1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides a simple and efficient mechanism for performing general
11 // tree-based pattern matches on the LLVM IR. The power of these routines is
12 // that it allows you to write concise patterns that are expressive and easy to
13 // understand. The other major advantage of this is that it allows you to
14 // trivially capture/bind elements in the pattern to variables. For example,
15 // you can do something like this:
16 //
17 //  Value *Exp = ...
18 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
19 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
20 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
21 //    ... Pattern is matched and variables are bound ...
22 //  }
23 //
24 // This is primarily useful to things like the instruction combiner, but can
25 // also be useful for static analysis tools or code generators.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #ifndef LLVM_IR_PATTERNMATCH_H
30 #define LLVM_IR_PATTERNMATCH_H
31 
32 #include "llvm/ADT/APFloat.h"
33 #include "llvm/ADT/APInt.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include <cstdint>
45 
46 namespace llvm {
47 namespace PatternMatch {
48 
match(Val * V,const Pattern & P)49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50   return const_cast<Pattern &>(P).match(V);
51 }
52 
53 template <typename SubPattern_t> struct OneUse_match {
54   SubPattern_t SubPattern;
55 
OneUse_matchOneUse_match56   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
57 
matchOneUse_match58   template <typename OpTy> bool match(OpTy *V) {
59     return V->hasOneUse() && SubPattern.match(V);
60   }
61 };
62 
m_OneUse(const T & SubPattern)63 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
64   return SubPattern;
65 }
66 
67 template <typename Class> struct class_match {
matchclass_match68   template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
69 };
70 
71 /// Match an arbitrary value and ignore it.
m_Value()72 inline class_match<Value> m_Value() { return class_match<Value>(); }
73 
74 /// Match an arbitrary binary operation and ignore it.
m_BinOp()75 inline class_match<BinaryOperator> m_BinOp() {
76   return class_match<BinaryOperator>();
77 }
78 
79 /// Matches any compare instruction and ignore it.
m_Cmp()80 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
81 
82 /// Match an arbitrary ConstantInt and ignore it.
m_ConstantInt()83 inline class_match<ConstantInt> m_ConstantInt() {
84   return class_match<ConstantInt>();
85 }
86 
87 /// Match an arbitrary undef constant.
m_Undef()88 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
89 
90 /// Match an arbitrary Constant and ignore it.
m_Constant()91 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
92 
93 /// Matching combinators
94 template <typename LTy, typename RTy> struct match_combine_or {
95   LTy L;
96   RTy R;
97 
match_combine_ormatch_combine_or98   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
99 
matchmatch_combine_or100   template <typename ITy> bool match(ITy *V) {
101     if (L.match(V))
102       return true;
103     if (R.match(V))
104       return true;
105     return false;
106   }
107 };
108 
109 template <typename LTy, typename RTy> struct match_combine_and {
110   LTy L;
111   RTy R;
112 
match_combine_andmatch_combine_and113   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
114 
matchmatch_combine_and115   template <typename ITy> bool match(ITy *V) {
116     if (L.match(V))
117       if (R.match(V))
118         return true;
119     return false;
120   }
121 };
122 
123 /// Combine two pattern matchers matching L || R
124 template <typename LTy, typename RTy>
m_CombineOr(const LTy & L,const RTy & R)125 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
126   return match_combine_or<LTy, RTy>(L, R);
127 }
128 
129 /// Combine two pattern matchers matching L && R
130 template <typename LTy, typename RTy>
m_CombineAnd(const LTy & L,const RTy & R)131 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
132   return match_combine_and<LTy, RTy>(L, R);
133 }
134 
135 struct apint_match {
136   const APInt *&Res;
137 
apint_matchapint_match138   apint_match(const APInt *&R) : Res(R) {}
139 
matchapint_match140   template <typename ITy> bool match(ITy *V) {
141     if (auto *CI = dyn_cast<ConstantInt>(V)) {
142       Res = &CI->getValue();
143       return true;
144     }
145     if (V->getType()->isVectorTy())
146       if (const auto *C = dyn_cast<Constant>(V))
147         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
148           Res = &CI->getValue();
149           return true;
150         }
151     return false;
152   }
153 };
154 // Either constexpr if or renaming ConstantFP::getValueAPF to
155 // ConstantFP::getValue is needed to do it via single template
156 // function for both apint/apfloat.
157 struct apfloat_match {
158   const APFloat *&Res;
apfloat_matchapfloat_match159   apfloat_match(const APFloat *&R) : Res(R) {}
matchapfloat_match160   template <typename ITy> bool match(ITy *V) {
161     if (auto *CI = dyn_cast<ConstantFP>(V)) {
162       Res = &CI->getValueAPF();
163       return true;
164     }
165     if (V->getType()->isVectorTy())
166       if (const auto *C = dyn_cast<Constant>(V))
167         if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
168           Res = &CI->getValueAPF();
169           return true;
170         }
171     return false;
172   }
173 };
174 
175 /// Match a ConstantInt or splatted ConstantVector, binding the
176 /// specified pointer to the contained APInt.
m_APInt(const APInt * & Res)177 inline apint_match m_APInt(const APInt *&Res) { return Res; }
178 
179 /// Match a ConstantFP or splatted ConstantVector, binding the
180 /// specified pointer to the contained APFloat.
m_APFloat(const APFloat * & Res)181 inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
182 
183 template <int64_t Val> struct constantint_match {
matchconstantint_match184   template <typename ITy> bool match(ITy *V) {
185     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
186       const APInt &CIV = CI->getValue();
187       if (Val >= 0)
188         return CIV == static_cast<uint64_t>(Val);
189       // If Val is negative, and CI is shorter than it, truncate to the right
190       // number of bits.  If it is larger, then we have to sign extend.  Just
191       // compare their negated values.
192       return -CIV == -Val;
193     }
194     return false;
195   }
196 };
197 
198 /// Match a ConstantInt with a specific value.
m_ConstantInt()199 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
200   return constantint_match<Val>();
201 }
202 
203 /// This helper class is used to match scalar and vector integer constants that
204 /// satisfy a specified predicate.
205 /// For vector constants, undefined elements are ignored.
206 template <typename Predicate> struct cst_pred_ty : public Predicate {
matchcst_pred_ty207   template <typename ITy> bool match(ITy *V) {
208     if (const auto *CI = dyn_cast<ConstantInt>(V))
209       return this->isValue(CI->getValue());
210     if (V->getType()->isVectorTy()) {
211       if (const auto *C = dyn_cast<Constant>(V)) {
212         if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
213           return this->isValue(CI->getValue());
214 
215         // Non-splat vector constant: check each element for a match.
216         unsigned NumElts = V->getType()->getVectorNumElements();
217         assert(NumElts != 0 && "Constant vector with no elements?");
218         for (unsigned i = 0; i != NumElts; ++i) {
219           Constant *Elt = C->getAggregateElement(i);
220           if (!Elt)
221             return false;
222           if (isa<UndefValue>(Elt))
223             continue;
224           auto *CI = dyn_cast<ConstantInt>(Elt);
225           if (!CI || !this->isValue(CI->getValue()))
226             return false;
227         }
228         return true;
229       }
230     }
231     return false;
232   }
233 };
234 
235 /// This helper class is used to match scalar and vector constants that
236 /// satisfy a specified predicate, and bind them to an APInt.
237 template <typename Predicate> struct api_pred_ty : public Predicate {
238   const APInt *&Res;
239 
api_pred_tyapi_pred_ty240   api_pred_ty(const APInt *&R) : Res(R) {}
241 
matchapi_pred_ty242   template <typename ITy> bool match(ITy *V) {
243     if (const auto *CI = dyn_cast<ConstantInt>(V))
244       if (this->isValue(CI->getValue())) {
245         Res = &CI->getValue();
246         return true;
247       }
248     if (V->getType()->isVectorTy())
249       if (const auto *C = dyn_cast<Constant>(V))
250         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
251           if (this->isValue(CI->getValue())) {
252             Res = &CI->getValue();
253             return true;
254           }
255 
256     return false;
257   }
258 };
259 
260 /// This helper class is used to match scalar and vector floating-point
261 /// constants that satisfy a specified predicate.
262 /// For vector constants, undefined elements are ignored.
263 template <typename Predicate> struct cstfp_pred_ty : public Predicate {
matchcstfp_pred_ty264   template <typename ITy> bool match(ITy *V) {
265     if (const auto *CF = dyn_cast<ConstantFP>(V))
266       return this->isValue(CF->getValueAPF());
267     if (V->getType()->isVectorTy()) {
268       if (const auto *C = dyn_cast<Constant>(V)) {
269         if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
270           return this->isValue(CF->getValueAPF());
271 
272         // Non-splat vector constant: check each element for a match.
273         unsigned NumElts = V->getType()->getVectorNumElements();
274         assert(NumElts != 0 && "Constant vector with no elements?");
275         for (unsigned i = 0; i != NumElts; ++i) {
276           Constant *Elt = C->getAggregateElement(i);
277           if (!Elt)
278             return false;
279           if (isa<UndefValue>(Elt))
280             continue;
281           auto *CF = dyn_cast<ConstantFP>(Elt);
282           if (!CF || !this->isValue(CF->getValueAPF()))
283             return false;
284         }
285         return true;
286       }
287     }
288     return false;
289   }
290 };
291 
292 ///////////////////////////////////////////////////////////////////////////////
293 //
294 // Encapsulate constant value queries for use in templated predicate matchers.
295 // This allows checking if constants match using compound predicates and works
296 // with vector constants, possibly with relaxed constraints. For example, ignore
297 // undef values.
298 //
299 ///////////////////////////////////////////////////////////////////////////////
300 
301 struct is_all_ones {
isValueis_all_ones302   bool isValue(const APInt &C) { return C.isAllOnesValue(); }
303 };
304 /// Match an integer or vector with all bits set.
305 /// For vectors, this includes constants with undefined elements.
m_AllOnes()306 inline cst_pred_ty<is_all_ones> m_AllOnes() {
307   return cst_pred_ty<is_all_ones>();
308 }
309 
310 struct is_maxsignedvalue {
isValueis_maxsignedvalue311   bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
312 };
313 /// Match an integer or vector with values having all bits except for the high
314 /// bit set (0x7f...).
315 /// For vectors, this includes constants with undefined elements.
m_MaxSignedValue()316 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
317   return cst_pred_ty<is_maxsignedvalue>();
318 }
m_MaxSignedValue(const APInt * & V)319 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
320   return V;
321 }
322 
323 struct is_negative {
isValueis_negative324   bool isValue(const APInt &C) { return C.isNegative(); }
325 };
326 /// Match an integer or vector of negative values.
327 /// For vectors, this includes constants with undefined elements.
m_Negative()328 inline cst_pred_ty<is_negative> m_Negative() {
329   return cst_pred_ty<is_negative>();
330 }
m_Negative(const APInt * & V)331 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
332   return V;
333 }
334 
335 struct is_nonnegative {
isValueis_nonnegative336   bool isValue(const APInt &C) { return C.isNonNegative(); }
337 };
338 /// Match an integer or vector of nonnegative values.
339 /// For vectors, this includes constants with undefined elements.
m_NonNegative()340 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
341   return cst_pred_ty<is_nonnegative>();
342 }
m_NonNegative(const APInt * & V)343 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
344   return V;
345 }
346 
347 struct is_one {
isValueis_one348   bool isValue(const APInt &C) { return C.isOneValue(); }
349 };
350 /// Match an integer 1 or a vector with all elements equal to 1.
351 /// For vectors, this includes constants with undefined elements.
m_One()352 inline cst_pred_ty<is_one> m_One() {
353   return cst_pred_ty<is_one>();
354 }
355 
356 struct is_zero_int {
isValueis_zero_int357   bool isValue(const APInt &C) { return C.isNullValue(); }
358 };
359 /// Match an integer 0 or a vector with all elements equal to 0.
360 /// For vectors, this includes constants with undefined elements.
m_ZeroInt()361 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
362   return cst_pred_ty<is_zero_int>();
363 }
364 
365 struct is_zero {
matchis_zero366   template <typename ITy> bool match(ITy *V) {
367     auto *C = dyn_cast<Constant>(V);
368     return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
369   }
370 };
371 /// Match any null constant or a vector with all elements equal to 0.
372 /// For vectors, this includes constants with undefined elements.
m_Zero()373 inline is_zero m_Zero() {
374   return is_zero();
375 }
376 
377 struct is_power2 {
isValueis_power2378   bool isValue(const APInt &C) { return C.isPowerOf2(); }
379 };
380 /// Match an integer or vector power-of-2.
381 /// For vectors, this includes constants with undefined elements.
m_Power2()382 inline cst_pred_ty<is_power2> m_Power2() {
383   return cst_pred_ty<is_power2>();
384 }
m_Power2(const APInt * & V)385 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
386   return V;
387 }
388 
389 struct is_power2_or_zero {
isValueis_power2_or_zero390   bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
391 };
392 /// Match an integer or vector of 0 or power-of-2 values.
393 /// For vectors, this includes constants with undefined elements.
m_Power2OrZero()394 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
395   return cst_pred_ty<is_power2_or_zero>();
396 }
m_Power2OrZero(const APInt * & V)397 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
398   return V;
399 }
400 
401 struct is_sign_mask {
isValueis_sign_mask402   bool isValue(const APInt &C) { return C.isSignMask(); }
403 };
404 /// Match an integer or vector with only the sign bit(s) set.
405 /// For vectors, this includes constants with undefined elements.
m_SignMask()406 inline cst_pred_ty<is_sign_mask> m_SignMask() {
407   return cst_pred_ty<is_sign_mask>();
408 }
409 
410 struct is_lowbit_mask {
isValueis_lowbit_mask411   bool isValue(const APInt &C) { return C.isMask(); }
412 };
413 /// Match an integer or vector with only the low bit(s) set.
414 /// For vectors, this includes constants with undefined elements.
m_LowBitMask()415 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
416   return cst_pred_ty<is_lowbit_mask>();
417 }
418 
419 struct is_nan {
isValueis_nan420   bool isValue(const APFloat &C) { return C.isNaN(); }
421 };
422 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
423 /// For vectors, this includes constants with undefined elements.
m_NaN()424 inline cstfp_pred_ty<is_nan> m_NaN() {
425   return cstfp_pred_ty<is_nan>();
426 }
427 
428 struct is_any_zero_fp {
isValueis_any_zero_fp429   bool isValue(const APFloat &C) { return C.isZero(); }
430 };
431 /// Match a floating-point negative zero or positive zero.
432 /// For vectors, this includes constants with undefined elements.
m_AnyZeroFP()433 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
434   return cstfp_pred_ty<is_any_zero_fp>();
435 }
436 
437 struct is_pos_zero_fp {
isValueis_pos_zero_fp438   bool isValue(const APFloat &C) { return C.isPosZero(); }
439 };
440 /// Match a floating-point positive zero.
441 /// For vectors, this includes constants with undefined elements.
m_PosZeroFP()442 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
443   return cstfp_pred_ty<is_pos_zero_fp>();
444 }
445 
446 struct is_neg_zero_fp {
isValueis_neg_zero_fp447   bool isValue(const APFloat &C) { return C.isNegZero(); }
448 };
449 /// Match a floating-point negative zero.
450 /// For vectors, this includes constants with undefined elements.
m_NegZeroFP()451 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
452   return cstfp_pred_ty<is_neg_zero_fp>();
453 }
454 
455 ///////////////////////////////////////////////////////////////////////////////
456 
457 template <typename Class> struct bind_ty {
458   Class *&VR;
459 
bind_tybind_ty460   bind_ty(Class *&V) : VR(V) {}
461 
matchbind_ty462   template <typename ITy> bool match(ITy *V) {
463     if (auto *CV = dyn_cast<Class>(V)) {
464       VR = CV;
465       return true;
466     }
467     return false;
468   }
469 };
470 
471 /// Match a value, capturing it if we match.
m_Value(Value * & V)472 inline bind_ty<Value> m_Value(Value *&V) { return V; }
m_Value(const Value * & V)473 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
474 
475 /// Match an instruction, capturing it if we match.
m_Instruction(Instruction * & I)476 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
477 /// Match a binary operator, capturing it if we match.
m_BinOp(BinaryOperator * & I)478 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
479 
480 /// Match a ConstantInt, capturing the value if we match.
m_ConstantInt(ConstantInt * & CI)481 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
482 
483 /// Match a Constant, capturing the value if we match.
m_Constant(Constant * & C)484 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
485 
486 /// Match a ConstantFP, capturing the value if we match.
m_ConstantFP(ConstantFP * & C)487 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
488 
489 /// Match a specified Value*.
490 struct specificval_ty {
491   const Value *Val;
492 
specificval_tyspecificval_ty493   specificval_ty(const Value *V) : Val(V) {}
494 
matchspecificval_ty495   template <typename ITy> bool match(ITy *V) { return V == Val; }
496 };
497 
498 /// Match if we have a specific specified value.
m_Specific(const Value * V)499 inline specificval_ty m_Specific(const Value *V) { return V; }
500 
501 /// Stores a reference to the Value *, not the Value * itself,
502 /// thus can be used in commutative matchers.
503 template <typename Class> struct deferredval_ty {
504   Class *const &Val;
505 
deferredval_tydeferredval_ty506   deferredval_ty(Class *const &V) : Val(V) {}
507 
matchdeferredval_ty508   template <typename ITy> bool match(ITy *const V) { return V == Val; }
509 };
510 
511 /// A commutative-friendly version of m_Specific().
m_Deferred(Value * const & V)512 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
m_Deferred(const Value * const & V)513 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
514   return V;
515 }
516 
517 /// Match a specified floating point value or vector of all elements of
518 /// that value.
519 struct specific_fpval {
520   double Val;
521 
specific_fpvalspecific_fpval522   specific_fpval(double V) : Val(V) {}
523 
matchspecific_fpval524   template <typename ITy> bool match(ITy *V) {
525     if (const auto *CFP = dyn_cast<ConstantFP>(V))
526       return CFP->isExactlyValue(Val);
527     if (V->getType()->isVectorTy())
528       if (const auto *C = dyn_cast<Constant>(V))
529         if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
530           return CFP->isExactlyValue(Val);
531     return false;
532   }
533 };
534 
535 /// Match a specific floating point value or vector with all elements
536 /// equal to the value.
m_SpecificFP(double V)537 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
538 
539 /// Match a float 1.0 or vector with all elements equal to 1.0.
m_FPOne()540 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
541 
542 struct bind_const_intval_ty {
543   uint64_t &VR;
544 
bind_const_intval_tybind_const_intval_ty545   bind_const_intval_ty(uint64_t &V) : VR(V) {}
546 
matchbind_const_intval_ty547   template <typename ITy> bool match(ITy *V) {
548     if (const auto *CV = dyn_cast<ConstantInt>(V))
549       if (CV->getValue().ule(UINT64_MAX)) {
550         VR = CV->getZExtValue();
551         return true;
552       }
553     return false;
554   }
555 };
556 
557 /// Match a specified integer value or vector of all elements of that
558 // value.
559 struct specific_intval {
560   uint64_t Val;
561 
specific_intvalspecific_intval562   specific_intval(uint64_t V) : Val(V) {}
563 
matchspecific_intval564   template <typename ITy> bool match(ITy *V) {
565     const auto *CI = dyn_cast<ConstantInt>(V);
566     if (!CI && V->getType()->isVectorTy())
567       if (const auto *C = dyn_cast<Constant>(V))
568         CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
569 
570     return CI && CI->getValue() == Val;
571   }
572 };
573 
574 /// Match a specific integer value or vector with all elements equal to
575 /// the value.
m_SpecificInt(uint64_t V)576 inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
577 
578 /// Match a ConstantInt and bind to its value.  This does not match
579 /// ConstantInts wider than 64-bits.
m_ConstantInt(uint64_t & V)580 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
581 
582 //===----------------------------------------------------------------------===//
583 // Matcher for any binary operator.
584 //
585 template <typename LHS_t, typename RHS_t, bool Commutable = false>
586 struct AnyBinaryOp_match {
587   LHS_t L;
588   RHS_t R;
589 
590   // The evaluation order is always stable, regardless of Commutability.
591   // The LHS is always matched first.
AnyBinaryOp_matchAnyBinaryOp_match592   AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
593 
matchAnyBinaryOp_match594   template <typename OpTy> bool match(OpTy *V) {
595     if (auto *I = dyn_cast<BinaryOperator>(V))
596       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
597              (Commutable && L.match(I->getOperand(1)) &&
598               R.match(I->getOperand(0)));
599     return false;
600   }
601 };
602 
603 template <typename LHS, typename RHS>
m_BinOp(const LHS & L,const RHS & R)604 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
605   return AnyBinaryOp_match<LHS, RHS>(L, R);
606 }
607 
608 //===----------------------------------------------------------------------===//
609 // Matchers for specific binary operators.
610 //
611 
612 template <typename LHS_t, typename RHS_t, unsigned Opcode,
613           bool Commutable = false>
614 struct BinaryOp_match {
615   LHS_t L;
616   RHS_t R;
617 
618   // The evaluation order is always stable, regardless of Commutability.
619   // The LHS is always matched first.
BinaryOp_matchBinaryOp_match620   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
621 
matchBinaryOp_match622   template <typename OpTy> bool match(OpTy *V) {
623     if (V->getValueID() == Value::InstructionVal + Opcode) {
624       auto *I = cast<BinaryOperator>(V);
625       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
626              (Commutable && L.match(I->getOperand(1)) &&
627               R.match(I->getOperand(0)));
628     }
629     if (auto *CE = dyn_cast<ConstantExpr>(V))
630       return CE->getOpcode() == Opcode &&
631              ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
632               (Commutable && L.match(CE->getOperand(1)) &&
633                R.match(CE->getOperand(0))));
634     return false;
635   }
636 };
637 
638 template <typename LHS, typename RHS>
m_Add(const LHS & L,const RHS & R)639 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
640                                                         const RHS &R) {
641   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
642 }
643 
644 template <typename LHS, typename RHS>
m_FAdd(const LHS & L,const RHS & R)645 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
646                                                           const RHS &R) {
647   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
648 }
649 
650 template <typename LHS, typename RHS>
m_Sub(const LHS & L,const RHS & R)651 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
652                                                         const RHS &R) {
653   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
654 }
655 
656 template <typename LHS, typename RHS>
m_FSub(const LHS & L,const RHS & R)657 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
658                                                           const RHS &R) {
659   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
660 }
661 
662 /// Match 'fneg X' as 'fsub -0.0, X'.
663 template <typename RHS>
664 inline BinaryOp_match<cstfp_pred_ty<is_neg_zero_fp>, RHS, Instruction::FSub>
m_FNeg(const RHS & X)665 m_FNeg(const RHS &X) {
666   return m_FSub(m_NegZeroFP(), X);
667 }
668 
669 template <typename LHS, typename RHS>
m_Mul(const LHS & L,const RHS & R)670 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
671                                                         const RHS &R) {
672   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
673 }
674 
675 template <typename LHS, typename RHS>
m_FMul(const LHS & L,const RHS & R)676 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
677                                                           const RHS &R) {
678   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
679 }
680 
681 template <typename LHS, typename RHS>
m_UDiv(const LHS & L,const RHS & R)682 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
683                                                           const RHS &R) {
684   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
685 }
686 
687 template <typename LHS, typename RHS>
m_SDiv(const LHS & L,const RHS & R)688 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
689                                                           const RHS &R) {
690   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
691 }
692 
693 template <typename LHS, typename RHS>
m_FDiv(const LHS & L,const RHS & R)694 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
695                                                           const RHS &R) {
696   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
697 }
698 
699 template <typename LHS, typename RHS>
m_URem(const LHS & L,const RHS & R)700 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
701                                                           const RHS &R) {
702   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
703 }
704 
705 template <typename LHS, typename RHS>
m_SRem(const LHS & L,const RHS & R)706 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
707                                                           const RHS &R) {
708   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
709 }
710 
711 template <typename LHS, typename RHS>
m_FRem(const LHS & L,const RHS & R)712 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
713                                                           const RHS &R) {
714   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
715 }
716 
717 template <typename LHS, typename RHS>
m_And(const LHS & L,const RHS & R)718 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
719                                                         const RHS &R) {
720   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
721 }
722 
723 template <typename LHS, typename RHS>
m_Or(const LHS & L,const RHS & R)724 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
725                                                       const RHS &R) {
726   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
727 }
728 
729 template <typename LHS, typename RHS>
m_Xor(const LHS & L,const RHS & R)730 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
731                                                         const RHS &R) {
732   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
733 }
734 
735 template <typename LHS, typename RHS>
m_Shl(const LHS & L,const RHS & R)736 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
737                                                         const RHS &R) {
738   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
739 }
740 
741 template <typename LHS, typename RHS>
m_LShr(const LHS & L,const RHS & R)742 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
743                                                           const RHS &R) {
744   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
745 }
746 
747 template <typename LHS, typename RHS>
m_AShr(const LHS & L,const RHS & R)748 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
749                                                           const RHS &R) {
750   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
751 }
752 
753 template <typename LHS_t, typename RHS_t, unsigned Opcode,
754           unsigned WrapFlags = 0>
755 struct OverflowingBinaryOp_match {
756   LHS_t L;
757   RHS_t R;
758 
OverflowingBinaryOp_matchOverflowingBinaryOp_match759   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
760       : L(LHS), R(RHS) {}
761 
matchOverflowingBinaryOp_match762   template <typename OpTy> bool match(OpTy *V) {
763     if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
764       if (Op->getOpcode() != Opcode)
765         return false;
766       if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
767           !Op->hasNoUnsignedWrap())
768         return false;
769       if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
770           !Op->hasNoSignedWrap())
771         return false;
772       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
773     }
774     return false;
775   }
776 };
777 
778 template <typename LHS, typename RHS>
779 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
780                                  OverflowingBinaryOperator::NoSignedWrap>
m_NSWAdd(const LHS & L,const RHS & R)781 m_NSWAdd(const LHS &L, const RHS &R) {
782   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
783                                    OverflowingBinaryOperator::NoSignedWrap>(
784       L, R);
785 }
786 template <typename LHS, typename RHS>
787 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
788                                  OverflowingBinaryOperator::NoSignedWrap>
m_NSWSub(const LHS & L,const RHS & R)789 m_NSWSub(const LHS &L, const RHS &R) {
790   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
791                                    OverflowingBinaryOperator::NoSignedWrap>(
792       L, R);
793 }
794 template <typename LHS, typename RHS>
795 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
796                                  OverflowingBinaryOperator::NoSignedWrap>
m_NSWMul(const LHS & L,const RHS & R)797 m_NSWMul(const LHS &L, const RHS &R) {
798   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
799                                    OverflowingBinaryOperator::NoSignedWrap>(
800       L, R);
801 }
802 template <typename LHS, typename RHS>
803 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
804                                  OverflowingBinaryOperator::NoSignedWrap>
m_NSWShl(const LHS & L,const RHS & R)805 m_NSWShl(const LHS &L, const RHS &R) {
806   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
807                                    OverflowingBinaryOperator::NoSignedWrap>(
808       L, R);
809 }
810 
811 template <typename LHS, typename RHS>
812 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
813                                  OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWAdd(const LHS & L,const RHS & R)814 m_NUWAdd(const LHS &L, const RHS &R) {
815   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
816                                    OverflowingBinaryOperator::NoUnsignedWrap>(
817       L, R);
818 }
819 template <typename LHS, typename RHS>
820 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
821                                  OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWSub(const LHS & L,const RHS & R)822 m_NUWSub(const LHS &L, const RHS &R) {
823   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
824                                    OverflowingBinaryOperator::NoUnsignedWrap>(
825       L, R);
826 }
827 template <typename LHS, typename RHS>
828 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
829                                  OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWMul(const LHS & L,const RHS & R)830 m_NUWMul(const LHS &L, const RHS &R) {
831   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
832                                    OverflowingBinaryOperator::NoUnsignedWrap>(
833       L, R);
834 }
835 template <typename LHS, typename RHS>
836 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
837                                  OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWShl(const LHS & L,const RHS & R)838 m_NUWShl(const LHS &L, const RHS &R) {
839   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
840                                    OverflowingBinaryOperator::NoUnsignedWrap>(
841       L, R);
842 }
843 
844 //===----------------------------------------------------------------------===//
845 // Class that matches a group of binary opcodes.
846 //
847 template <typename LHS_t, typename RHS_t, typename Predicate>
848 struct BinOpPred_match : Predicate {
849   LHS_t L;
850   RHS_t R;
851 
BinOpPred_matchBinOpPred_match852   BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
853 
matchBinOpPred_match854   template <typename OpTy> bool match(OpTy *V) {
855     if (auto *I = dyn_cast<Instruction>(V))
856       return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
857              R.match(I->getOperand(1));
858     if (auto *CE = dyn_cast<ConstantExpr>(V))
859       return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
860              R.match(CE->getOperand(1));
861     return false;
862   }
863 };
864 
865 struct is_shift_op {
isOpTypeis_shift_op866   bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
867 };
868 
869 struct is_right_shift_op {
isOpTypeis_right_shift_op870   bool isOpType(unsigned Opcode) {
871     return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
872   }
873 };
874 
875 struct is_logical_shift_op {
isOpTypeis_logical_shift_op876   bool isOpType(unsigned Opcode) {
877     return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
878   }
879 };
880 
881 struct is_bitwiselogic_op {
isOpTypeis_bitwiselogic_op882   bool isOpType(unsigned Opcode) {
883     return Instruction::isBitwiseLogicOp(Opcode);
884   }
885 };
886 
887 struct is_idiv_op {
isOpTypeis_idiv_op888   bool isOpType(unsigned Opcode) {
889     return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
890   }
891 };
892 
893 /// Matches shift operations.
894 template <typename LHS, typename RHS>
m_Shift(const LHS & L,const RHS & R)895 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
896                                                       const RHS &R) {
897   return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
898 }
899 
900 /// Matches logical shift operations.
901 template <typename LHS, typename RHS>
m_Shr(const LHS & L,const RHS & R)902 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
903                                                           const RHS &R) {
904   return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
905 }
906 
907 /// Matches logical shift operations.
908 template <typename LHS, typename RHS>
909 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
m_LogicalShift(const LHS & L,const RHS & R)910 m_LogicalShift(const LHS &L, const RHS &R) {
911   return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
912 }
913 
914 /// Matches bitwise logic operations.
915 template <typename LHS, typename RHS>
916 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
m_BitwiseLogic(const LHS & L,const RHS & R)917 m_BitwiseLogic(const LHS &L, const RHS &R) {
918   return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
919 }
920 
921 /// Matches integer division operations.
922 template <typename LHS, typename RHS>
m_IDiv(const LHS & L,const RHS & R)923 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
924                                                     const RHS &R) {
925   return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
926 }
927 
928 //===----------------------------------------------------------------------===//
929 // Class that matches exact binary ops.
930 //
931 template <typename SubPattern_t> struct Exact_match {
932   SubPattern_t SubPattern;
933 
Exact_matchExact_match934   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
935 
matchExact_match936   template <typename OpTy> bool match(OpTy *V) {
937     if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
938       return PEO->isExact() && SubPattern.match(V);
939     return false;
940   }
941 };
942 
m_Exact(const T & SubPattern)943 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
944   return SubPattern;
945 }
946 
947 //===----------------------------------------------------------------------===//
948 // Matchers for CmpInst classes
949 //
950 
951 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
952           bool Commutable = false>
953 struct CmpClass_match {
954   PredicateTy &Predicate;
955   LHS_t L;
956   RHS_t R;
957 
958   // The evaluation order is always stable, regardless of Commutability.
959   // The LHS is always matched first.
CmpClass_matchCmpClass_match960   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
961       : Predicate(Pred), L(LHS), R(RHS) {}
962 
matchCmpClass_match963   template <typename OpTy> bool match(OpTy *V) {
964     if (auto *I = dyn_cast<Class>(V))
965       if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
966           (Commutable && L.match(I->getOperand(1)) &&
967            R.match(I->getOperand(0)))) {
968         Predicate = I->getPredicate();
969         return true;
970       }
971     return false;
972   }
973 };
974 
975 template <typename LHS, typename RHS>
976 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
m_Cmp(CmpInst::Predicate & Pred,const LHS & L,const RHS & R)977 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
978   return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
979 }
980 
981 template <typename LHS, typename RHS>
982 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate & Pred,const LHS & L,const RHS & R)983 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
984   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
985 }
986 
987 template <typename LHS, typename RHS>
988 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate & Pred,const LHS & L,const RHS & R)989 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
990   return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
991 }
992 
993 //===----------------------------------------------------------------------===//
994 // Matchers for SelectInst classes
995 //
996 
997 template <typename Cond_t, typename LHS_t, typename RHS_t>
998 struct SelectClass_match {
999   Cond_t C;
1000   LHS_t L;
1001   RHS_t R;
1002 
SelectClass_matchSelectClass_match1003   SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, const RHS_t &RHS)
1004       : C(Cond), L(LHS), R(RHS) {}
1005 
matchSelectClass_match1006   template <typename OpTy> bool match(OpTy *V) {
1007     if (auto *I = dyn_cast<SelectInst>(V))
1008       return C.match(I->getOperand(0)) && L.match(I->getOperand(1)) &&
1009              R.match(I->getOperand(2));
1010     return false;
1011   }
1012 };
1013 
1014 template <typename Cond, typename LHS, typename RHS>
m_Select(const Cond & C,const LHS & L,const RHS & R)1015 inline SelectClass_match<Cond, LHS, RHS> m_Select(const Cond &C, const LHS &L,
1016                                                   const RHS &R) {
1017   return SelectClass_match<Cond, LHS, RHS>(C, L, R);
1018 }
1019 
1020 /// This matches a select of two constants, e.g.:
1021 /// m_SelectCst<-1, 0>(m_Value(V))
1022 template <int64_t L, int64_t R, typename Cond>
1023 inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R>>
m_SelectCst(const Cond & C)1024 m_SelectCst(const Cond &C) {
1025   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1026 }
1027 
1028 //===----------------------------------------------------------------------===//
1029 // Matchers for InsertElementInst classes
1030 //
1031 
1032 template <typename Val_t, typename Elt_t, typename Idx_t>
1033 struct InsertElementClass_match {
1034   Val_t V;
1035   Elt_t E;
1036   Idx_t I;
1037 
InsertElementClass_matchInsertElementClass_match1038   InsertElementClass_match(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
1039       : V(Val), E(Elt), I(Idx) {}
1040 
matchInsertElementClass_match1041   template <typename OpTy> bool match(OpTy *VV) {
1042     if (auto *II = dyn_cast<InsertElementInst>(VV))
1043       return V.match(II->getOperand(0)) && E.match(II->getOperand(1)) &&
1044              I.match(II->getOperand(2));
1045     return false;
1046   }
1047 };
1048 
1049 template <typename Val_t, typename Elt_t, typename Idx_t>
1050 inline InsertElementClass_match<Val_t, Elt_t, Idx_t>
m_InsertElement(const Val_t & Val,const Elt_t & Elt,const Idx_t & Idx)1051 m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1052   return InsertElementClass_match<Val_t, Elt_t, Idx_t>(Val, Elt, Idx);
1053 }
1054 
1055 //===----------------------------------------------------------------------===//
1056 // Matchers for ExtractElementInst classes
1057 //
1058 
1059 template <typename Val_t, typename Idx_t> struct ExtractElementClass_match {
1060   Val_t V;
1061   Idx_t I;
1062 
ExtractElementClass_matchExtractElementClass_match1063   ExtractElementClass_match(const Val_t &Val, const Idx_t &Idx)
1064       : V(Val), I(Idx) {}
1065 
matchExtractElementClass_match1066   template <typename OpTy> bool match(OpTy *VV) {
1067     if (auto *II = dyn_cast<ExtractElementInst>(VV))
1068       return V.match(II->getOperand(0)) && I.match(II->getOperand(1));
1069     return false;
1070   }
1071 };
1072 
1073 template <typename Val_t, typename Idx_t>
1074 inline ExtractElementClass_match<Val_t, Idx_t>
m_ExtractElement(const Val_t & Val,const Idx_t & Idx)1075 m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
1076   return ExtractElementClass_match<Val_t, Idx_t>(Val, Idx);
1077 }
1078 
1079 //===----------------------------------------------------------------------===//
1080 // Matchers for ShuffleVectorInst classes
1081 //
1082 
1083 template <typename V1_t, typename V2_t, typename Mask_t>
1084 struct ShuffleVectorClass_match {
1085   V1_t V1;
1086   V2_t V2;
1087   Mask_t M;
1088 
ShuffleVectorClass_matchShuffleVectorClass_match1089   ShuffleVectorClass_match(const V1_t &v1, const V2_t &v2, const Mask_t &m)
1090       : V1(v1), V2(v2), M(m) {}
1091 
matchShuffleVectorClass_match1092   template <typename OpTy> bool match(OpTy *V) {
1093     if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
1094       return V1.match(SI->getOperand(0)) && V2.match(SI->getOperand(1)) &&
1095              M.match(SI->getOperand(2));
1096     return false;
1097   }
1098 };
1099 
1100 template <typename V1_t, typename V2_t, typename Mask_t>
1101 inline ShuffleVectorClass_match<V1_t, V2_t, Mask_t>
m_ShuffleVector(const V1_t & v1,const V2_t & v2,const Mask_t & m)1102 m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
1103   return ShuffleVectorClass_match<V1_t, V2_t, Mask_t>(v1, v2, m);
1104 }
1105 
1106 //===----------------------------------------------------------------------===//
1107 // Matchers for CastInst classes
1108 //
1109 
1110 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1111   Op_t Op;
1112 
CastClass_matchCastClass_match1113   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1114 
matchCastClass_match1115   template <typename OpTy> bool match(OpTy *V) {
1116     if (auto *O = dyn_cast<Operator>(V))
1117       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1118     return false;
1119   }
1120 };
1121 
1122 /// Matches BitCast.
1123 template <typename OpTy>
m_BitCast(const OpTy & Op)1124 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1125   return CastClass_match<OpTy, Instruction::BitCast>(Op);
1126 }
1127 
1128 /// Matches PtrToInt.
1129 template <typename OpTy>
m_PtrToInt(const OpTy & Op)1130 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1131   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1132 }
1133 
1134 /// Matches Trunc.
1135 template <typename OpTy>
m_Trunc(const OpTy & Op)1136 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1137   return CastClass_match<OpTy, Instruction::Trunc>(Op);
1138 }
1139 
1140 /// Matches SExt.
1141 template <typename OpTy>
m_SExt(const OpTy & Op)1142 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1143   return CastClass_match<OpTy, Instruction::SExt>(Op);
1144 }
1145 
1146 /// Matches ZExt.
1147 template <typename OpTy>
m_ZExt(const OpTy & Op)1148 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1149   return CastClass_match<OpTy, Instruction::ZExt>(Op);
1150 }
1151 
1152 template <typename OpTy>
1153 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1154                         CastClass_match<OpTy, Instruction::SExt>>
m_ZExtOrSExt(const OpTy & Op)1155 m_ZExtOrSExt(const OpTy &Op) {
1156   return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1157 }
1158 
1159 /// Matches UIToFP.
1160 template <typename OpTy>
m_UIToFP(const OpTy & Op)1161 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1162   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1163 }
1164 
1165 /// Matches SIToFP.
1166 template <typename OpTy>
m_SIToFP(const OpTy & Op)1167 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1168   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1169 }
1170 
1171 /// Matches FPTrunc
1172 template <typename OpTy>
m_FPTrunc(const OpTy & Op)1173 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1174   return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1175 }
1176 
1177 /// Matches FPExt
1178 template <typename OpTy>
m_FPExt(const OpTy & Op)1179 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1180   return CastClass_match<OpTy, Instruction::FPExt>(Op);
1181 }
1182 
1183 //===----------------------------------------------------------------------===//
1184 // Matcher for LoadInst classes
1185 //
1186 
1187 template <typename Op_t> struct LoadClass_match {
1188   Op_t Op;
1189 
LoadClass_matchLoadClass_match1190   LoadClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1191 
matchLoadClass_match1192   template <typename OpTy> bool match(OpTy *V) {
1193     if (auto *LI = dyn_cast<LoadInst>(V))
1194       return Op.match(LI->getPointerOperand());
1195     return false;
1196   }
1197 };
1198 
1199 /// Matches LoadInst.
m_Load(const OpTy & Op)1200 template <typename OpTy> inline LoadClass_match<OpTy> m_Load(const OpTy &Op) {
1201   return LoadClass_match<OpTy>(Op);
1202 }
1203 
1204 //===----------------------------------------------------------------------===//
1205 // Matcher for StoreInst classes
1206 //
1207 
1208 template <typename ValueOp_t, typename PointerOp_t> struct StoreClass_match {
1209   ValueOp_t ValueOp;
1210   PointerOp_t PointerOp;
1211 
StoreClass_matchStoreClass_match1212   StoreClass_match(const ValueOp_t &ValueOpMatch,
1213                    const PointerOp_t &PointerOpMatch) :
1214     ValueOp(ValueOpMatch), PointerOp(PointerOpMatch)  {}
1215 
matchStoreClass_match1216   template <typename OpTy> bool match(OpTy *V) {
1217     if (auto *LI = dyn_cast<StoreInst>(V))
1218       return ValueOp.match(LI->getValueOperand()) &&
1219              PointerOp.match(LI->getPointerOperand());
1220     return false;
1221   }
1222 };
1223 
1224 /// Matches StoreInst.
1225 template <typename ValueOpTy, typename PointerOpTy>
1226 inline StoreClass_match<ValueOpTy, PointerOpTy>
m_Store(const ValueOpTy & ValueOp,const PointerOpTy & PointerOp)1227 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1228   return StoreClass_match<ValueOpTy, PointerOpTy>(ValueOp, PointerOp);
1229 }
1230 
1231 //===----------------------------------------------------------------------===//
1232 // Matchers for control flow.
1233 //
1234 
1235 struct br_match {
1236   BasicBlock *&Succ;
1237 
br_matchbr_match1238   br_match(BasicBlock *&Succ) : Succ(Succ) {}
1239 
matchbr_match1240   template <typename OpTy> bool match(OpTy *V) {
1241     if (auto *BI = dyn_cast<BranchInst>(V))
1242       if (BI->isUnconditional()) {
1243         Succ = BI->getSuccessor(0);
1244         return true;
1245       }
1246     return false;
1247   }
1248 };
1249 
m_UnconditionalBr(BasicBlock * & Succ)1250 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1251 
1252 template <typename Cond_t> struct brc_match {
1253   Cond_t Cond;
1254   BasicBlock *&T, *&F;
1255 
brc_matchbrc_match1256   brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
1257       : Cond(C), T(t), F(f) {}
1258 
matchbrc_match1259   template <typename OpTy> bool match(OpTy *V) {
1260     if (auto *BI = dyn_cast<BranchInst>(V))
1261       if (BI->isConditional() && Cond.match(BI->getCondition())) {
1262         T = BI->getSuccessor(0);
1263         F = BI->getSuccessor(1);
1264         return true;
1265       }
1266     return false;
1267   }
1268 };
1269 
1270 template <typename Cond_t>
m_Br(const Cond_t & C,BasicBlock * & T,BasicBlock * & F)1271 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1272   return brc_match<Cond_t>(C, T, F);
1273 }
1274 
1275 //===----------------------------------------------------------------------===//
1276 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1277 //
1278 
1279 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1280           bool Commutable = false>
1281 struct MaxMin_match {
1282   LHS_t L;
1283   RHS_t R;
1284 
1285   // The evaluation order is always stable, regardless of Commutability.
1286   // The LHS is always matched first.
MaxMin_matchMaxMin_match1287   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1288 
matchMaxMin_match1289   template <typename OpTy> bool match(OpTy *V) {
1290     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1291     auto *SI = dyn_cast<SelectInst>(V);
1292     if (!SI)
1293       return false;
1294     auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1295     if (!Cmp)
1296       return false;
1297     // At this point we have a select conditioned on a comparison.  Check that
1298     // it is the values returned by the select that are being compared.
1299     Value *TrueVal = SI->getTrueValue();
1300     Value *FalseVal = SI->getFalseValue();
1301     Value *LHS = Cmp->getOperand(0);
1302     Value *RHS = Cmp->getOperand(1);
1303     if ((TrueVal != LHS || FalseVal != RHS) &&
1304         (TrueVal != RHS || FalseVal != LHS))
1305       return false;
1306     typename CmpInst_t::Predicate Pred =
1307         LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1308     // Does "(x pred y) ? x : y" represent the desired max/min operation?
1309     if (!Pred_t::match(Pred))
1310       return false;
1311     // It does!  Bind the operands.
1312     return (L.match(LHS) && R.match(RHS)) ||
1313            (Commutable && L.match(RHS) && R.match(LHS));
1314   }
1315 };
1316 
1317 /// Helper class for identifying signed max predicates.
1318 struct smax_pred_ty {
matchsmax_pred_ty1319   static bool match(ICmpInst::Predicate Pred) {
1320     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1321   }
1322 };
1323 
1324 /// Helper class for identifying signed min predicates.
1325 struct smin_pred_ty {
matchsmin_pred_ty1326   static bool match(ICmpInst::Predicate Pred) {
1327     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1328   }
1329 };
1330 
1331 /// Helper class for identifying unsigned max predicates.
1332 struct umax_pred_ty {
matchumax_pred_ty1333   static bool match(ICmpInst::Predicate Pred) {
1334     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1335   }
1336 };
1337 
1338 /// Helper class for identifying unsigned min predicates.
1339 struct umin_pred_ty {
matchumin_pred_ty1340   static bool match(ICmpInst::Predicate Pred) {
1341     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1342   }
1343 };
1344 
1345 /// Helper class for identifying ordered max predicates.
1346 struct ofmax_pred_ty {
matchofmax_pred_ty1347   static bool match(FCmpInst::Predicate Pred) {
1348     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1349   }
1350 };
1351 
1352 /// Helper class for identifying ordered min predicates.
1353 struct ofmin_pred_ty {
matchofmin_pred_ty1354   static bool match(FCmpInst::Predicate Pred) {
1355     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1356   }
1357 };
1358 
1359 /// Helper class for identifying unordered max predicates.
1360 struct ufmax_pred_ty {
matchufmax_pred_ty1361   static bool match(FCmpInst::Predicate Pred) {
1362     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1363   }
1364 };
1365 
1366 /// Helper class for identifying unordered min predicates.
1367 struct ufmin_pred_ty {
matchufmin_pred_ty1368   static bool match(FCmpInst::Predicate Pred) {
1369     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1370   }
1371 };
1372 
1373 template <typename LHS, typename RHS>
m_SMax(const LHS & L,const RHS & R)1374 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1375                                                              const RHS &R) {
1376   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1377 }
1378 
1379 template <typename LHS, typename RHS>
m_SMin(const LHS & L,const RHS & R)1380 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1381                                                              const RHS &R) {
1382   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1383 }
1384 
1385 template <typename LHS, typename RHS>
m_UMax(const LHS & L,const RHS & R)1386 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1387                                                              const RHS &R) {
1388   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1389 }
1390 
1391 template <typename LHS, typename RHS>
m_UMin(const LHS & L,const RHS & R)1392 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1393                                                              const RHS &R) {
1394   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1395 }
1396 
1397 /// Match an 'ordered' floating point maximum function.
1398 /// Floating point has one special value 'NaN'. Therefore, there is no total
1399 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1400 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1401 /// semantics. In the presence of 'NaN' we have to preserve the original
1402 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1403 ///
1404 ///                         max(L, R)  iff L and R are not NaN
1405 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
1406 template <typename LHS, typename RHS>
m_OrdFMax(const LHS & L,const RHS & R)1407 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1408                                                                  const RHS &R) {
1409   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1410 }
1411 
1412 /// Match an 'ordered' floating point minimum function.
1413 /// Floating point has one special value 'NaN'. Therefore, there is no total
1414 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1415 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1416 /// semantics. In the presence of 'NaN' we have to preserve the original
1417 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1418 ///
1419 ///                         min(L, R)  iff L and R are not NaN
1420 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
1421 template <typename LHS, typename RHS>
m_OrdFMin(const LHS & L,const RHS & R)1422 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1423                                                                  const RHS &R) {
1424   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1425 }
1426 
1427 /// Match an 'unordered' floating point maximum function.
1428 /// Floating point has one special value 'NaN'. Therefore, there is no total
1429 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1430 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1431 /// semantics. In the presence of 'NaN' we have to preserve the original
1432 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1433 ///
1434 ///                         max(L, R)  iff L and R are not NaN
1435 ///  m_UnordFMax(L, R) =    L          iff L or R are NaN
1436 template <typename LHS, typename RHS>
1437 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
m_UnordFMax(const LHS & L,const RHS & R)1438 m_UnordFMax(const LHS &L, const RHS &R) {
1439   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1440 }
1441 
1442 /// Match an 'unordered' floating point minimum function.
1443 /// Floating point has one special value 'NaN'. Therefore, there is no total
1444 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1445 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1446 /// semantics. In the presence of 'NaN' we have to preserve the original
1447 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1448 ///
1449 ///                          min(L, R)  iff L and R are not NaN
1450 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
1451 template <typename LHS, typename RHS>
1452 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
m_UnordFMin(const LHS & L,const RHS & R)1453 m_UnordFMin(const LHS &L, const RHS &R) {
1454   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1455 }
1456 
1457 //===----------------------------------------------------------------------===//
1458 // Matchers for overflow check patterns: e.g. (a + b) u< a
1459 //
1460 
1461 template <typename LHS_t, typename RHS_t, typename Sum_t>
1462 struct UAddWithOverflow_match {
1463   LHS_t L;
1464   RHS_t R;
1465   Sum_t S;
1466 
UAddWithOverflow_matchUAddWithOverflow_match1467   UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1468       : L(L), R(R), S(S) {}
1469 
matchUAddWithOverflow_match1470   template <typename OpTy> bool match(OpTy *V) {
1471     Value *ICmpLHS, *ICmpRHS;
1472     ICmpInst::Predicate Pred;
1473     if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1474       return false;
1475 
1476     Value *AddLHS, *AddRHS;
1477     auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1478 
1479     // (a + b) u< a, (a + b) u< b
1480     if (Pred == ICmpInst::ICMP_ULT)
1481       if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1482         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1483 
1484     // a >u (a + b), b >u (a + b)
1485     if (Pred == ICmpInst::ICMP_UGT)
1486       if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1487         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1488 
1489     return false;
1490   }
1491 };
1492 
1493 /// Match an icmp instruction checking for unsigned overflow on addition.
1494 ///
1495 /// S is matched to the addition whose result is being checked for overflow, and
1496 /// L and R are matched to the LHS and RHS of S.
1497 template <typename LHS_t, typename RHS_t, typename Sum_t>
1498 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
m_UAddWithOverflow(const LHS_t & L,const RHS_t & R,const Sum_t & S)1499 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1500   return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1501 }
1502 
1503 template <typename Opnd_t> struct Argument_match {
1504   unsigned OpI;
1505   Opnd_t Val;
1506 
Argument_matchArgument_match1507   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1508 
matchArgument_match1509   template <typename OpTy> bool match(OpTy *V) {
1510     CallSite CS(V);
1511     return CS.isCall() && Val.match(CS.getArgument(OpI));
1512   }
1513 };
1514 
1515 /// Match an argument.
1516 template <unsigned OpI, typename Opnd_t>
m_Argument(const Opnd_t & Op)1517 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1518   return Argument_match<Opnd_t>(OpI, Op);
1519 }
1520 
1521 /// Intrinsic matchers.
1522 struct IntrinsicID_match {
1523   unsigned ID;
1524 
IntrinsicID_matchIntrinsicID_match1525   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1526 
matchIntrinsicID_match1527   template <typename OpTy> bool match(OpTy *V) {
1528     if (const auto *CI = dyn_cast<CallInst>(V))
1529       if (const auto *F = CI->getCalledFunction())
1530         return F->getIntrinsicID() == ID;
1531     return false;
1532   }
1533 };
1534 
1535 /// Intrinsic matches are combinations of ID matchers, and argument
1536 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1537 /// them with lower arity matchers. Here's some convenient typedefs for up to
1538 /// several arguments, and more can be added as needed
1539 template <typename T0 = void, typename T1 = void, typename T2 = void,
1540           typename T3 = void, typename T4 = void, typename T5 = void,
1541           typename T6 = void, typename T7 = void, typename T8 = void,
1542           typename T9 = void, typename T10 = void>
1543 struct m_Intrinsic_Ty;
1544 template <typename T0> struct m_Intrinsic_Ty<T0> {
1545   using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
1546 };
1547 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1548   using Ty =
1549       match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
1550 };
1551 template <typename T0, typename T1, typename T2>
1552 struct m_Intrinsic_Ty<T0, T1, T2> {
1553   using Ty =
1554       match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1555                         Argument_match<T2>>;
1556 };
1557 template <typename T0, typename T1, typename T2, typename T3>
1558 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1559   using Ty =
1560       match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1561                         Argument_match<T3>>;
1562 };
1563 
1564 /// Match intrinsic calls like this:
1565 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1566 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1567   return IntrinsicID_match(IntrID);
1568 }
1569 
1570 template <Intrinsic::ID IntrID, typename T0>
1571 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1572   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1573 }
1574 
1575 template <Intrinsic::ID IntrID, typename T0, typename T1>
1576 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1577                                                        const T1 &Op1) {
1578   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1579 }
1580 
1581 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1582 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1583 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1584   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1585 }
1586 
1587 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1588           typename T3>
1589 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1590 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1591   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1592 }
1593 
1594 // Helper intrinsic matching specializations.
1595 template <typename Opnd0>
1596 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1597   return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1598 }
1599 
1600 template <typename Opnd0>
1601 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1602   return m_Intrinsic<Intrinsic::bswap>(Op0);
1603 }
1604 
1605 template <typename Opnd0>
1606 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1607   return m_Intrinsic<Intrinsic::fabs>(Op0);
1608 }
1609 
1610 template <typename Opnd0>
1611 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1612   return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1613 }
1614 
1615 template <typename Opnd0, typename Opnd1>
1616 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1617                                                         const Opnd1 &Op1) {
1618   return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1619 }
1620 
1621 template <typename Opnd0, typename Opnd1>
1622 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1623                                                         const Opnd1 &Op1) {
1624   return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1625 }
1626 
1627 //===----------------------------------------------------------------------===//
1628 // Matchers for two-operands operators with the operators in either order
1629 //
1630 
1631 /// Matches a BinaryOperator with LHS and RHS in either order.
1632 template <typename LHS, typename RHS>
1633 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1634   return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1635 }
1636 
1637 /// Matches an ICmp with a predicate over LHS and RHS in either order.
1638 /// Does not swap the predicate.
1639 template <typename LHS, typename RHS>
1640 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
1641 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1642   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
1643                                                                        R);
1644 }
1645 
1646 /// Matches a Add with LHS and RHS in either order.
1647 template <typename LHS, typename RHS>
1648 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
1649                                                                 const RHS &R) {
1650   return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
1651 }
1652 
1653 /// Matches a Mul with LHS and RHS in either order.
1654 template <typename LHS, typename RHS>
1655 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
1656                                                                 const RHS &R) {
1657   return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
1658 }
1659 
1660 /// Matches an And with LHS and RHS in either order.
1661 template <typename LHS, typename RHS>
1662 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
1663                                                                 const RHS &R) {
1664   return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
1665 }
1666 
1667 /// Matches an Or with LHS and RHS in either order.
1668 template <typename LHS, typename RHS>
1669 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
1670                                                               const RHS &R) {
1671   return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
1672 }
1673 
1674 /// Matches an Xor with LHS and RHS in either order.
1675 template <typename LHS, typename RHS>
1676 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
1677                                                                 const RHS &R) {
1678   return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
1679 }
1680 
1681 /// Matches a 'Neg' as 'sub 0, V'.
1682 template <typename ValTy>
1683 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
1684 m_Neg(const ValTy &V) {
1685   return m_Sub(m_ZeroInt(), V);
1686 }
1687 
1688 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
1689 template <typename ValTy>
1690 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
1691 m_Not(const ValTy &V) {
1692   return m_c_Xor(V, m_AllOnes());
1693 }
1694 
1695 /// Matches an SMin with LHS and RHS in either order.
1696 template <typename LHS, typename RHS>
1697 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
1698 m_c_SMin(const LHS &L, const RHS &R) {
1699   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
1700 }
1701 /// Matches an SMax with LHS and RHS in either order.
1702 template <typename LHS, typename RHS>
1703 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
1704 m_c_SMax(const LHS &L, const RHS &R) {
1705   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
1706 }
1707 /// Matches a UMin with LHS and RHS in either order.
1708 template <typename LHS, typename RHS>
1709 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
1710 m_c_UMin(const LHS &L, const RHS &R) {
1711   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
1712 }
1713 /// Matches a UMax with LHS and RHS in either order.
1714 template <typename LHS, typename RHS>
1715 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
1716 m_c_UMax(const LHS &L, const RHS &R) {
1717   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
1718 }
1719 
1720 /// Matches FAdd with LHS and RHS in either order.
1721 template <typename LHS, typename RHS>
1722 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
1723 m_c_FAdd(const LHS &L, const RHS &R) {
1724   return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
1725 }
1726 
1727 /// Matches FMul with LHS and RHS in either order.
1728 template <typename LHS, typename RHS>
1729 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
1730 m_c_FMul(const LHS &L, const RHS &R) {
1731   return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
1732 }
1733 
1734 template <typename Opnd_t> struct Signum_match {
1735   Opnd_t Val;
1736   Signum_match(const Opnd_t &V) : Val(V) {}
1737 
1738   template <typename OpTy> bool match(OpTy *V) {
1739     unsigned TypeSize = V->getType()->getScalarSizeInBits();
1740     if (TypeSize == 0)
1741       return false;
1742 
1743     unsigned ShiftWidth = TypeSize - 1;
1744     Value *OpL = nullptr, *OpR = nullptr;
1745 
1746     // This is the representation of signum we match:
1747     //
1748     //  signum(x) == (x >> 63) | (-x >>u 63)
1749     //
1750     // An i1 value is its own signum, so it's correct to match
1751     //
1752     //  signum(x) == (x >> 0)  | (-x >>u 0)
1753     //
1754     // for i1 values.
1755 
1756     auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
1757     auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
1758     auto Signum = m_Or(LHS, RHS);
1759 
1760     return Signum.match(V) && OpL == OpR && Val.match(OpL);
1761   }
1762 };
1763 
1764 /// Matches a signum pattern.
1765 ///
1766 /// signum(x) =
1767 ///      x >  0  ->  1
1768 ///      x == 0  ->  0
1769 ///      x <  0  -> -1
1770 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
1771   return Signum_match<Val_t>(V);
1772 }
1773 
1774 } // end namespace PatternMatch
1775 } // end namespace llvm
1776 
1777 #endif // LLVM_IR_PATTERNMATCH_H
1778