1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "CpuOperationUtils.h"
18 #include "Operations.h"
19 
20 #include <algorithm>
21 #include <cmath>
22 #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
23 
24 #include "Tracing.h"
25 
26 namespace android {
27 namespace nn {
28 
localResponseNormFloat32Impl(const float * inputData,const Shape & inputShape,int32_t radius,float bias,float alpha,float beta,int32_t axis,float * outputData,const Shape & outputShape)29 inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape,
30                                          int32_t radius, float bias, float alpha, float beta,
31                                          int32_t axis, float* outputData,
32                                          const Shape& outputShape) {
33     NNTRACE_TRANS("localResponseNormFloat32");
34     const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
35     const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
36     const uint32_t innerSize =
37             getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
38     for (uint32_t outer = 0; outer < outerSize; ++outer) {
39         const float* inputBase = inputData + outer * axisSize * innerSize;
40         float* outputBase = outputData + outer * axisSize * innerSize;
41         for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBase, ++outputBase) {
42             for (int32_t i = 0; i < axisSize; i++) {
43                 const int32_t dBegin = std::max(0, i - radius);
44                 // Add 1 on dEnd to comply with optimized_ops in TFLite
45                 const int32_t dEnd = std::min(static_cast<int32_t>(axisSize), i + radius + 1);
46                 float sum = 0.0f;
47                 for (int32_t d = dBegin; d < dEnd; d++) {
48                     float val = inputBase[d * innerSize];
49                     sum += val * val;
50                 }
51                 float multiplier = std::pow(bias + alpha * sum, -beta);
52                 outputBase[i * innerSize] = inputBase[i * innerSize] * multiplier;
53             }
54         }
55     }
56     return true;
57 }
58 
localResponseNormFloat16(const _Float16 * inputData,const Shape & inputShape,int32_t radius,float bias,float alpha,float beta,int32_t axis,_Float16 * outputData,const Shape & outputShape)59 bool localResponseNormFloat16(const _Float16* inputData, const Shape& inputShape, int32_t radius,
60                               float bias, float alpha, float beta, int32_t axis,
61                               _Float16* outputData, const Shape& outputShape) {
62     NNTRACE_TRANS("localResponseNormFloat16");
63     std::vector<float> inputDataFloat32(getNumberOfElements(inputShape));
64     convertFloat16ToFloat32(inputData, &inputDataFloat32);
65     std::vector<float> outputDataFloat32(getNumberOfElements(outputShape));
66 
67     localResponseNormFloat32(inputDataFloat32.data(), inputShape, radius, bias, alpha, beta, axis,
68                              outputDataFloat32.data(), outputShape);
69     convertFloat32ToFloat16(outputDataFloat32, outputData);
70 
71     return true;
72 }
73 
localResponseNormFloat32(const float * inputData,const Shape & inputShape,int32_t radius,float bias,float alpha,float beta,int32_t axis,float * outputData,const Shape & outputShape)74 bool localResponseNormFloat32(const float* inputData, const Shape& inputShape, int32_t radius,
75                               float bias, float alpha, float beta, int32_t axis, float* outputData,
76                               const Shape& outputShape) {
77     int32_t ndim = getNumberOfDimensions(inputShape);
78     NN_CHECK(handleNegativeAxis(inputShape, &axis));
79     // TFLite optimized implementation only supports computation along the last axis
80     if (axis == ndim - 1) {
81         NNTRACE_COMP("optimized_ops::LocalResponseNormalization::float");
82         tflite::LocalResponseNormalizationParams param = {
83                 .range = radius, .bias = bias, .alpha = alpha, .beta = beta};
84         tflite::optimized_ops::LocalResponseNormalization(
85                 param, convertShapeToTflshape(inputShape), inputData,
86                 convertShapeToTflshape(outputShape), outputData);
87         return true;
88     } else {
89         return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis,
90                                             outputData, outputShape);
91     }
92 }
93 }  // namespace nn
94 }  // namespace android
95