1 /**************************************************************************
2  *
3  * Copyright 2009 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /**
29  * LLVM control flow build helpers.
30  *
31  * @author Jose Fonseca <jfonseca@vmware.com>
32  */
33 
34 #include "util/u_debug.h"
35 #include "util/u_memory.h"
36 
37 #include "lp_bld_init.h"
38 #include "lp_bld_type.h"
39 #include "lp_bld_flow.h"
40 
41 
42 /**
43  * Insert a new block, right where builder is pointing to.
44  *
45  * This is useful important not only for aesthetic reasons, but also for
46  * performance reasons, as frequently run blocks should be laid out next to
47  * each other and fall-throughs maximized.
48  *
49  * See also llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp.
50  *
51  * Note: this function has no dependencies on the flow code and could
52  * be used elsewhere.
53  */
54 LLVMBasicBlockRef
lp_build_insert_new_block(struct gallivm_state * gallivm,const char * name)55 lp_build_insert_new_block(struct gallivm_state *gallivm, const char *name)
56 {
57    LLVMBasicBlockRef current_block;
58    LLVMBasicBlockRef next_block;
59    LLVMBasicBlockRef new_block;
60 
61    /* get current basic block */
62    current_block = LLVMGetInsertBlock(gallivm->builder);
63 
64    /* check if there's another block after this one */
65    next_block = LLVMGetNextBasicBlock(current_block);
66    if (next_block) {
67       /* insert the new block before the next block */
68       new_block = LLVMInsertBasicBlockInContext(gallivm->context, next_block, name);
69    }
70    else {
71       /* append new block after current block */
72       LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
73       new_block = LLVMAppendBasicBlockInContext(gallivm->context, function, name);
74    }
75 
76    return new_block;
77 }
78 
79 
80 /**
81  * Begin a "skip" block.  Inside this block we can test a condition and
82  * skip to the end of the block if the condition is false.
83  */
84 void
lp_build_flow_skip_begin(struct lp_build_skip_context * skip,struct gallivm_state * gallivm)85 lp_build_flow_skip_begin(struct lp_build_skip_context *skip,
86                          struct gallivm_state *gallivm)
87 {
88    skip->gallivm = gallivm;
89    /* create new basic block */
90    skip->block = lp_build_insert_new_block(gallivm, "skip");
91 }
92 
93 
94 /**
95  * Insert code to test a condition and branch to the end of the current
96  * skip block if the condition is true.
97  */
98 void
lp_build_flow_skip_cond_break(struct lp_build_skip_context * skip,LLVMValueRef cond)99 lp_build_flow_skip_cond_break(struct lp_build_skip_context *skip,
100                               LLVMValueRef cond)
101 {
102    LLVMBasicBlockRef new_block;
103 
104    new_block = lp_build_insert_new_block(skip->gallivm, "");
105 
106    /* if cond is true, goto skip->block, else goto new_block */
107    LLVMBuildCondBr(skip->gallivm->builder, cond, skip->block, new_block);
108 
109    LLVMPositionBuilderAtEnd(skip->gallivm->builder, new_block);
110 }
111 
112 
113 void
lp_build_flow_skip_end(struct lp_build_skip_context * skip)114 lp_build_flow_skip_end(struct lp_build_skip_context *skip)
115 {
116    /* goto block */
117    LLVMBuildBr(skip->gallivm->builder, skip->block);
118    LLVMPositionBuilderAtEnd(skip->gallivm->builder, skip->block);
119 }
120 
121 
122 /**
123  * Check if the mask predicate is zero.  If so, jump to the end of the block.
124  */
125 void
lp_build_mask_check(struct lp_build_mask_context * mask)126 lp_build_mask_check(struct lp_build_mask_context *mask)
127 {
128    LLVMBuilderRef builder = mask->skip.gallivm->builder;
129    LLVMValueRef value;
130    LLVMValueRef cond;
131 
132    value = lp_build_mask_value(mask);
133 
134    /*
135     * XXX this doesn't quite generate the most efficient code possible, if
136     * the masks are vectors which have all bits set to the same value
137     * in each element.
138     * movmskps/pmovmskb would be more efficient to get the required value
139     * into ordinary reg (certainly with 8 floats).
140     * Not sure if llvm could figure that out on its own.
141     */
142 
143    /* cond = (mask == 0) */
144    cond = LLVMBuildICmp(builder,
145                         LLVMIntEQ,
146                         LLVMBuildBitCast(builder, value, mask->reg_type, ""),
147                         LLVMConstNull(mask->reg_type),
148                         "");
149 
150    /* if cond, goto end of block */
151    lp_build_flow_skip_cond_break(&mask->skip, cond);
152 }
153 
154 
155 /**
156  * Begin a section of code which is predicated on a mask.
157  * \param mask  the mask context, initialized here
158  * \param flow  the flow context
159  * \param type  the type of the mask
160  * \param value  storage for the mask
161  */
162 void
lp_build_mask_begin(struct lp_build_mask_context * mask,struct gallivm_state * gallivm,struct lp_type type,LLVMValueRef value)163 lp_build_mask_begin(struct lp_build_mask_context *mask,
164                     struct gallivm_state *gallivm,
165                     struct lp_type type,
166                     LLVMValueRef value)
167 {
168    memset(mask, 0, sizeof *mask);
169 
170    mask->reg_type = LLVMIntTypeInContext(gallivm->context, type.width * type.length);
171    mask->var = lp_build_alloca(gallivm,
172                                lp_build_int_vec_type(gallivm, type),
173                                "execution_mask");
174 
175    LLVMBuildStore(gallivm->builder, value, mask->var);
176 
177    lp_build_flow_skip_begin(&mask->skip, gallivm);
178 }
179 
180 
181 LLVMValueRef
lp_build_mask_value(struct lp_build_mask_context * mask)182 lp_build_mask_value(struct lp_build_mask_context *mask)
183 {
184    return LLVMBuildLoad(mask->skip.gallivm->builder, mask->var, "");
185 }
186 
187 
188 /**
189  * Update boolean mask with given value (bitwise AND).
190  * Typically used to update the quad's pixel alive/killed mask
191  * after depth testing, alpha testing, TGSI_OPCODE_KILL_IF, etc.
192  */
193 void
lp_build_mask_update(struct lp_build_mask_context * mask,LLVMValueRef value)194 lp_build_mask_update(struct lp_build_mask_context *mask,
195                      LLVMValueRef value)
196 {
197    value = LLVMBuildAnd(mask->skip.gallivm->builder,
198                         lp_build_mask_value(mask),
199                         value, "");
200    LLVMBuildStore(mask->skip.gallivm->builder, value, mask->var);
201 }
202 
203 
204 /**
205  * End section of code which is predicated on a mask.
206  */
207 LLVMValueRef
lp_build_mask_end(struct lp_build_mask_context * mask)208 lp_build_mask_end(struct lp_build_mask_context *mask)
209 {
210    lp_build_flow_skip_end(&mask->skip);
211    return lp_build_mask_value(mask);
212 }
213 
214 
215 
216 void
lp_build_loop_begin(struct lp_build_loop_state * state,struct gallivm_state * gallivm,LLVMValueRef start)217 lp_build_loop_begin(struct lp_build_loop_state *state,
218                     struct gallivm_state *gallivm,
219                     LLVMValueRef start)
220 
221 {
222    LLVMBuilderRef builder = gallivm->builder;
223 
224    state->block = lp_build_insert_new_block(gallivm, "loop_begin");
225 
226    state->counter_var = lp_build_alloca(gallivm, LLVMTypeOf(start), "loop_counter");
227    state->gallivm = gallivm;
228 
229    LLVMBuildStore(builder, start, state->counter_var);
230 
231    LLVMBuildBr(builder, state->block);
232 
233    LLVMPositionBuilderAtEnd(builder, state->block);
234 
235    state->counter = LLVMBuildLoad(builder, state->counter_var, "");
236 }
237 
238 
239 void
lp_build_loop_end_cond(struct lp_build_loop_state * state,LLVMValueRef end,LLVMValueRef step,LLVMIntPredicate llvm_cond)240 lp_build_loop_end_cond(struct lp_build_loop_state *state,
241                        LLVMValueRef end,
242                        LLVMValueRef step,
243                        LLVMIntPredicate llvm_cond)
244 {
245    LLVMBuilderRef builder = state->gallivm->builder;
246    LLVMValueRef next;
247    LLVMValueRef cond;
248    LLVMBasicBlockRef after_block;
249 
250    if (!step)
251       step = LLVMConstInt(LLVMTypeOf(end), 1, 0);
252 
253    next = LLVMBuildAdd(builder, state->counter, step, "");
254 
255    LLVMBuildStore(builder, next, state->counter_var);
256 
257    cond = LLVMBuildICmp(builder, llvm_cond, next, end, "");
258 
259    after_block = lp_build_insert_new_block(state->gallivm, "loop_end");
260 
261    LLVMBuildCondBr(builder, cond, after_block, state->block);
262 
263    LLVMPositionBuilderAtEnd(builder, after_block);
264 
265    state->counter = LLVMBuildLoad(builder, state->counter_var, "");
266 }
267 
268 
269 void
lp_build_loop_end(struct lp_build_loop_state * state,LLVMValueRef end,LLVMValueRef step)270 lp_build_loop_end(struct lp_build_loop_state *state,
271                   LLVMValueRef end,
272                   LLVMValueRef step)
273 {
274    lp_build_loop_end_cond(state, end, step, LLVMIntNE);
275 }
276 
277 /**
278  * Creates a c-style for loop,
279  * contrasts lp_build_loop as this checks condition on entry
280  * e.g. for(i = start; i cmp_op end; i += step)
281  * \param state      the for loop state, initialized here
282  * \param gallivm    the gallivm state
283  * \param start      starting value of iterator
284  * \param cmp_op     comparison operator used for comparing current value with end value
285  * \param end        value used to compare against iterator
286  * \param step       value added to iterator at end of each loop
287  */
288 void
lp_build_for_loop_begin(struct lp_build_for_loop_state * state,struct gallivm_state * gallivm,LLVMValueRef start,LLVMIntPredicate cmp_op,LLVMValueRef end,LLVMValueRef step)289 lp_build_for_loop_begin(struct lp_build_for_loop_state *state,
290                         struct gallivm_state *gallivm,
291                         LLVMValueRef start,
292                         LLVMIntPredicate cmp_op,
293                         LLVMValueRef end,
294                         LLVMValueRef step)
295 {
296    LLVMBuilderRef builder = gallivm->builder;
297 
298    assert(LLVMTypeOf(start) == LLVMTypeOf(end));
299    assert(LLVMTypeOf(start) == LLVMTypeOf(step));
300 
301    state->begin = lp_build_insert_new_block(gallivm, "loop_begin");
302    state->step  = step;
303    state->counter_var = lp_build_alloca(gallivm, LLVMTypeOf(start), "loop_counter");
304    state->gallivm = gallivm;
305    state->cond = cmp_op;
306    state->end = end;
307 
308    LLVMBuildStore(builder, start, state->counter_var);
309    LLVMBuildBr(builder, state->begin);
310 
311    LLVMPositionBuilderAtEnd(builder, state->begin);
312    state->counter = LLVMBuildLoad(builder, state->counter_var, "");
313 
314    state->body = lp_build_insert_new_block(gallivm, "loop_body");
315    LLVMPositionBuilderAtEnd(builder, state->body);
316 }
317 
318 /**
319  * End the for loop.
320  */
321 void
lp_build_for_loop_end(struct lp_build_for_loop_state * state)322 lp_build_for_loop_end(struct lp_build_for_loop_state *state)
323 {
324    LLVMValueRef next, cond;
325    LLVMBuilderRef builder = state->gallivm->builder;
326 
327    next = LLVMBuildAdd(builder, state->counter, state->step, "");
328    LLVMBuildStore(builder, next, state->counter_var);
329    LLVMBuildBr(builder, state->begin);
330 
331    state->exit = lp_build_insert_new_block(state->gallivm, "loop_exit");
332 
333    /*
334     * We build the comparison for the begin block here,
335     * if we build it earlier the output llvm ir is not human readable
336     * as the code produced is not in the standard begin -> body -> end order.
337     */
338    LLVMPositionBuilderAtEnd(builder, state->begin);
339    cond = LLVMBuildICmp(builder, state->cond, state->counter, state->end, "");
340    LLVMBuildCondBr(builder, cond, state->body, state->exit);
341 
342    LLVMPositionBuilderAtEnd(builder, state->exit);
343 }
344 
345 
346 /*
347   Example of if/then/else building:
348 
349      int x;
350      if (cond) {
351         x = 1 + 2;
352      }
353      else {
354         x = 2 + 3;
355      }
356 
357   Is built with:
358 
359      // x needs an alloca variable
360      x = lp_build_alloca(builder, type, "x");
361 
362 
363      lp_build_if(ctx, builder, cond);
364         LLVMBuildStore(LLVMBuildAdd(1, 2), x);
365      lp_build_else(ctx);
366         LLVMBuildStore(LLVMBuildAdd(2, 3). x);
367      lp_build_endif(ctx);
368 
369  */
370 
371 
372 
373 /**
374  * Begin an if/else/endif construct.
375  */
376 void
lp_build_if(struct lp_build_if_state * ifthen,struct gallivm_state * gallivm,LLVMValueRef condition)377 lp_build_if(struct lp_build_if_state *ifthen,
378             struct gallivm_state *gallivm,
379             LLVMValueRef condition)
380 {
381    LLVMBasicBlockRef block = LLVMGetInsertBlock(gallivm->builder);
382 
383    memset(ifthen, 0, sizeof *ifthen);
384    ifthen->gallivm = gallivm;
385    ifthen->condition = condition;
386    ifthen->entry_block = block;
387 
388    /* create endif/merge basic block for the phi functions */
389    ifthen->merge_block = lp_build_insert_new_block(gallivm, "endif-block");
390 
391    /* create/insert true_block before merge_block */
392    ifthen->true_block =
393       LLVMInsertBasicBlockInContext(gallivm->context,
394                                     ifthen->merge_block,
395                                     "if-true-block");
396 
397    /* successive code goes into the true block */
398    LLVMPositionBuilderAtEnd(gallivm->builder, ifthen->true_block);
399 }
400 
401 
402 /**
403  * Begin else-part of a conditional
404  */
405 void
lp_build_else(struct lp_build_if_state * ifthen)406 lp_build_else(struct lp_build_if_state *ifthen)
407 {
408    LLVMBuilderRef builder = ifthen->gallivm->builder;
409 
410    /* Append an unconditional Br(anch) instruction on the true_block */
411    LLVMBuildBr(builder, ifthen->merge_block);
412 
413    /* create/insert false_block before the merge block */
414    ifthen->false_block =
415       LLVMInsertBasicBlockInContext(ifthen->gallivm->context,
416                                     ifthen->merge_block,
417                                     "if-false-block");
418 
419    /* successive code goes into the else block */
420    LLVMPositionBuilderAtEnd(builder, ifthen->false_block);
421 }
422 
423 
424 /**
425  * End a conditional.
426  */
427 void
lp_build_endif(struct lp_build_if_state * ifthen)428 lp_build_endif(struct lp_build_if_state *ifthen)
429 {
430    LLVMBuilderRef builder = ifthen->gallivm->builder;
431 
432    /* Insert branch to the merge block from current block */
433    LLVMBuildBr(builder, ifthen->merge_block);
434 
435    /*
436     * Now patch in the various branch instructions.
437     */
438 
439    /* Insert the conditional branch instruction at the end of entry_block */
440    LLVMPositionBuilderAtEnd(builder, ifthen->entry_block);
441    if (ifthen->false_block) {
442       /* we have an else clause */
443       LLVMBuildCondBr(builder, ifthen->condition,
444                       ifthen->true_block, ifthen->false_block);
445    }
446    else {
447       /* no else clause */
448       LLVMBuildCondBr(builder, ifthen->condition,
449                       ifthen->true_block, ifthen->merge_block);
450    }
451 
452    /* Resume building code at end of the ifthen->merge_block */
453    LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);
454 }
455 
456 
457 static LLVMBuilderRef
create_builder_at_entry(struct gallivm_state * gallivm)458 create_builder_at_entry(struct gallivm_state *gallivm)
459 {
460    LLVMBuilderRef builder = gallivm->builder;
461    LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
462    LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
463    LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
464    LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
465    LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(gallivm->context);
466 
467    if (first_instr) {
468       LLVMPositionBuilderBefore(first_builder, first_instr);
469    } else {
470       LLVMPositionBuilderAtEnd(first_builder, first_block);
471    }
472 
473    return first_builder;
474 }
475 
476 
477 /**
478  * Allocate a scalar (or vector) variable.
479  *
480  * Although not strictly part of control flow, control flow has deep impact in
481  * how variables should be allocated.
482  *
483  * The mem2reg optimization pass is the recommended way to dealing with mutable
484  * variables, and SSA. It looks for allocas and if it can handle them, it
485  * promotes them, but only looks for alloca instructions in the entry block of
486  * the function. Being in the entry block guarantees that the alloca is only
487  * executed once, which makes analysis simpler.
488  *
489  * See also:
490  * - http://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#memory
491  */
492 LLVMValueRef
lp_build_alloca(struct gallivm_state * gallivm,LLVMTypeRef type,const char * name)493 lp_build_alloca(struct gallivm_state *gallivm,
494                 LLVMTypeRef type,
495                 const char *name)
496 {
497    LLVMBuilderRef builder = gallivm->builder;
498    LLVMBuilderRef first_builder = create_builder_at_entry(gallivm);
499    LLVMValueRef res;
500 
501    res = LLVMBuildAlloca(first_builder, type, name);
502    LLVMBuildStore(builder, LLVMConstNull(type), res);
503 
504    LLVMDisposeBuilder(first_builder);
505 
506    return res;
507 }
508 
509 
510 /**
511  * Like lp_build_alloca, but do not zero-initialize the variable.
512  */
513 LLVMValueRef
lp_build_alloca_undef(struct gallivm_state * gallivm,LLVMTypeRef type,const char * name)514 lp_build_alloca_undef(struct gallivm_state *gallivm,
515                       LLVMTypeRef type,
516                       const char *name)
517 {
518    LLVMBuilderRef first_builder = create_builder_at_entry(gallivm);
519    LLVMValueRef res;
520 
521    res = LLVMBuildAlloca(first_builder, type, name);
522 
523    LLVMDisposeBuilder(first_builder);
524 
525    return res;
526 }
527 
528 
529 /**
530  * Allocate an array of scalars/vectors.
531  *
532  * mem2reg pass is not capable of promoting structs or arrays to registers, but
533  * we still put it in the first block anyway as failure to put allocas in the
534  * first block may prevent the X86 backend from successfully align the stack as
535  * required.
536  *
537  * Also the scalarrepl pass is supposedly more powerful and can promote
538  * arrays in many cases.
539  *
540  * See also:
541  * - http://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#memory
542  */
543 LLVMValueRef
lp_build_array_alloca(struct gallivm_state * gallivm,LLVMTypeRef type,LLVMValueRef count,const char * name)544 lp_build_array_alloca(struct gallivm_state *gallivm,
545                       LLVMTypeRef type,
546                       LLVMValueRef count,
547                       const char *name)
548 {
549    LLVMBuilderRef first_builder = create_builder_at_entry(gallivm);
550    LLVMValueRef res;
551 
552    res = LLVMBuildArrayAlloca(first_builder, type, count, name);
553 
554    LLVMDisposeBuilder(first_builder);
555 
556    return res;
557 }
558