign or any extra leading zeroes. Additionally, the name
504     *     string will not include white space anywhere in the string."
505     */
506 
507    const size_t len = strlen(name);
508    *out_base_name_end = name + len;
509 
510    if (len == 0 || name[len-1] != ']')
511       return -1;
512 
513    /* Walk backwards over the string looking for a non-digit character.  This
514     * had better be the opening bracket for an array index.
515     *
516     * Initially, i specifies the location of the ']'.  Since the string may
517     * contain only the ']' charcater, walk backwards very carefully.
518     */
519    unsigned i;
520    for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
521       /* empty */ ;
522 
523    if ((i == 0) || name[i-1] != '[')
524       return -1;
525 
526    long array_index = strtol(&name[i], NULL, 10);
527    if (array_index < 0)
528       return -1;
529 
530    /* Check for leading zero */
531    if (name[i] == '0' && name[i+1] != ']')
532       return -1;
533 
534    *out_base_name_end = name + (i - 1);
535    return array_index;
536 }
537 
538 
539 void
link_invalidate_variable_locations(exec_list * ir)540 link_invalidate_variable_locations(exec_list *ir)
541 {
542    foreach_in_list(ir_instruction, node, ir) {
543       ir_variable *const var = node->as_variable();
544 
545       if (var == NULL)
546          continue;
547 
548       /* Only assign locations for variables that lack an explicit location.
549        * Explicit locations are set for all built-in variables, generic vertex
550        * shader inputs (via layout(location=...)), and generic fragment shader
551        * outputs (also via layout(location=...)).
552        */
553       if (!var->data.explicit_location) {
554          var->data.location = -1;
555          var->data.location_frac = 0;
556       }
557 
558       /* ir_variable::is_unmatched_generic_inout is used by the linker while
559        * connecting outputs from one stage to inputs of the next stage.
560        */
561       if (var->data.explicit_location &&
562           var->data.location < VARYING_SLOT_VAR0) {
563          var->data.is_unmatched_generic_inout = 0;
564       } else {
565          var->data.is_unmatched_generic_inout = 1;
566       }
567    }
568 }
569 
570 
571 /**
572  * Set clip_distance_array_size based and cull_distance_array_size on the given
573  * shader.
574  *
575  * Also check for errors based on incorrect usage of gl_ClipVertex and
576  * gl_ClipDistance and gl_CullDistance.
577  * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
578  * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
579  *
580  * Return false if an error was reported.
581  */
582 static void
analyze_clip_cull_usage(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx,GLuint * clip_distance_array_size,GLuint * cull_distance_array_size)583 analyze_clip_cull_usage(struct gl_shader_program *prog,
584                         struct gl_linked_shader *shader,
585                         struct gl_context *ctx,
586                         GLuint *clip_distance_array_size,
587                         GLuint *cull_distance_array_size)
588 {
589    *clip_distance_array_size = 0;
590    *cull_distance_array_size = 0;
591 
592    if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
593       /* From section 7.1 (Vertex Shader Special Variables) of the
594        * GLSL 1.30 spec:
595        *
596        *   "It is an error for a shader to statically write both
597        *   gl_ClipVertex and gl_ClipDistance."
598        *
599        * This does not apply to GLSL ES shaders, since GLSL ES defines neither
600        * gl_ClipVertex nor gl_ClipDistance. However with
601        * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
602        */
603       find_variable gl_ClipDistance("gl_ClipDistance");
604       find_variable gl_CullDistance("gl_CullDistance");
605       find_variable gl_ClipVertex("gl_ClipVertex");
606       find_variable * const variables[] = {
607          &gl_ClipDistance,
608          &gl_CullDistance,
609          !prog->IsES ? &gl_ClipVertex : NULL,
610          NULL
611       };
612       find_assignments(shader->ir, variables);
613 
614       /* From the ARB_cull_distance spec:
615        *
616        * It is a compile-time or link-time error for the set of shaders forming
617        * a program to statically read or write both gl_ClipVertex and either
618        * gl_ClipDistance or gl_CullDistance.
619        *
620        * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
621        * gl_ClipVertex.
622        */
623       if (!prog->IsES) {
624          if (gl_ClipVertex.found && gl_ClipDistance.found) {
625             linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
626                          "and `gl_ClipDistance'\n",
627                          _mesa_shader_stage_to_string(shader->Stage));
628             return;
629          }
630          if (gl_ClipVertex.found && gl_CullDistance.found) {
631             linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
632                          "and `gl_CullDistance'\n",
633                          _mesa_shader_stage_to_string(shader->Stage));
634             return;
635          }
636       }
637 
638       if (gl_ClipDistance.found) {
639          ir_variable *clip_distance_var =
640                 shader->symbols->get_variable("gl_ClipDistance");
641          assert(clip_distance_var);
642          *clip_distance_array_size = clip_distance_var->type->length;
643       }
644       if (gl_CullDistance.found) {
645          ir_variable *cull_distance_var =
646                 shader->symbols->get_variable("gl_CullDistance");
647          assert(cull_distance_var);
648          *cull_distance_array_size = cull_distance_var->type->length;
649       }
650       /* From the ARB_cull_distance spec:
651        *
652        * It is a compile-time or link-time error for the set of shaders forming
653        * a program to have the sum of the sizes of the gl_ClipDistance and
654        * gl_CullDistance arrays to be larger than
655        * gl_MaxCombinedClipAndCullDistances.
656        */
657       if ((*clip_distance_array_size + *cull_distance_array_size) >
658           ctx->Const.MaxClipPlanes) {
659           linker_error(prog, "%s shader: the combined size of "
660                        "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
661                        "be larger than "
662                        "gl_MaxCombinedClipAndCullDistances (%u)",
663                        _mesa_shader_stage_to_string(shader->Stage),
664                        ctx->Const.MaxClipPlanes);
665       }
666    }
667 }
668 
669 
670 /**
671  * Verify that a vertex shader executable meets all semantic requirements.
672  *
673  * Also sets info.clip_distance_array_size and
674  * info.cull_distance_array_size as a side effect.
675  *
676  * \param shader  Vertex shader executable to be verified
677  */
678 static void
validate_vertex_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx)679 validate_vertex_shader_executable(struct gl_shader_program *prog,
680                                   struct gl_linked_shader *shader,
681                                   struct gl_context *ctx)
682 {
683    if (shader == NULL)
684       return;
685 
686    /* From the GLSL 1.10 spec, page 48:
687     *
688     *     "The variable gl_Position is available only in the vertex
689     *      language and is intended for writing the homogeneous vertex
690     *      position. All executions of a well-formed vertex shader
691     *      executable must write a value into this variable. [...] The
692     *      variable gl_Position is available only in the vertex
693     *      language and is intended for writing the homogeneous vertex
694     *      position. All executions of a well-formed vertex shader
695     *      executable must write a value into this variable."
696     *
697     * while in GLSL 1.40 this text is changed to:
698     *
699     *     "The variable gl_Position is available only in the vertex
700     *      language and is intended for writing the homogeneous vertex
701     *      position. It can be written at any time during shader
702     *      execution. It may also be read back by a vertex shader
703     *      after being written. This value will be used by primitive
704     *      assembly, clipping, culling, and other fixed functionality
705     *      operations, if present, that operate on primitives after
706     *      vertex processing has occurred. Its value is undefined if
707     *      the vertex shader executable does not write gl_Position."
708     *
709     * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
710     * gl_Position is not an error.
711     */
712    if (prog->data->Version < (prog->IsES ? 300 : 140)) {
713       find_variable gl_Position("gl_Position");
714       find_assignments(shader->ir, &gl_Position);
715       if (!gl_Position.found) {
716         if (prog->IsES) {
717           linker_warning(prog,
718                          "vertex shader does not write to `gl_Position'. "
719                          "Its value is undefined. \n");
720         } else {
721           linker_error(prog,
722                        "vertex shader does not write to `gl_Position'. \n");
723         }
724          return;
725       }
726    }
727 
728    analyze_clip_cull_usage(prog, shader, ctx,
729                            &shader->Program->info.clip_distance_array_size,
730                            &shader->Program->info.cull_distance_array_size);
731 }
732 
733 static void
validate_tess_eval_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx)734 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
735                                      struct gl_linked_shader *shader,
736                                      struct gl_context *ctx)
737 {
738    if (shader == NULL)
739       return;
740 
741    analyze_clip_cull_usage(prog, shader, ctx,
742                            &shader->Program->info.clip_distance_array_size,
743                            &shader->Program->info.cull_distance_array_size);
744 }
745 
746 
747 /**
748  * Verify that a fragment shader executable meets all semantic requirements
749  *
750  * \param shader  Fragment shader executable to be verified
751  */
752 static void
validate_fragment_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader)753 validate_fragment_shader_executable(struct gl_shader_program *prog,
754                                     struct gl_linked_shader *shader)
755 {
756    if (shader == NULL)
757       return;
758 
759    find_variable gl_FragColor("gl_FragColor");
760    find_variable gl_FragData("gl_FragData");
761    find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
762    find_assignments(shader->ir, variables);
763 
764    if (gl_FragColor.found && gl_FragData.found) {
765       linker_error(prog,  "fragment shader writes to both "
766                    "`gl_FragColor' and `gl_FragData'\n");
767    }
768 }
769 
770 /**
771  * Verify that a geometry shader executable meets all semantic requirements
772  *
773  * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
774  * info.cull_distance_array_size as a side effect.
775  *
776  * \param shader Geometry shader executable to be verified
777  */
778 static void
validate_geometry_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx)779 validate_geometry_shader_executable(struct gl_shader_program *prog,
780                                     struct gl_linked_shader *shader,
781                                     struct gl_context *ctx)
782 {
783    if (shader == NULL)
784       return;
785 
786    unsigned num_vertices =
787       vertices_per_prim(shader->Program->info.gs.input_primitive);
788    prog->Geom.VerticesIn = num_vertices;
789 
790    analyze_clip_cull_usage(prog, shader, ctx,
791                            &shader->Program->info.clip_distance_array_size,
792                            &shader->Program->info.cull_distance_array_size);
793 }
794 
795 /**
796  * Check if geometry shaders emit to non-zero streams and do corresponding
797  * validations.
798  */
799 static void
validate_geometry_shader_emissions(struct gl_context * ctx,struct gl_shader_program * prog)800 validate_geometry_shader_emissions(struct gl_context *ctx,
801                                    struct gl_shader_program *prog)
802 {
803    struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
804 
805    if (sh != NULL) {
806       find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
807       emit_vertex.run(sh->ir);
808       if (emit_vertex.error()) {
809          linker_error(prog, "Invalid call %s(%d). Accepted values for the "
810                       "stream parameter are in the range [0, %d].\n",
811                       emit_vertex.error_func(),
812                       emit_vertex.error_stream(),
813                       ctx->Const.MaxVertexStreams - 1);
814       }
815       prog->Geom.UsesStreams = emit_vertex.uses_streams();
816       prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
817 
818       /* From the ARB_gpu_shader5 spec:
819        *
820        *   "Multiple vertex streams are supported only if the output primitive
821        *    type is declared to be "points".  A program will fail to link if it
822        *    contains a geometry shader calling EmitStreamVertex() or
823        *    EndStreamPrimitive() if its output primitive type is not "points".
824        *
825        * However, in the same spec:
826        *
827        *   "The function EmitVertex() is equivalent to calling EmitStreamVertex()
828        *    with <stream> set to zero."
829        *
830        * And:
831        *
832        *   "The function EndPrimitive() is equivalent to calling
833        *    EndStreamPrimitive() with <stream> set to zero."
834        *
835        * Since we can call EmitVertex() and EndPrimitive() when we output
836        * primitives other than points, calling EmitStreamVertex(0) or
837        * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
838        * does. Currently we only set prog->Geom.UsesStreams to TRUE when
839        * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
840        * stream.
841        */
842       if (prog->Geom.UsesStreams &&
843           sh->Program->info.gs.output_primitive != GL_POINTS) {
844          linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
845                       "with n>0 requires point output\n");
846       }
847    }
848 }
849 
850 bool
validate_intrastage_arrays(struct gl_shader_program * prog,ir_variable * const var,ir_variable * const existing)851 validate_intrastage_arrays(struct gl_shader_program *prog,
852                            ir_variable *const var,
853                            ir_variable *const existing)
854 {
855    /* Consider the types to be "the same" if both types are arrays
856     * of the same type and one of the arrays is implicitly sized.
857     * In addition, set the type of the linked variable to the
858     * explicitly sized array.
859     */
860    if (var->type->is_array() && existing->type->is_array()) {
861       if ((var->type->fields.array == existing->type->fields.array) &&
862           ((var->type->length == 0)|| (existing->type->length == 0))) {
863          if (var->type->length != 0) {
864             if ((int)var->type->length <= existing->data.max_array_access) {
865                linker_error(prog, "%s `%s' declared as type "
866                            "`%s' but outermost dimension has an index"
867                            " of `%i'\n",
868                            mode_string(var),
869                            var->name, var->type->name,
870                            existing->data.max_array_access);
871             }
872             existing->type = var->type;
873             return true;
874          } else if (existing->type->length != 0) {
875             if((int)existing->type->length <= var->data.max_array_access &&
876                !existing->data.from_ssbo_unsized_array) {
877                linker_error(prog, "%s `%s' declared as type "
878                            "`%s' but outermost dimension has an index"
879                            " of `%i'\n",
880                            mode_string(var),
881                            var->name, existing->type->name,
882                            var->data.max_array_access);
883             }
884             return true;
885          }
886       }
887    }
888    return false;
889 }
890 
891 
892 /**
893  * Perform validation of global variables used across multiple shaders
894  */
895 static void
cross_validate_globals(struct gl_shader_program * prog,struct exec_list * ir,glsl_symbol_table * variables,bool uniforms_only)896 cross_validate_globals(struct gl_shader_program *prog,
897                        struct exec_list *ir, glsl_symbol_table *variables,
898                        bool uniforms_only)
899 {
900    foreach_in_list(ir_instruction, node, ir) {
901       ir_variable *const var = node->as_variable();
902 
903       if (var == NULL)
904          continue;
905 
906       if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
907          continue;
908 
909       /* don't cross validate subroutine uniforms */
910       if (var->type->contains_subroutine())
911          continue;
912 
913       /* Don't cross validate interface instances. These are only relevant
914        * inside a shader. The cross validation is done at the Interface Block
915        * name level.
916        */
917       if (var->is_interface_instance())
918          continue;
919 
920       /* Don't cross validate temporaries that are at global scope.  These
921        * will eventually get pulled into the shaders 'main'.
922        */
923       if (var->data.mode == ir_var_temporary)
924          continue;
925 
926       /* If a global with this name has already been seen, verify that the
927        * new instance has the same type.  In addition, if the globals have
928        * initializers, the values of the initializers must be the same.
929        */
930       ir_variable *const existing = variables->get_variable(var->name);
931       if (existing != NULL) {
932          /* Check if types match. */
933          if (var->type != existing->type) {
934             if (!validate_intrastage_arrays(prog, var, existing)) {
935                /* If it is an unsized array in a Shader Storage Block,
936                 * two different shaders can access to different elements.
937                 * Because of that, they might be converted to different
938                 * sized arrays, then check that they are compatible but
939                 * ignore the array size.
940                 */
941                if (!(var->data.mode == ir_var_shader_storage &&
942                      var->data.from_ssbo_unsized_array &&
943                      existing->data.mode == ir_var_shader_storage &&
944                      existing->data.from_ssbo_unsized_array &&
945                      var->type->gl_type == existing->type->gl_type)) {
946                   linker_error(prog, "%s `%s' declared as type "
947                                  "`%s' and type `%s'\n",
948                                  mode_string(var),
949                                  var->name, var->type->name,
950                                  existing->type->name);
951                   return;
952                }
953             }
954          }
955 
956          if (var->data.explicit_location) {
957             if (existing->data.explicit_location
958                 && (var->data.location != existing->data.location)) {
959                linker_error(prog, "explicit locations for %s "
960                             "`%s' have differing values\n",
961                             mode_string(var), var->name);
962                return;
963             }
964 
965             if (var->data.location_frac != existing->data.location_frac) {
966                linker_error(prog, "explicit components for %s `%s' have "
967                             "differing values\n", mode_string(var), var->name);
968                return;
969             }
970 
971             existing->data.location = var->data.location;
972             existing->data.explicit_location = true;
973          } else {
974             /* Check if uniform with implicit location was marked explicit
975              * by earlier shader stage. If so, mark it explicit in this stage
976              * too to make sure later processing does not treat it as
977              * implicit one.
978              */
979             if (existing->data.explicit_location) {
980                var->data.location = existing->data.location;
981                var->data.explicit_location = true;
982             }
983          }
984 
985          /* From the GLSL 4.20 specification:
986           * "A link error will result if two compilation units in a program
987           *  specify different integer-constant bindings for the same
988           *  opaque-uniform name.  However, it is not an error to specify a
989           *  binding on some but not all declarations for the same name"
990           */
991          if (var->data.explicit_binding) {
992             if (existing->data.explicit_binding &&
993                 var->data.binding != existing->data.binding) {
994                linker_error(prog, "explicit bindings for %s "
995                             "`%s' have differing values\n",
996                             mode_string(var), var->name);
997                return;
998             }
999 
1000             existing->data.binding = var->data.binding;
1001             existing->data.explicit_binding = true;
1002          }
1003 
1004          if (var->type->contains_atomic() &&
1005              var->data.offset != existing->data.offset) {
1006             linker_error(prog, "offset specifications for %s "
1007                          "`%s' have differing values\n",
1008                          mode_string(var), var->name);
1009             return;
1010          }
1011 
1012          /* Validate layout qualifiers for gl_FragDepth.
1013           *
1014           * From the AMD/ARB_conservative_depth specs:
1015           *
1016           *    "If gl_FragDepth is redeclared in any fragment shader in a
1017           *    program, it must be redeclared in all fragment shaders in
1018           *    that program that have static assignments to
1019           *    gl_FragDepth. All redeclarations of gl_FragDepth in all
1020           *    fragment shaders in a single program must have the same set
1021           *    of qualifiers."
1022           */
1023          if (strcmp(var->name, "gl_FragDepth") == 0) {
1024             bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1025             bool layout_differs =
1026                var->data.depth_layout != existing->data.depth_layout;
1027 
1028             if (layout_declared && layout_differs) {
1029                linker_error(prog,
1030                             "All redeclarations of gl_FragDepth in all "
1031                             "fragment shaders in a single program must have "
1032                             "the same set of qualifiers.\n");
1033             }
1034 
1035             if (var->data.used && layout_differs) {
1036                linker_error(prog,
1037                             "If gl_FragDepth is redeclared with a layout "
1038                             "qualifier in any fragment shader, it must be "
1039                             "redeclared with the same layout qualifier in "
1040                             "all fragment shaders that have assignments to "
1041                             "gl_FragDepth\n");
1042             }
1043          }
1044 
1045          /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1046           *
1047           *     "If a shared global has multiple initializers, the
1048           *     initializers must all be constant expressions, and they
1049           *     must all have the same value. Otherwise, a link error will
1050           *     result. (A shared global having only one initializer does
1051           *     not require that initializer to be a constant expression.)"
1052           *
1053           * Previous to 4.20 the GLSL spec simply said that initializers
1054           * must have the same value.  In this case of non-constant
1055           * initializers, this was impossible to determine.  As a result,
1056           * no vendor actually implemented that behavior.  The 4.20
1057           * behavior matches the implemented behavior of at least one other
1058           * vendor, so we'll implement that for all GLSL versions.
1059           */
1060          if (var->constant_initializer != NULL) {
1061             if (existing->constant_initializer != NULL) {
1062                if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1063                   linker_error(prog, "initializers for %s "
1064                                "`%s' have differing values\n",
1065                                mode_string(var), var->name);
1066                   return;
1067                }
1068             } else {
1069                /* If the first-seen instance of a particular uniform did
1070                 * not have an initializer but a later instance does,
1071                 * replace the former with the later.
1072                 */
1073                variables->replace_variable(existing->name, var);
1074             }
1075          }
1076 
1077          if (var->data.has_initializer) {
1078             if (existing->data.has_initializer
1079                 && (var->constant_initializer == NULL
1080                     || existing->constant_initializer == NULL)) {
1081                linker_error(prog,
1082                             "shared global variable `%s' has multiple "
1083                             "non-constant initializers.\n",
1084                             var->name);
1085                return;
1086             }
1087          }
1088 
1089          if (existing->data.invariant != var->data.invariant) {
1090             linker_error(prog, "declarations for %s `%s' have "
1091                          "mismatching invariant qualifiers\n",
1092                          mode_string(var), var->name);
1093             return;
1094          }
1095          if (existing->data.centroid != var->data.centroid) {
1096             linker_error(prog, "declarations for %s `%s' have "
1097                          "mismatching centroid qualifiers\n",
1098                          mode_string(var), var->name);
1099             return;
1100          }
1101          if (existing->data.sample != var->data.sample) {
1102             linker_error(prog, "declarations for %s `%s` have "
1103                          "mismatching sample qualifiers\n",
1104                          mode_string(var), var->name);
1105             return;
1106          }
1107          if (existing->data.image_format != var->data.image_format) {
1108             linker_error(prog, "declarations for %s `%s` have "
1109                          "mismatching image format qualifiers\n",
1110                          mode_string(var), var->name);
1111             return;
1112          }
1113 
1114          /* Check the precision qualifier matches for uniform variables on
1115           * GLSL ES.
1116           */
1117          if (prog->IsES && !var->get_interface_type() &&
1118              existing->data.precision != var->data.precision) {
1119             if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
1120                linker_error(prog, "declarations for %s `%s` have "
1121                             "mismatching precision qualifiers\n",
1122                             mode_string(var), var->name);
1123                return;
1124             } else {
1125                linker_warning(prog, "declarations for %s `%s` have "
1126                               "mismatching precision qualifiers\n",
1127                               mode_string(var), var->name);
1128             }
1129          }
1130 
1131          /* In OpenGL GLSL 3.20 spec, section 4.3.9:
1132           *
1133           *   "It is a link-time error if any particular shader interface
1134           *    contains:
1135           *
1136           *    - two different blocks, each having no instance name, and each
1137           *      having a member of the same name, or
1138           *
1139           *    - a variable outside a block, and a block with no instance name,
1140           *      where the variable has the same name as a member in the block."
1141           */
1142          const glsl_type *var_itype = var->get_interface_type();
1143          const glsl_type *existing_itype = existing->get_interface_type();
1144          if (var_itype != existing_itype) {
1145             if (!var_itype || !existing_itype) {
1146                linker_error(prog, "declarations for %s `%s` are inside block "
1147                             "`%s` and outside a block",
1148                             mode_string(var), var->name,
1149                             var_itype ? var_itype->name : existing_itype->name);
1150                return;
1151             } else if (strcmp(var_itype->name, existing_itype->name) != 0) {
1152                linker_error(prog, "declarations for %s `%s` are inside blocks "
1153                             "`%s` and `%s`",
1154                             mode_string(var), var->name,
1155                             existing_itype->name,
1156                             var_itype->name);
1157                return;
1158             }
1159          }
1160       } else
1161          variables->add_variable(var);
1162    }
1163 }
1164 
1165 
1166 /**
1167  * Perform validation of uniforms used across multiple shader stages
1168  */
1169 static void
cross_validate_uniforms(struct gl_shader_program * prog)1170 cross_validate_uniforms(struct gl_shader_program *prog)
1171 {
1172    glsl_symbol_table variables;
1173    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1174       if (prog->_LinkedShaders[i] == NULL)
1175          continue;
1176 
1177       cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1178                              true);
1179    }
1180 }
1181 
1182 /**
1183  * Accumulates the array of buffer blocks and checks that all definitions of
1184  * blocks agree on their contents.
1185  */
1186 static bool
interstage_cross_validate_uniform_blocks(struct gl_shader_program * prog,bool validate_ssbo)1187 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1188                                          bool validate_ssbo)
1189 {
1190    int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1191    struct gl_uniform_block *blks = NULL;
1192    unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1193       &prog->data->NumUniformBlocks;
1194 
1195    unsigned max_num_buffer_blocks = 0;
1196    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1197       if (prog->_LinkedShaders[i]) {
1198          if (validate_ssbo) {
1199             max_num_buffer_blocks +=
1200                prog->_LinkedShaders[i]->Program->info.num_ssbos;
1201          } else {
1202             max_num_buffer_blocks +=
1203                prog->_LinkedShaders[i]->Program->info.num_ubos;
1204          }
1205       }
1206    }
1207 
1208    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1209       struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1210 
1211       InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1212       for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1213          InterfaceBlockStageIndex[i][j] = -1;
1214 
1215       if (sh == NULL)
1216          continue;
1217 
1218       unsigned sh_num_blocks;
1219       struct gl_uniform_block **sh_blks;
1220       if (validate_ssbo) {
1221          sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1222          sh_blks = sh->Program->sh.ShaderStorageBlocks;
1223       } else {
1224          sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1225          sh_blks = sh->Program->sh.UniformBlocks;
1226       }
1227 
1228       for (unsigned int j = 0; j < sh_num_blocks; j++) {
1229          int index = link_cross_validate_uniform_block(prog->data, &blks,
1230                                                        num_blks, sh_blks[j]);
1231 
1232          if (index == -1) {
1233             linker_error(prog, "buffer block `%s' has mismatching "
1234                          "definitions\n", sh_blks[j]->Name);
1235 
1236             for (unsigned k = 0; k <= i; k++) {
1237                delete[] InterfaceBlockStageIndex[k];
1238             }
1239 
1240             /* Reset the block count. This will help avoid various segfaults
1241              * from api calls that assume the array exists due to the count
1242              * being non-zero.
1243              */
1244             *num_blks = 0;
1245             return false;
1246          }
1247 
1248          InterfaceBlockStageIndex[i][index] = j;
1249       }
1250    }
1251 
1252    /* Update per stage block pointers to point to the program list.
1253     * FIXME: We should be able to free the per stage blocks here.
1254     */
1255    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1256       for (unsigned j = 0; j < *num_blks; j++) {
1257          int stage_index = InterfaceBlockStageIndex[i][j];
1258 
1259          if (stage_index != -1) {
1260             struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1261 
1262             struct gl_uniform_block **sh_blks = validate_ssbo ?
1263                sh->Program->sh.ShaderStorageBlocks :
1264                sh->Program->sh.UniformBlocks;
1265 
1266             blks[j].stageref |= sh_blks[stage_index]->stageref;
1267             sh_blks[stage_index] = &blks[j];
1268          }
1269       }
1270    }
1271 
1272    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1273       delete[] InterfaceBlockStageIndex[i];
1274    }
1275 
1276    if (validate_ssbo)
1277       prog->data->ShaderStorageBlocks = blks;
1278    else
1279       prog->data->UniformBlocks = blks;
1280 
1281    return true;
1282 }
1283 
1284 
1285 /**
1286  * Populates a shaders symbol table with all global declarations
1287  */
1288 static void
populate_symbol_table(gl_linked_shader * sh,glsl_symbol_table * symbols)1289 populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1290 {
1291    sh->symbols = new(sh) glsl_symbol_table;
1292 
1293    _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1294 }
1295 
1296 
1297 /**
1298  * Remap variables referenced in an instruction tree
1299  *
1300  * This is used when instruction trees are cloned from one shader and placed in
1301  * another.  These trees will contain references to \c ir_variable nodes that
1302  * do not exist in the target shader.  This function finds these \c ir_variable
1303  * references and replaces the references with matching variables in the target
1304  * shader.
1305  *
1306  * If there is no matching variable in the target shader, a clone of the
1307  * \c ir_variable is made and added to the target shader.  The new variable is
1308  * added to \b both the instruction stream and the symbol table.
1309  *
1310  * \param inst         IR tree that is to be processed.
1311  * \param symbols      Symbol table containing global scope symbols in the
1312  *                     linked shader.
1313  * \param instructions Instruction stream where new variable declarations
1314  *                     should be added.
1315  */
1316 static void
remap_variables(ir_instruction * inst,struct gl_linked_shader * target,hash_table * temps)1317 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1318                 hash_table *temps)
1319 {
1320    class remap_visitor : public ir_hierarchical_visitor {
1321    public:
1322          remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1323       {
1324          this->target = target;
1325          this->symbols = target->symbols;
1326          this->instructions = target->ir;
1327          this->temps = temps;
1328       }
1329 
1330       virtual ir_visitor_status visit(ir_dereference_variable *ir)
1331       {
1332          if (ir->var->data.mode == ir_var_temporary) {
1333             hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1334             ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1335 
1336             assert(var != NULL);
1337             ir->var = var;
1338             return visit_continue;
1339          }
1340 
1341          ir_variable *const existing =
1342             this->symbols->get_variable(ir->var->name);
1343          if (existing != NULL)
1344             ir->var = existing;
1345          else {
1346             ir_variable *copy = ir->var->clone(this->target, NULL);
1347 
1348             this->symbols->add_variable(copy);
1349             this->instructions->push_head(copy);
1350             ir->var = copy;
1351          }
1352 
1353          return visit_continue;
1354       }
1355 
1356    private:
1357       struct gl_linked_shader *target;
1358       glsl_symbol_table *symbols;
1359       exec_list *instructions;
1360       hash_table *temps;
1361    };
1362 
1363    remap_visitor v(target, temps);
1364 
1365    inst->accept(&v);
1366 }
1367 
1368 
1369 /**
1370  * Move non-declarations from one instruction stream to another
1371  *
1372  * The intended usage pattern of this function is to pass the pointer to the
1373  * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1374  * pointer) for \c last and \c false for \c make_copies on the first
1375  * call.  Successive calls pass the return value of the previous call for
1376  * \c last and \c true for \c make_copies.
1377  *
1378  * \param instructions Source instruction stream
1379  * \param last         Instruction after which new instructions should be
1380  *                     inserted in the target instruction stream
1381  * \param make_copies  Flag selecting whether instructions in \c instructions
1382  *                     should be copied (via \c ir_instruction::clone) into the
1383  *                     target list or moved.
1384  *
1385  * \return
1386  * The new "last" instruction in the target instruction stream.  This pointer
1387  * is suitable for use as the \c last parameter of a later call to this
1388  * function.
1389  */
1390 static exec_node *
move_non_declarations(exec_list * instructions,exec_node * last,bool make_copies,gl_linked_shader * target)1391 move_non_declarations(exec_list *instructions, exec_node *last,
1392                       bool make_copies, gl_linked_shader *target)
1393 {
1394    hash_table *temps = NULL;
1395 
1396    if (make_copies)
1397       temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1398                                       _mesa_key_pointer_equal);
1399 
1400    foreach_in_list_safe(ir_instruction, inst, instructions) {
1401       if (inst->as_function())
1402          continue;
1403 
1404       ir_variable *var = inst->as_variable();
1405       if ((var != NULL) && (var->data.mode != ir_var_temporary))
1406          continue;
1407 
1408       assert(inst->as_assignment()
1409              || inst->as_call()
1410              || inst->as_if() /* for initializers with the ?: operator */
1411              || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1412 
1413       if (make_copies) {
1414          inst = inst->clone(target, NULL);
1415 
1416          if (var != NULL)
1417             _mesa_hash_table_insert(temps, var, inst);
1418          else
1419             remap_variables(inst, target, temps);
1420       } else {
1421          inst->remove();
1422       }
1423 
1424       last->insert_after(inst);
1425       last = inst;
1426    }
1427 
1428    if (make_copies)
1429       _mesa_hash_table_destroy(temps, NULL);
1430 
1431    return last;
1432 }
1433 
1434 
1435 /**
1436  * This class is only used in link_intrastage_shaders() below but declaring
1437  * it inside that function leads to compiler warnings with some versions of
1438  * gcc.
1439  */
1440 class array_sizing_visitor : public deref_type_updater {
1441 public:
array_sizing_visitor()1442    array_sizing_visitor()
1443       : mem_ctx(ralloc_context(NULL)),
1444         unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1445                                                    _mesa_key_pointer_equal))
1446    {
1447    }
1448 
~array_sizing_visitor()1449    ~array_sizing_visitor()
1450    {
1451       _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1452       ralloc_free(this->mem_ctx);
1453    }
1454 
visit(ir_variable * var)1455    virtual ir_visitor_status visit(ir_variable *var)
1456    {
1457       const glsl_type *type_without_array;
1458       bool implicit_sized_array = var->data.implicit_sized_array;
1459       fixup_type(&var->type, var->data.max_array_access,
1460                  var->data.from_ssbo_unsized_array,
1461                  &implicit_sized_array);
1462       var->data.implicit_sized_array = implicit_sized_array;
1463       type_without_array = var->type->without_array();
1464       if (var->type->is_interface()) {
1465          if (interface_contains_unsized_arrays(var->type)) {
1466             const glsl_type *new_type =
1467                resize_interface_members(var->type,
1468                                         var->get_max_ifc_array_access(),
1469                                         var->is_in_shader_storage_block());
1470             var->type = new_type;
1471             var->change_interface_type(new_type);
1472          }
1473       } else if (type_without_array->is_interface()) {
1474          if (interface_contains_unsized_arrays(type_without_array)) {
1475             const glsl_type *new_type =
1476                resize_interface_members(type_without_array,
1477                                         var->get_max_ifc_array_access(),
1478                                         var->is_in_shader_storage_block());
1479             var->change_interface_type(new_type);
1480             var->type = update_interface_members_array(var->type, new_type);
1481          }
1482       } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1483          /* Store a pointer to the variable in the unnamed_interfaces
1484           * hashtable.
1485           */
1486          hash_entry *entry =
1487                _mesa_hash_table_search(this->unnamed_interfaces,
1488                                        ifc_type);
1489 
1490          ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1491 
1492          if (interface_vars == NULL) {
1493             interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1494                                            ifc_type->length);
1495             _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1496                                     interface_vars);
1497          }
1498          unsigned index = ifc_type->field_index(var->name);
1499          assert(index < ifc_type->length);
1500          assert(interface_vars[index] == NULL);
1501          interface_vars[index] = var;
1502       }
1503       return visit_continue;
1504    }
1505 
1506    /**
1507     * For each unnamed interface block that was discovered while running the
1508     * visitor, adjust the interface type to reflect the newly assigned array
1509     * sizes, and fix up the ir_variable nodes to point to the new interface
1510     * type.
1511     */
fixup_unnamed_interface_types()1512    void fixup_unnamed_interface_types()
1513    {
1514       hash_table_call_foreach(this->unnamed_interfaces,
1515                               fixup_unnamed_interface_type, NULL);
1516    }
1517 
1518 private:
1519    /**
1520     * If the type pointed to by \c type represents an unsized array, replace
1521     * it with a sized array whose size is determined by max_array_access.
1522     */
fixup_type(const glsl_type ** type,unsigned max_array_access,bool from_ssbo_unsized_array,bool * implicit_sized)1523    static void fixup_type(const glsl_type **type, unsigned max_array_access,
1524                           bool from_ssbo_unsized_array, bool *implicit_sized)
1525    {
1526       if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1527          *type = glsl_type::get_array_instance((*type)->fields.array,
1528                                                max_array_access + 1);
1529          *implicit_sized = true;
1530          assert(*type != NULL);
1531       }
1532    }
1533 
1534    static const glsl_type *
update_interface_members_array(const glsl_type * type,const glsl_type * new_interface_type)1535    update_interface_members_array(const glsl_type *type,
1536                                   const glsl_type *new_interface_type)
1537    {
1538       const glsl_type *element_type = type->fields.array;
1539       if (element_type->is_array()) {
1540          const glsl_type *new_array_type =
1541             update_interface_members_array(element_type, new_interface_type);
1542          return glsl_type::get_array_instance(new_array_type, type->length);
1543       } else {
1544          return glsl_type::get_array_instance(new_interface_type,
1545                                               type->length);
1546       }
1547    }
1548 
1549    /**
1550     * Determine whether the given interface type contains unsized arrays (if
1551     * it doesn't, array_sizing_visitor doesn't need to process it).
1552     */
interface_contains_unsized_arrays(const glsl_type * type)1553    static bool interface_contains_unsized_arrays(const glsl_type *type)
1554    {
1555       for (unsigned i = 0; i < type->length; i++) {
1556          const glsl_type *elem_type = type->fields.structure[i].type;
1557          if (elem_type->is_unsized_array())
1558             return true;
1559       }
1560       return false;
1561    }
1562 
1563    /**
1564     * Create a new interface type based on the given type, with unsized arrays
1565     * replaced by sized arrays whose size is determined by
1566     * max_ifc_array_access.
1567     */
1568    static const glsl_type *
resize_interface_members(const glsl_type * type,const int * max_ifc_array_access,bool is_ssbo)1569    resize_interface_members(const glsl_type *type,
1570                             const int *max_ifc_array_access,
1571                             bool is_ssbo)
1572    {
1573       unsigned num_fields = type->length;
1574       glsl_struct_field *fields = new glsl_struct_field[num_fields];
1575       memcpy(fields, type->fields.structure,
1576              num_fields * sizeof(*fields));
1577       for (unsigned i = 0; i < num_fields; i++) {
1578          bool implicit_sized_array = fields[i].implicit_sized_array;
1579          /* If SSBO last member is unsized array, we don't replace it by a sized
1580           * array.
1581           */
1582          if (is_ssbo && i == (num_fields - 1))
1583             fixup_type(&fields[i].type, max_ifc_array_access[i],
1584                        true, &implicit_sized_array);
1585          else
1586             fixup_type(&fields[i].type, max_ifc_array_access[i],
1587                        false, &implicit_sized_array);
1588          fields[i].implicit_sized_array = implicit_sized_array;
1589       }
1590       glsl_interface_packing packing =
1591          (glsl_interface_packing) type->interface_packing;
1592       bool row_major = (bool) type->interface_row_major;
1593       const glsl_type *new_ifc_type =
1594          glsl_type::get_interface_instance(fields, num_fields,
1595                                            packing, row_major, type->name);
1596       delete [] fields;
1597       return new_ifc_type;
1598    }
1599 
fixup_unnamed_interface_type(const void * key,void * data,void *)1600    static void fixup_unnamed_interface_type(const void *key, void *data,
1601                                             void *)
1602    {
1603       const glsl_type *ifc_type = (const glsl_type *) key;
1604       ir_variable **interface_vars = (ir_variable **) data;
1605       unsigned num_fields = ifc_type->length;
1606       glsl_struct_field *fields = new glsl_struct_field[num_fields];
1607       memcpy(fields, ifc_type->fields.structure,
1608              num_fields * sizeof(*fields));
1609       bool interface_type_changed = false;
1610       for (unsigned i = 0; i < num_fields; i++) {
1611          if (interface_vars[i] != NULL &&
1612              fields[i].type != interface_vars[i]->type) {
1613             fields[i].type = interface_vars[i]->type;
1614             interface_type_changed = true;
1615          }
1616       }
1617       if (!interface_type_changed) {
1618          delete [] fields;
1619          return;
1620       }
1621       glsl_interface_packing packing =
1622          (glsl_interface_packing) ifc_type->interface_packing;
1623       bool row_major = (bool) ifc_type->interface_row_major;
1624       const glsl_type *new_ifc_type =
1625          glsl_type::get_interface_instance(fields, num_fields, packing,
1626                                            row_major, ifc_type->name);
1627       delete [] fields;
1628       for (unsigned i = 0; i < num_fields; i++) {
1629          if (interface_vars[i] != NULL)
1630             interface_vars[i]->change_interface_type(new_ifc_type);
1631       }
1632    }
1633 
1634    /**
1635     * Memory context used to allocate the data in \c unnamed_interfaces.
1636     */
1637    void *mem_ctx;
1638 
1639    /**
1640     * Hash table from const glsl_type * to an array of ir_variable *'s
1641     * pointing to the ir_variables constituting each unnamed interface block.
1642     */
1643    hash_table *unnamed_interfaces;
1644 };
1645 
1646 static bool
validate_xfb_buffer_stride(struct gl_context * ctx,unsigned idx,struct gl_shader_program * prog)1647 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1648                            struct gl_shader_program *prog)
1649 {
1650    /* We will validate doubles at a later stage */
1651    if (prog->TransformFeedback.BufferStride[idx] % 4) {
1652       linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1653                    "multiple of 4 or if its applied to a type that is "
1654                    "or contains a double a multiple of 8.",
1655                    prog->TransformFeedback.BufferStride[idx]);
1656       return false;
1657    }
1658 
1659    if (prog->TransformFeedback.BufferStride[idx] / 4 >
1660        ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1661       linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1662                    "limit has been exceeded.");
1663       return false;
1664    }
1665 
1666    return true;
1667 }
1668 
1669 /**
1670  * Check for conflicting xfb_stride default qualifiers and store buffer stride
1671  * for later use.
1672  */
1673 static void
link_xfb_stride_layout_qualifiers(struct gl_context * ctx,struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders)1674 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1675                                   struct gl_shader_program *prog,
1676                                   struct gl_shader **shader_list,
1677                                   unsigned num_shaders)
1678 {
1679    for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1680       prog->TransformFeedback.BufferStride[i] = 0;
1681    }
1682 
1683    for (unsigned i = 0; i < num_shaders; i++) {
1684       struct gl_shader *shader = shader_list[i];
1685 
1686       for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1687          if (shader->TransformFeedbackBufferStride[j]) {
1688             if (prog->TransformFeedback.BufferStride[j] == 0) {
1689                prog->TransformFeedback.BufferStride[j] =
1690                   shader->TransformFeedbackBufferStride[j];
1691                if (!validate_xfb_buffer_stride(ctx, j, prog))
1692                   return;
1693             } else if (prog->TransformFeedback.BufferStride[j] !=
1694                        shader->TransformFeedbackBufferStride[j]){
1695                linker_error(prog,
1696                             "intrastage shaders defined with conflicting "
1697                             "xfb_stride for buffer %d (%d and %d)\n", j,
1698                             prog->TransformFeedback.BufferStride[j],
1699                             shader->TransformFeedbackBufferStride[j]);
1700                return;
1701             }
1702          }
1703       }
1704    }
1705 }
1706 
1707 /**
1708  * Check for conflicting bindless/bound sampler/image layout qualifiers at
1709  * global scope.
1710  */
1711 static void
link_bindless_layout_qualifiers(struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders)1712 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1713                                 struct gl_shader **shader_list,
1714                                 unsigned num_shaders)
1715 {
1716    bool bindless_sampler, bindless_image;
1717    bool bound_sampler, bound_image;
1718 
1719    bindless_sampler = bindless_image = false;
1720    bound_sampler = bound_image = false;
1721 
1722    for (unsigned i = 0; i < num_shaders; i++) {
1723       struct gl_shader *shader = shader_list[i];
1724 
1725       if (shader->bindless_sampler)
1726          bindless_sampler = true;
1727       if (shader->bindless_image)
1728          bindless_image = true;
1729       if (shader->bound_sampler)
1730          bound_sampler = true;
1731       if (shader->bound_image)
1732          bound_image = true;
1733 
1734       if ((bindless_sampler && bound_sampler) ||
1735           (bindless_image && bound_image)) {
1736          /* From section 4.4.6 of the ARB_bindless_texture spec:
1737           *
1738           *     "If both bindless_sampler and bound_sampler, or bindless_image
1739           *      and bound_image, are declared at global scope in any
1740           *      compilation unit, a link- time error will be generated."
1741           */
1742          linker_error(prog, "both bindless_sampler and bound_sampler, or "
1743                       "bindless_image and bound_image, can't be declared at "
1744                       "global scope");
1745       }
1746    }
1747 }
1748 
1749 /**
1750  * Performs the cross-validation of tessellation control shader vertices and
1751  * layout qualifiers for the attached tessellation control shaders,
1752  * and propagates them to the linked TCS and linked shader program.
1753  */
1754 static void
link_tcs_out_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1755 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1756                                struct gl_program *gl_prog,
1757                                struct gl_shader **shader_list,
1758                                unsigned num_shaders)
1759 {
1760    if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1761       return;
1762 
1763    gl_prog->info.tess.tcs_vertices_out = 0;
1764 
1765    /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1766     *
1767     *     "All tessellation control shader layout declarations in a program
1768     *      must specify the same output patch vertex count.  There must be at
1769     *      least one layout qualifier specifying an output patch vertex count
1770     *      in any program containing tessellation control shaders; however,
1771     *      such a declaration is not required in all tessellation control
1772     *      shaders."
1773     */
1774 
1775    for (unsigned i = 0; i < num_shaders; i++) {
1776       struct gl_shader *shader = shader_list[i];
1777 
1778       if (shader->info.TessCtrl.VerticesOut != 0) {
1779          if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1780              gl_prog->info.tess.tcs_vertices_out !=
1781              (unsigned) shader->info.TessCtrl.VerticesOut) {
1782             linker_error(prog, "tessellation control shader defined with "
1783                          "conflicting output vertex count (%d and %d)\n",
1784                          gl_prog->info.tess.tcs_vertices_out,
1785                          shader->info.TessCtrl.VerticesOut);
1786             return;
1787          }
1788          gl_prog->info.tess.tcs_vertices_out =
1789             shader->info.TessCtrl.VerticesOut;
1790       }
1791    }
1792 
1793    /* Just do the intrastage -> interstage propagation right now,
1794     * since we already know we're in the right type of shader program
1795     * for doing it.
1796     */
1797    if (gl_prog->info.tess.tcs_vertices_out == 0) {
1798       linker_error(prog, "tessellation control shader didn't declare "
1799                    "vertices out layout qualifier\n");
1800       return;
1801    }
1802 }
1803 
1804 
1805 /**
1806  * Performs the cross-validation of tessellation evaluation shader
1807  * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1808  * for the attached tessellation evaluation shaders, and propagates them
1809  * to the linked TES and linked shader program.
1810  */
1811 static void
link_tes_in_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1812 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1813                               struct gl_program *gl_prog,
1814                               struct gl_shader **shader_list,
1815                               unsigned num_shaders)
1816 {
1817    if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1818       return;
1819 
1820    int point_mode = -1;
1821    unsigned vertex_order = 0;
1822 
1823    gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1824    gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1825 
1826    /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1827     *
1828     *     "At least one tessellation evaluation shader (compilation unit) in
1829     *      a program must declare a primitive mode in its input layout.
1830     *      Declaration vertex spacing, ordering, and point mode identifiers is
1831     *      optional.  It is not required that all tessellation evaluation
1832     *      shaders in a program declare a primitive mode.  If spacing or
1833     *      vertex ordering declarations are omitted, the tessellation
1834     *      primitive generator will use equal spacing or counter-clockwise
1835     *      vertex ordering, respectively.  If a point mode declaration is
1836     *      omitted, the tessellation primitive generator will produce lines or
1837     *      triangles according to the primitive mode."
1838     */
1839 
1840    for (unsigned i = 0; i < num_shaders; i++) {
1841       struct gl_shader *shader = shader_list[i];
1842 
1843       if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1844          if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1845              gl_prog->info.tess.primitive_mode !=
1846              shader->info.TessEval.PrimitiveMode) {
1847             linker_error(prog, "tessellation evaluation shader defined with "
1848                          "conflicting input primitive modes.\n");
1849             return;
1850          }
1851          gl_prog->info.tess.primitive_mode =
1852             shader->info.TessEval.PrimitiveMode;
1853       }
1854 
1855       if (shader->info.TessEval.Spacing != 0) {
1856          if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1857              shader->info.TessEval.Spacing) {
1858             linker_error(prog, "tessellation evaluation shader defined with "
1859                          "conflicting vertex spacing.\n");
1860             return;
1861          }
1862          gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1863       }
1864 
1865       if (shader->info.TessEval.VertexOrder != 0) {
1866          if (vertex_order != 0 &&
1867              vertex_order != shader->info.TessEval.VertexOrder) {
1868             linker_error(prog, "tessellation evaluation shader defined with "
1869                          "conflicting ordering.\n");
1870             return;
1871          }
1872          vertex_order = shader->info.TessEval.VertexOrder;
1873       }
1874 
1875       if (shader->info.TessEval.PointMode != -1) {
1876          if (point_mode != -1 &&
1877              point_mode != shader->info.TessEval.PointMode) {
1878             linker_error(prog, "tessellation evaluation shader defined with "
1879                          "conflicting point modes.\n");
1880             return;
1881          }
1882          point_mode = shader->info.TessEval.PointMode;
1883       }
1884 
1885    }
1886 
1887    /* Just do the intrastage -> interstage propagation right now,
1888     * since we already know we're in the right type of shader program
1889     * for doing it.
1890     */
1891    if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1892       linker_error(prog,
1893                    "tessellation evaluation shader didn't declare input "
1894                    "primitive modes.\n");
1895       return;
1896    }
1897 
1898    if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1899       gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1900 
1901    if (vertex_order == 0 || vertex_order == GL_CCW)
1902       gl_prog->info.tess.ccw = true;
1903    else
1904       gl_prog->info.tess.ccw = false;
1905 
1906 
1907    if (point_mode == -1 || point_mode == GL_FALSE)
1908       gl_prog->info.tess.point_mode = false;
1909    else
1910       gl_prog->info.tess.point_mode = true;
1911 }
1912 
1913 
1914 /**
1915  * Performs the cross-validation of layout qualifiers specified in
1916  * redeclaration of gl_FragCoord for the attached fragment shaders,
1917  * and propagates them to the linked FS and linked shader program.
1918  */
1919 static void
link_fs_inout_layout_qualifiers(struct gl_shader_program * prog,struct gl_linked_shader * linked_shader,struct gl_shader ** shader_list,unsigned num_shaders)1920 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1921                                 struct gl_linked_shader *linked_shader,
1922                                 struct gl_shader **shader_list,
1923                                 unsigned num_shaders)
1924 {
1925    bool redeclares_gl_fragcoord = false;
1926    bool uses_gl_fragcoord = false;
1927    bool origin_upper_left = false;
1928    bool pixel_center_integer = false;
1929 
1930    if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1931        (prog->data->Version < 150 &&
1932         !prog->ARB_fragment_coord_conventions_enable))
1933       return;
1934 
1935    for (unsigned i = 0; i < num_shaders; i++) {
1936       struct gl_shader *shader = shader_list[i];
1937       /* From the GLSL 1.50 spec, page 39:
1938        *
1939        *   "If gl_FragCoord is redeclared in any fragment shader in a program,
1940        *    it must be redeclared in all the fragment shaders in that program
1941        *    that have a static use gl_FragCoord."
1942        */
1943       if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1944            shader->uses_gl_fragcoord)
1945           || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1946               uses_gl_fragcoord)) {
1947              linker_error(prog, "fragment shader defined with conflicting "
1948                          "layout qualifiers for gl_FragCoord\n");
1949       }
1950 
1951       /* From the GLSL 1.50 spec, page 39:
1952        *
1953        *   "All redeclarations of gl_FragCoord in all fragment shaders in a
1954        *    single program must have the same set of qualifiers."
1955        */
1956       if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1957           (shader->origin_upper_left != origin_upper_left ||
1958            shader->pixel_center_integer != pixel_center_integer)) {
1959          linker_error(prog, "fragment shader defined with conflicting "
1960                       "layout qualifiers for gl_FragCoord\n");
1961       }
1962 
1963       /* Update the linked shader state.  Note that uses_gl_fragcoord should
1964        * accumulate the results.  The other values should replace.  If there
1965        * are multiple redeclarations, all the fields except uses_gl_fragcoord
1966        * are already known to be the same.
1967        */
1968       if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1969          redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1970          uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1971          origin_upper_left = shader->origin_upper_left;
1972          pixel_center_integer = shader->pixel_center_integer;
1973       }
1974 
1975       linked_shader->Program->info.fs.early_fragment_tests |=
1976          shader->EarlyFragmentTests || shader->PostDepthCoverage;
1977       linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1978       linked_shader->Program->info.fs.post_depth_coverage |=
1979          shader->PostDepthCoverage;
1980 
1981       linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1982    }
1983 }
1984 
1985 /**
1986  * Performs the cross-validation of geometry shader max_vertices and
1987  * primitive type layout qualifiers for the attached geometry shaders,
1988  * and propagates them to the linked GS and linked shader program.
1989  */
1990 static void
link_gs_inout_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1991 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1992                                 struct gl_program *gl_prog,
1993                                 struct gl_shader **shader_list,
1994                                 unsigned num_shaders)
1995 {
1996    /* No in/out qualifiers defined for anything but GLSL 1.50+
1997     * geometry shaders so far.
1998     */
1999    if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
2000        prog->data->Version < 150)
2001       return;
2002 
2003    int vertices_out = -1;
2004 
2005    gl_prog->info.gs.invocations = 0;
2006    gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
2007    gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
2008 
2009    /* From the GLSL 1.50 spec, page 46:
2010     *
2011     *     "All geometry shader output layout declarations in a program
2012     *      must declare the same layout and same value for
2013     *      max_vertices. There must be at least one geometry output
2014     *      layout declaration somewhere in a program, but not all
2015     *      geometry shaders (compilation units) are required to
2016     *      declare it."
2017     */
2018 
2019    for (unsigned i = 0; i < num_shaders; i++) {
2020       struct gl_shader *shader = shader_list[i];
2021 
2022       if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
2023          if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
2024              gl_prog->info.gs.input_primitive !=
2025              shader->info.Geom.InputType) {
2026             linker_error(prog, "geometry shader defined with conflicting "
2027                          "input types\n");
2028             return;
2029          }
2030          gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2031       }
2032 
2033       if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2034          if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2035              gl_prog->info.gs.output_primitive !=
2036              shader->info.Geom.OutputType) {
2037             linker_error(prog, "geometry shader defined with conflicting "
2038                          "output types\n");
2039             return;
2040          }
2041          gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2042       }
2043 
2044       if (shader->info.Geom.VerticesOut != -1) {
2045          if (vertices_out != -1 &&
2046              vertices_out != shader->info.Geom.VerticesOut) {
2047             linker_error(prog, "geometry shader defined with conflicting "
2048                          "output vertex count (%d and %d)\n",
2049                          vertices_out, shader->info.Geom.VerticesOut);
2050             return;
2051          }
2052          vertices_out = shader->info.Geom.VerticesOut;
2053       }
2054 
2055       if (shader->info.Geom.Invocations != 0) {
2056          if (gl_prog->info.gs.invocations != 0 &&
2057              gl_prog->info.gs.invocations !=
2058              (unsigned) shader->info.Geom.Invocations) {
2059             linker_error(prog, "geometry shader defined with conflicting "
2060                          "invocation count (%d and %d)\n",
2061                          gl_prog->info.gs.invocations,
2062                          shader->info.Geom.Invocations);
2063             return;
2064          }
2065          gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2066       }
2067    }
2068 
2069    /* Just do the intrastage -> interstage propagation right now,
2070     * since we already know we're in the right type of shader program
2071     * for doing it.
2072     */
2073    if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2074       linker_error(prog,
2075                    "geometry shader didn't declare primitive input type\n");
2076       return;
2077    }
2078 
2079    if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2080       linker_error(prog,
2081                    "geometry shader didn't declare primitive output type\n");
2082       return;
2083    }
2084 
2085    if (vertices_out == -1) {
2086       linker_error(prog,
2087                    "geometry shader didn't declare max_vertices\n");
2088       return;
2089    } else {
2090       gl_prog->info.gs.vertices_out = vertices_out;
2091    }
2092 
2093    if (gl_prog->info.gs.invocations == 0)
2094       gl_prog->info.gs.invocations = 1;
2095 }
2096 
2097 
2098 /**
2099  * Perform cross-validation of compute shader local_size_{x,y,z} layout
2100  * qualifiers for the attached compute shaders, and propagate them to the
2101  * linked CS and linked shader program.
2102  */
2103 static void
link_cs_input_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)2104 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2105                                 struct gl_program *gl_prog,
2106                                 struct gl_shader **shader_list,
2107                                 unsigned num_shaders)
2108 {
2109    /* This function is called for all shader stages, but it only has an effect
2110     * for compute shaders.
2111     */
2112    if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2113       return;
2114 
2115    for (int i = 0; i < 3; i++)
2116       gl_prog->info.cs.local_size[i] = 0;
2117 
2118    gl_prog->info.cs.local_size_variable = false;
2119 
2120    /* From the ARB_compute_shader spec, in the section describing local size
2121     * declarations:
2122     *
2123     *     If multiple compute shaders attached to a single program object
2124     *     declare local work-group size, the declarations must be identical;
2125     *     otherwise a link-time error results. Furthermore, if a program
2126     *     object contains any compute shaders, at least one must contain an
2127     *     input layout qualifier specifying the local work sizes of the
2128     *     program, or a link-time error will occur.
2129     */
2130    for (unsigned sh = 0; sh < num_shaders; sh++) {
2131       struct gl_shader *shader = shader_list[sh];
2132 
2133       if (shader->info.Comp.LocalSize[0] != 0) {
2134          if (gl_prog->info.cs.local_size[0] != 0) {
2135             for (int i = 0; i < 3; i++) {
2136                if (gl_prog->info.cs.local_size[i] !=
2137                    shader->info.Comp.LocalSize[i]) {
2138                   linker_error(prog, "compute shader defined with conflicting "
2139                                "local sizes\n");
2140                   return;
2141                }
2142             }
2143          }
2144          for (int i = 0; i < 3; i++) {
2145             gl_prog->info.cs.local_size[i] =
2146                shader->info.Comp.LocalSize[i];
2147          }
2148       } else if (shader->info.Comp.LocalSizeVariable) {
2149          if (gl_prog->info.cs.local_size[0] != 0) {
2150             /* The ARB_compute_variable_group_size spec says:
2151              *
2152              *     If one compute shader attached to a program declares a
2153              *     variable local group size and a second compute shader
2154              *     attached to the same program declares a fixed local group
2155              *     size, a link-time error results.
2156              */
2157             linker_error(prog, "compute shader defined with both fixed and "
2158                          "variable local group size\n");
2159             return;
2160          }
2161          gl_prog->info.cs.local_size_variable = true;
2162       }
2163    }
2164 
2165    /* Just do the intrastage -> interstage propagation right now,
2166     * since we already know we're in the right type of shader program
2167     * for doing it.
2168     */
2169    if (gl_prog->info.cs.local_size[0] == 0 &&
2170        !gl_prog->info.cs.local_size_variable) {
2171       linker_error(prog, "compute shader must contain a fixed or a variable "
2172                          "local group size\n");
2173       return;
2174    }
2175 }
2176 
2177 
2178 /**
2179  * Combine a group of shaders for a single stage to generate a linked shader
2180  *
2181  * \note
2182  * If this function is supplied a single shader, it is cloned, and the new
2183  * shader is returned.
2184  */
2185 struct gl_linked_shader *
link_intrastage_shaders(void * mem_ctx,struct gl_context * ctx,struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders,bool allow_missing_main)2186 link_intrastage_shaders(void *mem_ctx,
2187                         struct gl_context *ctx,
2188                         struct gl_shader_program *prog,
2189                         struct gl_shader **shader_list,
2190                         unsigned num_shaders,
2191                         bool allow_missing_main)
2192 {
2193    struct gl_uniform_block *ubo_blocks = NULL;
2194    struct gl_uniform_block *ssbo_blocks = NULL;
2195    unsigned num_ubo_blocks = 0;
2196    unsigned num_ssbo_blocks = 0;
2197 
2198    /* Check that global variables defined in multiple shaders are consistent.
2199     */
2200    glsl_symbol_table variables;
2201    for (unsigned i = 0; i < num_shaders; i++) {
2202       if (shader_list[i] == NULL)
2203          continue;
2204       cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2205    }
2206 
2207    if (!prog->data->LinkStatus)
2208       return NULL;
2209 
2210    /* Check that interface blocks defined in multiple shaders are consistent.
2211     */
2212    validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2213                                         num_shaders);
2214    if (!prog->data->LinkStatus)
2215       return NULL;
2216 
2217    /* Check that there is only a single definition of each function signature
2218     * across all shaders.
2219     */
2220    for (unsigned i = 0; i < (num_shaders - 1); i++) {
2221       foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2222          ir_function *const f = node->as_function();
2223 
2224          if (f == NULL)
2225             continue;
2226 
2227          for (unsigned j = i + 1; j < num_shaders; j++) {
2228             ir_function *const other =
2229                shader_list[j]->symbols->get_function(f->name);
2230 
2231             /* If the other shader has no function (and therefore no function
2232              * signatures) with the same name, skip to the next shader.
2233              */
2234             if (other == NULL)
2235                continue;
2236 
2237             foreach_in_list(ir_function_signature, sig, &f->signatures) {
2238                if (!sig->is_defined)
2239                   continue;
2240 
2241                ir_function_signature *other_sig =
2242                   other->exact_matching_signature(NULL, &sig->parameters);
2243 
2244                if (other_sig != NULL && other_sig->is_defined) {
2245                   linker_error(prog, "function `%s' is multiply defined\n",
2246                                f->name);
2247                   return NULL;
2248                }
2249             }
2250          }
2251       }
2252    }
2253 
2254    /* Find the shader that defines main, and make a clone of it.
2255     *
2256     * Starting with the clone, search for undefined references.  If one is
2257     * found, find the shader that defines it.  Clone the reference and add
2258     * it to the shader.  Repeat until there are no undefined references or
2259     * until a reference cannot be resolved.
2260     */
2261    gl_shader *main = NULL;
2262    for (unsigned i = 0; i < num_shaders; i++) {
2263       if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2264          main = shader_list[i];
2265          break;
2266       }
2267    }
2268 
2269    if (main == NULL && allow_missing_main)
2270       main = shader_list[0];
2271 
2272    if (main == NULL) {
2273       linker_error(prog, "%s shader lacks `main'\n",
2274                    _mesa_shader_stage_to_string(shader_list[0]->Stage));
2275       return NULL;
2276    }
2277 
2278    gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2279    linked->Stage = shader_list[0]->Stage;
2280 
2281    /* Create program and attach it to the linked shader */
2282    struct gl_program *gl_prog =
2283       ctx->Driver.NewProgram(ctx,
2284                              _mesa_shader_stage_to_program(shader_list[0]->Stage),
2285                              prog->Name, false);
2286    if (!gl_prog) {
2287       prog->data->LinkStatus = linking_failure;
2288       _mesa_delete_linked_shader(ctx, linked);
2289       return NULL;
2290    }
2291 
2292    _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2293 
2294    /* Don't use _mesa_reference_program() just take ownership */
2295    linked->Program = gl_prog;
2296 
2297    linked->ir = new(linked) exec_list;
2298    clone_ir_list(mem_ctx, linked->ir, main->ir);
2299 
2300    link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2301    link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2302    link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2303    link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2304    link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2305 
2306    if (linked->Stage != MESA_SHADER_FRAGMENT)
2307       link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2308 
2309    link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2310 
2311    populate_symbol_table(linked, shader_list[0]->symbols);
2312 
2313    /* The pointer to the main function in the final linked shader (i.e., the
2314     * copy of the original shader that contained the main function).
2315     */
2316    ir_function_signature *const main_sig =
2317       _mesa_get_main_function_signature(linked->symbols);
2318 
2319    /* Move any instructions other than variable declarations or function
2320     * declarations into main.
2321     */
2322    if (main_sig != NULL) {
2323       exec_node *insertion_point =
2324          move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2325                                linked);
2326 
2327       for (unsigned i = 0; i < num_shaders; i++) {
2328          if (shader_list[i] == main)
2329             continue;
2330 
2331          insertion_point = move_non_declarations(shader_list[i]->ir,
2332                                                  insertion_point, true, linked);
2333       }
2334    }
2335 
2336    if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2337       _mesa_delete_linked_shader(ctx, linked);
2338       return NULL;
2339    }
2340 
2341    /* Make a pass over all variable declarations to ensure that arrays with
2342     * unspecified sizes have a size specified.  The size is inferred from the
2343     * max_array_access field.
2344     */
2345    array_sizing_visitor v;
2346    v.run(linked->ir);
2347    v.fixup_unnamed_interface_types();
2348 
2349    /* Link up uniform blocks defined within this stage. */
2350    link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2351                        &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2352 
2353    if (!prog->data->LinkStatus) {
2354       _mesa_delete_linked_shader(ctx, linked);
2355       return NULL;
2356    }
2357 
2358    /* Copy ubo blocks to linked shader list */
2359    linked->Program->sh.UniformBlocks =
2360       ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2361    ralloc_steal(linked, ubo_blocks);
2362    for (unsigned i = 0; i < num_ubo_blocks; i++) {
2363       linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2364    }
2365    linked->Program->info.num_ubos = num_ubo_blocks;
2366 
2367    /* Copy ssbo blocks to linked shader list */
2368    linked->Program->sh.ShaderStorageBlocks =
2369       ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2370    ralloc_steal(linked, ssbo_blocks);
2371    for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2372       linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2373    }
2374    linked->Program->info.num_ssbos = num_ssbo_blocks;
2375 
2376    /* At this point linked should contain all of the linked IR, so
2377     * validate it to make sure nothing went wrong.
2378     */
2379    validate_ir_tree(linked->ir);
2380 
2381    /* Set the size of geometry shader input arrays */
2382    if (linked->Stage == MESA_SHADER_GEOMETRY) {
2383       unsigned num_vertices =
2384          vertices_per_prim(gl_prog->info.gs.input_primitive);
2385       array_resize_visitor input_resize_visitor(num_vertices, prog,
2386                                                 MESA_SHADER_GEOMETRY);
2387       foreach_in_list(ir_instruction, ir, linked->ir) {
2388          ir->accept(&input_resize_visitor);
2389       }
2390    }
2391 
2392    if (ctx->Const.VertexID_is_zero_based)
2393       lower_vertex_id(linked);
2394 
2395    if (ctx->Const.LowerCsDerivedVariables)
2396       lower_cs_derived(linked);
2397 
2398 #ifdef DEBUG
2399    /* Compute the source checksum. */
2400    linked->SourceChecksum = 0;
2401    for (unsigned i = 0; i < num_shaders; i++) {
2402       if (shader_list[i] == NULL)
2403          continue;
2404       linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2405    }
2406 #endif
2407 
2408    return linked;
2409 }
2410 
2411 /**
2412  * Update the sizes of linked shader uniform arrays to the maximum
2413  * array index used.
2414  *
2415  * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2416  *
2417  *     If one or more elements of an array are active,
2418  *     GetActiveUniform will return the name of the array in name,
2419  *     subject to the restrictions listed above. The type of the array
2420  *     is returned in type. The size parameter contains the highest
2421  *     array element index used, plus one. The compiler or linker
2422  *     determines the highest index used.  There will be only one
2423  *     active uniform reported by the GL per uniform array.
2424 
2425  */
2426 static void
update_array_sizes(struct gl_shader_program * prog)2427 update_array_sizes(struct gl_shader_program *prog)
2428 {
2429    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2430          if (prog->_LinkedShaders[i] == NULL)
2431             continue;
2432 
2433       bool types_were_updated = false;
2434 
2435       foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2436          ir_variable *const var = node->as_variable();
2437 
2438          if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2439              !var->type->is_array())
2440             continue;
2441 
2442          /* GL_ARB_uniform_buffer_object says that std140 uniforms
2443           * will not be eliminated.  Since we always do std140, just
2444           * don't resize arrays in UBOs.
2445           *
2446           * Atomic counters are supposed to get deterministic
2447           * locations assigned based on the declaration ordering and
2448           * sizes, array compaction would mess that up.
2449           *
2450           * Subroutine uniforms are not removed.
2451           */
2452          if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2453              var->type->contains_subroutine() || var->constant_initializer)
2454             continue;
2455 
2456          int size = var->data.max_array_access;
2457          for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2458                if (prog->_LinkedShaders[j] == NULL)
2459                   continue;
2460 
2461             foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2462                ir_variable *other_var = node2->as_variable();
2463                if (!other_var)
2464                   continue;
2465 
2466                if (strcmp(var->name, other_var->name) == 0 &&
2467                    other_var->data.max_array_access > size) {
2468                   size = other_var->data.max_array_access;
2469                }
2470             }
2471          }
2472 
2473          if (size + 1 != (int)var->type->length) {
2474             /* If this is a built-in uniform (i.e., it's backed by some
2475              * fixed-function state), adjust the number of state slots to
2476              * match the new array size.  The number of slots per array entry
2477              * is not known.  It seems safe to assume that the total number of
2478              * slots is an integer multiple of the number of array elements.
2479              * Determine the number of slots per array element by dividing by
2480              * the old (total) size.
2481              */
2482             const unsigned num_slots = var->get_num_state_slots();
2483             if (num_slots > 0) {
2484                var->set_num_state_slots((size + 1)
2485                                         * (num_slots / var->type->length));
2486             }
2487 
2488             var->type = glsl_type::get_array_instance(var->type->fields.array,
2489                                                       size + 1);
2490             types_were_updated = true;
2491          }
2492       }
2493 
2494       /* Update the types of dereferences in case we changed any. */
2495       if (types_were_updated) {
2496          deref_type_updater v;
2497          v.run(prog->_LinkedShaders[i]->ir);
2498       }
2499    }
2500 }
2501 
2502 /**
2503  * Resize tessellation evaluation per-vertex inputs to the size of
2504  * tessellation control per-vertex outputs.
2505  */
2506 static void
resize_tes_inputs(struct gl_context * ctx,struct gl_shader_program * prog)2507 resize_tes_inputs(struct gl_context *ctx,
2508                   struct gl_shader_program *prog)
2509 {
2510    if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2511       return;
2512 
2513    gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2514    gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2515 
2516    /* If no control shader is present, then the TES inputs are statically
2517     * sized to MaxPatchVertices; the actual size of the arrays won't be
2518     * known until draw time.
2519     */
2520    const int num_vertices = tcs
2521       ? tcs->Program->info.tess.tcs_vertices_out
2522       : ctx->Const.MaxPatchVertices;
2523 
2524    array_resize_visitor input_resize_visitor(num_vertices, prog,
2525                                              MESA_SHADER_TESS_EVAL);
2526    foreach_in_list(ir_instruction, ir, tes->ir) {
2527       ir->accept(&input_resize_visitor);
2528    }
2529 
2530    if (tcs) {
2531       /* Convert the gl_PatchVerticesIn system value into a constant, since
2532        * the value is known at this point.
2533        */
2534       foreach_in_list(ir_instruction, ir, tes->ir) {
2535          ir_variable *var = ir->as_variable();
2536          if (var && var->data.mode == ir_var_system_value &&
2537              var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2538             void *mem_ctx = ralloc_parent(var);
2539             var->data.location = 0;
2540             var->data.explicit_location = false;
2541             var->data.mode = ir_var_auto;
2542             var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2543          }
2544       }
2545    }
2546 }
2547 
2548 /**
2549  * Find a contiguous set of available bits in a bitmask.
2550  *
2551  * \param used_mask     Bits representing used (1) and unused (0) locations
2552  * \param needed_count  Number of contiguous bits needed.
2553  *
2554  * \return
2555  * Base location of the available bits on success or -1 on failure.
2556  */
2557 static int
find_available_slots(unsigned used_mask,unsigned needed_count)2558 find_available_slots(unsigned used_mask, unsigned needed_count)
2559 {
2560    unsigned needed_mask = (1 << needed_count) - 1;
2561    const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2562 
2563    /* The comparison to 32 is redundant, but without it GCC emits "warning:
2564     * cannot optimize possibly infinite loops" for the loop below.
2565     */
2566    if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2567       return -1;
2568 
2569    for (int i = 0; i <= max_bit_to_test; i++) {
2570       if ((needed_mask & ~used_mask) == needed_mask)
2571          return i;
2572 
2573       needed_mask <<= 1;
2574    }
2575 
2576    return -1;
2577 }
2578 
2579 
2580 #define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
2581 
2582 /**
2583  * Assign locations for either VS inputs or FS outputs
2584  *
2585  * \param mem_ctx       Temporary ralloc context used for linking
2586  * \param prog          Shader program whose variables need locations assigned
2587  * \param constants     Driver specific constant values for the program.
2588  * \param target_index  Selector for the program target to receive location
2589  *                      assignmnets.  Must be either \c MESA_SHADER_VERTEX or
2590  *                      \c MESA_SHADER_FRAGMENT.
2591  *
2592  * \return
2593  * If locations are successfully assigned, true is returned.  Otherwise an
2594  * error is emitted to the shader link log and false is returned.
2595  */
2596 static bool
assign_attribute_or_color_locations(void * mem_ctx,gl_shader_program * prog,struct gl_constants * constants,unsigned target_index)2597 assign_attribute_or_color_locations(void *mem_ctx,
2598                                     gl_shader_program *prog,
2599                                     struct gl_constants *constants,
2600                                     unsigned target_index)
2601 {
2602    /* Maximum number of generic locations.  This corresponds to either the
2603     * maximum number of draw buffers or the maximum number of generic
2604     * attributes.
2605     */
2606    unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2607       constants->Program[target_index].MaxAttribs :
2608       MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2609 
2610    /* Mark invalid locations as being used.
2611     */
2612    unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
2613    unsigned double_storage_locations = 0;
2614 
2615    assert((target_index == MESA_SHADER_VERTEX)
2616           || (target_index == MESA_SHADER_FRAGMENT));
2617 
2618    gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2619    if (sh == NULL)
2620       return true;
2621 
2622    /* Operate in a total of four passes.
2623     *
2624     * 1. Invalidate the location assignments for all vertex shader inputs.
2625     *
2626     * 2. Assign locations for inputs that have user-defined (via
2627     *    glBindVertexAttribLocation) locations and outputs that have
2628     *    user-defined locations (via glBindFragDataLocation).
2629     *
2630     * 3. Sort the attributes without assigned locations by number of slots
2631     *    required in decreasing order.  Fragmentation caused by attribute
2632     *    locations assigned by the application may prevent large attributes
2633     *    from having enough contiguous space.
2634     *
2635     * 4. Assign locations to any inputs without assigned locations.
2636     */
2637 
2638    const int generic_base = (target_index == MESA_SHADER_VERTEX)
2639       ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2640 
2641    const enum ir_variable_mode direction =
2642       (target_index == MESA_SHADER_VERTEX)
2643       ? ir_var_shader_in : ir_var_shader_out;
2644 
2645 
2646    /* Temporary storage for the set of attributes that need locations assigned.
2647     */
2648    struct temp_attr {
2649       unsigned slots;
2650       ir_variable *var;
2651 
2652       /* Used below in the call to qsort. */
2653       static int compare(const void *a, const void *b)
2654       {
2655          const temp_attr *const l = (const temp_attr *) a;
2656          const temp_attr *const r = (const temp_attr *) b;
2657 
2658          /* Reversed because we want a descending order sort below. */
2659          return r->slots - l->slots;
2660       }
2661    } to_assign[32];
2662    assert(max_index <= 32);
2663 
2664    /* Temporary array for the set of attributes that have locations assigned,
2665     * for the purpose of checking overlapping slots/components of (non-ES)
2666     * fragment shader outputs.
2667     */
2668    ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2669    unsigned assigned_attr = 0;
2670 
2671    unsigned num_attr = 0;
2672 
2673    foreach_in_list(ir_instruction, node, sh->ir) {
2674       ir_variable *const var = node->as_variable();
2675 
2676       if ((var == NULL) || (var->data.mode != (unsigned) direction))
2677          continue;
2678 
2679       if (var->data.explicit_location) {
2680          var->data.is_unmatched_generic_inout = 0;
2681          if ((var->data.location >= (int)(max_index + generic_base))
2682              || (var->data.location < 0)) {
2683             linker_error(prog,
2684                          "invalid explicit location %d specified for `%s'\n",
2685                          (var->data.location < 0)
2686                          ? var->data.location
2687                          : var->data.location - generic_base,
2688                          var->name);
2689             return false;
2690          }
2691       } else if (target_index == MESA_SHADER_VERTEX) {
2692          unsigned binding;
2693 
2694          if (prog->AttributeBindings->get(binding, var->name)) {
2695             assert(binding >= VERT_ATTRIB_GENERIC0);
2696             var->data.location = binding;
2697             var->data.is_unmatched_generic_inout = 0;
2698          }
2699       } else if (target_index == MESA_SHADER_FRAGMENT) {
2700          unsigned binding;
2701          unsigned index;
2702          const char *name = var->name;
2703          const glsl_type *type = var->type;
2704 
2705          while (type) {
2706             /* Check if there's a binding for the variable name */
2707             if (prog->FragDataBindings->get(binding, name)) {
2708                assert(binding >= FRAG_RESULT_DATA0);
2709                var->data.location = binding;
2710                var->data.is_unmatched_generic_inout = 0;
2711 
2712                if (prog->FragDataIndexBindings->get(index, name)) {
2713                   var->data.index = index;
2714                }
2715                break;
2716             }
2717 
2718             /* If not, but it's an array type, look for name[0] */
2719             if (type->is_array()) {
2720                name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2721                type = type->fields.array;
2722                continue;
2723             }
2724 
2725             break;
2726          }
2727       }
2728 
2729       if (strcmp(var->name, "gl_LastFragData") == 0)
2730          continue;
2731 
2732       /* From GL4.5 core spec, section 15.2 (Shader Execution):
2733        *
2734        *     "Output binding assignments will cause LinkProgram to fail:
2735        *     ...
2736        *     If the program has an active output assigned to a location greater
2737        *     than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2738        *     an active output assigned an index greater than or equal to one;"
2739        */
2740       if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2741           var->data.location - generic_base >=
2742           (int) constants->MaxDualSourceDrawBuffers) {
2743          linker_error(prog,
2744                       "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2745                       "with index %u for %s\n",
2746                       var->data.location - generic_base, var->data.index,
2747                       var->name);
2748          return false;
2749       }
2750 
2751       const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2752 
2753       /* If the variable is not a built-in and has a location statically
2754        * assigned in the shader (presumably via a layout qualifier), make sure
2755        * that it doesn't collide with other assigned locations.  Otherwise,
2756        * add it to the list of variables that need linker-assigned locations.
2757        */
2758       if (var->data.location != -1) {
2759          if (var->data.location >= generic_base && var->data.index < 1) {
2760             /* From page 61 of the OpenGL 4.0 spec:
2761              *
2762              *     "LinkProgram will fail if the attribute bindings assigned
2763              *     by BindAttribLocation do not leave not enough space to
2764              *     assign a location for an active matrix attribute or an
2765              *     active attribute array, both of which require multiple
2766              *     contiguous generic attributes."
2767              *
2768              * I think above text prohibits the aliasing of explicit and
2769              * automatic assignments. But, aliasing is allowed in manual
2770              * assignments of attribute locations. See below comments for
2771              * the details.
2772              *
2773              * From OpenGL 4.0 spec, page 61:
2774              *
2775              *     "It is possible for an application to bind more than one
2776              *     attribute name to the same location. This is referred to as
2777              *     aliasing. This will only work if only one of the aliased
2778              *     attributes is active in the executable program, or if no
2779              *     path through the shader consumes more than one attribute of
2780              *     a set of attributes aliased to the same location. A link
2781              *     error can occur if the linker determines that every path
2782              *     through the shader consumes multiple aliased attributes,
2783              *     but implementations are not required to generate an error
2784              *     in this case."
2785              *
2786              * From GLSL 4.30 spec, page 54:
2787              *
2788              *    "A program will fail to link if any two non-vertex shader
2789              *     input variables are assigned to the same location. For
2790              *     vertex shaders, multiple input variables may be assigned
2791              *     to the same location using either layout qualifiers or via
2792              *     the OpenGL API. However, such aliasing is intended only to
2793              *     support vertex shaders where each execution path accesses
2794              *     at most one input per each location. Implementations are
2795              *     permitted, but not required, to generate link-time errors
2796              *     if they detect that every path through the vertex shader
2797              *     executable accesses multiple inputs assigned to any single
2798              *     location. For all shader types, a program will fail to link
2799              *     if explicit location assignments leave the linker unable
2800              *     to find space for other variables without explicit
2801              *     assignments."
2802              *
2803              * From OpenGL ES 3.0 spec, page 56:
2804              *
2805              *    "Binding more than one attribute name to the same location
2806              *     is referred to as aliasing, and is not permitted in OpenGL
2807              *     ES Shading Language 3.00 vertex shaders. LinkProgram will
2808              *     fail when this condition exists. However, aliasing is
2809              *     possible in OpenGL ES Shading Language 1.00 vertex shaders.
2810              *     This will only work if only one of the aliased attributes
2811              *     is active in the executable program, or if no path through
2812              *     the shader consumes more than one attribute of a set of
2813              *     attributes aliased to the same location. A link error can
2814              *     occur if the linker determines that every path through the
2815              *     shader consumes multiple aliased attributes, but implemen-
2816              *     tations are not required to generate an error in this case."
2817              *
2818              * After looking at above references from OpenGL, OpenGL ES and
2819              * GLSL specifications, we allow aliasing of vertex input variables
2820              * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2821              *
2822              * NOTE: This is not required by the spec but its worth mentioning
2823              * here that we're not doing anything to make sure that no path
2824              * through the vertex shader executable accesses multiple inputs
2825              * assigned to any single location.
2826              */
2827 
2828             /* Mask representing the contiguous slots that will be used by
2829              * this attribute.
2830              */
2831             const unsigned attr = var->data.location - generic_base;
2832             const unsigned use_mask = (1 << slots) - 1;
2833             const char *const string = (target_index == MESA_SHADER_VERTEX)
2834                ? "vertex shader input" : "fragment shader output";
2835 
2836             /* Generate a link error if the requested locations for this
2837              * attribute exceed the maximum allowed attribute location.
2838              */
2839             if (attr + slots > max_index) {
2840                linker_error(prog,
2841                            "insufficient contiguous locations "
2842                            "available for %s `%s' %d %d %d\n", string,
2843                            var->name, used_locations, use_mask, attr);
2844                return false;
2845             }
2846 
2847             /* Generate a link error if the set of bits requested for this
2848              * attribute overlaps any previously allocated bits.
2849              */
2850             if ((~(use_mask << attr) & used_locations) != used_locations) {
2851                if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2852                   /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2853                    * 4.40 spec:
2854                    *
2855                    *    "Additionally, for fragment shader outputs, if two
2856                    *    variables are placed within the same location, they
2857                    *    must have the same underlying type (floating-point or
2858                    *    integer). No component aliasing of output variables or
2859                    *    members is allowed.
2860                    */
2861                   for (unsigned i = 0; i < assigned_attr; i++) {
2862                      unsigned assigned_slots =
2863                         assigned[i]->type->count_attribute_slots(false);
2864                      unsigned assig_attr =
2865                         assigned[i]->data.location - generic_base;
2866                      unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2867 
2868                      if ((assigned_use_mask << assig_attr) &
2869                          (use_mask << attr)) {
2870 
2871                         const glsl_type *assigned_type =
2872                            assigned[i]->type->without_array();
2873                         const glsl_type *type = var->type->without_array();
2874                         if (assigned_type->base_type != type->base_type) {
2875                            linker_error(prog, "types do not match for aliased"
2876                                         " %ss %s and %s\n", string,
2877                                         assigned[i]->name, var->name);
2878                            return false;
2879                         }
2880 
2881                         unsigned assigned_component_mask =
2882                            ((1 << assigned_type->vector_elements) - 1) <<
2883                            assigned[i]->data.location_frac;
2884                         unsigned component_mask =
2885                            ((1 << type->vector_elements) - 1) <<
2886                            var->data.location_frac;
2887                         if (assigned_component_mask & component_mask) {
2888                            linker_error(prog, "overlapping component is "
2889                                         "assigned to %ss %s and %s "
2890                                         "(component=%d)\n",
2891                                         string, assigned[i]->name, var->name,
2892                                         var->data.location_frac);
2893                            return false;
2894                         }
2895                      }
2896                   }
2897                } else if (target_index == MESA_SHADER_FRAGMENT ||
2898                           (prog->IsES && prog->data->Version >= 300)) {
2899                   linker_error(prog, "overlapping location is assigned "
2900                                "to %s `%s' %d %d %d\n", string, var->name,
2901                                used_locations, use_mask, attr);
2902                   return false;
2903                } else {
2904                   linker_warning(prog, "overlapping location is assigned "
2905                                  "to %s `%s' %d %d %d\n", string, var->name,
2906                                  used_locations, use_mask, attr);
2907                }
2908             }
2909 
2910             if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2911                /* Only track assigned variables for non-ES fragment shaders
2912                 * to avoid overflowing the array.
2913                 *
2914                 * At most one variable per fragment output component should
2915                 * reach this.
2916                 */
2917                assert(assigned_attr < ARRAY_SIZE(assigned));
2918                assigned[assigned_attr] = var;
2919                assigned_attr++;
2920             }
2921 
2922             used_locations |= (use_mask << attr);
2923 
2924             /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2925              *
2926              * "A program with more than the value of MAX_VERTEX_ATTRIBS
2927              *  active attribute variables may fail to link, unless
2928              *  device-dependent optimizations are able to make the program
2929              *  fit within available hardware resources. For the purposes
2930              *  of this test, attribute variables of the type dvec3, dvec4,
2931              *  dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2932              *  count as consuming twice as many attributes as equivalent
2933              *  single-precision types. While these types use the same number
2934              *  of generic attributes as their single-precision equivalents,
2935              *  implementations are permitted to consume two single-precision
2936              *  vectors of internal storage for each three- or four-component
2937              *  double-precision vector."
2938              *
2939              * Mark this attribute slot as taking up twice as much space
2940              * so we can count it properly against limits.  According to
2941              * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2942              * is optional behavior, but it seems preferable.
2943              */
2944             if (var->type->without_array()->is_dual_slot())
2945                double_storage_locations |= (use_mask << attr);
2946          }
2947 
2948          continue;
2949       }
2950 
2951       if (num_attr >= max_index) {
2952          linker_error(prog, "too many %s (max %u)",
2953                       target_index == MESA_SHADER_VERTEX ?
2954                       "vertex shader inputs" : "fragment shader outputs",
2955                       max_index);
2956          return false;
2957       }
2958       to_assign[num_attr].slots = slots;
2959       to_assign[num_attr].var = var;
2960       num_attr++;
2961    }
2962 
2963    if (target_index == MESA_SHADER_VERTEX) {
2964       unsigned total_attribs_size =
2965          _mesa_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
2966          _mesa_bitcount(double_storage_locations);
2967       if (total_attribs_size > max_index) {
2968          linker_error(prog,
2969                       "attempt to use %d vertex attribute slots only %d available ",
2970                       total_attribs_size, max_index);
2971          return false;
2972       }
2973    }
2974 
2975    /* If all of the attributes were assigned locations by the application (or
2976     * are built-in attributes with fixed locations), return early.  This should
2977     * be the common case.
2978     */
2979    if (num_attr == 0)
2980       return true;
2981 
2982    qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2983 
2984    if (target_index == MESA_SHADER_VERTEX) {
2985       /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS.  It can
2986        * only be explicitly assigned by via glBindAttribLocation.  Mark it as
2987        * reserved to prevent it from being automatically allocated below.
2988        */
2989       find_deref_visitor find("gl_Vertex");
2990       find.run(sh->ir);
2991       if (find.variable_found())
2992          used_locations |= (1 << 0);
2993    }
2994 
2995    for (unsigned i = 0; i < num_attr; i++) {
2996       /* Mask representing the contiguous slots that will be used by this
2997        * attribute.
2998        */
2999       const unsigned use_mask = (1 << to_assign[i].slots) - 1;
3000 
3001       int location = find_available_slots(used_locations, to_assign[i].slots);
3002 
3003       if (location < 0) {
3004          const char *const string = (target_index == MESA_SHADER_VERTEX)
3005             ? "vertex shader input" : "fragment shader output";
3006 
3007          linker_error(prog,
3008                       "insufficient contiguous locations "
3009                       "available for %s `%s'\n",
3010                       string, to_assign[i].var->name);
3011          return false;
3012       }
3013 
3014       to_assign[i].var->data.location = generic_base + location;
3015       to_assign[i].var->data.is_unmatched_generic_inout = 0;
3016       used_locations |= (use_mask << location);
3017 
3018       if (to_assign[i].var->type->without_array()->is_dual_slot())
3019          double_storage_locations |= (use_mask << location);
3020    }
3021 
3022    /* Now that we have all the locations, from the GL 4.5 core spec, section
3023     * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3024     * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3025     * as equivalent single-precision types.
3026     */
3027    if (target_index == MESA_SHADER_VERTEX) {
3028       unsigned total_attribs_size =
3029          _mesa_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3030          _mesa_bitcount(double_storage_locations);
3031       if (total_attribs_size > max_index) {
3032          linker_error(prog,
3033                       "attempt to use %d vertex attribute slots only %d available ",
3034                       total_attribs_size, max_index);
3035          return false;
3036       }
3037    }
3038 
3039    return true;
3040 }
3041 
3042 /**
3043  * Match explicit locations of outputs to inputs and deactivate the
3044  * unmatch flag if found so we don't optimise them away.
3045  */
3046 static void
match_explicit_outputs_to_inputs(gl_linked_shader * producer,gl_linked_shader * consumer)3047 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3048                                  gl_linked_shader *consumer)
3049 {
3050    glsl_symbol_table parameters;
3051    ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3052       { {NULL, NULL} };
3053 
3054    /* Find all shader outputs in the "producer" stage.
3055     */
3056    foreach_in_list(ir_instruction, node, producer->ir) {
3057       ir_variable *const var = node->as_variable();
3058 
3059       if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3060          continue;
3061 
3062       if (var->data.explicit_location &&
3063           var->data.location >= VARYING_SLOT_VAR0) {
3064          const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3065          if (explicit_locations[idx][var->data.location_frac] == NULL)
3066             explicit_locations[idx][var->data.location_frac] = var;
3067       }
3068    }
3069 
3070    /* Match inputs to outputs */
3071    foreach_in_list(ir_instruction, node, consumer->ir) {
3072       ir_variable *const input = node->as_variable();
3073 
3074       if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3075          continue;
3076 
3077       ir_variable *output = NULL;
3078       if (input->data.explicit_location
3079           && input->data.location >= VARYING_SLOT_VAR0) {
3080          output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3081             [input->data.location_frac];
3082 
3083          if (output != NULL){
3084             input->data.is_unmatched_generic_inout = 0;
3085             output->data.is_unmatched_generic_inout = 0;
3086          }
3087       }
3088    }
3089 }
3090 
3091 /**
3092  * Store the gl_FragDepth layout in the gl_shader_program struct.
3093  */
3094 static void
store_fragdepth_layout(struct gl_shader_program * prog)3095 store_fragdepth_layout(struct gl_shader_program *prog)
3096 {
3097    if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3098       return;
3099    }
3100 
3101    struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3102 
3103    /* We don't look up the gl_FragDepth symbol directly because if
3104     * gl_FragDepth is not used in the shader, it's removed from the IR.
3105     * However, the symbol won't be removed from the symbol table.
3106     *
3107     * We're only interested in the cases where the variable is NOT removed
3108     * from the IR.
3109     */
3110    foreach_in_list(ir_instruction, node, ir) {
3111       ir_variable *const var = node->as_variable();
3112 
3113       if (var == NULL || var->data.mode != ir_var_shader_out) {
3114          continue;
3115       }
3116 
3117       if (strcmp(var->name, "gl_FragDepth") == 0) {
3118          switch (var->data.depth_layout) {
3119          case ir_depth_layout_none:
3120             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3121             return;
3122          case ir_depth_layout_any:
3123             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3124             return;
3125          case ir_depth_layout_greater:
3126             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3127             return;
3128          case ir_depth_layout_less:
3129             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3130             return;
3131          case ir_depth_layout_unchanged:
3132             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3133             return;
3134          default:
3135             assert(0);
3136             return;
3137          }
3138       }
3139    }
3140 }
3141 
3142 /**
3143  * Validate the resources used by a program versus the implementation limits
3144  */
3145 static void
check_resources(struct gl_context * ctx,struct gl_shader_program * prog)3146 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3147 {
3148    unsigned total_uniform_blocks = 0;
3149    unsigned total_shader_storage_blocks = 0;
3150 
3151    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3152       struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3153 
3154       if (sh == NULL)
3155          continue;
3156 
3157       if (sh->Program->info.num_textures >
3158           ctx->Const.Program[i].MaxTextureImageUnits) {
3159          linker_error(prog, "Too many %s shader texture samplers\n",
3160                       _mesa_shader_stage_to_string(i));
3161       }
3162 
3163       if (sh->num_uniform_components >
3164           ctx->Const.Program[i].MaxUniformComponents) {
3165          if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3166             linker_warning(prog, "Too many %s shader default uniform block "
3167                            "components, but the driver will try to optimize "
3168                            "them out; this is non-portable out-of-spec "
3169                            "behavior\n",
3170                            _mesa_shader_stage_to_string(i));
3171          } else {
3172             linker_error(prog, "Too many %s shader default uniform block "
3173                          "components\n",
3174                          _mesa_shader_stage_to_string(i));
3175          }
3176       }
3177 
3178       if (sh->num_combined_uniform_components >
3179           ctx->Const.Program[i].MaxCombinedUniformComponents) {
3180          if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3181             linker_warning(prog, "Too many %s shader uniform components, "
3182                            "but the driver will try to optimize them out; "
3183                            "this is non-portable out-of-spec behavior\n",
3184                            _mesa_shader_stage_to_string(i));
3185          } else {
3186             linker_error(prog, "Too many %s shader uniform components\n",
3187                          _mesa_shader_stage_to_string(i));
3188          }
3189       }
3190 
3191       total_shader_storage_blocks += sh->Program->info.num_ssbos;
3192       total_uniform_blocks += sh->Program->info.num_ubos;
3193 
3194       const unsigned max_uniform_blocks =
3195          ctx->Const.Program[i].MaxUniformBlocks;
3196       if (max_uniform_blocks < sh->Program->info.num_ubos) {
3197          linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3198                       _mesa_shader_stage_to_string(i),
3199                       sh->Program->info.num_ubos, max_uniform_blocks);
3200       }
3201 
3202       const unsigned max_shader_storage_blocks =
3203          ctx->Const.Program[i].MaxShaderStorageBlocks;
3204       if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3205          linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3206                       _mesa_shader_stage_to_string(i),
3207                       sh->Program->info.num_ssbos, max_shader_storage_blocks);
3208       }
3209    }
3210 
3211    if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3212       linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3213                    total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3214    }
3215 
3216    if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3217       linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3218                    total_shader_storage_blocks,
3219                    ctx->Const.MaxCombinedShaderStorageBlocks);
3220    }
3221 
3222    for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3223       if (prog->data->UniformBlocks[i].UniformBufferSize >
3224           ctx->Const.MaxUniformBlockSize) {
3225          linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3226                       prog->data->UniformBlocks[i].Name,
3227                       prog->data->UniformBlocks[i].UniformBufferSize,
3228                       ctx->Const.MaxUniformBlockSize);
3229       }
3230    }
3231 
3232    for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3233       if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3234           ctx->Const.MaxShaderStorageBlockSize) {
3235          linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3236                       prog->data->ShaderStorageBlocks[i].Name,
3237                       prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3238                       ctx->Const.MaxShaderStorageBlockSize);
3239       }
3240    }
3241 }
3242 
3243 static void
link_calculate_subroutine_compat(struct gl_shader_program * prog)3244 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3245 {
3246    unsigned mask = prog->data->linked_stages;
3247    while (mask) {
3248       const int i = u_bit_scan(&mask);
3249       struct gl_program *p = prog->_LinkedShaders[i]->Program;
3250 
3251       for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3252          if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3253             continue;
3254 
3255          struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3256 
3257          if (!uni)
3258             continue;
3259 
3260          int count = 0;
3261          if (p->sh.NumSubroutineFunctions == 0) {
3262             linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3263             continue;
3264          }
3265          for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3266             struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3267             for (int k = 0; k < fn->num_compat_types; k++) {
3268                if (fn->types[k] == uni->type) {
3269                   count++;
3270                   break;
3271                }
3272             }
3273          }
3274          uni->num_compatible_subroutines = count;
3275       }
3276    }
3277 }
3278 
3279 static void
check_subroutine_resources(struct gl_shader_program * prog)3280 check_subroutine_resources(struct gl_shader_program *prog)
3281 {
3282    unsigned mask = prog->data->linked_stages;
3283    while (mask) {
3284       const int i = u_bit_scan(&mask);
3285       struct gl_program *p = prog->_LinkedShaders[i]->Program;
3286 
3287       if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3288          linker_error(prog, "Too many %s shader subroutine uniforms\n",
3289                       _mesa_shader_stage_to_string(i));
3290       }
3291    }
3292 }
3293 /**
3294  * Validate shader image resources.
3295  */
3296 static void
check_image_resources(struct gl_context * ctx,struct gl_shader_program * prog)3297 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3298 {
3299    unsigned total_image_units = 0;
3300    unsigned fragment_outputs = 0;
3301    unsigned total_shader_storage_blocks = 0;
3302 
3303    if (!ctx->Extensions.ARB_shader_image_load_store)
3304       return;
3305 
3306    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3307       struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3308 
3309       if (sh) {
3310          if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3311             linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3312                          _mesa_shader_stage_to_string(i),
3313                          sh->Program->info.num_images,
3314                          ctx->Const.Program[i].MaxImageUniforms);
3315 
3316          total_image_units += sh->Program->info.num_images;
3317          total_shader_storage_blocks += sh->Program->info.num_ssbos;
3318 
3319          if (i == MESA_SHADER_FRAGMENT) {
3320             foreach_in_list(ir_instruction, node, sh->ir) {
3321                ir_variable *var = node->as_variable();
3322                if (var && var->data.mode == ir_var_shader_out)
3323                   /* since there are no double fs outputs - pass false */
3324                   fragment_outputs += var->type->count_attribute_slots(false);
3325             }
3326          }
3327       }
3328    }
3329 
3330    if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3331       linker_error(prog, "Too many combined image uniforms\n");
3332 
3333    if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3334        ctx->Const.MaxCombinedShaderOutputResources)
3335       linker_error(prog, "Too many combined image uniforms, shader storage "
3336                          " buffers and fragment outputs\n");
3337 }
3338 
3339 
3340 /**
3341  * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3342  * for a variable, checks for overlaps between other uniforms using explicit
3343  * locations.
3344  */
3345 static int
reserve_explicit_locations(struct gl_shader_program * prog,string_to_uint_map * map,ir_variable * var)3346 reserve_explicit_locations(struct gl_shader_program *prog,
3347                            string_to_uint_map *map, ir_variable *var)
3348 {
3349    unsigned slots = var->type->uniform_locations();
3350    unsigned max_loc = var->data.location + slots - 1;
3351    unsigned return_value = slots;
3352 
3353    /* Resize remap table if locations do not fit in the current one. */
3354    if (max_loc + 1 > prog->NumUniformRemapTable) {
3355       prog->UniformRemapTable =
3356          reralloc(prog, prog->UniformRemapTable,
3357                   gl_uniform_storage *,
3358                   max_loc + 1);
3359 
3360       if (!prog->UniformRemapTable) {
3361          linker_error(prog, "Out of memory during linking.\n");
3362          return -1;
3363       }
3364 
3365       /* Initialize allocated space. */
3366       for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3367          prog->UniformRemapTable[i] = NULL;
3368 
3369       prog->NumUniformRemapTable = max_loc + 1;
3370    }
3371 
3372    for (unsigned i = 0; i < slots; i++) {
3373       unsigned loc = var->data.location + i;
3374 
3375       /* Check if location is already used. */
3376       if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3377 
3378          /* Possibly same uniform from a different stage, this is ok. */
3379          unsigned hash_loc;
3380          if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3381             return_value = 0;
3382             continue;
3383          }
3384 
3385          /* ARB_explicit_uniform_location specification states:
3386           *
3387           *     "No two default-block uniform variables in the program can have
3388           *     the same location, even if they are unused, otherwise a compiler
3389           *     or linker error will be generated."
3390           */
3391          linker_error(prog,
3392                       "location qualifier for uniform %s overlaps "
3393                       "previously used location\n",
3394                       var->name);
3395          return -1;
3396       }
3397 
3398       /* Initialize location as inactive before optimization
3399        * rounds and location assignment.
3400        */
3401       prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3402    }
3403 
3404    /* Note, base location used for arrays. */
3405    map->put(var->data.location, var->name);
3406 
3407    return return_value;
3408 }
3409 
3410 static bool
reserve_subroutine_explicit_locations(struct gl_shader_program * prog,struct gl_program * p,ir_variable * var)3411 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3412                                       struct gl_program *p,
3413                                       ir_variable *var)
3414 {
3415    unsigned slots = var->type->uniform_locations();
3416    unsigned max_loc = var->data.location + slots - 1;
3417 
3418    /* Resize remap table if locations do not fit in the current one. */
3419    if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3420       p->sh.SubroutineUniformRemapTable =
3421          reralloc(p, p->sh.SubroutineUniformRemapTable,
3422                   gl_uniform_storage *,
3423                   max_loc + 1);
3424 
3425       if (!p->sh.SubroutineUniformRemapTable) {
3426          linker_error(prog, "Out of memory during linking.\n");
3427          return false;
3428       }
3429 
3430       /* Initialize allocated space. */
3431       for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3432          p->sh.SubroutineUniformRemapTable[i] = NULL;
3433 
3434       p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3435    }
3436 
3437    for (unsigned i = 0; i < slots; i++) {
3438       unsigned loc = var->data.location + i;
3439 
3440       /* Check if location is already used. */
3441       if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3442 
3443          /* ARB_explicit_uniform_location specification states:
3444           *     "No two subroutine uniform variables can have the same location
3445           *     in the same shader stage, otherwise a compiler or linker error
3446           *     will be generated."
3447           */
3448          linker_error(prog,
3449                       "location qualifier for uniform %s overlaps "
3450                       "previously used location\n",
3451                       var->name);
3452          return false;
3453       }
3454 
3455       /* Initialize location as inactive before optimization
3456        * rounds and location assignment.
3457        */
3458       p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3459    }
3460 
3461    return true;
3462 }
3463 /**
3464  * Check and reserve all explicit uniform locations, called before
3465  * any optimizations happen to handle also inactive uniforms and
3466  * inactive array elements that may get trimmed away.
3467  */
3468 static void
check_explicit_uniform_locations(struct gl_context * ctx,struct gl_shader_program * prog)3469 check_explicit_uniform_locations(struct gl_context *ctx,
3470                                  struct gl_shader_program *prog)
3471 {
3472    prog->NumExplicitUniformLocations = 0;
3473 
3474    if (!ctx->Extensions.ARB_explicit_uniform_location)
3475       return;
3476 
3477    /* This map is used to detect if overlapping explicit locations
3478     * occur with the same uniform (from different stage) or a different one.
3479     */
3480    string_to_uint_map *uniform_map = new string_to_uint_map;
3481 
3482    if (!uniform_map) {
3483       linker_error(prog, "Out of memory during linking.\n");
3484       return;
3485    }
3486 
3487    unsigned entries_total = 0;
3488    unsigned mask = prog->data->linked_stages;
3489    while (mask) {
3490       const int i = u_bit_scan(&mask);
3491       struct gl_program *p = prog->_LinkedShaders[i]->Program;
3492 
3493       foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3494          ir_variable *var = node->as_variable();
3495          if (!var || var->data.mode != ir_var_uniform)
3496             continue;
3497 
3498          if (var->data.explicit_location) {
3499             bool ret = false;
3500             if (var->type->without_array()->is_subroutine())
3501                ret = reserve_subroutine_explicit_locations(prog, p, var);
3502             else {
3503                int slots = reserve_explicit_locations(prog, uniform_map,
3504                                                       var);
3505                if (slots != -1) {
3506                   ret = true;
3507                   entries_total += slots;
3508                }
3509             }
3510             if (!ret) {
3511                delete uniform_map;
3512                return;
3513             }
3514          }
3515       }
3516    }
3517 
3518    struct empty_uniform_block *current_block = NULL;
3519 
3520    for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3521       /* We found empty space in UniformRemapTable. */
3522       if (prog->UniformRemapTable[i] == NULL) {
3523          /* We've found the beginning of a new continous block of empty slots */
3524          if (!current_block || current_block->start + current_block->slots != i) {
3525             current_block = rzalloc(prog, struct empty_uniform_block);
3526             current_block->start = i;
3527             exec_list_push_tail(&prog->EmptyUniformLocations,
3528                                 &current_block->link);
3529          }
3530 
3531          /* The current block continues, so we simply increment its slots */
3532          current_block->slots++;
3533       }
3534    }
3535 
3536    delete uniform_map;
3537    prog->NumExplicitUniformLocations = entries_total;
3538 }
3539 
3540 static bool
should_add_buffer_variable(struct gl_shader_program * shProg,GLenum type,const char * name)3541 should_add_buffer_variable(struct gl_shader_program *shProg,
3542                            GLenum type, const char *name)
3543 {
3544    bool found_interface = false;
3545    unsigned block_name_len = 0;
3546    const char *block_name_dot = strchr(name, '.');
3547 
3548    /* These rules only apply to buffer variables. So we return
3549     * true for the rest of types.
3550     */
3551    if (type != GL_BUFFER_VARIABLE)
3552       return true;
3553 
3554    for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3555       const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3556       block_name_len = strlen(block_name);
3557 
3558       const char *block_square_bracket = strchr(block_name, '[');
3559       if (block_square_bracket) {
3560          /* The block is part of an array of named interfaces,
3561           * for the name comparison we ignore the "[x]" part.
3562           */
3563          block_name_len -= strlen(block_square_bracket);
3564       }
3565 
3566       if (block_name_dot) {
3567          /* Check if the variable name starts with the interface
3568           * name. The interface name (if present) should have the
3569           * length than the interface block name we are comparing to.
3570           */
3571          unsigned len = strlen(name) - strlen(block_name_dot);
3572          if (len != block_name_len)
3573             continue;
3574       }
3575 
3576       if (strncmp(block_name, name, block_name_len) == 0) {
3577          found_interface = true;
3578          break;
3579       }
3580    }
3581 
3582    /* We remove the interface name from the buffer variable name,
3583     * including the dot that follows it.
3584     */
3585    if (found_interface)
3586       name = name + block_name_len + 1;
3587 
3588    /* The ARB_program_interface_query spec says:
3589     *
3590     *     "For an active shader storage block member declared as an array, an
3591     *     entry will be generated only for the first array element, regardless
3592     *     of its type.  For arrays of aggregate types, the enumeration rules
3593     *     are applied recursively for the single enumerated array element."
3594     */
3595    const char *struct_first_dot = strchr(name, '.');
3596    const char *first_square_bracket = strchr(name, '[');
3597 
3598    /* The buffer variable is on top level and it is not an array */
3599    if (!first_square_bracket) {
3600       return true;
3601    /* The shader storage block member is a struct, then generate the entry */
3602    } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3603       return true;
3604    } else {
3605       /* Shader storage block member is an array, only generate an entry for the
3606        * first array element.
3607        */
3608       if (strncmp(first_square_bracket, "[0]", 3) == 0)
3609          return true;
3610    }
3611 
3612    return false;
3613 }
3614 
3615 static bool
add_program_resource(struct gl_shader_program * prog,struct set * resource_set,GLenum type,const void * data,uint8_t stages)3616 add_program_resource(struct gl_shader_program *prog,
3617                      struct set *resource_set,
3618                      GLenum type, const void *data, uint8_t stages)
3619 {
3620    assert(data);
3621 
3622    /* If resource already exists, do not add it again. */
3623    if (_mesa_set_search(resource_set, data))
3624       return true;
3625 
3626    prog->data->ProgramResourceList =
3627       reralloc(prog->data,
3628                prog->data->ProgramResourceList,
3629                gl_program_resource,
3630                prog->data->NumProgramResourceList + 1);
3631 
3632    if (!prog->data->ProgramResourceList) {
3633       linker_error(prog, "Out of memory during linking.\n");
3634       return false;
3635    }
3636 
3637    struct gl_program_resource *res =
3638       &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3639 
3640    res->Type = type;
3641    res->Data = data;
3642    res->StageReferences = stages;
3643 
3644    prog->data->NumProgramResourceList++;
3645 
3646    _mesa_set_add(resource_set, data);
3647 
3648    return true;
3649 }
3650 
3651 /* Function checks if a variable var is a packed varying and
3652  * if given name is part of packed varying's list.
3653  *
3654  * If a variable is a packed varying, it has a name like
3655  * 'packed:a,b,c' where a, b and c are separate variables.
3656  */
3657 static bool
included_in_packed_varying(ir_variable * var,const char * name)3658 included_in_packed_varying(ir_variable *var, const char *name)
3659 {
3660    if (strncmp(var->name, "packed:", 7) != 0)
3661       return false;
3662 
3663    char *list = strdup(var->name + 7);
3664    assert(list);
3665 
3666    bool found = false;
3667    char *saveptr;
3668    char *token = strtok_r(list, ",", &saveptr);
3669    while (token) {
3670       if (strcmp(token, name) == 0) {
3671          found = true;
3672          break;
3673       }
3674       token = strtok_r(NULL, ",", &saveptr);
3675    }
3676    free(list);
3677    return found;
3678 }
3679 
3680 /**
3681  * Function builds a stage reference bitmask from variable name.
3682  */
3683 static uint8_t
build_stageref(struct gl_shader_program * shProg,const char * name,unsigned mode)3684 build_stageref(struct gl_shader_program *shProg, const char *name,
3685                unsigned mode)
3686 {
3687    uint8_t stages = 0;
3688 
3689    /* Note, that we assume MAX 8 stages, if there will be more stages, type
3690     * used for reference mask in gl_program_resource will need to be changed.
3691     */
3692    assert(MESA_SHADER_STAGES < 8);
3693 
3694    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3695       struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3696       if (!sh)
3697          continue;
3698 
3699       /* Shader symbol table may contain variables that have
3700        * been optimized away. Search IR for the variable instead.
3701        */
3702       foreach_in_list(ir_instruction, node, sh->ir) {
3703          ir_variable *var = node->as_variable();
3704          if (var) {
3705             unsigned baselen = strlen(var->name);
3706 
3707             if (included_in_packed_varying(var, name)) {
3708                   stages |= (1 << i);
3709                   break;
3710             }
3711 
3712             /* Type needs to match if specified, otherwise we might
3713              * pick a variable with same name but different interface.
3714              */
3715             if (var->data.mode != mode)
3716                continue;
3717 
3718             if (strncmp(var->name, name, baselen) == 0) {
3719                /* Check for exact name matches but also check for arrays and
3720                 * structs.
3721                 */
3722                if (name[baselen] == '\0' ||
3723                    name[baselen] == '[' ||
3724                    name[baselen] == '.') {
3725                   stages |= (1 << i);
3726                   break;
3727                }
3728             }
3729          }
3730       }
3731    }
3732    return stages;
3733 }
3734 
3735 /**
3736  * Create gl_shader_variable from ir_variable class.
3737  */
3738 static gl_shader_variable *
create_shader_variable(struct gl_shader_program * shProg,const ir_variable * in,const char * name,const glsl_type * type,const glsl_type * interface_type,bool use_implicit_location,int location,const glsl_type * outermost_struct_type)3739 create_shader_variable(struct gl_shader_program *shProg,
3740                        const ir_variable *in,
3741                        const char *name, const glsl_type *type,
3742                        const glsl_type *interface_type,
3743                        bool use_implicit_location, int location,
3744                        const glsl_type *outermost_struct_type)
3745 {
3746    /* Allocate zero-initialized memory to ensure that bitfield padding
3747     * is zero.
3748     */
3749    gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3750    if (!out)
3751       return NULL;
3752 
3753    /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3754     * expect to see gl_VertexID in the program resource list.  Pretend.
3755     */
3756    if (in->data.mode == ir_var_system_value &&
3757        in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3758       out->name = ralloc_strdup(shProg, "gl_VertexID");
3759    } else if ((in->data.mode == ir_var_shader_out &&
3760                in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3761               (in->data.mode == ir_var_system_value &&
3762                in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3763       out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3764       type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3765    } else if ((in->data.mode == ir_var_shader_out &&
3766                in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3767               (in->data.mode == ir_var_system_value &&
3768                in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3769       out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3770       type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3771    } else {
3772       out->name = ralloc_strdup(shProg, name);
3773    }
3774 
3775    if (!out->name)
3776       return NULL;
3777 
3778    /* The ARB_program_interface_query spec says:
3779     *
3780     *     "Not all active variables are assigned valid locations; the
3781     *     following variables will have an effective location of -1:
3782     *
3783     *      * uniforms declared as atomic counters;
3784     *
3785     *      * members of a uniform block;
3786     *
3787     *      * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3788     *
3789     *      * inputs or outputs not declared with a "location" layout
3790     *        qualifier, except for vertex shader inputs and fragment shader
3791     *        outputs."
3792     */
3793    if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3794        !(in->data.explicit_location || use_implicit_location)) {
3795       out->location = -1;
3796    } else {
3797       out->location = location;
3798    }
3799 
3800    out->type = type;
3801    out->outermost_struct_type = outermost_struct_type;
3802    out->interface_type = interface_type;
3803    out->component = in->data.location_frac;
3804    out->index = in->data.index;
3805    out->patch = in->data.patch;
3806    out->mode = in->data.mode;
3807    out->interpolation = in->data.interpolation;
3808    out->explicit_location = in->data.explicit_location;
3809    out->precision = in->data.precision;
3810 
3811    return out;
3812 }
3813 
3814 static bool
add_shader_variable(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set,unsigned stage_mask,GLenum programInterface,ir_variable * var,const char * name,const glsl_type * type,bool use_implicit_location,int location,bool inouts_share_location,const glsl_type * outermost_struct_type=NULL)3815 add_shader_variable(const struct gl_context *ctx,
3816                     struct gl_shader_program *shProg,
3817                     struct set *resource_set,
3818                     unsigned stage_mask,
3819                     GLenum programInterface, ir_variable *var,
3820                     const char *name, const glsl_type *type,
3821                     bool use_implicit_location, int location,
3822                     bool inouts_share_location,
3823                     const glsl_type *outermost_struct_type = NULL)
3824 {
3825    const glsl_type *interface_type = var->get_interface_type();
3826 
3827    if (outermost_struct_type == NULL) {
3828       if (var->data.from_named_ifc_block) {
3829          const char *interface_name = interface_type->name;
3830 
3831          if (interface_type->is_array()) {
3832             /* Issue #16 of the ARB_program_interface_query spec says:
3833              *
3834              * "* If a variable is a member of an interface block without an
3835              *    instance name, it is enumerated using just the variable name.
3836              *
3837              *  * If a variable is a member of an interface block with an
3838              *    instance name, it is enumerated as "BlockName.Member", where
3839              *    "BlockName" is the name of the interface block (not the
3840              *    instance name) and "Member" is the name of the variable."
3841              *
3842              * In particular, it indicates that it should be "BlockName",
3843              * not "BlockName[array length]".  The conformance suite and
3844              * dEQP both require this behavior.
3845              *
3846              * Here, we unwrap the extra array level added by named interface
3847              * block array lowering so we have the correct variable type.  We
3848              * also unwrap the interface type when constructing the name.
3849              *
3850              * We leave interface_type the same so that ES 3.x SSO pipeline
3851              * validation can enforce the rules requiring array length to
3852              * match on interface blocks.
3853              */
3854             type = type->fields.array;
3855 
3856             interface_name = interface_type->fields.array->name;
3857          }
3858 
3859          name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3860       }
3861    }
3862 
3863    switch (type->base_type) {
3864    case GLSL_TYPE_STRUCT: {
3865       /* The ARB_program_interface_query spec says:
3866        *
3867        *     "For an active variable declared as a structure, a separate entry
3868        *     will be generated for each active structure member.  The name of
3869        *     each entry is formed by concatenating the name of the structure,
3870        *     the "."  character, and the name of the structure member.  If a
3871        *     structure member to enumerate is itself a structure or array,
3872        *     these enumeration rules are applied recursively."
3873        */
3874       if (outermost_struct_type == NULL)
3875          outermost_struct_type = type;
3876 
3877       unsigned field_location = location;
3878       for (unsigned i = 0; i < type->length; i++) {
3879          const struct glsl_struct_field *field = &type->fields.structure[i];
3880          char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3881          if (!add_shader_variable(ctx, shProg, resource_set,
3882                                   stage_mask, programInterface,
3883                                   var, field_name, field->type,
3884                                   use_implicit_location, field_location,
3885                                   false, outermost_struct_type))
3886             return false;
3887 
3888          field_location += field->type->count_attribute_slots(false);
3889       }
3890       return true;
3891    }
3892 
3893    case GLSL_TYPE_ARRAY: {
3894       /* The ARB_program_interface_query spec says:
3895        *
3896        *     "For an active variable declared as an array of basic types, a
3897        *      single entry will be generated, with its name string formed by
3898        *      concatenating the name of the array and the string "[0]"."
3899        *
3900        *     "For an active variable declared as an array of an aggregate data
3901        *      type (structures or arrays), a separate entry will be generated
3902        *      for each active array element, unless noted immediately below.
3903        *      The name of each entry is formed by concatenating the name of
3904        *      the array, the "[" character, an integer identifying the element
3905        *      number, and the "]" character.  These enumeration rules are
3906        *      applied recursively, treating each enumerated array element as a
3907        *      separate active variable."
3908        */
3909       const struct glsl_type *array_type = type->fields.array;
3910       if (array_type->base_type == GLSL_TYPE_STRUCT ||
3911           array_type->base_type == GLSL_TYPE_ARRAY) {
3912          unsigned elem_location = location;
3913          unsigned stride = inouts_share_location ? 0 :
3914                            array_type->count_attribute_slots(false);
3915          for (unsigned i = 0; i < type->length; i++) {
3916             char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
3917             if (!add_shader_variable(ctx, shProg, resource_set,
3918                                      stage_mask, programInterface,
3919                                      var, elem, array_type,
3920                                      use_implicit_location, elem_location,
3921                                      false, outermost_struct_type))
3922                return false;
3923             elem_location += stride;
3924          }
3925          return true;
3926       }
3927       /* fallthrough */
3928    }
3929 
3930    default: {
3931       /* The ARB_program_interface_query spec says:
3932        *
3933        *     "For an active variable declared as a single instance of a basic
3934        *     type, a single entry will be generated, using the variable name
3935        *     from the shader source."
3936        */
3937       gl_shader_variable *sha_v =
3938          create_shader_variable(shProg, var, name, type, interface_type,
3939                                 use_implicit_location, location,
3940                                 outermost_struct_type);
3941       if (!sha_v)
3942          return false;
3943 
3944       return add_program_resource(shProg, resource_set,
3945                                   programInterface, sha_v, stage_mask);
3946    }
3947    }
3948 }
3949 
3950 static bool
inout_has_same_location(const ir_variable * var,unsigned stage)3951 inout_has_same_location(const ir_variable *var, unsigned stage)
3952 {
3953    if (!var->data.patch &&
3954        ((var->data.mode == ir_var_shader_out &&
3955          stage == MESA_SHADER_TESS_CTRL) ||
3956         (var->data.mode == ir_var_shader_in &&
3957          (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
3958           stage == MESA_SHADER_GEOMETRY))))
3959       return true;
3960    else
3961       return false;
3962 }
3963 
3964 static bool
add_interface_variables(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set,unsigned stage,GLenum programInterface)3965 add_interface_variables(const struct gl_context *ctx,
3966                         struct gl_shader_program *shProg,
3967                         struct set *resource_set,
3968                         unsigned stage, GLenum programInterface)
3969 {
3970    exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3971 
3972    foreach_in_list(ir_instruction, node, ir) {
3973       ir_variable *var = node->as_variable();
3974 
3975       if (!var || var->data.how_declared == ir_var_hidden)
3976          continue;
3977 
3978       int loc_bias;
3979 
3980       switch (var->data.mode) {
3981       case ir_var_system_value:
3982       case ir_var_shader_in:
3983          if (programInterface != GL_PROGRAM_INPUT)
3984             continue;
3985          loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3986                                                   : int(VARYING_SLOT_VAR0);
3987          break;
3988       case ir_var_shader_out:
3989          if (programInterface != GL_PROGRAM_OUTPUT)
3990             continue;
3991          loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3992                                                     : int(VARYING_SLOT_VAR0);
3993          break;
3994       default:
3995          continue;
3996       };
3997 
3998       if (var->data.patch)
3999          loc_bias = int(VARYING_SLOT_PATCH0);
4000 
4001       /* Skip packed varyings, packed varyings are handled separately
4002        * by add_packed_varyings.
4003        */
4004       if (strncmp(var->name, "packed:", 7) == 0)
4005          continue;
4006 
4007       /* Skip fragdata arrays, these are handled separately
4008        * by add_fragdata_arrays.
4009        */
4010       if (strncmp(var->name, "gl_out_FragData", 15) == 0)
4011          continue;
4012 
4013       const bool vs_input_or_fs_output =
4014          (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
4015          (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
4016 
4017       if (!add_shader_variable(ctx, shProg, resource_set,
4018                                1 << stage, programInterface,
4019                                var, var->name, var->type, vs_input_or_fs_output,
4020                                var->data.location - loc_bias,
4021                                inout_has_same_location(var, stage)))
4022          return false;
4023    }
4024    return true;
4025 }
4026 
4027 static bool
add_packed_varyings(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set,int stage,GLenum type)4028 add_packed_varyings(const struct gl_context *ctx,
4029                     struct gl_shader_program *shProg,
4030                     struct set *resource_set,
4031                     int stage, GLenum type)
4032 {
4033    struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
4034    GLenum iface;
4035 
4036    if (!sh || !sh->packed_varyings)
4037       return true;
4038 
4039    foreach_in_list(ir_instruction, node, sh->packed_varyings) {
4040       ir_variable *var = node->as_variable();
4041       if (var) {
4042          switch (var->data.mode) {
4043          case ir_var_shader_in:
4044             iface = GL_PROGRAM_INPUT;
4045             break;
4046          case ir_var_shader_out:
4047             iface = GL_PROGRAM_OUTPUT;
4048             break;
4049          default:
4050             unreachable("unexpected type");
4051          }
4052 
4053          if (type == iface) {
4054             const int stage_mask =
4055                build_stageref(shProg, var->name, var->data.mode);
4056             if (!add_shader_variable(ctx, shProg, resource_set,
4057                                      stage_mask,
4058                                      iface, var, var->name, var->type, false,
4059                                      var->data.location - VARYING_SLOT_VAR0,
4060                                      inout_has_same_location(var, stage)))
4061                return false;
4062          }
4063       }
4064    }
4065    return true;
4066 }
4067 
4068 static bool
add_fragdata_arrays(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set)4069 add_fragdata_arrays(const struct gl_context *ctx,
4070                     struct gl_shader_program *shProg,
4071                     struct set *resource_set)
4072 {
4073    struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4074 
4075    if (!sh || !sh->fragdata_arrays)
4076       return true;
4077 
4078    foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4079       ir_variable *var = node->as_variable();
4080       if (var) {
4081          assert(var->data.mode == ir_var_shader_out);
4082 
4083          if (!add_shader_variable(ctx, shProg, resource_set,
4084                                   1 << MESA_SHADER_FRAGMENT,
4085                                   GL_PROGRAM_OUTPUT, var, var->name, var->type,
4086                                   true, var->data.location - FRAG_RESULT_DATA0,
4087                                   false))
4088             return false;
4089       }
4090    }
4091    return true;
4092 }
4093 
4094 static char*
get_top_level_name(const char * name)4095 get_top_level_name(const char *name)
4096 {
4097    const char *first_dot = strchr(name, '.');
4098    const char *first_square_bracket = strchr(name, '[');
4099    int name_size = 0;
4100 
4101    /* The ARB_program_interface_query spec says:
4102     *
4103     *     "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4104     *     the number of active array elements of the top-level shader storage
4105     *     block member containing to the active variable is written to
4106     *     <params>.  If the top-level block member is not declared as an
4107     *     array, the value one is written to <params>.  If the top-level block
4108     *     member is an array with no declared size, the value zero is written
4109     *     to <params>."
4110     */
4111 
4112    /* The buffer variable is on top level.*/
4113    if (!first_square_bracket && !first_dot)
4114       name_size = strlen(name);
4115    else if ((!first_square_bracket ||
4116             (first_dot && first_dot < first_square_bracket)))
4117       name_size = first_dot - name;
4118    else
4119       name_size = first_square_bracket - name;
4120 
4121    return strndup(name, name_size);
4122 }
4123 
4124 static char*
get_var_name(const char * name)4125 get_var_name(const char *name)
4126 {
4127    const char *first_dot = strchr(name, '.');
4128 
4129    if (!first_dot)
4130       return strdup(name);
4131 
4132    return strndup(first_dot+1, strlen(first_dot) - 1);
4133 }
4134 
4135 static bool
is_top_level_shader_storage_block_member(const char * name,const char * interface_name,const char * field_name)4136 is_top_level_shader_storage_block_member(const char* name,
4137                                          const char* interface_name,
4138                                          const char* field_name)
4139 {
4140    bool result = false;
4141 
4142    /* If the given variable is already a top-level shader storage
4143     * block member, then return array_size = 1.
4144     * We could have two possibilities: if we have an instanced
4145     * shader storage block or not instanced.
4146     *
4147     * For the first, we check create a name as it was in top level and
4148     * compare it with the real name. If they are the same, then
4149     * the variable is already at top-level.
4150     *
4151     * Full instanced name is: interface name + '.' + var name +
4152     *    NULL character
4153     */
4154    int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4155    char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4156    if (!full_instanced_name) {
4157       fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4158       return false;
4159    }
4160 
4161    snprintf(full_instanced_name, name_length, "%s.%s",
4162             interface_name, field_name);
4163 
4164    /* Check if its top-level shader storage block member of an
4165     * instanced interface block, or of a unnamed interface block.
4166     */
4167    if (strcmp(name, full_instanced_name) == 0 ||
4168        strcmp(name, field_name) == 0)
4169       result = true;
4170 
4171    free(full_instanced_name);
4172    return result;
4173 }
4174 
4175 static int
get_array_size(struct gl_uniform_storage * uni,const glsl_struct_field * field,char * interface_name,char * var_name)4176 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4177                char *interface_name, char *var_name)
4178 {
4179    /* The ARB_program_interface_query spec says:
4180     *
4181     *     "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4182     *     the number of active array elements of the top-level shader storage
4183     *     block member containing to the active variable is written to
4184     *     <params>.  If the top-level block member is not declared as an
4185     *     array, the value one is written to <params>.  If the top-level block
4186     *     member is an array with no declared size, the value zero is written
4187     *     to <params>."
4188     */
4189    if (is_top_level_shader_storage_block_member(uni->name,
4190                                                 interface_name,
4191                                                 var_name))
4192       return  1;
4193    else if (field->type->is_unsized_array())
4194       return 0;
4195    else if (field->type->is_array())
4196       return field->type->length;
4197 
4198    return 1;
4199 }
4200 
4201 static int
get_array_stride(struct gl_context * ctx,struct gl_uniform_storage * uni,const glsl_type * interface,const glsl_struct_field * field,char * interface_name,char * var_name)4202 get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
4203                  const glsl_type *interface, const glsl_struct_field *field,
4204                  char *interface_name, char *var_name)
4205 {
4206    /* The ARB_program_interface_query spec says:
4207     *
4208     *     "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4209     *     identifying the stride between array elements of the top-level
4210     *     shader storage block member containing the active variable is
4211     *     written to <params>.  For top-level block members declared as
4212     *     arrays, the value written is the difference, in basic machine units,
4213     *     between the offsets of the active variable for consecutive elements
4214     *     in the top-level array.  For top-level block members not declared as
4215     *     an array, zero is written to <params>."
4216     */
4217    if (field->type->is_array()) {
4218       const enum glsl_matrix_layout matrix_layout =
4219          glsl_matrix_layout(field->matrix_layout);
4220       bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4221       const glsl_type *array_type = field->type->fields.array;
4222 
4223       if (is_top_level_shader_storage_block_member(uni->name,
4224                                                    interface_name,
4225                                                    var_name))
4226          return 0;
4227 
4228       if (GLSL_INTERFACE_PACKING_STD140 ==
4229           interface->
4230              get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
4231          if (array_type->is_record() || array_type->is_array())
4232             return glsl_align(array_type->std140_size(row_major), 16);
4233          else
4234             return MAX2(array_type->std140_base_alignment(row_major), 16);
4235       } else {
4236          return array_type->std430_array_stride(row_major);
4237       }
4238    }
4239    return 0;
4240 }
4241 
4242 static void
calculate_array_size_and_stride(struct gl_context * ctx,struct gl_shader_program * shProg,struct gl_uniform_storage * uni)4243 calculate_array_size_and_stride(struct gl_context *ctx,
4244                                 struct gl_shader_program *shProg,
4245                                 struct gl_uniform_storage *uni)
4246 {
4247    int block_index = uni->block_index;
4248    int array_size = -1;
4249    int array_stride = -1;
4250    char *var_name = get_top_level_name(uni->name);
4251    char *interface_name =
4252       get_top_level_name(uni->is_shader_storage ?
4253                          shProg->data->ShaderStorageBlocks[block_index].Name :
4254                          shProg->data->UniformBlocks[block_index].Name);
4255 
4256    if (strcmp(var_name, interface_name) == 0) {
4257       /* Deal with instanced array of SSBOs */
4258       char *temp_name = get_var_name(uni->name);
4259       if (!temp_name) {
4260          linker_error(shProg, "Out of memory during linking.\n");
4261          goto write_top_level_array_size_and_stride;
4262       }
4263       free(var_name);
4264       var_name = get_top_level_name(temp_name);
4265       free(temp_name);
4266       if (!var_name) {
4267          linker_error(shProg, "Out of memory during linking.\n");
4268          goto write_top_level_array_size_and_stride;
4269       }
4270    }
4271 
4272    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4273       const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4274       if (sh == NULL)
4275          continue;
4276 
4277       foreach_in_list(ir_instruction, node, sh->ir) {
4278          ir_variable *var = node->as_variable();
4279          if (!var || !var->get_interface_type() ||
4280              var->data.mode != ir_var_shader_storage)
4281             continue;
4282 
4283          const glsl_type *interface = var->get_interface_type();
4284 
4285          if (strcmp(interface_name, interface->name) != 0)
4286             continue;
4287 
4288          for (unsigned i = 0; i < interface->length; i++) {
4289             const glsl_struct_field *field = &interface->fields.structure[i];
4290             if (strcmp(field->name, var_name) != 0)
4291                continue;
4292 
4293             array_stride = get_array_stride(ctx, uni, interface, field,
4294                                             interface_name, var_name);
4295             array_size = get_array_size(uni, field, interface_name, var_name);
4296             goto write_top_level_array_size_and_stride;
4297          }
4298       }
4299    }
4300 write_top_level_array_size_and_stride:
4301    free(interface_name);
4302    free(var_name);
4303    uni->top_level_array_stride = array_stride;
4304    uni->top_level_array_size = array_size;
4305 }
4306 
4307 /**
4308  * Builds up a list of program resources that point to existing
4309  * resource data.
4310  */
4311 void
build_program_resource_list(struct gl_context * ctx,struct gl_shader_program * shProg)4312 build_program_resource_list(struct gl_context *ctx,
4313                             struct gl_shader_program *shProg)
4314 {
4315    /* Rebuild resource list. */
4316    if (shProg->data->ProgramResourceList) {
4317       ralloc_free(shProg->data->ProgramResourceList);
4318       shProg->data->ProgramResourceList = NULL;
4319       shProg->data->NumProgramResourceList = 0;
4320    }
4321 
4322    int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4323 
4324    /* Determine first input and final output stage. These are used to
4325     * detect which variables should be enumerated in the resource list
4326     * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4327     */
4328    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4329       if (!shProg->_LinkedShaders[i])
4330          continue;
4331       if (input_stage == MESA_SHADER_STAGES)
4332          input_stage = i;
4333       output_stage = i;
4334    }
4335 
4336    /* Empty shader, no resources. */
4337    if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4338       return;
4339 
4340    struct set *resource_set = _mesa_set_create(NULL,
4341                                                _mesa_hash_pointer,
4342                                                _mesa_key_pointer_equal);
4343 
4344    /* Program interface needs to expose varyings in case of SSO. */
4345    if (shProg->SeparateShader) {
4346       if (!add_packed_varyings(ctx, shProg, resource_set,
4347                                input_stage, GL_PROGRAM_INPUT))
4348          return;
4349 
4350       if (!add_packed_varyings(ctx, shProg, resource_set,
4351                                output_stage, GL_PROGRAM_OUTPUT))
4352          return;
4353    }
4354 
4355    if (!add_fragdata_arrays(ctx, shProg, resource_set))
4356       return;
4357 
4358    /* Add inputs and outputs to the resource list. */
4359    if (!add_interface_variables(ctx, shProg, resource_set,
4360                                 input_stage, GL_PROGRAM_INPUT))
4361       return;
4362 
4363    if (!add_interface_variables(ctx, shProg, resource_set,
4364                                 output_stage, GL_PROGRAM_OUTPUT))
4365       return;
4366 
4367    if (shProg->last_vert_prog) {
4368       struct gl_transform_feedback_info *linked_xfb =
4369          shProg->last_vert_prog->sh.LinkedTransformFeedback;
4370 
4371       /* Add transform feedback varyings. */
4372       if (linked_xfb->NumVarying > 0) {
4373          for (int i = 0; i < linked_xfb->NumVarying; i++) {
4374             if (!add_program_resource(shProg, resource_set,
4375                                       GL_TRANSFORM_FEEDBACK_VARYING,
4376                                       &linked_xfb->Varyings[i], 0))
4377             return;
4378          }
4379       }
4380 
4381       /* Add transform feedback buffers. */
4382       for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4383          if ((linked_xfb->ActiveBuffers >> i) & 1) {
4384             linked_xfb->Buffers[i].Binding = i;
4385             if (!add_program_resource(shProg, resource_set,
4386                                       GL_TRANSFORM_FEEDBACK_BUFFER,
4387                                       &linked_xfb->Buffers[i], 0))
4388             return;
4389          }
4390       }
4391    }
4392 
4393    /* Add uniforms from uniform storage. */
4394    for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4395       /* Do not add uniforms internally used by Mesa. */
4396       if (shProg->data->UniformStorage[i].hidden)
4397          continue;
4398 
4399       uint8_t stageref =
4400          build_stageref(shProg, shProg->data->UniformStorage[i].name,
4401                         ir_var_uniform);
4402 
4403       /* Add stagereferences for uniforms in a uniform block. */
4404       bool is_shader_storage =
4405         shProg->data->UniformStorage[i].is_shader_storage;
4406       int block_index = shProg->data->UniformStorage[i].block_index;
4407       if (block_index != -1) {
4408          stageref |= is_shader_storage ?
4409             shProg->data->ShaderStorageBlocks[block_index].stageref :
4410             shProg->data->UniformBlocks[block_index].stageref;
4411       }
4412 
4413       GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4414       if (!should_add_buffer_variable(shProg, type,
4415                                       shProg->data->UniformStorage[i].name))
4416          continue;
4417 
4418       if (is_shader_storage) {
4419          calculate_array_size_and_stride(ctx, shProg,
4420                                          &shProg->data->UniformStorage[i]);
4421       }
4422 
4423       if (!add_program_resource(shProg, resource_set, type,
4424                                 &shProg->data->UniformStorage[i], stageref))
4425          return;
4426    }
4427 
4428    /* Add program uniform blocks. */
4429    for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4430       if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4431           &shProg->data->UniformBlocks[i], 0))
4432          return;
4433    }
4434 
4435    /* Add program shader storage blocks. */
4436    for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4437       if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4438           &shProg->data->ShaderStorageBlocks[i], 0))
4439          return;
4440    }
4441 
4442    /* Add atomic counter buffers. */
4443    for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4444       if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4445                                 &shProg->data->AtomicBuffers[i], 0))
4446          return;
4447    }
4448 
4449    for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4450       GLenum type;
4451       if (!shProg->data->UniformStorage[i].hidden)
4452          continue;
4453 
4454       for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4455          if (!shProg->data->UniformStorage[i].opaque[j].active ||
4456              !shProg->data->UniformStorage[i].type->is_subroutine())
4457             continue;
4458 
4459          type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4460          /* add shader subroutines */
4461          if (!add_program_resource(shProg, resource_set,
4462                                    type, &shProg->data->UniformStorage[i], 0))
4463             return;
4464       }
4465    }
4466 
4467    unsigned mask = shProg->data->linked_stages;
4468    while (mask) {
4469       const int i = u_bit_scan(&mask);
4470       struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4471 
4472       GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4473       for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4474          if (!add_program_resource(shProg, resource_set,
4475                                    type, &p->sh.SubroutineFunctions[j], 0))
4476             return;
4477       }
4478    }
4479 
4480    _mesa_set_destroy(resource_set, NULL);
4481 }
4482 
4483 /**
4484  * This check is done to make sure we allow only constant expression
4485  * indexing and "constant-index-expression" (indexing with an expression
4486  * that includes loop induction variable).
4487  */
4488 static bool
validate_sampler_array_indexing(struct gl_context * ctx,struct gl_shader_program * prog)4489 validate_sampler_array_indexing(struct gl_context *ctx,
4490                                 struct gl_shader_program *prog)
4491 {
4492    dynamic_sampler_array_indexing_visitor v;
4493    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4494       if (prog->_LinkedShaders[i] == NULL)
4495          continue;
4496 
4497       bool no_dynamic_indexing =
4498          ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4499 
4500       /* Search for array derefs in shader. */
4501       v.run(prog->_LinkedShaders[i]->ir);
4502       if (v.uses_dynamic_sampler_array_indexing()) {
4503          const char *msg = "sampler arrays indexed with non-constant "
4504                            "expressions is forbidden in GLSL %s %u";
4505          /* Backend has indicated that it has no dynamic indexing support. */
4506          if (no_dynamic_indexing) {
4507             linker_error(prog, msg, prog->IsES ? "ES" : "",
4508                          prog->data->Version);
4509             return false;
4510          } else {
4511             linker_warning(prog, msg, prog->IsES ? "ES" : "",
4512                            prog->data->Version);
4513          }
4514       }
4515    }
4516    return true;
4517 }
4518 
4519 static void
link_assign_subroutine_types(struct gl_shader_program * prog)4520 link_assign_subroutine_types(struct gl_shader_program *prog)
4521 {
4522    unsigned mask = prog->data->linked_stages;
4523    while (mask) {
4524       const int i = u_bit_scan(&mask);
4525       gl_program *p = prog->_LinkedShaders[i]->Program;
4526 
4527       p->sh.MaxSubroutineFunctionIndex = 0;
4528       foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4529          ir_function *fn = node->as_function();
4530          if (!fn)
4531             continue;
4532 
4533          if (fn->is_subroutine)
4534             p->sh.NumSubroutineUniformTypes++;
4535 
4536          if (!fn->num_subroutine_types)
4537             continue;
4538 
4539          /* these should have been calculated earlier. */
4540          assert(fn->subroutine_index != -1);
4541          if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4542             linker_error(prog, "Too many subroutine functions declared.\n");
4543             return;
4544          }
4545          p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4546                                             struct gl_subroutine_function,
4547                                             p->sh.NumSubroutineFunctions + 1);
4548          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4549          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4550          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4551             ralloc_array(p, const struct glsl_type *,
4552                          fn->num_subroutine_types);
4553 
4554          /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4555           * GLSL 4.5 spec:
4556           *
4557           *    "Each subroutine with an index qualifier in the shader must be
4558           *    given a unique index, otherwise a compile or link error will be
4559           *    generated."
4560           */
4561          for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4562             if (p->sh.SubroutineFunctions[j].index != -1 &&
4563                 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4564                linker_error(prog, "each subroutine index qualifier in the "
4565                             "shader must be unique\n");
4566                return;
4567             }
4568          }
4569          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4570             fn->subroutine_index;
4571 
4572          if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4573             p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4574 
4575          for (int j = 0; j < fn->num_subroutine_types; j++)
4576             p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4577          p->sh.NumSubroutineFunctions++;
4578       }
4579    }
4580 }
4581 
4582 static void
set_always_active_io(exec_list * ir,ir_variable_mode io_mode)4583 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4584 {
4585    assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4586 
4587    foreach_in_list(ir_instruction, node, ir) {
4588       ir_variable *const var = node->as_variable();
4589 
4590       if (var == NULL || var->data.mode != io_mode)
4591          continue;
4592 
4593       /* Don't set always active on builtins that haven't been redeclared */
4594       if (var->data.how_declared == ir_var_declared_implicitly)
4595          continue;
4596 
4597       var->data.always_active_io = true;
4598    }
4599 }
4600 
4601 /**
4602  * When separate shader programs are enabled, only input/outputs between
4603  * the stages of a multi-stage separate program can be safely removed
4604  * from the shader interface. Other inputs/outputs must remain active.
4605  */
4606 static void
disable_varying_optimizations_for_sso(struct gl_shader_program * prog)4607 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4608 {
4609    unsigned first, last;
4610    assert(prog->SeparateShader);
4611 
4612    first = MESA_SHADER_STAGES;
4613    last = 0;
4614 
4615    /* Determine first and last stage. Excluding the compute stage */
4616    for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4617       if (!prog->_LinkedShaders[i])
4618          continue;
4619       if (first == MESA_SHADER_STAGES)
4620          first = i;
4621       last = i;
4622    }
4623 
4624    if (first == MESA_SHADER_STAGES)
4625       return;
4626 
4627    for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4628       gl_linked_shader *sh = prog->_LinkedShaders[stage];
4629       if (!sh)
4630          continue;
4631 
4632       /* Prevent the removal of inputs to the first and outputs from the last
4633        * stage, unless they are the initial pipeline inputs or final pipeline
4634        * outputs, respectively.
4635        *
4636        * The removal of IO between shaders in the same program is always
4637        * allowed.
4638        */
4639       if (stage == first && stage != MESA_SHADER_VERTEX)
4640          set_always_active_io(sh->ir, ir_var_shader_in);
4641       if (stage == last && stage != MESA_SHADER_FRAGMENT)
4642          set_always_active_io(sh->ir, ir_var_shader_out);
4643    }
4644 }
4645 
4646 static void
link_and_validate_uniforms(struct gl_context * ctx,struct gl_shader_program * prog)4647 link_and_validate_uniforms(struct gl_context *ctx,
4648                            struct gl_shader_program *prog)
4649 {
4650    update_array_sizes(prog);
4651    link_assign_uniform_locations(prog, ctx);
4652 
4653    link_assign_atomic_counter_resources(ctx, prog);
4654    link_calculate_subroutine_compat(prog);
4655    check_resources(ctx, prog);
4656    check_subroutine_resources(prog);
4657    check_image_resources(ctx, prog);
4658    link_check_atomic_counter_resources(ctx, prog);
4659 }
4660 
4661 static bool
link_varyings_and_uniforms(unsigned first,unsigned last,struct gl_context * ctx,struct gl_shader_program * prog,void * mem_ctx)4662 link_varyings_and_uniforms(unsigned first, unsigned last,
4663                            struct gl_context *ctx,
4664                            struct gl_shader_program *prog, void *mem_ctx)
4665 {
4666    /* Mark all generic shader inputs and outputs as unpaired. */
4667    for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4668       if (prog->_LinkedShaders[i] != NULL) {
4669          link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4670       }
4671    }
4672 
4673    unsigned prev = first;
4674    for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4675       if (prog->_LinkedShaders[i] == NULL)
4676          continue;
4677 
4678       match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4679                                        prog->_LinkedShaders[i]);
4680       prev = i;
4681    }
4682 
4683    if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4684                                             MESA_SHADER_VERTEX)) {
4685       return false;
4686    }
4687 
4688    if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4689                                             MESA_SHADER_FRAGMENT)) {
4690       return false;
4691    }
4692 
4693    prog->last_vert_prog = NULL;
4694    for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4695       if (prog->_LinkedShaders[i] == NULL)
4696          continue;
4697 
4698       prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4699       break;
4700    }
4701 
4702    if (!link_varyings(prog, first, last, ctx, mem_ctx))
4703       return false;
4704 
4705    link_and_validate_uniforms(ctx, prog);
4706 
4707    if (!prog->data->LinkStatus)
4708       return false;
4709 
4710    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4711       if (prog->_LinkedShaders[i] == NULL)
4712          continue;
4713 
4714       const struct gl_shader_compiler_options *options =
4715          &ctx->Const.ShaderCompilerOptions[i];
4716 
4717       if (options->LowerBufferInterfaceBlocks)
4718          lower_ubo_reference(prog->_LinkedShaders[i],
4719                              options->ClampBlockIndicesToArrayBounds,
4720                              ctx->Const.UseSTD430AsDefaultPacking);
4721 
4722       if (i == MESA_SHADER_COMPUTE)
4723          lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4724 
4725       lower_vector_derefs(prog->_LinkedShaders[i]);
4726       do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4727    }
4728 
4729    return true;
4730 }
4731 
4732 static void
linker_optimisation_loop(struct gl_context * ctx,exec_list * ir,unsigned stage)4733 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4734                          unsigned stage)
4735 {
4736       if (ctx->Const.GLSLOptimizeConservatively) {
4737          /* Run it just once. */
4738          do_common_optimization(ir, true, false,
4739                                 &ctx->Const.ShaderCompilerOptions[stage],
4740                                 ctx->Const.NativeIntegers);
4741       } else {
4742          /* Repeat it until it stops making changes. */
4743          while (do_common_optimization(ir, true, false,
4744                                        &ctx->Const.ShaderCompilerOptions[stage],
4745                                        ctx->Const.NativeIntegers))
4746             ;
4747       }
4748 }
4749 
4750 void
link_shaders(struct gl_context * ctx,struct gl_shader_program * prog)4751 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4752 {
4753    prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
4754    prog->data->Validated = false;
4755 
4756    /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4757     *
4758     *     "Linking can fail for a variety of reasons as specified in the
4759     *     OpenGL Shading Language Specification, as well as any of the
4760     *     following reasons:
4761     *
4762     *     - No shader objects are attached to program."
4763     *
4764     * The Compatibility Profile specification does not list the error.  In
4765     * Compatibility Profile missing shader stages are replaced by
4766     * fixed-function.  This applies to the case where all stages are
4767     * missing.
4768     */
4769    if (prog->NumShaders == 0) {
4770       if (ctx->API != API_OPENGL_COMPAT)
4771          linker_error(prog, "no shaders attached to the program\n");
4772       return;
4773    }
4774 
4775 #ifdef ENABLE_SHADER_CACHE
4776    /* If transform feedback used on the program then compile all shaders. */
4777    bool skip_cache = false;
4778    if (prog->TransformFeedback.NumVarying > 0) {
4779       for (unsigned i = 0; i < prog->NumShaders; i++) {
4780          _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4781       }
4782       skip_cache = true;
4783    }
4784 
4785    if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4786       return;
4787 #endif
4788 
4789    void *mem_ctx = ralloc_context(NULL); // temporary linker context
4790 
4791    prog->ARB_fragment_coord_conventions_enable = false;
4792 
4793    /* Separate the shaders into groups based on their type.
4794     */
4795    struct gl_shader **shader_list[MESA_SHADER_STAGES];
4796    unsigned num_shaders[MESA_SHADER_STAGES];
4797 
4798    for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4799       shader_list[i] = (struct gl_shader **)
4800          calloc(prog->NumShaders, sizeof(struct gl_shader *));
4801       num_shaders[i] = 0;
4802    }
4803 
4804    unsigned min_version = UINT_MAX;
4805    unsigned max_version = 0;
4806    for (unsigned i = 0; i < prog->NumShaders; i++) {
4807       min_version = MIN2(min_version, prog->Shaders[i]->Version);
4808       max_version = MAX2(max_version, prog->Shaders[i]->Version);
4809 
4810       if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4811          linker_error(prog, "all shaders must use same shading "
4812                       "language version\n");
4813          goto done;
4814       }
4815 
4816       if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4817          prog->ARB_fragment_coord_conventions_enable = true;
4818       }
4819 
4820       gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4821       shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4822       num_shaders[shader_type]++;
4823    }
4824 
4825    /* In desktop GLSL, different shader versions may be linked together.  In
4826     * GLSL ES, all shader versions must be the same.
4827     */
4828    if (prog->Shaders[0]->IsES && min_version != max_version) {
4829       linker_error(prog, "all shaders must use same shading "
4830                    "language version\n");
4831       goto done;
4832    }
4833 
4834    prog->data->Version = max_version;
4835    prog->IsES = prog->Shaders[0]->IsES;
4836 
4837    /* Some shaders have to be linked with some other shaders present.
4838     */
4839    if (!prog->SeparateShader) {
4840       if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4841           num_shaders[MESA_SHADER_VERTEX] == 0) {
4842          linker_error(prog, "Geometry shader must be linked with "
4843                       "vertex shader\n");
4844          goto done;
4845       }
4846       if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4847           num_shaders[MESA_SHADER_VERTEX] == 0) {
4848          linker_error(prog, "Tessellation evaluation shader must be linked "
4849                       "with vertex shader\n");
4850          goto done;
4851       }
4852       if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4853           num_shaders[MESA_SHADER_VERTEX] == 0) {
4854          linker_error(prog, "Tessellation control shader must be linked with "
4855                       "vertex shader\n");
4856          goto done;
4857       }
4858 
4859       /* Section 7.3 of the OpenGL ES 3.2 specification says:
4860        *
4861        *    "Linking can fail for [...] any of the following reasons:
4862        *
4863        *     * program contains an object to form a tessellation control
4864        *       shader [...] and [...] the program is not separable and
4865        *       contains no object to form a tessellation evaluation shader"
4866        *
4867        * The OpenGL spec is contradictory. It allows linking without a tess
4868        * eval shader, but that can only be used with transform feedback and
4869        * rasterization disabled. However, transform feedback isn't allowed
4870        * with GL_PATCHES, so it can't be used.
4871        *
4872        * More investigation showed that the idea of transform feedback after
4873        * a tess control shader was dropped, because some hw vendors couldn't
4874        * support tessellation without a tess eval shader, but the linker
4875        * section wasn't updated to reflect that.
4876        *
4877        * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4878        * spec bug.
4879        *
4880        * Do what's reasonable and always require a tess eval shader if a tess
4881        * control shader is present.
4882        */
4883       if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4884           num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4885          linker_error(prog, "Tessellation control shader must be linked with "
4886                       "tessellation evaluation shader\n");
4887          goto done;
4888       }
4889 
4890       if (prog->IsES) {
4891          if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4892              num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4893             linker_error(prog, "GLSL ES requires non-separable programs "
4894                          "containing a tessellation evaluation shader to also "
4895                          "be linked with a tessellation control shader\n");
4896             goto done;
4897          }
4898       }
4899    }
4900 
4901    /* Compute shaders have additional restrictions. */
4902    if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4903        num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4904       linker_error(prog, "Compute shaders may not be linked with any other "
4905                    "type of shader\n");
4906    }
4907 
4908    /* Link all shaders for a particular stage and validate the result.
4909     */
4910    for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4911       if (num_shaders[stage] > 0) {
4912          gl_linked_shader *const sh =
4913             link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4914                                     num_shaders[stage], false);
4915 
4916          if (!prog->data->LinkStatus) {
4917             if (sh)
4918                _mesa_delete_linked_shader(ctx, sh);
4919             goto done;
4920          }
4921 
4922          switch (stage) {
4923          case MESA_SHADER_VERTEX:
4924             validate_vertex_shader_executable(prog, sh, ctx);
4925             break;
4926          case MESA_SHADER_TESS_CTRL:
4927             /* nothing to be done */
4928             break;
4929          case MESA_SHADER_TESS_EVAL:
4930             validate_tess_eval_shader_executable(prog, sh, ctx);
4931             break;
4932          case MESA_SHADER_GEOMETRY:
4933             validate_geometry_shader_executable(prog, sh, ctx);
4934             break;
4935          case MESA_SHADER_FRAGMENT:
4936             validate_fragment_shader_executable(prog, sh);
4937             break;
4938          }
4939          if (!prog->data->LinkStatus) {
4940             if (sh)
4941                _mesa_delete_linked_shader(ctx, sh);
4942             goto done;
4943          }
4944 
4945          prog->_LinkedShaders[stage] = sh;
4946          prog->data->linked_stages |= 1 << stage;
4947       }
4948    }
4949 
4950    /* Here begins the inter-stage linking phase.  Some initial validation is
4951     * performed, then locations are assigned for uniforms, attributes, and
4952     * varyings.
4953     */
4954    cross_validate_uniforms(prog);
4955    if (!prog->data->LinkStatus)
4956       goto done;
4957 
4958    unsigned first, last, prev;
4959 
4960    first = MESA_SHADER_STAGES;
4961    last = 0;
4962 
4963    /* Determine first and last stage. */
4964    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4965       if (!prog->_LinkedShaders[i])
4966          continue;
4967       if (first == MESA_SHADER_STAGES)
4968          first = i;
4969       last = i;
4970    }
4971 
4972    check_explicit_uniform_locations(ctx, prog);
4973    link_assign_subroutine_types(prog);
4974 
4975    if (!prog->data->LinkStatus)
4976       goto done;
4977 
4978    resize_tes_inputs(ctx, prog);
4979 
4980    /* Validate the inputs of each stage with the output of the preceding
4981     * stage.
4982     */
4983    prev = first;
4984    for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4985       if (prog->_LinkedShaders[i] == NULL)
4986          continue;
4987 
4988       validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4989                                        prog->_LinkedShaders[i]);
4990       if (!prog->data->LinkStatus)
4991          goto done;
4992 
4993       cross_validate_outputs_to_inputs(ctx, prog,
4994                                        prog->_LinkedShaders[prev],
4995                                        prog->_LinkedShaders[i]);
4996       if (!prog->data->LinkStatus)
4997          goto done;
4998 
4999       prev = i;
5000    }
5001 
5002    /* The cross validation of outputs/inputs above validates explicit locations
5003     * but for SSO programs we need to do this also for the inputs in the
5004     * first stage and outputs of the last stage included in the program, since
5005     * there is no cross validation for these.
5006     */
5007    if (prog->SeparateShader)
5008       validate_sso_explicit_locations(ctx, prog,
5009                                       (gl_shader_stage) first,
5010                                       (gl_shader_stage) last);
5011 
5012    /* Cross-validate uniform blocks between shader stages */
5013    validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
5014    if (!prog->data->LinkStatus)
5015       goto done;
5016 
5017    for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
5018       if (prog->_LinkedShaders[i] != NULL)
5019          lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
5020    }
5021 
5022    /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
5023     * it before optimization because we want most of the checks to get
5024     * dropped thanks to constant propagation.
5025     *
5026     * This rule also applies to GLSL ES 3.00.
5027     */
5028    if (max_version >= (prog->IsES ? 300 : 130)) {
5029       struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
5030       if (sh) {
5031          lower_discard_flow(sh->ir);
5032       }
5033    }
5034 
5035    if (prog->SeparateShader)
5036       disable_varying_optimizations_for_sso(prog);
5037 
5038    /* Process UBOs */
5039    if (!interstage_cross_validate_uniform_blocks(prog, false))
5040       goto done;
5041 
5042    /* Process SSBOs */
5043    if (!interstage_cross_validate_uniform_blocks(prog, true))
5044       goto done;
5045 
5046    /* Do common optimization before assigning storage for attributes,
5047     * uniforms, and varyings.  Later optimization could possibly make
5048     * some of that unused.
5049     */
5050    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5051       if (prog->_LinkedShaders[i] == NULL)
5052          continue;
5053 
5054       detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
5055       if (!prog->data->LinkStatus)
5056          goto done;
5057 
5058       if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
5059          lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5060       }
5061 
5062       if (ctx->Const.LowerTessLevel) {
5063          lower_tess_level(prog->_LinkedShaders[i]);
5064       }
5065 
5066       /* Call opts before lowering const arrays to uniforms so we can const
5067        * propagate any elements accessed directly.
5068        */
5069       linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5070 
5071       /* Call opts after lowering const arrays to copy propagate things. */
5072       if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
5073          linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5074 
5075       propagate_invariance(prog->_LinkedShaders[i]->ir);
5076    }
5077 
5078    /* Validation for special cases where we allow sampler array indexing
5079     * with loop induction variable. This check emits a warning or error
5080     * depending if backend can handle dynamic indexing.
5081     */
5082    if ((!prog->IsES && prog->data->Version < 130) ||
5083        (prog->IsES && prog->data->Version < 300)) {
5084       if (!validate_sampler_array_indexing(ctx, prog))
5085          goto done;
5086    }
5087 
5088    /* Check and validate stream emissions in geometry shaders */
5089    validate_geometry_shader_emissions(ctx, prog);
5090 
5091    store_fragdepth_layout(prog);
5092 
5093    if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5094       goto done;
5095 
5096    /* Linking varyings can cause some extra, useless swizzles to be generated
5097     * due to packing and unpacking.
5098     */
5099    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5100       if (prog->_LinkedShaders[i] == NULL)
5101          continue;
5102 
5103       optimize_swizzles(prog->_LinkedShaders[i]->ir);
5104    }
5105 
5106    /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5107     * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5108     * anything about shader linking when one of the shaders (vertex or
5109     * fragment shader) is absent. So, the extension shouldn't change the
5110     * behavior specified in GLSL specification.
5111     *
5112     * From OpenGL ES 3.1 specification (7.3 Program Objects):
5113     *     "Linking can fail for a variety of reasons as specified in the
5114     *     OpenGL ES Shading Language Specification, as well as any of the
5115     *     following reasons:
5116     *
5117     *     ...
5118     *
5119     *     * program contains objects to form either a vertex shader or
5120     *       fragment shader, and program is not separable, and does not
5121     *       contain objects to form both a vertex shader and fragment
5122     *       shader."
5123     *
5124     * However, the only scenario in 3.1+ where we don't require them both is
5125     * when we have a compute shader. For example:
5126     *
5127     * - No shaders is a link error.
5128     * - Geom or Tess without a Vertex shader is a link error which means we
5129     *   always require a Vertex shader and hence a Fragment shader.
5130     * - Finally a Compute shader linked with any other stage is a link error.
5131     */
5132    if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5133        num_shaders[MESA_SHADER_COMPUTE] == 0) {
5134       if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5135          linker_error(prog, "program lacks a vertex shader\n");
5136       } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5137          linker_error(prog, "program lacks a fragment shader\n");
5138       }
5139    }
5140 
5141 done:
5142    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5143       free(shader_list[i]);
5144       if (prog->_LinkedShaders[i] == NULL)
5145          continue;
5146 
5147       /* Do a final validation step to make sure that the IR wasn't
5148        * invalidated by any modifications performed after intrastage linking.
5149        */
5150       validate_ir_tree(prog->_LinkedShaders[i]->ir);
5151 
5152       /* Retain any live IR, but trash the rest. */
5153       reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5154 
5155       /* The symbol table in the linked shaders may contain references to
5156        * variables that were removed (e.g., unused uniforms).  Since it may
5157        * contain junk, there is no possible valid use.  Delete it and set the
5158        * pointer to NULL.
5159        */
5160       delete prog->_LinkedShaders[i]->symbols;
5161       prog->_LinkedShaders[i]->symbols = NULL;
5162    }
5163 
5164    ralloc_free(mem_ctx);
5165 }
5166