1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_PPC
6 
7 #include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
8 
9 #include "src/assembler-inl.h"
10 #include "src/base/bits.h"
11 #include "src/code-stubs.h"
12 #include "src/log.h"
13 #include "src/macro-assembler.h"
14 #include "src/regexp/regexp-macro-assembler.h"
15 #include "src/regexp/regexp-stack.h"
16 #include "src/unicode.h"
17 
18 namespace v8 {
19 namespace internal {
20 
21 #ifndef V8_INTERPRETED_REGEXP
22 /*
23  * This assembler uses the following register assignment convention
24  * - r25: Temporarily stores the index of capture start after a matching pass
25  *        for a global regexp.
26  * - r26: Pointer to current code object (Code*) including heap object tag.
27  * - r27: Current position in input, as negative offset from end of string.
28  *        Please notice that this is the byte offset, not the character offset!
29  * - r28: Currently loaded character. Must be loaded using
30  *        LoadCurrentCharacter before using any of the dispatch methods.
31  * - r29: Points to tip of backtrack stack
32  * - r30: End of input (points to byte after last character in input).
33  * - r31: Frame pointer. Used to access arguments, local variables and
34  *         RegExp registers.
35  * - r12: IP register, used by assembler. Very volatile.
36  * - r1/sp : Points to tip of C stack.
37  *
38  * The remaining registers are free for computations.
39  * Each call to a public method should retain this convention.
40  *
41  * The stack will have the following structure:
42  *  - fp[40]  Isolate* isolate   (address of the current isolate)
43  *  - fp[36]  lr save area (currently unused)
44  *  - fp[32]  backchain    (currently unused)
45  *  --- sp when called ---
46  *  - fp[28]  return address     (lr).
47  *  - fp[24]  old frame pointer  (r31).
48  *  - fp[0..20]  backup of registers r25..r30
49  *  --- frame pointer ----
50  *  - fp[-4]  direct_call        (if 1, direct call from JavaScript code,
51  *                                if 0, call through the runtime system).
52  *  - fp[-8]  stack_area_base    (high end of the memory area to use as
53  *                                backtracking stack).
54  *  - fp[-12] capture array size (may fit multiple sets of matches)
55  *  - fp[-16] int* capture_array (int[num_saved_registers_], for output).
56  *  - fp[-20] end of input       (address of end of string).
57  *  - fp[-24] start of input     (address of first character in string).
58  *  - fp[-28] start index        (character index of start).
59  *  - fp[-32] void* input_string (location of a handle containing the string).
60  *  - fp[-36] success counter    (only for global regexps to count matches).
61  *  - fp[-40] Offset of location before start of input (effectively character
62  *            string start - 1). Used to initialize capture registers to a
63  *            non-position.
64  *  - fp[-44] At start (if 1, we are starting at the start of the
65  *    string, otherwise 0)
66  *  - fp[-48] register 0         (Only positions must be stored in the first
67  *  -         register 1          num_saved_registers_ registers)
68  *  -         ...
69  *  -         register num_registers-1
70  *  --- sp ---
71  *
72  * The first num_saved_registers_ registers are initialized to point to
73  * "character -1" in the string (i.e., char_size() bytes before the first
74  * character of the string). The remaining registers start out as garbage.
75  *
76  * The data up to the return address must be placed there by the calling
77  * code and the remaining arguments are passed in registers, e.g. by calling the
78  * code entry as cast to a function with the signature:
79  * int (*match)(String* input_string,
80  *              int start_index,
81  *              Address start,
82  *              Address end,
83  *              int* capture_output_array,
84  *              int num_capture_registers,
85  *              byte* stack_area_base,
86  *              bool direct_call = false,
87  *              Isolate* isolate);
88  * The call is performed by NativeRegExpMacroAssembler::Execute()
89  * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
90  */
91 
92 #define __ ACCESS_MASM(masm_)
93 
RegExpMacroAssemblerPPC(Isolate * isolate,Zone * zone,Mode mode,int registers_to_save)94 RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone,
95                                                  Mode mode,
96                                                  int registers_to_save)
97     : NativeRegExpMacroAssembler(isolate, zone),
98       masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize,
99                                CodeObjectRequired::kYes)),
100       mode_(mode),
101       num_registers_(registers_to_save),
102       num_saved_registers_(registers_to_save),
103       entry_label_(),
104       start_label_(),
105       success_label_(),
106       backtrack_label_(),
107       exit_label_(),
108       internal_failure_label_() {
109   DCHECK_EQ(0, registers_to_save % 2);
110 
111 // Called from C
112   __ function_descriptor();
113 
114   __ b(&entry_label_);  // We'll write the entry code later.
115   // If the code gets too big or corrupted, an internal exception will be
116   // raised, and we will exit right away.
117   __ bind(&internal_failure_label_);
118   __ li(r3, Operand(FAILURE));
119   __ Ret();
120   __ bind(&start_label_);  // And then continue from here.
121 }
122 
123 
~RegExpMacroAssemblerPPC()124 RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() {
125   delete masm_;
126   // Unuse labels in case we throw away the assembler without calling GetCode.
127   entry_label_.Unuse();
128   start_label_.Unuse();
129   success_label_.Unuse();
130   backtrack_label_.Unuse();
131   exit_label_.Unuse();
132   check_preempt_label_.Unuse();
133   stack_overflow_label_.Unuse();
134   internal_failure_label_.Unuse();
135 }
136 
137 
stack_limit_slack()138 int RegExpMacroAssemblerPPC::stack_limit_slack() {
139   return RegExpStack::kStackLimitSlack;
140 }
141 
142 
AdvanceCurrentPosition(int by)143 void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) {
144   if (by != 0) {
145     __ addi(current_input_offset(), current_input_offset(),
146             Operand(by * char_size()));
147   }
148 }
149 
150 
AdvanceRegister(int reg,int by)151 void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) {
152   DCHECK_LE(0, reg);
153   DCHECK_GT(num_registers_, reg);
154   if (by != 0) {
155     __ LoadP(r3, register_location(reg), r0);
156     __ mov(r0, Operand(by));
157     __ add(r3, r3, r0);
158     __ StoreP(r3, register_location(reg), r0);
159   }
160 }
161 
162 
Backtrack()163 void RegExpMacroAssemblerPPC::Backtrack() {
164   CheckPreemption();
165   // Pop Code* offset from backtrack stack, add Code* and jump to location.
166   Pop(r3);
167   __ add(r3, r3, code_pointer());
168   __ Jump(r3);
169 }
170 
171 
Bind(Label * label)172 void RegExpMacroAssemblerPPC::Bind(Label* label) { __ bind(label); }
173 
174 
CheckCharacter(uint32_t c,Label * on_equal)175 void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
176   __ Cmpli(current_character(), Operand(c), r0);
177   BranchOrBacktrack(eq, on_equal);
178 }
179 
180 
CheckCharacterGT(uc16 limit,Label * on_greater)181 void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
182   __ Cmpli(current_character(), Operand(limit), r0);
183   BranchOrBacktrack(gt, on_greater);
184 }
185 
186 
CheckAtStart(Label * on_at_start)187 void RegExpMacroAssemblerPPC::CheckAtStart(Label* on_at_start) {
188   __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
189   __ addi(r3, current_input_offset(), Operand(-char_size()));
190   __ cmp(r3, r4);
191   BranchOrBacktrack(eq, on_at_start);
192 }
193 
194 
CheckNotAtStart(int cp_offset,Label * on_not_at_start)195 void RegExpMacroAssemblerPPC::CheckNotAtStart(int cp_offset,
196                                               Label* on_not_at_start) {
197   __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
198   __ addi(r3, current_input_offset(),
199           Operand(-char_size() + cp_offset * char_size()));
200   __ cmp(r3, r4);
201   BranchOrBacktrack(ne, on_not_at_start);
202 }
203 
204 
CheckCharacterLT(uc16 limit,Label * on_less)205 void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
206   __ Cmpli(current_character(), Operand(limit), r0);
207   BranchOrBacktrack(lt, on_less);
208 }
209 
210 
CheckGreedyLoop(Label * on_equal)211 void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
212   Label backtrack_non_equal;
213   __ LoadP(r3, MemOperand(backtrack_stackpointer(), 0));
214   __ cmp(current_input_offset(), r3);
215   __ bne(&backtrack_non_equal);
216   __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
217           Operand(kPointerSize));
218 
219   __ bind(&backtrack_non_equal);
220   BranchOrBacktrack(eq, on_equal);
221 }
222 
CheckNotBackReferenceIgnoreCase(int start_reg,bool read_backward,bool unicode,Label * on_no_match)223 void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase(
224     int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
225   Label fallthrough;
226   __ LoadP(r3, register_location(start_reg), r0);  // Index of start of capture
227   __ LoadP(r4, register_location(start_reg + 1), r0);  // Index of end
228   __ sub(r4, r4, r3, LeaveOE, SetRC);                  // Length of capture.
229 
230   // At this point, the capture registers are either both set or both cleared.
231   // If the capture length is zero, then the capture is either empty or cleared.
232   // Fall through in both cases.
233   __ beq(&fallthrough, cr0);
234 
235   // Check that there are enough characters left in the input.
236   if (read_backward) {
237     __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
238     __ add(r6, r6, r4);
239     __ cmp(current_input_offset(), r6);
240     BranchOrBacktrack(le, on_no_match);
241   } else {
242     __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
243     BranchOrBacktrack(gt, on_no_match, cr0);
244   }
245 
246   if (mode_ == LATIN1) {
247     Label success;
248     Label fail;
249     Label loop_check;
250 
251     // r3 - offset of start of capture
252     // r4 - length of capture
253     __ add(r3, r3, end_of_input_address());
254     __ add(r5, end_of_input_address(), current_input_offset());
255     if (read_backward) {
256       __ sub(r5, r5, r4);  // Offset by length when matching backwards.
257     }
258     __ add(r4, r3, r4);
259 
260     // r3 - Address of start of capture.
261     // r4 - Address of end of capture
262     // r5 - Address of current input position.
263 
264     Label loop;
265     __ bind(&loop);
266     __ lbz(r6, MemOperand(r3));
267     __ addi(r3, r3, Operand(char_size()));
268     __ lbz(r25, MemOperand(r5));
269     __ addi(r5, r5, Operand(char_size()));
270     __ cmp(r25, r6);
271     __ beq(&loop_check);
272 
273     // Mismatch, try case-insensitive match (converting letters to lower-case).
274     __ ori(r6, r6, Operand(0x20));  // Convert capture character to lower-case.
275     __ ori(r25, r25, Operand(0x20));  // Also convert input character.
276     __ cmp(r25, r6);
277     __ bne(&fail);
278     __ subi(r6, r6, Operand('a'));
279     __ cmpli(r6, Operand('z' - 'a'));  // Is r6 a lowercase letter?
280     __ ble(&loop_check);               // In range 'a'-'z'.
281     // Latin-1: Check for values in range [224,254] but not 247.
282     __ subi(r6, r6, Operand(224 - 'a'));
283     __ cmpli(r6, Operand(254 - 224));
284     __ bgt(&fail);                    // Weren't Latin-1 letters.
285     __ cmpi(r6, Operand(247 - 224));  // Check for 247.
286     __ beq(&fail);
287 
288     __ bind(&loop_check);
289     __ cmp(r3, r4);
290     __ blt(&loop);
291     __ b(&success);
292 
293     __ bind(&fail);
294     BranchOrBacktrack(al, on_no_match);
295 
296     __ bind(&success);
297     // Compute new value of character position after the matched part.
298     __ sub(current_input_offset(), r5, end_of_input_address());
299     if (read_backward) {
300       __ LoadP(r3, register_location(start_reg));  // Index of start of capture
301       __ LoadP(r4,
302                register_location(start_reg + 1));  // Index of end of capture
303       __ add(current_input_offset(), current_input_offset(), r3);
304       __ sub(current_input_offset(), current_input_offset(), r4);
305     }
306   } else {
307     DCHECK(mode_ == UC16);
308     int argument_count = 4;
309     __ PrepareCallCFunction(argument_count, r5);
310 
311     // r3 - offset of start of capture
312     // r4 - length of capture
313 
314     // Put arguments into arguments registers.
315     // Parameters are
316     //   r3: Address byte_offset1 - Address captured substring's start.
317     //   r4: Address byte_offset2 - Address of current character position.
318     //   r5: size_t byte_length - length of capture in bytes(!)
319     //   r6: Isolate* isolate or 0 if unicode flag.
320 
321     // Address of start of capture.
322     __ add(r3, r3, end_of_input_address());
323     // Length of capture.
324     __ mr(r5, r4);
325     // Save length in callee-save register for use on return.
326     __ mr(r25, r4);
327     // Address of current input position.
328     __ add(r4, current_input_offset(), end_of_input_address());
329     if (read_backward) {
330       __ sub(r4, r4, r25);
331     }
332     // Isolate.
333 #ifdef V8_INTL_SUPPORT
334     if (unicode) {
335       __ li(r6, Operand::Zero());
336     } else  // NOLINT
337 #endif      // V8_INTL_SUPPORT
338     {
339       __ mov(r6, Operand(ExternalReference::isolate_address(isolate())));
340     }
341 
342     {
343       AllowExternalCallThatCantCauseGC scope(masm_);
344       ExternalReference function =
345           ExternalReference::re_case_insensitive_compare_uc16(isolate());
346       __ CallCFunction(function, argument_count);
347     }
348 
349     // Check if function returned non-zero for success or zero for failure.
350     __ cmpi(r3, Operand::Zero());
351     BranchOrBacktrack(eq, on_no_match);
352 
353     // On success, advance position by length of capture.
354     if (read_backward) {
355       __ sub(current_input_offset(), current_input_offset(), r25);
356     } else {
357       __ add(current_input_offset(), current_input_offset(), r25);
358     }
359   }
360 
361   __ bind(&fallthrough);
362 }
363 
364 
CheckNotBackReference(int start_reg,bool read_backward,Label * on_no_match)365 void RegExpMacroAssemblerPPC::CheckNotBackReference(int start_reg,
366                                                     bool read_backward,
367                                                     Label* on_no_match) {
368   Label fallthrough;
369   Label success;
370 
371   // Find length of back-referenced capture.
372   __ LoadP(r3, register_location(start_reg), r0);
373   __ LoadP(r4, register_location(start_reg + 1), r0);
374   __ sub(r4, r4, r3, LeaveOE, SetRC);  // Length to check.
375 
376   // At this point, the capture registers are either both set or both cleared.
377   // If the capture length is zero, then the capture is either empty or cleared.
378   // Fall through in both cases.
379   __ beq(&fallthrough, cr0);
380 
381   // Check that there are enough characters left in the input.
382   if (read_backward) {
383     __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
384     __ add(r6, r6, r4);
385     __ cmp(current_input_offset(), r6);
386     BranchOrBacktrack(le, on_no_match);
387   } else {
388     __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
389     BranchOrBacktrack(gt, on_no_match, cr0);
390   }
391 
392   // r3 - offset of start of capture
393   // r4 - length of capture
394   __ add(r3, r3, end_of_input_address());
395   __ add(r5, end_of_input_address(), current_input_offset());
396   if (read_backward) {
397     __ sub(r5, r5, r4);  // Offset by length when matching backwards.
398   }
399   __ add(r4, r4, r3);
400 
401   Label loop;
402   __ bind(&loop);
403   if (mode_ == LATIN1) {
404     __ lbz(r6, MemOperand(r3));
405     __ addi(r3, r3, Operand(char_size()));
406     __ lbz(r25, MemOperand(r5));
407     __ addi(r5, r5, Operand(char_size()));
408   } else {
409     DCHECK(mode_ == UC16);
410     __ lhz(r6, MemOperand(r3));
411     __ addi(r3, r3, Operand(char_size()));
412     __ lhz(r25, MemOperand(r5));
413     __ addi(r5, r5, Operand(char_size()));
414   }
415   __ cmp(r6, r25);
416   BranchOrBacktrack(ne, on_no_match);
417   __ cmp(r3, r4);
418   __ blt(&loop);
419 
420   // Move current character position to position after match.
421   __ sub(current_input_offset(), r5, end_of_input_address());
422   if (read_backward) {
423     __ LoadP(r3, register_location(start_reg));  // Index of start of capture
424     __ LoadP(r4, register_location(start_reg + 1));  // Index of end of capture
425     __ add(current_input_offset(), current_input_offset(), r3);
426     __ sub(current_input_offset(), current_input_offset(), r4);
427   }
428 
429   __ bind(&fallthrough);
430 }
431 
432 
CheckNotCharacter(unsigned c,Label * on_not_equal)433 void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c,
434                                                 Label* on_not_equal) {
435   __ Cmpli(current_character(), Operand(c), r0);
436   BranchOrBacktrack(ne, on_not_equal);
437 }
438 
439 
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)440 void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
441                                                      Label* on_equal) {
442   __ mov(r0, Operand(mask));
443   if (c == 0) {
444     __ and_(r3, current_character(), r0, SetRC);
445   } else {
446     __ and_(r3, current_character(), r0);
447     __ Cmpli(r3, Operand(c), r0, cr0);
448   }
449   BranchOrBacktrack(eq, on_equal, cr0);
450 }
451 
452 
CheckNotCharacterAfterAnd(unsigned c,unsigned mask,Label * on_not_equal)453 void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
454                                                         unsigned mask,
455                                                         Label* on_not_equal) {
456   __ mov(r0, Operand(mask));
457   if (c == 0) {
458     __ and_(r3, current_character(), r0, SetRC);
459   } else {
460     __ and_(r3, current_character(), r0);
461     __ Cmpli(r3, Operand(c), r0, cr0);
462   }
463   BranchOrBacktrack(ne, on_not_equal, cr0);
464 }
465 
466 
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)467 void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
468     uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
469   DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
470   __ subi(r3, current_character(), Operand(minus));
471   __ mov(r0, Operand(mask));
472   __ and_(r3, r3, r0);
473   __ Cmpli(r3, Operand(c), r0);
474   BranchOrBacktrack(ne, on_not_equal);
475 }
476 
477 
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)478 void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
479                                                     Label* on_in_range) {
480   __ mov(r0, Operand(from));
481   __ sub(r3, current_character(), r0);
482   __ Cmpli(r3, Operand(to - from), r0);
483   BranchOrBacktrack(le, on_in_range);  // Unsigned lower-or-same condition.
484 }
485 
486 
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)487 void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
488                                                        Label* on_not_in_range) {
489   __ mov(r0, Operand(from));
490   __ sub(r3, current_character(), r0);
491   __ Cmpli(r3, Operand(to - from), r0);
492   BranchOrBacktrack(gt, on_not_in_range);  // Unsigned higher condition.
493 }
494 
495 
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)496 void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
497                                               Label* on_bit_set) {
498   __ mov(r3, Operand(table));
499   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
500     __ andi(r4, current_character(), Operand(kTableSize - 1));
501     __ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
502   } else {
503     __ addi(r4, current_character(),
504             Operand(ByteArray::kHeaderSize - kHeapObjectTag));
505   }
506   __ lbzx(r3, MemOperand(r3, r4));
507   __ cmpi(r3, Operand::Zero());
508   BranchOrBacktrack(ne, on_bit_set);
509 }
510 
511 
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)512 bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
513                                                          Label* on_no_match) {
514   // Range checks (c in min..max) are generally implemented by an unsigned
515   // (c - min) <= (max - min) check
516   switch (type) {
517     case 's':
518       // Match space-characters
519       if (mode_ == LATIN1) {
520         // One byte space characters are '\t'..'\r', ' ' and \u00a0.
521         Label success;
522         __ cmpi(current_character(), Operand(' '));
523         __ beq(&success);
524         // Check range 0x09..0x0D
525         __ subi(r3, current_character(), Operand('\t'));
526         __ cmpli(r3, Operand('\r' - '\t'));
527         __ ble(&success);
528         // \u00a0 (NBSP).
529         __ cmpi(r3, Operand(0x00A0 - '\t'));
530         BranchOrBacktrack(ne, on_no_match);
531         __ bind(&success);
532         return true;
533       }
534       return false;
535     case 'S':
536       // The emitted code for generic character classes is good enough.
537       return false;
538     case 'd':
539       // Match ASCII digits ('0'..'9')
540       __ subi(r3, current_character(), Operand('0'));
541       __ cmpli(r3, Operand('9' - '0'));
542       BranchOrBacktrack(gt, on_no_match);
543       return true;
544     case 'D':
545       // Match non ASCII-digits
546       __ subi(r3, current_character(), Operand('0'));
547       __ cmpli(r3, Operand('9' - '0'));
548       BranchOrBacktrack(le, on_no_match);
549       return true;
550     case '.': {
551       // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
552       __ xori(r3, current_character(), Operand(0x01));
553       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
554       __ subi(r3, r3, Operand(0x0B));
555       __ cmpli(r3, Operand(0x0C - 0x0B));
556       BranchOrBacktrack(le, on_no_match);
557       if (mode_ == UC16) {
558         // Compare original value to 0x2028 and 0x2029, using the already
559         // computed (current_char ^ 0x01 - 0x0B). I.e., check for
560         // 0x201D (0x2028 - 0x0B) or 0x201E.
561         __ subi(r3, r3, Operand(0x2028 - 0x0B));
562         __ cmpli(r3, Operand(1));
563         BranchOrBacktrack(le, on_no_match);
564       }
565       return true;
566     }
567     case 'n': {
568       // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
569       __ xori(r3, current_character(), Operand(0x01));
570       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
571       __ subi(r3, r3, Operand(0x0B));
572       __ cmpli(r3, Operand(0x0C - 0x0B));
573       if (mode_ == LATIN1) {
574         BranchOrBacktrack(gt, on_no_match);
575       } else {
576         Label done;
577         __ ble(&done);
578         // Compare original value to 0x2028 and 0x2029, using the already
579         // computed (current_char ^ 0x01 - 0x0B). I.e., check for
580         // 0x201D (0x2028 - 0x0B) or 0x201E.
581         __ subi(r3, r3, Operand(0x2028 - 0x0B));
582         __ cmpli(r3, Operand(1));
583         BranchOrBacktrack(gt, on_no_match);
584         __ bind(&done);
585       }
586       return true;
587     }
588     case 'w': {
589       if (mode_ != LATIN1) {
590         // Table is 256 entries, so all Latin1 characters can be tested.
591         __ cmpi(current_character(), Operand('z'));
592         BranchOrBacktrack(gt, on_no_match);
593       }
594       ExternalReference map =
595           ExternalReference::re_word_character_map(isolate());
596       __ mov(r3, Operand(map));
597       __ lbzx(r3, MemOperand(r3, current_character()));
598       __ cmpli(r3, Operand::Zero());
599       BranchOrBacktrack(eq, on_no_match);
600       return true;
601     }
602     case 'W': {
603       Label done;
604       if (mode_ != LATIN1) {
605         // Table is 256 entries, so all Latin1 characters can be tested.
606         __ cmpli(current_character(), Operand('z'));
607         __ bgt(&done);
608       }
609       ExternalReference map =
610           ExternalReference::re_word_character_map(isolate());
611       __ mov(r3, Operand(map));
612       __ lbzx(r3, MemOperand(r3, current_character()));
613       __ cmpli(r3, Operand::Zero());
614       BranchOrBacktrack(ne, on_no_match);
615       if (mode_ != LATIN1) {
616         __ bind(&done);
617       }
618       return true;
619     }
620     case '*':
621       // Match any character.
622       return true;
623     // No custom implementation (yet): s(UC16), S(UC16).
624     default:
625       return false;
626   }
627 }
628 
629 
Fail()630 void RegExpMacroAssemblerPPC::Fail() {
631   __ li(r3, Operand(FAILURE));
632   __ b(&exit_label_);
633 }
634 
635 
GetCode(Handle<String> source)636 Handle<HeapObject> RegExpMacroAssemblerPPC::GetCode(Handle<String> source) {
637   Label return_r3;
638 
639   if (masm_->has_exception()) {
640     // If the code gets corrupted due to long regular expressions and lack of
641     // space on trampolines, an internal exception flag is set. If this case
642     // is detected, we will jump into exit sequence right away.
643     __ bind_to(&entry_label_, internal_failure_label_.pos());
644   } else {
645     // Finalize code - write the entry point code now we know how many
646     // registers we need.
647 
648     // Entry code:
649     __ bind(&entry_label_);
650 
651     // Tell the system that we have a stack frame.  Because the type
652     // is MANUAL, no is generated.
653     FrameScope scope(masm_, StackFrame::MANUAL);
654 
655     // Ensure register assigments are consistent with callee save mask
656     DCHECK(r25.bit() & kRegExpCalleeSaved);
657     DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
658     DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
659     DCHECK(current_character().bit() & kRegExpCalleeSaved);
660     DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
661     DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
662     DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
663 
664     // Actually emit code to start a new stack frame.
665     // Push arguments
666     // Save callee-save registers.
667     // Start new stack frame.
668     // Store link register in existing stack-cell.
669     // Order here should correspond to order of offset constants in header file.
670     RegList registers_to_retain = kRegExpCalleeSaved;
671     RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() |
672                                  r7.bit() | r8.bit() | r9.bit() | r10.bit();
673     __ mflr(r0);
674     __ push(r0);
675     __ MultiPush(argument_registers | registers_to_retain);
676     // Set frame pointer in space for it if this is not a direct call
677     // from generated code.
678     __ addi(frame_pointer(), sp, Operand(8 * kPointerSize));
679     __ li(r3, Operand::Zero());
680     __ push(r3);  // Make room for success counter and initialize it to 0.
681     __ push(r3);  // Make room for "string start - 1" constant.
682     // Check if we have space on the stack for registers.
683     Label stack_limit_hit;
684     Label stack_ok;
685 
686     ExternalReference stack_limit =
687         ExternalReference::address_of_stack_limit(isolate());
688     __ mov(r3, Operand(stack_limit));
689     __ LoadP(r3, MemOperand(r3));
690     __ sub(r3, sp, r3, LeaveOE, SetRC);
691     // Handle it if the stack pointer is already below the stack limit.
692     __ ble(&stack_limit_hit, cr0);
693     // Check if there is room for the variable number of registers above
694     // the stack limit.
695     __ Cmpli(r3, Operand(num_registers_ * kPointerSize), r0);
696     __ bge(&stack_ok);
697     // Exit with OutOfMemory exception. There is not enough space on the stack
698     // for our working registers.
699     __ li(r3, Operand(EXCEPTION));
700     __ b(&return_r3);
701 
702     __ bind(&stack_limit_hit);
703     CallCheckStackGuardState(r3);
704     __ cmpi(r3, Operand::Zero());
705     // If returned value is non-zero, we exit with the returned value as result.
706     __ bne(&return_r3);
707 
708     __ bind(&stack_ok);
709 
710     // Allocate space on stack for registers.
711     __ Add(sp, sp, -num_registers_ * kPointerSize, r0);
712     // Load string end.
713     __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
714     // Load input start.
715     __ LoadP(r3, MemOperand(frame_pointer(), kInputStart));
716     // Find negative length (offset of start relative to end).
717     __ sub(current_input_offset(), r3, end_of_input_address());
718     // Set r3 to address of char before start of the input string
719     // (effectively string position -1).
720     __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
721     __ subi(r3, current_input_offset(), Operand(char_size()));
722     if (mode_ == UC16) {
723       __ ShiftLeftImm(r0, r4, Operand(1));
724       __ sub(r3, r3, r0);
725     } else {
726       __ sub(r3, r3, r4);
727     }
728     // Store this value in a local variable, for use when clearing
729     // position registers.
730     __ StoreP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
731 
732     // Initialize code pointer register
733     __ mov(code_pointer(), Operand(masm_->CodeObject()));
734 
735     Label load_char_start_regexp, start_regexp;
736     // Load newline if index is at start, previous character otherwise.
737     __ cmpi(r4, Operand::Zero());
738     __ bne(&load_char_start_regexp);
739     __ li(current_character(), Operand('\n'));
740     __ b(&start_regexp);
741 
742     // Global regexp restarts matching here.
743     __ bind(&load_char_start_regexp);
744     // Load previous char as initial value of current character register.
745     LoadCurrentCharacterUnchecked(-1, 1);
746     __ bind(&start_regexp);
747 
748     // Initialize on-stack registers.
749     if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
750       // Fill saved registers with initial value = start offset - 1
751       if (num_saved_registers_ > 8) {
752         // One slot beyond address of register 0.
753         __ addi(r4, frame_pointer(), Operand(kRegisterZero + kPointerSize));
754         __ li(r5, Operand(num_saved_registers_));
755         __ mtctr(r5);
756         Label init_loop;
757         __ bind(&init_loop);
758         __ StorePU(r3, MemOperand(r4, -kPointerSize));
759         __ bdnz(&init_loop);
760       } else {
761         for (int i = 0; i < num_saved_registers_; i++) {
762           __ StoreP(r3, register_location(i), r0);
763         }
764       }
765     }
766 
767     // Initialize backtrack stack pointer.
768     __ LoadP(backtrack_stackpointer(),
769              MemOperand(frame_pointer(), kStackHighEnd));
770 
771     __ b(&start_label_);
772 
773     // Exit code:
774     if (success_label_.is_linked()) {
775       // Save captures when successful.
776       __ bind(&success_label_);
777       if (num_saved_registers_ > 0) {
778         // copy captures to output
779         __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
780         __ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput));
781         __ LoadP(r5, MemOperand(frame_pointer(), kStartIndex));
782         __ sub(r4, end_of_input_address(), r4);
783         // r4 is length of input in bytes.
784         if (mode_ == UC16) {
785           __ ShiftRightImm(r4, r4, Operand(1));
786         }
787         // r4 is length of input in characters.
788         __ add(r4, r4, r5);
789         // r4 is length of string in characters.
790 
791         DCHECK_EQ(0, num_saved_registers_ % 2);
792         // Always an even number of capture registers. This allows us to
793         // unroll the loop once to add an operation between a load of a register
794         // and the following use of that register.
795         for (int i = 0; i < num_saved_registers_; i += 2) {
796           __ LoadP(r5, register_location(i), r0);
797           __ LoadP(r6, register_location(i + 1), r0);
798           if (i == 0 && global_with_zero_length_check()) {
799             // Keep capture start in r25 for the zero-length check later.
800             __ mr(r25, r5);
801           }
802           if (mode_ == UC16) {
803             __ ShiftRightArithImm(r5, r5, 1);
804             __ add(r5, r4, r5);
805             __ ShiftRightArithImm(r6, r6, 1);
806             __ add(r6, r4, r6);
807           } else {
808             __ add(r5, r4, r5);
809             __ add(r6, r4, r6);
810           }
811           __ stw(r5, MemOperand(r3));
812           __ addi(r3, r3, Operand(kIntSize));
813           __ stw(r6, MemOperand(r3));
814           __ addi(r3, r3, Operand(kIntSize));
815         }
816       }
817 
818       if (global()) {
819         // Restart matching if the regular expression is flagged as global.
820         __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
821         __ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
822         __ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput));
823         // Increment success counter.
824         __ addi(r3, r3, Operand(1));
825         __ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
826         // Capture results have been stored, so the number of remaining global
827         // output registers is reduced by the number of stored captures.
828         __ subi(r4, r4, Operand(num_saved_registers_));
829         // Check whether we have enough room for another set of capture results.
830         __ cmpi(r4, Operand(num_saved_registers_));
831         __ blt(&return_r3);
832 
833         __ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
834         // Advance the location for output.
835         __ addi(r5, r5, Operand(num_saved_registers_ * kIntSize));
836         __ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput));
837 
838         // Prepare r3 to initialize registers with its value in the next run.
839         __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
840 
841         if (global_with_zero_length_check()) {
842           // Special case for zero-length matches.
843           // r25: capture start index
844           __ cmp(current_input_offset(), r25);
845           // Not a zero-length match, restart.
846           __ bne(&load_char_start_regexp);
847           // Offset from the end is zero if we already reached the end.
848           __ cmpi(current_input_offset(), Operand::Zero());
849           __ beq(&exit_label_);
850           // Advance current position after a zero-length match.
851           Label advance;
852           __ bind(&advance);
853           __ addi(current_input_offset(), current_input_offset(),
854                   Operand((mode_ == UC16) ? 2 : 1));
855           if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
856         }
857 
858         __ b(&load_char_start_regexp);
859       } else {
860         __ li(r3, Operand(SUCCESS));
861       }
862     }
863 
864     // Exit and return r3
865     __ bind(&exit_label_);
866     if (global()) {
867       __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
868     }
869 
870     __ bind(&return_r3);
871     // Skip sp past regexp registers and local variables..
872     __ mr(sp, frame_pointer());
873     // Restore registers r25..r31 and return (restoring lr to pc).
874     __ MultiPop(registers_to_retain);
875     __ pop(r0);
876     __ mtlr(r0);
877     __ blr();
878 
879     // Backtrack code (branch target for conditional backtracks).
880     if (backtrack_label_.is_linked()) {
881       __ bind(&backtrack_label_);
882       Backtrack();
883     }
884 
885     Label exit_with_exception;
886 
887     // Preempt-code
888     if (check_preempt_label_.is_linked()) {
889       SafeCallTarget(&check_preempt_label_);
890 
891       CallCheckStackGuardState(r3);
892       __ cmpi(r3, Operand::Zero());
893       // If returning non-zero, we should end execution with the given
894       // result as return value.
895       __ bne(&return_r3);
896 
897       // String might have moved: Reload end of string from frame.
898       __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
899       SafeReturn();
900     }
901 
902     // Backtrack stack overflow code.
903     if (stack_overflow_label_.is_linked()) {
904       SafeCallTarget(&stack_overflow_label_);
905       // Reached if the backtrack-stack limit has been hit.
906       Label grow_failed;
907 
908       // Call GrowStack(backtrack_stackpointer(), &stack_base)
909       static const int num_arguments = 3;
910       __ PrepareCallCFunction(num_arguments, r3);
911       __ mr(r3, backtrack_stackpointer());
912       __ addi(r4, frame_pointer(), Operand(kStackHighEnd));
913       __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
914       ExternalReference grow_stack =
915           ExternalReference::re_grow_stack(isolate());
916       __ CallCFunction(grow_stack, num_arguments);
917       // If return nullptr, we have failed to grow the stack, and
918       // must exit with a stack-overflow exception.
919       __ cmpi(r3, Operand::Zero());
920       __ beq(&exit_with_exception);
921       // Otherwise use return value as new stack pointer.
922       __ mr(backtrack_stackpointer(), r3);
923       // Restore saved registers and continue.
924       SafeReturn();
925     }
926 
927     if (exit_with_exception.is_linked()) {
928       // If any of the code above needed to exit with an exception.
929       __ bind(&exit_with_exception);
930       // Exit with Result EXCEPTION(-1) to signal thrown exception.
931       __ li(r3, Operand(EXCEPTION));
932       __ b(&return_r3);
933     }
934   }
935 
936   CodeDesc code_desc;
937   masm_->GetCode(isolate(), &code_desc);
938   Handle<Code> code = isolate()->factory()->NewCode(code_desc, Code::REGEXP,
939                                                     masm_->CodeObject());
940   PROFILE(masm_->isolate(),
941           RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
942   return Handle<HeapObject>::cast(code);
943 }
944 
945 
GoTo(Label * to)946 void RegExpMacroAssemblerPPC::GoTo(Label* to) { BranchOrBacktrack(al, to); }
947 
948 
IfRegisterGE(int reg,int comparand,Label * if_ge)949 void RegExpMacroAssemblerPPC::IfRegisterGE(int reg, int comparand,
950                                            Label* if_ge) {
951   __ LoadP(r3, register_location(reg), r0);
952   __ Cmpi(r3, Operand(comparand), r0);
953   BranchOrBacktrack(ge, if_ge);
954 }
955 
956 
IfRegisterLT(int reg,int comparand,Label * if_lt)957 void RegExpMacroAssemblerPPC::IfRegisterLT(int reg, int comparand,
958                                            Label* if_lt) {
959   __ LoadP(r3, register_location(reg), r0);
960   __ Cmpi(r3, Operand(comparand), r0);
961   BranchOrBacktrack(lt, if_lt);
962 }
963 
964 
IfRegisterEqPos(int reg,Label * if_eq)965 void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg, Label* if_eq) {
966   __ LoadP(r3, register_location(reg), r0);
967   __ cmp(r3, current_input_offset());
968   BranchOrBacktrack(eq, if_eq);
969 }
970 
971 
972 RegExpMacroAssembler::IrregexpImplementation
Implementation()973 RegExpMacroAssemblerPPC::Implementation() {
974   return kPPCImplementation;
975 }
976 
977 
LoadCurrentCharacter(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters)978 void RegExpMacroAssemblerPPC::LoadCurrentCharacter(int cp_offset,
979                                                    Label* on_end_of_input,
980                                                    bool check_bounds,
981                                                    int characters) {
982   DCHECK(cp_offset < (1 << 30));  // Be sane! (And ensure negation works)
983   if (check_bounds) {
984     if (cp_offset >= 0) {
985       CheckPosition(cp_offset + characters - 1, on_end_of_input);
986     } else {
987       CheckPosition(cp_offset, on_end_of_input);
988     }
989   }
990   LoadCurrentCharacterUnchecked(cp_offset, characters);
991 }
992 
993 
PopCurrentPosition()994 void RegExpMacroAssemblerPPC::PopCurrentPosition() {
995   Pop(current_input_offset());
996 }
997 
998 
PopRegister(int register_index)999 void RegExpMacroAssemblerPPC::PopRegister(int register_index) {
1000   Pop(r3);
1001   __ StoreP(r3, register_location(register_index), r0);
1002 }
1003 
1004 
PushBacktrack(Label * label)1005 void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) {
1006   __ mov_label_offset(r3, label);
1007   Push(r3);
1008   CheckStackLimit();
1009 }
1010 
1011 
PushCurrentPosition()1012 void RegExpMacroAssemblerPPC::PushCurrentPosition() {
1013   Push(current_input_offset());
1014 }
1015 
1016 
PushRegister(int register_index,StackCheckFlag check_stack_limit)1017 void RegExpMacroAssemblerPPC::PushRegister(int register_index,
1018                                            StackCheckFlag check_stack_limit) {
1019   __ LoadP(r3, register_location(register_index), r0);
1020   Push(r3);
1021   if (check_stack_limit) CheckStackLimit();
1022 }
1023 
1024 
ReadCurrentPositionFromRegister(int reg)1025 void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) {
1026   __ LoadP(current_input_offset(), register_location(reg), r0);
1027 }
1028 
1029 
ReadStackPointerFromRegister(int reg)1030 void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) {
1031   __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
1032   __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
1033   __ add(backtrack_stackpointer(), backtrack_stackpointer(), r3);
1034 }
1035 
1036 
SetCurrentPositionFromEnd(int by)1037 void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) {
1038   Label after_position;
1039   __ Cmpi(current_input_offset(), Operand(-by * char_size()), r0);
1040   __ bge(&after_position);
1041   __ mov(current_input_offset(), Operand(-by * char_size()));
1042   // On RegExp code entry (where this operation is used), the character before
1043   // the current position is expected to be already loaded.
1044   // We have advanced the position, so it's safe to read backwards.
1045   LoadCurrentCharacterUnchecked(-1, 1);
1046   __ bind(&after_position);
1047 }
1048 
1049 
SetRegister(int register_index,int to)1050 void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) {
1051   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1052   __ mov(r3, Operand(to));
1053   __ StoreP(r3, register_location(register_index), r0);
1054 }
1055 
1056 
Succeed()1057 bool RegExpMacroAssemblerPPC::Succeed() {
1058   __ b(&success_label_);
1059   return global();
1060 }
1061 
1062 
WriteCurrentPositionToRegister(int reg,int cp_offset)1063 void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg,
1064                                                              int cp_offset) {
1065   if (cp_offset == 0) {
1066     __ StoreP(current_input_offset(), register_location(reg), r0);
1067   } else {
1068     __ mov(r0, Operand(cp_offset * char_size()));
1069     __ add(r3, current_input_offset(), r0);
1070     __ StoreP(r3, register_location(reg), r0);
1071   }
1072 }
1073 
1074 
ClearRegisters(int reg_from,int reg_to)1075 void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) {
1076   DCHECK(reg_from <= reg_to);
1077   __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
1078   for (int reg = reg_from; reg <= reg_to; reg++) {
1079     __ StoreP(r3, register_location(reg), r0);
1080   }
1081 }
1082 
1083 
WriteStackPointerToRegister(int reg)1084 void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) {
1085   __ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd));
1086   __ sub(r3, backtrack_stackpointer(), r4);
1087   __ StoreP(r3, register_location(reg), r0);
1088 }
1089 
1090 
1091 // Private methods:
1092 
CallCheckStackGuardState(Register scratch)1093 void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) {
1094   int frame_alignment = masm_->ActivationFrameAlignment();
1095   int stack_space = kNumRequiredStackFrameSlots;
1096   int stack_passed_arguments = 1;  // space for return address pointer
1097 
1098   // The following stack manipulation logic is similar to
1099   // PrepareCallCFunction.  However, we need an extra slot on the
1100   // stack to house the return address parameter.
1101   if (frame_alignment > kPointerSize) {
1102     // Make stack end at alignment and make room for stack arguments
1103     // -- preserving original value of sp.
1104     __ mr(scratch, sp);
1105     __ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
1106     DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
1107     __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
1108     __ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
1109   } else {
1110     // Make room for stack arguments
1111     stack_space += stack_passed_arguments;
1112   }
1113 
1114   // Allocate frame with required slots to make ABI work.
1115   __ li(r0, Operand::Zero());
1116   __ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
1117 
1118   // RegExp code frame pointer.
1119   __ mr(r5, frame_pointer());
1120   // Code* of self.
1121   __ mov(r4, Operand(masm_->CodeObject()));
1122   // r3 will point to the return address, placed by DirectCEntry.
1123   __ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kPointerSize));
1124 
1125   ExternalReference stack_guard_check =
1126       ExternalReference::re_check_stack_guard_state(isolate());
1127   __ mov(ip, Operand(stack_guard_check));
1128   DirectCEntryStub stub(isolate());
1129   stub.GenerateCall(masm_, ip);
1130 
1131   // Restore the stack pointer
1132   stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
1133   if (frame_alignment > kPointerSize) {
1134     __ LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
1135   } else {
1136     __ addi(sp, sp, Operand(stack_space * kPointerSize));
1137   }
1138 
1139   __ mov(code_pointer(), Operand(masm_->CodeObject()));
1140 }
1141 
1142 
1143 // Helper function for reading a value out of a stack frame.
1144 template <typename T>
frame_entry(Address re_frame,int frame_offset)1145 static T& frame_entry(Address re_frame, int frame_offset) {
1146   return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
1147 }
1148 
1149 
1150 template <typename T>
frame_entry_address(Address re_frame,int frame_offset)1151 static T* frame_entry_address(Address re_frame, int frame_offset) {
1152   return reinterpret_cast<T*>(re_frame + frame_offset);
1153 }
1154 
1155 
CheckStackGuardState(Address * return_address,Code * re_code,Address re_frame)1156 int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
1157                                                   Code* re_code,
1158                                                   Address re_frame) {
1159   return NativeRegExpMacroAssembler::CheckStackGuardState(
1160       frame_entry<Isolate*>(re_frame, kIsolate),
1161       frame_entry<intptr_t>(re_frame, kStartIndex),
1162       frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
1163       re_code, frame_entry_address<String*>(re_frame, kInputString),
1164       frame_entry_address<const byte*>(re_frame, kInputStart),
1165       frame_entry_address<const byte*>(re_frame, kInputEnd));
1166 }
1167 
1168 
register_location(int register_index)1169 MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) {
1170   DCHECK(register_index < (1 << 30));
1171   if (num_registers_ <= register_index) {
1172     num_registers_ = register_index + 1;
1173   }
1174   return MemOperand(frame_pointer(),
1175                     kRegisterZero - register_index * kPointerSize);
1176 }
1177 
1178 
CheckPosition(int cp_offset,Label * on_outside_input)1179 void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset,
1180                                             Label* on_outside_input) {
1181   if (cp_offset >= 0) {
1182     __ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0);
1183     BranchOrBacktrack(ge, on_outside_input);
1184   } else {
1185     __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
1186     __ addi(r3, current_input_offset(), Operand(cp_offset * char_size()));
1187     __ cmp(r3, r4);
1188     BranchOrBacktrack(le, on_outside_input);
1189   }
1190 }
1191 
1192 
BranchOrBacktrack(Condition condition,Label * to,CRegister cr)1193 void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition, Label* to,
1194                                                 CRegister cr) {
1195   if (condition == al) {  // Unconditional.
1196     if (to == nullptr) {
1197       Backtrack();
1198       return;
1199     }
1200     __ b(to);
1201     return;
1202   }
1203   if (to == nullptr) {
1204     __ b(condition, &backtrack_label_, cr);
1205     return;
1206   }
1207   __ b(condition, to, cr);
1208 }
1209 
1210 
SafeCall(Label * to,Condition cond,CRegister cr)1211 void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond,
1212                                        CRegister cr) {
1213   __ b(cond, to, cr, SetLK);
1214 }
1215 
1216 
SafeReturn()1217 void RegExpMacroAssemblerPPC::SafeReturn() {
1218   __ pop(r0);
1219   __ mov(ip, Operand(masm_->CodeObject()));
1220   __ add(r0, r0, ip);
1221   __ mtlr(r0);
1222   __ blr();
1223 }
1224 
1225 
SafeCallTarget(Label * name)1226 void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) {
1227   __ bind(name);
1228   __ mflr(r0);
1229   __ mov(ip, Operand(masm_->CodeObject()));
1230   __ sub(r0, r0, ip);
1231   __ push(r0);
1232 }
1233 
1234 
Push(Register source)1235 void RegExpMacroAssemblerPPC::Push(Register source) {
1236   DCHECK(source != backtrack_stackpointer());
1237   __ StorePU(source, MemOperand(backtrack_stackpointer(), -kPointerSize));
1238 }
1239 
1240 
Pop(Register target)1241 void RegExpMacroAssemblerPPC::Pop(Register target) {
1242   DCHECK(target != backtrack_stackpointer());
1243   __ LoadP(target, MemOperand(backtrack_stackpointer()));
1244   __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
1245           Operand(kPointerSize));
1246 }
1247 
1248 
CheckPreemption()1249 void RegExpMacroAssemblerPPC::CheckPreemption() {
1250   // Check for preemption.
1251   ExternalReference stack_limit =
1252       ExternalReference::address_of_stack_limit(isolate());
1253   __ mov(r3, Operand(stack_limit));
1254   __ LoadP(r3, MemOperand(r3));
1255   __ cmpl(sp, r3);
1256   SafeCall(&check_preempt_label_, le);
1257 }
1258 
1259 
CheckStackLimit()1260 void RegExpMacroAssemblerPPC::CheckStackLimit() {
1261   ExternalReference stack_limit =
1262       ExternalReference::address_of_regexp_stack_limit(isolate());
1263   __ mov(r3, Operand(stack_limit));
1264   __ LoadP(r3, MemOperand(r3));
1265   __ cmpl(backtrack_stackpointer(), r3);
1266   SafeCall(&stack_overflow_label_, le);
1267 }
1268 
1269 
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1270 void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset,
1271                                                             int characters) {
1272   Register offset = current_input_offset();
1273   if (cp_offset != 0) {
1274     // r25 is not being used to store the capture start index at this point.
1275     __ addi(r25, current_input_offset(), Operand(cp_offset * char_size()));
1276     offset = r25;
1277   }
1278   // The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU
1279   // and the operating system running on the target allow it.
1280   // We assume we don't want to do unaligned loads on PPC, so this function
1281   // must only be used to load a single character at a time.
1282 
1283   __ add(current_character(), end_of_input_address(), offset);
1284 #if V8_TARGET_LITTLE_ENDIAN
1285   if (mode_ == LATIN1) {
1286     if (characters == 4) {
1287       __ lwz(current_character(), MemOperand(current_character()));
1288     } else if (characters == 2) {
1289       __ lhz(current_character(), MemOperand(current_character()));
1290     } else {
1291       DCHECK_EQ(1, characters);
1292       __ lbz(current_character(), MemOperand(current_character()));
1293     }
1294   } else {
1295     DCHECK(mode_ == UC16);
1296     if (characters == 2) {
1297       __ lwz(current_character(), MemOperand(current_character()));
1298     } else {
1299       DCHECK_EQ(1, characters);
1300       __ lhz(current_character(), MemOperand(current_character()));
1301     }
1302   }
1303 #else
1304   if (mode_ == LATIN1) {
1305     if (characters == 4) {
1306       __ lwbrx(current_character(), MemOperand(r0, current_character()));
1307     } else if (characters == 2) {
1308       __ lhbrx(current_character(), MemOperand(r0, current_character()));
1309     } else {
1310       DCHECK_EQ(1, characters);
1311       __ lbz(current_character(), MemOperand(current_character()));
1312     }
1313   } else {
1314     DCHECK(mode_ == UC16);
1315     if (characters == 2) {
1316       __ lwz(current_character(), MemOperand(current_character()));
1317       __ rlwinm(current_character(), current_character(), 16, 0, 31);
1318     } else {
1319       DCHECK_EQ(1, characters);
1320       __ lhz(current_character(), MemOperand(current_character()));
1321     }
1322   }
1323 #endif
1324 }
1325 
1326 
1327 #undef __
1328 
1329 #endif  // V8_INTERPRETED_REGEXP
1330 }  // namespace internal
1331 }  // namespace v8
1332 
1333 #endif  // V8_TARGET_ARCH_PPC
1334