1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Mangle.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/VTableBuilder.h"
27 #include "clang/Basic/ABI.h"
28 #include "clang/Basic/DiagnosticOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Support/JamCRC.h"
32 #include "llvm/Support/MD5.h"
33 #include "llvm/Support/MathExtras.h"
34
35 using namespace clang;
36
37 namespace {
38
39 struct msvc_hashing_ostream : public llvm::raw_svector_ostream {
40 raw_ostream &OS;
41 llvm::SmallString<64> Buffer;
42
msvc_hashing_ostream__anonea8b6ddd0111::msvc_hashing_ostream43 msvc_hashing_ostream(raw_ostream &OS)
44 : llvm::raw_svector_ostream(Buffer), OS(OS) {}
~msvc_hashing_ostream__anonea8b6ddd0111::msvc_hashing_ostream45 ~msvc_hashing_ostream() override {
46 StringRef MangledName = str();
47 bool StartsWithEscape = MangledName.startswith("\01");
48 if (StartsWithEscape)
49 MangledName = MangledName.drop_front(1);
50 if (MangledName.size() <= 4096) {
51 OS << str();
52 return;
53 }
54
55 llvm::MD5 Hasher;
56 llvm::MD5::MD5Result Hash;
57 Hasher.update(MangledName);
58 Hasher.final(Hash);
59
60 SmallString<32> HexString;
61 llvm::MD5::stringifyResult(Hash, HexString);
62
63 if (StartsWithEscape)
64 OS << '\01';
65 OS << "??@" << HexString << '@';
66 }
67 };
68
69 /// \brief Retrieve the declaration context that should be used when mangling
70 /// the given declaration.
getEffectiveDeclContext(const Decl * D)71 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
72 // The ABI assumes that lambda closure types that occur within
73 // default arguments live in the context of the function. However, due to
74 // the way in which Clang parses and creates function declarations, this is
75 // not the case: the lambda closure type ends up living in the context
76 // where the function itself resides, because the function declaration itself
77 // had not yet been created. Fix the context here.
78 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
79 if (RD->isLambda())
80 if (ParmVarDecl *ContextParam =
81 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
82 return ContextParam->getDeclContext();
83 }
84
85 // Perform the same check for block literals.
86 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
87 if (ParmVarDecl *ContextParam =
88 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
89 return ContextParam->getDeclContext();
90 }
91
92 const DeclContext *DC = D->getDeclContext();
93 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) {
94 return getEffectiveDeclContext(cast<Decl>(DC));
95 }
96
97 return DC->getRedeclContext();
98 }
99
getEffectiveParentContext(const DeclContext * DC)100 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
101 return getEffectiveDeclContext(cast<Decl>(DC));
102 }
103
getStructor(const NamedDecl * ND)104 static const FunctionDecl *getStructor(const NamedDecl *ND) {
105 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
106 return FTD->getTemplatedDecl();
107
108 const auto *FD = cast<FunctionDecl>(ND);
109 if (const auto *FTD = FD->getPrimaryTemplate())
110 return FTD->getTemplatedDecl();
111
112 return FD;
113 }
114
isLambda(const NamedDecl * ND)115 static bool isLambda(const NamedDecl *ND) {
116 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
117 if (!Record)
118 return false;
119
120 return Record->isLambda();
121 }
122
123 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
124 /// Microsoft Visual C++ ABI.
125 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
126 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
127 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
128 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
129 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
130 llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
131 llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
132
133 public:
MicrosoftMangleContextImpl(ASTContext & Context,DiagnosticsEngine & Diags)134 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
135 : MicrosoftMangleContext(Context, Diags) {}
136 bool shouldMangleCXXName(const NamedDecl *D) override;
137 bool shouldMangleStringLiteral(const StringLiteral *SL) override;
138 void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
139 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
140 raw_ostream &) override;
141 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
142 raw_ostream &) override;
143 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
144 const ThisAdjustment &ThisAdjustment,
145 raw_ostream &) override;
146 void mangleCXXVFTable(const CXXRecordDecl *Derived,
147 ArrayRef<const CXXRecordDecl *> BasePath,
148 raw_ostream &Out) override;
149 void mangleCXXVBTable(const CXXRecordDecl *Derived,
150 ArrayRef<const CXXRecordDecl *> BasePath,
151 raw_ostream &Out) override;
152 void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
153 const CXXRecordDecl *DstRD,
154 raw_ostream &Out) override;
155 void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
156 bool IsUnaligned, uint32_t NumEntries,
157 raw_ostream &Out) override;
158 void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
159 raw_ostream &Out) override;
160 void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
161 CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
162 int32_t VBPtrOffset, uint32_t VBIndex,
163 raw_ostream &Out) override;
164 void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
165 void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
166 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
167 uint32_t NVOffset, int32_t VBPtrOffset,
168 uint32_t VBTableOffset, uint32_t Flags,
169 raw_ostream &Out) override;
170 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
171 raw_ostream &Out) override;
172 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
173 raw_ostream &Out) override;
174 void
175 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
176 ArrayRef<const CXXRecordDecl *> BasePath,
177 raw_ostream &Out) override;
178 void mangleTypeName(QualType T, raw_ostream &) override;
179 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
180 raw_ostream &) override;
181 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
182 raw_ostream &) override;
183 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
184 raw_ostream &) override;
185 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
186 void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
187 raw_ostream &Out) override;
188 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
189 void mangleDynamicAtExitDestructor(const VarDecl *D,
190 raw_ostream &Out) override;
191 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
192 raw_ostream &Out) override;
193 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
194 raw_ostream &Out) override;
195 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
getNextDiscriminator(const NamedDecl * ND,unsigned & disc)196 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
197 const DeclContext *DC = getEffectiveDeclContext(ND);
198 if (!DC->isFunctionOrMethod())
199 return false;
200
201 // Lambda closure types are already numbered, give out a phony number so
202 // that they demangle nicely.
203 if (isLambda(ND)) {
204 disc = 1;
205 return true;
206 }
207
208 // Use the canonical number for externally visible decls.
209 if (ND->isExternallyVisible()) {
210 disc = getASTContext().getManglingNumber(ND);
211 return true;
212 }
213
214 // Anonymous tags are already numbered.
215 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
216 if (!Tag->hasNameForLinkage() &&
217 !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
218 !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
219 return false;
220 }
221
222 // Make up a reasonable number for internal decls.
223 unsigned &discriminator = Uniquifier[ND];
224 if (!discriminator)
225 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
226 disc = discriminator + 1;
227 return true;
228 }
229
getLambdaId(const CXXRecordDecl * RD)230 unsigned getLambdaId(const CXXRecordDecl *RD) {
231 assert(RD->isLambda() && "RD must be a lambda!");
232 assert(!RD->isExternallyVisible() && "RD must not be visible!");
233 assert(RD->getLambdaManglingNumber() == 0 &&
234 "RD must not have a mangling number!");
235 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
236 Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
237 return Result.first->second;
238 }
239
240 private:
241 void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out);
242 };
243
244 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
245 /// Microsoft Visual C++ ABI.
246 class MicrosoftCXXNameMangler {
247 MicrosoftMangleContextImpl &Context;
248 raw_ostream &Out;
249
250 /// The "structor" is the top-level declaration being mangled, if
251 /// that's not a template specialization; otherwise it's the pattern
252 /// for that specialization.
253 const NamedDecl *Structor;
254 unsigned StructorType;
255
256 typedef llvm::SmallVector<std::string, 10> BackRefVec;
257 BackRefVec NameBackReferences;
258
259 typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
260 ArgBackRefMap TypeBackReferences;
261
262 typedef std::set<int> PassObjectSizeArgsSet;
263 PassObjectSizeArgsSet PassObjectSizeArgs;
264
getASTContext() const265 ASTContext &getASTContext() const { return Context.getASTContext(); }
266
267 // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
268 // this check into mangleQualifiers().
269 const bool PointersAre64Bit;
270
271 public:
272 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
273
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_)274 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
275 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
276 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
277 64) {}
278
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_,const CXXConstructorDecl * D,CXXCtorType Type)279 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
280 const CXXConstructorDecl *D, CXXCtorType Type)
281 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
282 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
283 64) {}
284
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_,const CXXDestructorDecl * D,CXXDtorType Type)285 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
286 const CXXDestructorDecl *D, CXXDtorType Type)
287 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
288 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
289 64) {}
290
getStream() const291 raw_ostream &getStream() const { return Out; }
292
293 void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
294 void mangleName(const NamedDecl *ND);
295 void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
296 void mangleVariableEncoding(const VarDecl *VD);
297 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
298 void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
299 const CXXMethodDecl *MD);
300 void mangleVirtualMemPtrThunk(
301 const CXXMethodDecl *MD,
302 const MicrosoftVTableContext::MethodVFTableLocation &ML);
303 void mangleNumber(int64_t Number);
304 void mangleTagTypeKind(TagTypeKind TK);
305 void mangleArtificalTagType(TagTypeKind TK, StringRef UnqualifiedName,
306 ArrayRef<StringRef> NestedNames = None);
307 void mangleType(QualType T, SourceRange Range,
308 QualifierMangleMode QMM = QMM_Mangle);
309 void mangleFunctionType(const FunctionType *T,
310 const FunctionDecl *D = nullptr,
311 bool ForceThisQuals = false);
312 void mangleNestedName(const NamedDecl *ND);
313
314 private:
mangleUnqualifiedName(const NamedDecl * ND)315 void mangleUnqualifiedName(const NamedDecl *ND) {
316 mangleUnqualifiedName(ND, ND->getDeclName());
317 }
318 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
319 void mangleSourceName(StringRef Name);
320 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
321 void mangleCXXDtorType(CXXDtorType T);
322 void mangleQualifiers(Qualifiers Quals, bool IsMember);
323 void mangleRefQualifier(RefQualifierKind RefQualifier);
324 void manglePointerCVQualifiers(Qualifiers Quals);
325 void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
326
327 void mangleUnscopedTemplateName(const TemplateDecl *ND);
328 void
329 mangleTemplateInstantiationName(const TemplateDecl *TD,
330 const TemplateArgumentList &TemplateArgs);
331 void mangleObjCMethodName(const ObjCMethodDecl *MD);
332
333 void mangleArgumentType(QualType T, SourceRange Range);
334 void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
335
336 // Declare manglers for every type class.
337 #define ABSTRACT_TYPE(CLASS, PARENT)
338 #define NON_CANONICAL_TYPE(CLASS, PARENT)
339 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
340 Qualifiers Quals, \
341 SourceRange Range);
342 #include "clang/AST/TypeNodes.def"
343 #undef ABSTRACT_TYPE
344 #undef NON_CANONICAL_TYPE
345 #undef TYPE
346
347 void mangleType(const TagDecl *TD);
348 void mangleDecayedArrayType(const ArrayType *T);
349 void mangleArrayType(const ArrayType *T);
350 void mangleFunctionClass(const FunctionDecl *FD);
351 void mangleCallingConvention(CallingConv CC);
352 void mangleCallingConvention(const FunctionType *T);
353 void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
354 void mangleExpression(const Expr *E);
355 void mangleThrowSpecification(const FunctionProtoType *T);
356
357 void mangleTemplateArgs(const TemplateDecl *TD,
358 const TemplateArgumentList &TemplateArgs);
359 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
360 const NamedDecl *Parm);
361 };
362 }
363
shouldMangleCXXName(const NamedDecl * D)364 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
365 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
366 LanguageLinkage L = FD->getLanguageLinkage();
367 // Overloadable functions need mangling.
368 if (FD->hasAttr<OverloadableAttr>())
369 return true;
370
371 // The ABI expects that we would never mangle "typical" user-defined entry
372 // points regardless of visibility or freestanding-ness.
373 //
374 // N.B. This is distinct from asking about "main". "main" has a lot of
375 // special rules associated with it in the standard while these
376 // user-defined entry points are outside of the purview of the standard.
377 // For example, there can be only one definition for "main" in a standards
378 // compliant program; however nothing forbids the existence of wmain and
379 // WinMain in the same translation unit.
380 if (FD->isMSVCRTEntryPoint())
381 return false;
382
383 // C++ functions and those whose names are not a simple identifier need
384 // mangling.
385 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
386 return true;
387
388 // C functions are not mangled.
389 if (L == CLanguageLinkage)
390 return false;
391 }
392
393 // Otherwise, no mangling is done outside C++ mode.
394 if (!getASTContext().getLangOpts().CPlusPlus)
395 return false;
396
397 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
398 // C variables are not mangled.
399 if (VD->isExternC())
400 return false;
401
402 // Variables at global scope with non-internal linkage are not mangled.
403 const DeclContext *DC = getEffectiveDeclContext(D);
404 // Check for extern variable declared locally.
405 if (DC->isFunctionOrMethod() && D->hasLinkage())
406 while (!DC->isNamespace() && !DC->isTranslationUnit())
407 DC = getEffectiveParentContext(DC);
408
409 if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
410 !isa<VarTemplateSpecializationDecl>(D) &&
411 D->getIdentifier() != nullptr)
412 return false;
413 }
414
415 return true;
416 }
417
418 bool
shouldMangleStringLiteral(const StringLiteral * SL)419 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
420 return true;
421 }
422
mangle(const NamedDecl * D,StringRef Prefix)423 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
424 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
425 // Therefore it's really important that we don't decorate the
426 // name with leading underscores or leading/trailing at signs. So, by
427 // default, we emit an asm marker at the start so we get the name right.
428 // Callers can override this with a custom prefix.
429
430 // <mangled-name> ::= ? <name> <type-encoding>
431 Out << Prefix;
432 mangleName(D);
433 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
434 mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
435 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
436 mangleVariableEncoding(VD);
437 else
438 llvm_unreachable("Tried to mangle unexpected NamedDecl!");
439 }
440
mangleFunctionEncoding(const FunctionDecl * FD,bool ShouldMangle)441 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
442 bool ShouldMangle) {
443 // <type-encoding> ::= <function-class> <function-type>
444
445 // Since MSVC operates on the type as written and not the canonical type, it
446 // actually matters which decl we have here. MSVC appears to choose the
447 // first, since it is most likely to be the declaration in a header file.
448 FD = FD->getFirstDecl();
449
450 // We should never ever see a FunctionNoProtoType at this point.
451 // We don't even know how to mangle their types anyway :).
452 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
453
454 // extern "C" functions can hold entities that must be mangled.
455 // As it stands, these functions still need to get expressed in the full
456 // external name. They have their class and type omitted, replaced with '9'.
457 if (ShouldMangle) {
458 // We would like to mangle all extern "C" functions using this additional
459 // component but this would break compatibility with MSVC's behavior.
460 // Instead, do this when we know that compatibility isn't important (in
461 // other words, when it is an overloaded extern "C" function).
462 if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
463 Out << "$$J0";
464
465 mangleFunctionClass(FD);
466
467 mangleFunctionType(FT, FD);
468 } else {
469 Out << '9';
470 }
471 }
472
mangleVariableEncoding(const VarDecl * VD)473 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
474 // <type-encoding> ::= <storage-class> <variable-type>
475 // <storage-class> ::= 0 # private static member
476 // ::= 1 # protected static member
477 // ::= 2 # public static member
478 // ::= 3 # global
479 // ::= 4 # static local
480
481 // The first character in the encoding (after the name) is the storage class.
482 if (VD->isStaticDataMember()) {
483 // If it's a static member, it also encodes the access level.
484 switch (VD->getAccess()) {
485 default:
486 case AS_private: Out << '0'; break;
487 case AS_protected: Out << '1'; break;
488 case AS_public: Out << '2'; break;
489 }
490 }
491 else if (!VD->isStaticLocal())
492 Out << '3';
493 else
494 Out << '4';
495 // Now mangle the type.
496 // <variable-type> ::= <type> <cvr-qualifiers>
497 // ::= <type> <pointee-cvr-qualifiers> # pointers, references
498 // Pointers and references are odd. The type of 'int * const foo;' gets
499 // mangled as 'QAHA' instead of 'PAHB', for example.
500 SourceRange SR = VD->getSourceRange();
501 QualType Ty = VD->getType();
502 if (Ty->isPointerType() || Ty->isReferenceType() ||
503 Ty->isMemberPointerType()) {
504 mangleType(Ty, SR, QMM_Drop);
505 manglePointerExtQualifiers(
506 Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
507 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
508 mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
509 // Member pointers are suffixed with a back reference to the member
510 // pointer's class name.
511 mangleName(MPT->getClass()->getAsCXXRecordDecl());
512 } else
513 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
514 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
515 // Global arrays are funny, too.
516 mangleDecayedArrayType(AT);
517 if (AT->getElementType()->isArrayType())
518 Out << 'A';
519 else
520 mangleQualifiers(Ty.getQualifiers(), false);
521 } else {
522 mangleType(Ty, SR, QMM_Drop);
523 mangleQualifiers(Ty.getQualifiers(), false);
524 }
525 }
526
mangleMemberDataPointer(const CXXRecordDecl * RD,const ValueDecl * VD)527 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
528 const ValueDecl *VD) {
529 // <member-data-pointer> ::= <integer-literal>
530 // ::= $F <number> <number>
531 // ::= $G <number> <number> <number>
532
533 int64_t FieldOffset;
534 int64_t VBTableOffset;
535 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
536 if (VD) {
537 FieldOffset = getASTContext().getFieldOffset(VD);
538 assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
539 "cannot take address of bitfield");
540 FieldOffset /= getASTContext().getCharWidth();
541
542 VBTableOffset = 0;
543
544 if (IM == MSInheritanceAttr::Keyword_virtual_inheritance)
545 FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
546 } else {
547 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
548
549 VBTableOffset = -1;
550 }
551
552 char Code = '\0';
553 switch (IM) {
554 case MSInheritanceAttr::Keyword_single_inheritance: Code = '0'; break;
555 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = '0'; break;
556 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'F'; break;
557 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
558 }
559
560 Out << '$' << Code;
561
562 mangleNumber(FieldOffset);
563
564 // The C++ standard doesn't allow base-to-derived member pointer conversions
565 // in template parameter contexts, so the vbptr offset of data member pointers
566 // is always zero.
567 if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
568 mangleNumber(0);
569 if (MSInheritanceAttr::hasVBTableOffsetField(IM))
570 mangleNumber(VBTableOffset);
571 }
572
573 void
mangleMemberFunctionPointer(const CXXRecordDecl * RD,const CXXMethodDecl * MD)574 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
575 const CXXMethodDecl *MD) {
576 // <member-function-pointer> ::= $1? <name>
577 // ::= $H? <name> <number>
578 // ::= $I? <name> <number> <number>
579 // ::= $J? <name> <number> <number> <number>
580
581 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
582
583 char Code = '\0';
584 switch (IM) {
585 case MSInheritanceAttr::Keyword_single_inheritance: Code = '1'; break;
586 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = 'H'; break;
587 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'I'; break;
588 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
589 }
590
591 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr
592 // thunk.
593 uint64_t NVOffset = 0;
594 uint64_t VBTableOffset = 0;
595 uint64_t VBPtrOffset = 0;
596 if (MD) {
597 Out << '$' << Code << '?';
598 if (MD->isVirtual()) {
599 MicrosoftVTableContext *VTContext =
600 cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
601 const MicrosoftVTableContext::MethodVFTableLocation &ML =
602 VTContext->getMethodVFTableLocation(GlobalDecl(MD));
603 mangleVirtualMemPtrThunk(MD, ML);
604 NVOffset = ML.VFPtrOffset.getQuantity();
605 VBTableOffset = ML.VBTableIndex * 4;
606 if (ML.VBase) {
607 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
608 VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
609 }
610 } else {
611 mangleName(MD);
612 mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
613 }
614
615 if (VBTableOffset == 0 &&
616 IM == MSInheritanceAttr::Keyword_virtual_inheritance)
617 NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
618 } else {
619 // Null single inheritance member functions are encoded as a simple nullptr.
620 if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
621 Out << "$0A@";
622 return;
623 }
624 if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
625 VBTableOffset = -1;
626 Out << '$' << Code;
627 }
628
629 if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
630 mangleNumber(static_cast<uint32_t>(NVOffset));
631 if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
632 mangleNumber(VBPtrOffset);
633 if (MSInheritanceAttr::hasVBTableOffsetField(IM))
634 mangleNumber(VBTableOffset);
635 }
636
mangleVirtualMemPtrThunk(const CXXMethodDecl * MD,const MicrosoftVTableContext::MethodVFTableLocation & ML)637 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
638 const CXXMethodDecl *MD,
639 const MicrosoftVTableContext::MethodVFTableLocation &ML) {
640 // Get the vftable offset.
641 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
642 getASTContext().getTargetInfo().getPointerWidth(0));
643 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
644
645 Out << "?_9";
646 mangleName(MD->getParent());
647 Out << "$B";
648 mangleNumber(OffsetInVFTable);
649 Out << 'A';
650 mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>());
651 }
652
mangleName(const NamedDecl * ND)653 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
654 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
655
656 // Always start with the unqualified name.
657 mangleUnqualifiedName(ND);
658
659 mangleNestedName(ND);
660
661 // Terminate the whole name with an '@'.
662 Out << '@';
663 }
664
mangleNumber(int64_t Number)665 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
666 // <non-negative integer> ::= A@ # when Number == 0
667 // ::= <decimal digit> # when 1 <= Number <= 10
668 // ::= <hex digit>+ @ # when Number >= 10
669 //
670 // <number> ::= [?] <non-negative integer>
671
672 uint64_t Value = static_cast<uint64_t>(Number);
673 if (Number < 0) {
674 Value = -Value;
675 Out << '?';
676 }
677
678 if (Value == 0)
679 Out << "A@";
680 else if (Value >= 1 && Value <= 10)
681 Out << (Value - 1);
682 else {
683 // Numbers that are not encoded as decimal digits are represented as nibbles
684 // in the range of ASCII characters 'A' to 'P'.
685 // The number 0x123450 would be encoded as 'BCDEFA'
686 char EncodedNumberBuffer[sizeof(uint64_t) * 2];
687 MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
688 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
689 for (; Value != 0; Value >>= 4)
690 *I++ = 'A' + (Value & 0xf);
691 Out.write(I.base(), I - BufferRef.rbegin());
692 Out << '@';
693 }
694 }
695
696 static const TemplateDecl *
isTemplate(const NamedDecl * ND,const TemplateArgumentList * & TemplateArgs)697 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
698 // Check if we have a function template.
699 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
700 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
701 TemplateArgs = FD->getTemplateSpecializationArgs();
702 return TD;
703 }
704 }
705
706 // Check if we have a class template.
707 if (const ClassTemplateSpecializationDecl *Spec =
708 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
709 TemplateArgs = &Spec->getTemplateArgs();
710 return Spec->getSpecializedTemplate();
711 }
712
713 // Check if we have a variable template.
714 if (const VarTemplateSpecializationDecl *Spec =
715 dyn_cast<VarTemplateSpecializationDecl>(ND)) {
716 TemplateArgs = &Spec->getTemplateArgs();
717 return Spec->getSpecializedTemplate();
718 }
719
720 return nullptr;
721 }
722
mangleUnqualifiedName(const NamedDecl * ND,DeclarationName Name)723 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
724 DeclarationName Name) {
725 // <unqualified-name> ::= <operator-name>
726 // ::= <ctor-dtor-name>
727 // ::= <source-name>
728 // ::= <template-name>
729
730 // Check if we have a template.
731 const TemplateArgumentList *TemplateArgs = nullptr;
732 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
733 // Function templates aren't considered for name back referencing. This
734 // makes sense since function templates aren't likely to occur multiple
735 // times in a symbol.
736 if (isa<FunctionTemplateDecl>(TD)) {
737 mangleTemplateInstantiationName(TD, *TemplateArgs);
738 Out << '@';
739 return;
740 }
741
742 // Here comes the tricky thing: if we need to mangle something like
743 // void foo(A::X<Y>, B::X<Y>),
744 // the X<Y> part is aliased. However, if you need to mangle
745 // void foo(A::X<A::Y>, A::X<B::Y>),
746 // the A::X<> part is not aliased.
747 // That said, from the mangler's perspective we have a structure like this:
748 // namespace[s] -> type[ -> template-parameters]
749 // but from the Clang perspective we have
750 // type [ -> template-parameters]
751 // \-> namespace[s]
752 // What we do is we create a new mangler, mangle the same type (without
753 // a namespace suffix) to a string using the extra mangler and then use
754 // the mangled type name as a key to check the mangling of different types
755 // for aliasing.
756
757 llvm::SmallString<64> TemplateMangling;
758 llvm::raw_svector_ostream Stream(TemplateMangling);
759 MicrosoftCXXNameMangler Extra(Context, Stream);
760 Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
761
762 mangleSourceName(TemplateMangling);
763 return;
764 }
765
766 switch (Name.getNameKind()) {
767 case DeclarationName::Identifier: {
768 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
769 mangleSourceName(II->getName());
770 break;
771 }
772
773 // Otherwise, an anonymous entity. We must have a declaration.
774 assert(ND && "mangling empty name without declaration");
775
776 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
777 if (NS->isAnonymousNamespace()) {
778 Out << "?A@";
779 break;
780 }
781 }
782
783 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
784 // We must have an anonymous union or struct declaration.
785 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
786 assert(RD && "expected variable decl to have a record type");
787 // Anonymous types with no tag or typedef get the name of their
788 // declarator mangled in. If they have no declarator, number them with
789 // a $S prefix.
790 llvm::SmallString<64> Name("$S");
791 // Get a unique id for the anonymous struct.
792 Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
793 mangleSourceName(Name.str());
794 break;
795 }
796
797 // We must have an anonymous struct.
798 const TagDecl *TD = cast<TagDecl>(ND);
799 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
800 assert(TD->getDeclContext() == D->getDeclContext() &&
801 "Typedef should not be in another decl context!");
802 assert(D->getDeclName().getAsIdentifierInfo() &&
803 "Typedef was not named!");
804 mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
805 break;
806 }
807
808 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
809 if (Record->isLambda()) {
810 llvm::SmallString<10> Name("<lambda_");
811 unsigned LambdaId;
812 if (Record->getLambdaManglingNumber())
813 LambdaId = Record->getLambdaManglingNumber();
814 else
815 LambdaId = Context.getLambdaId(Record);
816
817 Name += llvm::utostr(LambdaId);
818 Name += ">";
819
820 mangleSourceName(Name);
821 break;
822 }
823 }
824
825 llvm::SmallString<64> Name("<unnamed-type-");
826 if (DeclaratorDecl *DD =
827 Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
828 // Anonymous types without a name for linkage purposes have their
829 // declarator mangled in if they have one.
830 Name += DD->getName();
831 } else if (TypedefNameDecl *TND =
832 Context.getASTContext().getTypedefNameForUnnamedTagDecl(
833 TD)) {
834 // Anonymous types without a name for linkage purposes have their
835 // associate typedef mangled in if they have one.
836 Name += TND->getName();
837 } else {
838 // Otherwise, number the types using a $S prefix.
839 Name += "$S";
840 Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
841 }
842 Name += ">";
843 mangleSourceName(Name.str());
844 break;
845 }
846
847 case DeclarationName::ObjCZeroArgSelector:
848 case DeclarationName::ObjCOneArgSelector:
849 case DeclarationName::ObjCMultiArgSelector:
850 llvm_unreachable("Can't mangle Objective-C selector names here!");
851
852 case DeclarationName::CXXConstructorName:
853 if (Structor == getStructor(ND)) {
854 if (StructorType == Ctor_CopyingClosure) {
855 Out << "?_O";
856 return;
857 }
858 if (StructorType == Ctor_DefaultClosure) {
859 Out << "?_F";
860 return;
861 }
862 }
863 Out << "?0";
864 return;
865
866 case DeclarationName::CXXDestructorName:
867 if (ND == Structor)
868 // If the named decl is the C++ destructor we're mangling,
869 // use the type we were given.
870 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
871 else
872 // Otherwise, use the base destructor name. This is relevant if a
873 // class with a destructor is declared within a destructor.
874 mangleCXXDtorType(Dtor_Base);
875 break;
876
877 case DeclarationName::CXXConversionFunctionName:
878 // <operator-name> ::= ?B # (cast)
879 // The target type is encoded as the return type.
880 Out << "?B";
881 break;
882
883 case DeclarationName::CXXOperatorName:
884 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
885 break;
886
887 case DeclarationName::CXXLiteralOperatorName: {
888 Out << "?__K";
889 mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
890 break;
891 }
892
893 case DeclarationName::CXXUsingDirective:
894 llvm_unreachable("Can't mangle a using directive name!");
895 }
896 }
897
mangleNestedName(const NamedDecl * ND)898 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
899 // <postfix> ::= <unqualified-name> [<postfix>]
900 // ::= <substitution> [<postfix>]
901 const DeclContext *DC = getEffectiveDeclContext(ND);
902
903 while (!DC->isTranslationUnit()) {
904 if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
905 unsigned Disc;
906 if (Context.getNextDiscriminator(ND, Disc)) {
907 Out << '?';
908 mangleNumber(Disc);
909 Out << '?';
910 }
911 }
912
913 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
914 DiagnosticsEngine &Diags = Context.getDiags();
915 unsigned DiagID =
916 Diags.getCustomDiagID(DiagnosticsEngine::Error,
917 "cannot mangle a local inside this block yet");
918 Diags.Report(BD->getLocation(), DiagID);
919
920 // FIXME: This is completely, utterly, wrong; see ItaniumMangle
921 // for how this should be done.
922 Out << "__block_invoke" << Context.getBlockId(BD, false);
923 Out << '@';
924 continue;
925 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
926 mangleObjCMethodName(Method);
927 } else if (isa<NamedDecl>(DC)) {
928 ND = cast<NamedDecl>(DC);
929 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
930 mangle(FD, "?");
931 break;
932 } else
933 mangleUnqualifiedName(ND);
934 }
935 DC = DC->getParent();
936 }
937 }
938
mangleCXXDtorType(CXXDtorType T)939 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
940 // Microsoft uses the names on the case labels for these dtor variants. Clang
941 // uses the Itanium terminology internally. Everything in this ABI delegates
942 // towards the base dtor.
943 switch (T) {
944 // <operator-name> ::= ?1 # destructor
945 case Dtor_Base: Out << "?1"; return;
946 // <operator-name> ::= ?_D # vbase destructor
947 case Dtor_Complete: Out << "?_D"; return;
948 // <operator-name> ::= ?_G # scalar deleting destructor
949 case Dtor_Deleting: Out << "?_G"; return;
950 // <operator-name> ::= ?_E # vector deleting destructor
951 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
952 // it.
953 case Dtor_Comdat:
954 llvm_unreachable("not expecting a COMDAT");
955 }
956 llvm_unreachable("Unsupported dtor type?");
957 }
958
mangleOperatorName(OverloadedOperatorKind OO,SourceLocation Loc)959 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
960 SourceLocation Loc) {
961 switch (OO) {
962 // ?0 # constructor
963 // ?1 # destructor
964 // <operator-name> ::= ?2 # new
965 case OO_New: Out << "?2"; break;
966 // <operator-name> ::= ?3 # delete
967 case OO_Delete: Out << "?3"; break;
968 // <operator-name> ::= ?4 # =
969 case OO_Equal: Out << "?4"; break;
970 // <operator-name> ::= ?5 # >>
971 case OO_GreaterGreater: Out << "?5"; break;
972 // <operator-name> ::= ?6 # <<
973 case OO_LessLess: Out << "?6"; break;
974 // <operator-name> ::= ?7 # !
975 case OO_Exclaim: Out << "?7"; break;
976 // <operator-name> ::= ?8 # ==
977 case OO_EqualEqual: Out << "?8"; break;
978 // <operator-name> ::= ?9 # !=
979 case OO_ExclaimEqual: Out << "?9"; break;
980 // <operator-name> ::= ?A # []
981 case OO_Subscript: Out << "?A"; break;
982 // ?B # conversion
983 // <operator-name> ::= ?C # ->
984 case OO_Arrow: Out << "?C"; break;
985 // <operator-name> ::= ?D # *
986 case OO_Star: Out << "?D"; break;
987 // <operator-name> ::= ?E # ++
988 case OO_PlusPlus: Out << "?E"; break;
989 // <operator-name> ::= ?F # --
990 case OO_MinusMinus: Out << "?F"; break;
991 // <operator-name> ::= ?G # -
992 case OO_Minus: Out << "?G"; break;
993 // <operator-name> ::= ?H # +
994 case OO_Plus: Out << "?H"; break;
995 // <operator-name> ::= ?I # &
996 case OO_Amp: Out << "?I"; break;
997 // <operator-name> ::= ?J # ->*
998 case OO_ArrowStar: Out << "?J"; break;
999 // <operator-name> ::= ?K # /
1000 case OO_Slash: Out << "?K"; break;
1001 // <operator-name> ::= ?L # %
1002 case OO_Percent: Out << "?L"; break;
1003 // <operator-name> ::= ?M # <
1004 case OO_Less: Out << "?M"; break;
1005 // <operator-name> ::= ?N # <=
1006 case OO_LessEqual: Out << "?N"; break;
1007 // <operator-name> ::= ?O # >
1008 case OO_Greater: Out << "?O"; break;
1009 // <operator-name> ::= ?P # >=
1010 case OO_GreaterEqual: Out << "?P"; break;
1011 // <operator-name> ::= ?Q # ,
1012 case OO_Comma: Out << "?Q"; break;
1013 // <operator-name> ::= ?R # ()
1014 case OO_Call: Out << "?R"; break;
1015 // <operator-name> ::= ?S # ~
1016 case OO_Tilde: Out << "?S"; break;
1017 // <operator-name> ::= ?T # ^
1018 case OO_Caret: Out << "?T"; break;
1019 // <operator-name> ::= ?U # |
1020 case OO_Pipe: Out << "?U"; break;
1021 // <operator-name> ::= ?V # &&
1022 case OO_AmpAmp: Out << "?V"; break;
1023 // <operator-name> ::= ?W # ||
1024 case OO_PipePipe: Out << "?W"; break;
1025 // <operator-name> ::= ?X # *=
1026 case OO_StarEqual: Out << "?X"; break;
1027 // <operator-name> ::= ?Y # +=
1028 case OO_PlusEqual: Out << "?Y"; break;
1029 // <operator-name> ::= ?Z # -=
1030 case OO_MinusEqual: Out << "?Z"; break;
1031 // <operator-name> ::= ?_0 # /=
1032 case OO_SlashEqual: Out << "?_0"; break;
1033 // <operator-name> ::= ?_1 # %=
1034 case OO_PercentEqual: Out << "?_1"; break;
1035 // <operator-name> ::= ?_2 # >>=
1036 case OO_GreaterGreaterEqual: Out << "?_2"; break;
1037 // <operator-name> ::= ?_3 # <<=
1038 case OO_LessLessEqual: Out << "?_3"; break;
1039 // <operator-name> ::= ?_4 # &=
1040 case OO_AmpEqual: Out << "?_4"; break;
1041 // <operator-name> ::= ?_5 # |=
1042 case OO_PipeEqual: Out << "?_5"; break;
1043 // <operator-name> ::= ?_6 # ^=
1044 case OO_CaretEqual: Out << "?_6"; break;
1045 // ?_7 # vftable
1046 // ?_8 # vbtable
1047 // ?_9 # vcall
1048 // ?_A # typeof
1049 // ?_B # local static guard
1050 // ?_C # string
1051 // ?_D # vbase destructor
1052 // ?_E # vector deleting destructor
1053 // ?_F # default constructor closure
1054 // ?_G # scalar deleting destructor
1055 // ?_H # vector constructor iterator
1056 // ?_I # vector destructor iterator
1057 // ?_J # vector vbase constructor iterator
1058 // ?_K # virtual displacement map
1059 // ?_L # eh vector constructor iterator
1060 // ?_M # eh vector destructor iterator
1061 // ?_N # eh vector vbase constructor iterator
1062 // ?_O # copy constructor closure
1063 // ?_P<name> # udt returning <name>
1064 // ?_Q # <unknown>
1065 // ?_R0 # RTTI Type Descriptor
1066 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1067 // ?_R2 # RTTI Base Class Array
1068 // ?_R3 # RTTI Class Hierarchy Descriptor
1069 // ?_R4 # RTTI Complete Object Locator
1070 // ?_S # local vftable
1071 // ?_T # local vftable constructor closure
1072 // <operator-name> ::= ?_U # new[]
1073 case OO_Array_New: Out << "?_U"; break;
1074 // <operator-name> ::= ?_V # delete[]
1075 case OO_Array_Delete: Out << "?_V"; break;
1076
1077 case OO_Conditional: {
1078 DiagnosticsEngine &Diags = Context.getDiags();
1079 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1080 "cannot mangle this conditional operator yet");
1081 Diags.Report(Loc, DiagID);
1082 break;
1083 }
1084
1085 case OO_Coawait: {
1086 DiagnosticsEngine &Diags = Context.getDiags();
1087 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1088 "cannot mangle this operator co_await yet");
1089 Diags.Report(Loc, DiagID);
1090 break;
1091 }
1092
1093 case OO_None:
1094 case NUM_OVERLOADED_OPERATORS:
1095 llvm_unreachable("Not an overloaded operator");
1096 }
1097 }
1098
mangleSourceName(StringRef Name)1099 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1100 // <source name> ::= <identifier> @
1101 BackRefVec::iterator Found =
1102 std::find(NameBackReferences.begin(), NameBackReferences.end(), Name);
1103 if (Found == NameBackReferences.end()) {
1104 if (NameBackReferences.size() < 10)
1105 NameBackReferences.push_back(Name);
1106 Out << Name << '@';
1107 } else {
1108 Out << (Found - NameBackReferences.begin());
1109 }
1110 }
1111
mangleObjCMethodName(const ObjCMethodDecl * MD)1112 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1113 Context.mangleObjCMethodName(MD, Out);
1114 }
1115
mangleTemplateInstantiationName(const TemplateDecl * TD,const TemplateArgumentList & TemplateArgs)1116 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1117 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1118 // <template-name> ::= <unscoped-template-name> <template-args>
1119 // ::= <substitution>
1120 // Always start with the unqualified name.
1121
1122 // Templates have their own context for back references.
1123 ArgBackRefMap OuterArgsContext;
1124 BackRefVec OuterTemplateContext;
1125 PassObjectSizeArgsSet OuterPassObjectSizeArgs;
1126 NameBackReferences.swap(OuterTemplateContext);
1127 TypeBackReferences.swap(OuterArgsContext);
1128 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1129
1130 mangleUnscopedTemplateName(TD);
1131 mangleTemplateArgs(TD, TemplateArgs);
1132
1133 // Restore the previous back reference contexts.
1134 NameBackReferences.swap(OuterTemplateContext);
1135 TypeBackReferences.swap(OuterArgsContext);
1136 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1137 }
1138
1139 void
mangleUnscopedTemplateName(const TemplateDecl * TD)1140 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1141 // <unscoped-template-name> ::= ?$ <unqualified-name>
1142 Out << "?$";
1143 mangleUnqualifiedName(TD);
1144 }
1145
mangleIntegerLiteral(const llvm::APSInt & Value,bool IsBoolean)1146 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
1147 bool IsBoolean) {
1148 // <integer-literal> ::= $0 <number>
1149 Out << "$0";
1150 // Make sure booleans are encoded as 0/1.
1151 if (IsBoolean && Value.getBoolValue())
1152 mangleNumber(1);
1153 else if (Value.isSigned())
1154 mangleNumber(Value.getSExtValue());
1155 else
1156 mangleNumber(Value.getZExtValue());
1157 }
1158
mangleExpression(const Expr * E)1159 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
1160 // See if this is a constant expression.
1161 llvm::APSInt Value;
1162 if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
1163 mangleIntegerLiteral(Value, E->getType()->isBooleanType());
1164 return;
1165 }
1166
1167 // Look through no-op casts like template parameter substitutions.
1168 E = E->IgnoreParenNoopCasts(Context.getASTContext());
1169
1170 const CXXUuidofExpr *UE = nullptr;
1171 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1172 if (UO->getOpcode() == UO_AddrOf)
1173 UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
1174 } else
1175 UE = dyn_cast<CXXUuidofExpr>(E);
1176
1177 if (UE) {
1178 // If we had to peek through an address-of operator, treat this like we are
1179 // dealing with a pointer type. Otherwise, treat it like a const reference.
1180 //
1181 // N.B. This matches up with the handling of TemplateArgument::Declaration
1182 // in mangleTemplateArg
1183 if (UE == E)
1184 Out << "$E?";
1185 else
1186 Out << "$1?";
1187
1188 // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
1189 // const __s_GUID _GUID_{lower case UUID with underscores}
1190 StringRef Uuid = UE->getUuidStr();
1191 std::string Name = "_GUID_" + Uuid.lower();
1192 std::replace(Name.begin(), Name.end(), '-', '_');
1193
1194 mangleSourceName(Name);
1195 // Terminate the whole name with an '@'.
1196 Out << '@';
1197 // It's a global variable.
1198 Out << '3';
1199 // It's a struct called __s_GUID.
1200 mangleArtificalTagType(TTK_Struct, "__s_GUID");
1201 // It's const.
1202 Out << 'B';
1203 return;
1204 }
1205
1206 // As bad as this diagnostic is, it's better than crashing.
1207 DiagnosticsEngine &Diags = Context.getDiags();
1208 unsigned DiagID = Diags.getCustomDiagID(
1209 DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1210 Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1211 << E->getSourceRange();
1212 }
1213
mangleTemplateArgs(const TemplateDecl * TD,const TemplateArgumentList & TemplateArgs)1214 void MicrosoftCXXNameMangler::mangleTemplateArgs(
1215 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1216 // <template-args> ::= <template-arg>+
1217 const TemplateParameterList *TPL = TD->getTemplateParameters();
1218 assert(TPL->size() == TemplateArgs.size() &&
1219 "size mismatch between args and parms!");
1220
1221 unsigned Idx = 0;
1222 for (const TemplateArgument &TA : TemplateArgs.asArray())
1223 mangleTemplateArg(TD, TA, TPL->getParam(Idx++));
1224 }
1225
mangleTemplateArg(const TemplateDecl * TD,const TemplateArgument & TA,const NamedDecl * Parm)1226 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1227 const TemplateArgument &TA,
1228 const NamedDecl *Parm) {
1229 // <template-arg> ::= <type>
1230 // ::= <integer-literal>
1231 // ::= <member-data-pointer>
1232 // ::= <member-function-pointer>
1233 // ::= $E? <name> <type-encoding>
1234 // ::= $1? <name> <type-encoding>
1235 // ::= $0A@
1236 // ::= <template-args>
1237
1238 switch (TA.getKind()) {
1239 case TemplateArgument::Null:
1240 llvm_unreachable("Can't mangle null template arguments!");
1241 case TemplateArgument::TemplateExpansion:
1242 llvm_unreachable("Can't mangle template expansion arguments!");
1243 case TemplateArgument::Type: {
1244 QualType T = TA.getAsType();
1245 mangleType(T, SourceRange(), QMM_Escape);
1246 break;
1247 }
1248 case TemplateArgument::Declaration: {
1249 const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
1250 if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1251 mangleMemberDataPointer(
1252 cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(),
1253 cast<ValueDecl>(ND));
1254 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1255 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1256 if (MD && MD->isInstance()) {
1257 mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD);
1258 } else {
1259 Out << "$1?";
1260 mangleName(FD);
1261 mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
1262 }
1263 } else {
1264 mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1265 }
1266 break;
1267 }
1268 case TemplateArgument::Integral:
1269 mangleIntegerLiteral(TA.getAsIntegral(),
1270 TA.getIntegralType()->isBooleanType());
1271 break;
1272 case TemplateArgument::NullPtr: {
1273 QualType T = TA.getNullPtrType();
1274 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1275 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1276 if (MPT->isMemberFunctionPointerType() &&
1277 !isa<FunctionTemplateDecl>(TD)) {
1278 mangleMemberFunctionPointer(RD, nullptr);
1279 return;
1280 }
1281 if (MPT->isMemberDataPointer()) {
1282 if (!isa<FunctionTemplateDecl>(TD)) {
1283 mangleMemberDataPointer(RD, nullptr);
1284 return;
1285 }
1286 // nullptr data pointers are always represented with a single field
1287 // which is initialized with either 0 or -1. Why -1? Well, we need to
1288 // distinguish the case where the data member is at offset zero in the
1289 // record.
1290 // However, we are free to use 0 *if* we would use multiple fields for
1291 // non-nullptr member pointers.
1292 if (!RD->nullFieldOffsetIsZero()) {
1293 mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false);
1294 return;
1295 }
1296 }
1297 }
1298 mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false);
1299 break;
1300 }
1301 case TemplateArgument::Expression:
1302 mangleExpression(TA.getAsExpr());
1303 break;
1304 case TemplateArgument::Pack: {
1305 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1306 if (TemplateArgs.empty()) {
1307 if (isa<TemplateTypeParmDecl>(Parm) ||
1308 isa<TemplateTemplateParmDecl>(Parm))
1309 // MSVC 2015 changed the mangling for empty expanded template packs,
1310 // use the old mangling for link compatibility for old versions.
1311 Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
1312 LangOptions::MSVC2015)
1313 ? "$$V"
1314 : "$$$V");
1315 else if (isa<NonTypeTemplateParmDecl>(Parm))
1316 Out << "$S";
1317 else
1318 llvm_unreachable("unexpected template parameter decl!");
1319 } else {
1320 for (const TemplateArgument &PA : TemplateArgs)
1321 mangleTemplateArg(TD, PA, Parm);
1322 }
1323 break;
1324 }
1325 case TemplateArgument::Template: {
1326 const NamedDecl *ND =
1327 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
1328 if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1329 mangleType(TD);
1330 } else if (isa<TypeAliasDecl>(ND)) {
1331 Out << "$$Y";
1332 mangleName(ND);
1333 } else {
1334 llvm_unreachable("unexpected template template NamedDecl!");
1335 }
1336 break;
1337 }
1338 }
1339 }
1340
mangleQualifiers(Qualifiers Quals,bool IsMember)1341 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1342 bool IsMember) {
1343 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1344 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1345 // 'I' means __restrict (32/64-bit).
1346 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1347 // keyword!
1348 // <base-cvr-qualifiers> ::= A # near
1349 // ::= B # near const
1350 // ::= C # near volatile
1351 // ::= D # near const volatile
1352 // ::= E # far (16-bit)
1353 // ::= F # far const (16-bit)
1354 // ::= G # far volatile (16-bit)
1355 // ::= H # far const volatile (16-bit)
1356 // ::= I # huge (16-bit)
1357 // ::= J # huge const (16-bit)
1358 // ::= K # huge volatile (16-bit)
1359 // ::= L # huge const volatile (16-bit)
1360 // ::= M <basis> # based
1361 // ::= N <basis> # based const
1362 // ::= O <basis> # based volatile
1363 // ::= P <basis> # based const volatile
1364 // ::= Q # near member
1365 // ::= R # near const member
1366 // ::= S # near volatile member
1367 // ::= T # near const volatile member
1368 // ::= U # far member (16-bit)
1369 // ::= V # far const member (16-bit)
1370 // ::= W # far volatile member (16-bit)
1371 // ::= X # far const volatile member (16-bit)
1372 // ::= Y # huge member (16-bit)
1373 // ::= Z # huge const member (16-bit)
1374 // ::= 0 # huge volatile member (16-bit)
1375 // ::= 1 # huge const volatile member (16-bit)
1376 // ::= 2 <basis> # based member
1377 // ::= 3 <basis> # based const member
1378 // ::= 4 <basis> # based volatile member
1379 // ::= 5 <basis> # based const volatile member
1380 // ::= 6 # near function (pointers only)
1381 // ::= 7 # far function (pointers only)
1382 // ::= 8 # near method (pointers only)
1383 // ::= 9 # far method (pointers only)
1384 // ::= _A <basis> # based function (pointers only)
1385 // ::= _B <basis> # based function (far?) (pointers only)
1386 // ::= _C <basis> # based method (pointers only)
1387 // ::= _D <basis> # based method (far?) (pointers only)
1388 // ::= _E # block (Clang)
1389 // <basis> ::= 0 # __based(void)
1390 // ::= 1 # __based(segment)?
1391 // ::= 2 <name> # __based(name)
1392 // ::= 3 # ?
1393 // ::= 4 # ?
1394 // ::= 5 # not really based
1395 bool HasConst = Quals.hasConst(),
1396 HasVolatile = Quals.hasVolatile();
1397
1398 if (!IsMember) {
1399 if (HasConst && HasVolatile) {
1400 Out << 'D';
1401 } else if (HasVolatile) {
1402 Out << 'C';
1403 } else if (HasConst) {
1404 Out << 'B';
1405 } else {
1406 Out << 'A';
1407 }
1408 } else {
1409 if (HasConst && HasVolatile) {
1410 Out << 'T';
1411 } else if (HasVolatile) {
1412 Out << 'S';
1413 } else if (HasConst) {
1414 Out << 'R';
1415 } else {
1416 Out << 'Q';
1417 }
1418 }
1419
1420 // FIXME: For now, just drop all extension qualifiers on the floor.
1421 }
1422
1423 void
mangleRefQualifier(RefQualifierKind RefQualifier)1424 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1425 // <ref-qualifier> ::= G # lvalue reference
1426 // ::= H # rvalue-reference
1427 switch (RefQualifier) {
1428 case RQ_None:
1429 break;
1430
1431 case RQ_LValue:
1432 Out << 'G';
1433 break;
1434
1435 case RQ_RValue:
1436 Out << 'H';
1437 break;
1438 }
1439 }
1440
manglePointerExtQualifiers(Qualifiers Quals,QualType PointeeType)1441 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
1442 QualType PointeeType) {
1443 bool HasRestrict = Quals.hasRestrict();
1444 if (PointersAre64Bit &&
1445 (PointeeType.isNull() || !PointeeType->isFunctionType()))
1446 Out << 'E';
1447
1448 if (HasRestrict)
1449 Out << 'I';
1450
1451 if (Quals.hasUnaligned() ||
1452 (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned()))
1453 Out << 'F';
1454 }
1455
manglePointerCVQualifiers(Qualifiers Quals)1456 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
1457 // <pointer-cv-qualifiers> ::= P # no qualifiers
1458 // ::= Q # const
1459 // ::= R # volatile
1460 // ::= S # const volatile
1461 bool HasConst = Quals.hasConst(),
1462 HasVolatile = Quals.hasVolatile();
1463
1464 if (HasConst && HasVolatile) {
1465 Out << 'S';
1466 } else if (HasVolatile) {
1467 Out << 'R';
1468 } else if (HasConst) {
1469 Out << 'Q';
1470 } else {
1471 Out << 'P';
1472 }
1473 }
1474
mangleArgumentType(QualType T,SourceRange Range)1475 void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
1476 SourceRange Range) {
1477 // MSVC will backreference two canonically equivalent types that have slightly
1478 // different manglings when mangled alone.
1479
1480 // Decayed types do not match up with non-decayed versions of the same type.
1481 //
1482 // e.g.
1483 // void (*x)(void) will not form a backreference with void x(void)
1484 void *TypePtr;
1485 if (const auto *DT = T->getAs<DecayedType>()) {
1486 QualType OriginalType = DT->getOriginalType();
1487 // All decayed ArrayTypes should be treated identically; as-if they were
1488 // a decayed IncompleteArrayType.
1489 if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
1490 OriginalType = getASTContext().getIncompleteArrayType(
1491 AT->getElementType(), AT->getSizeModifier(),
1492 AT->getIndexTypeCVRQualifiers());
1493
1494 TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
1495 // If the original parameter was textually written as an array,
1496 // instead treat the decayed parameter like it's const.
1497 //
1498 // e.g.
1499 // int [] -> int * const
1500 if (OriginalType->isArrayType())
1501 T = T.withConst();
1502 } else {
1503 TypePtr = T.getCanonicalType().getAsOpaquePtr();
1504 }
1505
1506 ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1507
1508 if (Found == TypeBackReferences.end()) {
1509 size_t OutSizeBefore = Out.tell();
1510
1511 mangleType(T, Range, QMM_Drop);
1512
1513 // See if it's worth creating a back reference.
1514 // Only types longer than 1 character are considered
1515 // and only 10 back references slots are available:
1516 bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
1517 if (LongerThanOneChar && TypeBackReferences.size() < 10) {
1518 size_t Size = TypeBackReferences.size();
1519 TypeBackReferences[TypePtr] = Size;
1520 }
1521 } else {
1522 Out << Found->second;
1523 }
1524 }
1525
manglePassObjectSizeArg(const PassObjectSizeAttr * POSA)1526 void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
1527 const PassObjectSizeAttr *POSA) {
1528 int Type = POSA->getType();
1529
1530 auto Iter = PassObjectSizeArgs.insert(Type).first;
1531 auto *TypePtr = (const void *)&*Iter;
1532 ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1533
1534 if (Found == TypeBackReferences.end()) {
1535 mangleArtificalTagType(TTK_Enum, "__pass_object_size" + llvm::utostr(Type),
1536 {"__clang"});
1537
1538 if (TypeBackReferences.size() < 10) {
1539 size_t Size = TypeBackReferences.size();
1540 TypeBackReferences[TypePtr] = Size;
1541 }
1542 } else {
1543 Out << Found->second;
1544 }
1545 }
1546
mangleType(QualType T,SourceRange Range,QualifierMangleMode QMM)1547 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1548 QualifierMangleMode QMM) {
1549 // Don't use the canonical types. MSVC includes things like 'const' on
1550 // pointer arguments to function pointers that canonicalization strips away.
1551 T = T.getDesugaredType(getASTContext());
1552 Qualifiers Quals = T.getLocalQualifiers();
1553 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
1554 // If there were any Quals, getAsArrayType() pushed them onto the array
1555 // element type.
1556 if (QMM == QMM_Mangle)
1557 Out << 'A';
1558 else if (QMM == QMM_Escape || QMM == QMM_Result)
1559 Out << "$$B";
1560 mangleArrayType(AT);
1561 return;
1562 }
1563
1564 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
1565 T->isReferenceType() || T->isBlockPointerType();
1566
1567 switch (QMM) {
1568 case QMM_Drop:
1569 break;
1570 case QMM_Mangle:
1571 if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
1572 Out << '6';
1573 mangleFunctionType(FT);
1574 return;
1575 }
1576 mangleQualifiers(Quals, false);
1577 break;
1578 case QMM_Escape:
1579 if (!IsPointer && Quals) {
1580 Out << "$$C";
1581 mangleQualifiers(Quals, false);
1582 }
1583 break;
1584 case QMM_Result:
1585 // Presence of __unaligned qualifier shouldn't affect mangling here.
1586 Quals.removeUnaligned();
1587 if ((!IsPointer && Quals) || isa<TagType>(T)) {
1588 Out << '?';
1589 mangleQualifiers(Quals, false);
1590 }
1591 break;
1592 }
1593
1594 const Type *ty = T.getTypePtr();
1595
1596 switch (ty->getTypeClass()) {
1597 #define ABSTRACT_TYPE(CLASS, PARENT)
1598 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1599 case Type::CLASS: \
1600 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1601 return;
1602 #define TYPE(CLASS, PARENT) \
1603 case Type::CLASS: \
1604 mangleType(cast<CLASS##Type>(ty), Quals, Range); \
1605 break;
1606 #include "clang/AST/TypeNodes.def"
1607 #undef ABSTRACT_TYPE
1608 #undef NON_CANONICAL_TYPE
1609 #undef TYPE
1610 }
1611 }
1612
mangleType(const BuiltinType * T,Qualifiers,SourceRange Range)1613 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
1614 SourceRange Range) {
1615 // <type> ::= <builtin-type>
1616 // <builtin-type> ::= X # void
1617 // ::= C # signed char
1618 // ::= D # char
1619 // ::= E # unsigned char
1620 // ::= F # short
1621 // ::= G # unsigned short (or wchar_t if it's not a builtin)
1622 // ::= H # int
1623 // ::= I # unsigned int
1624 // ::= J # long
1625 // ::= K # unsigned long
1626 // L # <none>
1627 // ::= M # float
1628 // ::= N # double
1629 // ::= O # long double (__float80 is mangled differently)
1630 // ::= _J # long long, __int64
1631 // ::= _K # unsigned long long, __int64
1632 // ::= _L # __int128
1633 // ::= _M # unsigned __int128
1634 // ::= _N # bool
1635 // _O # <array in parameter>
1636 // ::= _T # __float80 (Intel)
1637 // ::= _W # wchar_t
1638 // ::= _Z # __float80 (Digital Mars)
1639 switch (T->getKind()) {
1640 case BuiltinType::Void:
1641 Out << 'X';
1642 break;
1643 case BuiltinType::SChar:
1644 Out << 'C';
1645 break;
1646 case BuiltinType::Char_U:
1647 case BuiltinType::Char_S:
1648 Out << 'D';
1649 break;
1650 case BuiltinType::UChar:
1651 Out << 'E';
1652 break;
1653 case BuiltinType::Short:
1654 Out << 'F';
1655 break;
1656 case BuiltinType::UShort:
1657 Out << 'G';
1658 break;
1659 case BuiltinType::Int:
1660 Out << 'H';
1661 break;
1662 case BuiltinType::UInt:
1663 Out << 'I';
1664 break;
1665 case BuiltinType::Long:
1666 Out << 'J';
1667 break;
1668 case BuiltinType::ULong:
1669 Out << 'K';
1670 break;
1671 case BuiltinType::Float:
1672 Out << 'M';
1673 break;
1674 case BuiltinType::Double:
1675 Out << 'N';
1676 break;
1677 // TODO: Determine size and mangle accordingly
1678 case BuiltinType::LongDouble:
1679 Out << 'O';
1680 break;
1681 case BuiltinType::LongLong:
1682 Out << "_J";
1683 break;
1684 case BuiltinType::ULongLong:
1685 Out << "_K";
1686 break;
1687 case BuiltinType::Int128:
1688 Out << "_L";
1689 break;
1690 case BuiltinType::UInt128:
1691 Out << "_M";
1692 break;
1693 case BuiltinType::Bool:
1694 Out << "_N";
1695 break;
1696 case BuiltinType::Char16:
1697 Out << "_S";
1698 break;
1699 case BuiltinType::Char32:
1700 Out << "_U";
1701 break;
1702 case BuiltinType::WChar_S:
1703 case BuiltinType::WChar_U:
1704 Out << "_W";
1705 break;
1706
1707 #define BUILTIN_TYPE(Id, SingletonId)
1708 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1709 case BuiltinType::Id:
1710 #include "clang/AST/BuiltinTypes.def"
1711 case BuiltinType::Dependent:
1712 llvm_unreachable("placeholder types shouldn't get to name mangling");
1713
1714 case BuiltinType::ObjCId:
1715 Out << "PA";
1716 mangleArtificalTagType(TTK_Struct, "objc_object");
1717 break;
1718 case BuiltinType::ObjCClass:
1719 Out << "PA";
1720 mangleArtificalTagType(TTK_Struct, "objc_class");
1721 break;
1722 case BuiltinType::ObjCSel:
1723 Out << "PA";
1724 mangleArtificalTagType(TTK_Struct, "objc_selector");
1725 break;
1726
1727 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1728 case BuiltinType::Id: \
1729 Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \
1730 break;
1731 #include "clang/Basic/OpenCLImageTypes.def"
1732 case BuiltinType::OCLSampler:
1733 Out << "PA";
1734 mangleArtificalTagType(TTK_Struct, "ocl_sampler");
1735 break;
1736 case BuiltinType::OCLEvent:
1737 Out << "PA";
1738 mangleArtificalTagType(TTK_Struct, "ocl_event");
1739 break;
1740 case BuiltinType::OCLClkEvent:
1741 Out << "PA";
1742 mangleArtificalTagType(TTK_Struct, "ocl_clkevent");
1743 break;
1744 case BuiltinType::OCLQueue:
1745 Out << "PA";
1746 mangleArtificalTagType(TTK_Struct, "ocl_queue");
1747 break;
1748 case BuiltinType::OCLNDRange:
1749 Out << "PA";
1750 mangleArtificalTagType(TTK_Struct, "ocl_ndrange");
1751 break;
1752 case BuiltinType::OCLReserveID:
1753 Out << "PA";
1754 mangleArtificalTagType(TTK_Struct, "ocl_reserveid");
1755 break;
1756
1757 case BuiltinType::NullPtr:
1758 Out << "$$T";
1759 break;
1760
1761 case BuiltinType::Float128:
1762 case BuiltinType::Half: {
1763 DiagnosticsEngine &Diags = Context.getDiags();
1764 unsigned DiagID = Diags.getCustomDiagID(
1765 DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
1766 Diags.Report(Range.getBegin(), DiagID)
1767 << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
1768 break;
1769 }
1770 }
1771 }
1772
1773 // <type> ::= <function-type>
mangleType(const FunctionProtoType * T,Qualifiers,SourceRange)1774 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
1775 SourceRange) {
1776 // Structors only appear in decls, so at this point we know it's not a
1777 // structor type.
1778 // FIXME: This may not be lambda-friendly.
1779 if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) {
1780 Out << "$$A8@@";
1781 mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
1782 } else {
1783 Out << "$$A6";
1784 mangleFunctionType(T);
1785 }
1786 }
mangleType(const FunctionNoProtoType * T,Qualifiers,SourceRange)1787 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
1788 Qualifiers, SourceRange) {
1789 Out << "$$A6";
1790 mangleFunctionType(T);
1791 }
1792
mangleFunctionType(const FunctionType * T,const FunctionDecl * D,bool ForceThisQuals)1793 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
1794 const FunctionDecl *D,
1795 bool ForceThisQuals) {
1796 // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
1797 // <return-type> <argument-list> <throw-spec>
1798 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
1799
1800 SourceRange Range;
1801 if (D) Range = D->getSourceRange();
1802
1803 bool IsInLambda = false;
1804 bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
1805 CallingConv CC = T->getCallConv();
1806 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
1807 if (MD->getParent()->isLambda())
1808 IsInLambda = true;
1809 if (MD->isInstance())
1810 HasThisQuals = true;
1811 if (isa<CXXDestructorDecl>(MD)) {
1812 IsStructor = true;
1813 } else if (isa<CXXConstructorDecl>(MD)) {
1814 IsStructor = true;
1815 IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
1816 StructorType == Ctor_DefaultClosure) &&
1817 getStructor(MD) == Structor;
1818 if (IsCtorClosure)
1819 CC = getASTContext().getDefaultCallingConvention(
1820 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1821 }
1822 }
1823
1824 // If this is a C++ instance method, mangle the CVR qualifiers for the
1825 // this pointer.
1826 if (HasThisQuals) {
1827 Qualifiers Quals = Qualifiers::fromCVRUMask(Proto->getTypeQuals());
1828 manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
1829 mangleRefQualifier(Proto->getRefQualifier());
1830 mangleQualifiers(Quals, /*IsMember=*/false);
1831 }
1832
1833 mangleCallingConvention(CC);
1834
1835 // <return-type> ::= <type>
1836 // ::= @ # structors (they have no declared return type)
1837 if (IsStructor) {
1838 if (isa<CXXDestructorDecl>(D) && D == Structor &&
1839 StructorType == Dtor_Deleting) {
1840 // The scalar deleting destructor takes an extra int argument.
1841 // However, the FunctionType generated has 0 arguments.
1842 // FIXME: This is a temporary hack.
1843 // Maybe should fix the FunctionType creation instead?
1844 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
1845 return;
1846 }
1847 if (IsCtorClosure) {
1848 // Default constructor closure and copy constructor closure both return
1849 // void.
1850 Out << 'X';
1851
1852 if (StructorType == Ctor_DefaultClosure) {
1853 // Default constructor closure always has no arguments.
1854 Out << 'X';
1855 } else if (StructorType == Ctor_CopyingClosure) {
1856 // Copy constructor closure always takes an unqualified reference.
1857 mangleArgumentType(getASTContext().getLValueReferenceType(
1858 Proto->getParamType(0)
1859 ->getAs<LValueReferenceType>()
1860 ->getPointeeType(),
1861 /*SpelledAsLValue=*/true),
1862 Range);
1863 Out << '@';
1864 } else {
1865 llvm_unreachable("unexpected constructor closure!");
1866 }
1867 Out << 'Z';
1868 return;
1869 }
1870 Out << '@';
1871 } else {
1872 QualType ResultType = T->getReturnType();
1873 if (const auto *AT =
1874 dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
1875 Out << '?';
1876 mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
1877 Out << '?';
1878 assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
1879 "shouldn't need to mangle __auto_type!");
1880 mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
1881 Out << '@';
1882 } else if (IsInLambda) {
1883 Out << '@';
1884 } else {
1885 if (ResultType->isVoidType())
1886 ResultType = ResultType.getUnqualifiedType();
1887 mangleType(ResultType, Range, QMM_Result);
1888 }
1889 }
1890
1891 // <argument-list> ::= X # void
1892 // ::= <type>+ @
1893 // ::= <type>* Z # varargs
1894 if (!Proto) {
1895 // Function types without prototypes can arise when mangling a function type
1896 // within an overloadable function in C. We mangle these as the absence of
1897 // any parameter types (not even an empty parameter list).
1898 Out << '@';
1899 } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
1900 Out << 'X';
1901 } else {
1902 // Happens for function pointer type arguments for example.
1903 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
1904 mangleArgumentType(Proto->getParamType(I), Range);
1905 // Mangle each pass_object_size parameter as if it's a paramater of enum
1906 // type passed directly after the parameter with the pass_object_size
1907 // attribute. The aforementioned enum's name is __pass_object_size, and we
1908 // pretend it resides in a top-level namespace called __clang.
1909 //
1910 // FIXME: Is there a defined extension notation for the MS ABI, or is it
1911 // necessary to just cross our fingers and hope this type+namespace
1912 // combination doesn't conflict with anything?
1913 if (D)
1914 if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
1915 manglePassObjectSizeArg(P);
1916 }
1917 // <builtin-type> ::= Z # ellipsis
1918 if (Proto->isVariadic())
1919 Out << 'Z';
1920 else
1921 Out << '@';
1922 }
1923
1924 mangleThrowSpecification(Proto);
1925 }
1926
mangleFunctionClass(const FunctionDecl * FD)1927 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
1928 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
1929 // # pointer. in 64-bit mode *all*
1930 // # 'this' pointers are 64-bit.
1931 // ::= <global-function>
1932 // <member-function> ::= A # private: near
1933 // ::= B # private: far
1934 // ::= C # private: static near
1935 // ::= D # private: static far
1936 // ::= E # private: virtual near
1937 // ::= F # private: virtual far
1938 // ::= I # protected: near
1939 // ::= J # protected: far
1940 // ::= K # protected: static near
1941 // ::= L # protected: static far
1942 // ::= M # protected: virtual near
1943 // ::= N # protected: virtual far
1944 // ::= Q # public: near
1945 // ::= R # public: far
1946 // ::= S # public: static near
1947 // ::= T # public: static far
1948 // ::= U # public: virtual near
1949 // ::= V # public: virtual far
1950 // <global-function> ::= Y # global near
1951 // ::= Z # global far
1952 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1953 switch (MD->getAccess()) {
1954 case AS_none:
1955 llvm_unreachable("Unsupported access specifier");
1956 case AS_private:
1957 if (MD->isStatic())
1958 Out << 'C';
1959 else if (MD->isVirtual())
1960 Out << 'E';
1961 else
1962 Out << 'A';
1963 break;
1964 case AS_protected:
1965 if (MD->isStatic())
1966 Out << 'K';
1967 else if (MD->isVirtual())
1968 Out << 'M';
1969 else
1970 Out << 'I';
1971 break;
1972 case AS_public:
1973 if (MD->isStatic())
1974 Out << 'S';
1975 else if (MD->isVirtual())
1976 Out << 'U';
1977 else
1978 Out << 'Q';
1979 }
1980 } else {
1981 Out << 'Y';
1982 }
1983 }
mangleCallingConvention(CallingConv CC)1984 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
1985 // <calling-convention> ::= A # __cdecl
1986 // ::= B # __export __cdecl
1987 // ::= C # __pascal
1988 // ::= D # __export __pascal
1989 // ::= E # __thiscall
1990 // ::= F # __export __thiscall
1991 // ::= G # __stdcall
1992 // ::= H # __export __stdcall
1993 // ::= I # __fastcall
1994 // ::= J # __export __fastcall
1995 // ::= Q # __vectorcall
1996 // The 'export' calling conventions are from a bygone era
1997 // (*cough*Win16*cough*) when functions were declared for export with
1998 // that keyword. (It didn't actually export them, it just made them so
1999 // that they could be in a DLL and somebody from another module could call
2000 // them.)
2001
2002 switch (CC) {
2003 default:
2004 llvm_unreachable("Unsupported CC for mangling");
2005 case CC_X86_64Win64:
2006 case CC_X86_64SysV:
2007 case CC_C: Out << 'A'; break;
2008 case CC_X86Pascal: Out << 'C'; break;
2009 case CC_X86ThisCall: Out << 'E'; break;
2010 case CC_X86StdCall: Out << 'G'; break;
2011 case CC_X86FastCall: Out << 'I'; break;
2012 case CC_X86VectorCall: Out << 'Q'; break;
2013 }
2014 }
mangleCallingConvention(const FunctionType * T)2015 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
2016 mangleCallingConvention(T->getCallConv());
2017 }
mangleThrowSpecification(const FunctionProtoType * FT)2018 void MicrosoftCXXNameMangler::mangleThrowSpecification(
2019 const FunctionProtoType *FT) {
2020 // <throw-spec> ::= Z # throw(...) (default)
2021 // ::= @ # throw() or __declspec/__attribute__((nothrow))
2022 // ::= <type>+
2023 // NOTE: Since the Microsoft compiler ignores throw specifications, they are
2024 // all actually mangled as 'Z'. (They're ignored because their associated
2025 // functionality isn't implemented, and probably never will be.)
2026 Out << 'Z';
2027 }
2028
mangleType(const UnresolvedUsingType * T,Qualifiers,SourceRange Range)2029 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
2030 Qualifiers, SourceRange Range) {
2031 // Probably should be mangled as a template instantiation; need to see what
2032 // VC does first.
2033 DiagnosticsEngine &Diags = Context.getDiags();
2034 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2035 "cannot mangle this unresolved dependent type yet");
2036 Diags.Report(Range.getBegin(), DiagID)
2037 << Range;
2038 }
2039
2040 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
2041 // <union-type> ::= T <name>
2042 // <struct-type> ::= U <name>
2043 // <class-type> ::= V <name>
2044 // <enum-type> ::= W4 <name>
mangleTagTypeKind(TagTypeKind TTK)2045 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
2046 switch (TTK) {
2047 case TTK_Union:
2048 Out << 'T';
2049 break;
2050 case TTK_Struct:
2051 case TTK_Interface:
2052 Out << 'U';
2053 break;
2054 case TTK_Class:
2055 Out << 'V';
2056 break;
2057 case TTK_Enum:
2058 Out << "W4";
2059 break;
2060 }
2061 }
mangleType(const EnumType * T,Qualifiers,SourceRange)2062 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
2063 SourceRange) {
2064 mangleType(cast<TagType>(T)->getDecl());
2065 }
mangleType(const RecordType * T,Qualifiers,SourceRange)2066 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
2067 SourceRange) {
2068 mangleType(cast<TagType>(T)->getDecl());
2069 }
mangleType(const TagDecl * TD)2070 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
2071 mangleTagTypeKind(TD->getTagKind());
2072 mangleName(TD);
2073 }
mangleArtificalTagType(TagTypeKind TK,StringRef UnqualifiedName,ArrayRef<StringRef> NestedNames)2074 void MicrosoftCXXNameMangler::mangleArtificalTagType(
2075 TagTypeKind TK, StringRef UnqualifiedName, ArrayRef<StringRef> NestedNames) {
2076 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
2077 mangleTagTypeKind(TK);
2078
2079 // Always start with the unqualified name.
2080 mangleSourceName(UnqualifiedName);
2081
2082 for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I)
2083 mangleSourceName(*I);
2084
2085 // Terminate the whole name with an '@'.
2086 Out << '@';
2087 }
2088
2089 // <type> ::= <array-type>
2090 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2091 // [Y <dimension-count> <dimension>+]
2092 // <element-type> # as global, E is never required
2093 // It's supposed to be the other way around, but for some strange reason, it
2094 // isn't. Today this behavior is retained for the sole purpose of backwards
2095 // compatibility.
mangleDecayedArrayType(const ArrayType * T)2096 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
2097 // This isn't a recursive mangling, so now we have to do it all in this
2098 // one call.
2099 manglePointerCVQualifiers(T->getElementType().getQualifiers());
2100 mangleType(T->getElementType(), SourceRange());
2101 }
mangleType(const ConstantArrayType * T,Qualifiers,SourceRange)2102 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
2103 SourceRange) {
2104 llvm_unreachable("Should have been special cased");
2105 }
mangleType(const VariableArrayType * T,Qualifiers,SourceRange)2106 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
2107 SourceRange) {
2108 llvm_unreachable("Should have been special cased");
2109 }
mangleType(const DependentSizedArrayType * T,Qualifiers,SourceRange)2110 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
2111 Qualifiers, SourceRange) {
2112 llvm_unreachable("Should have been special cased");
2113 }
mangleType(const IncompleteArrayType * T,Qualifiers,SourceRange)2114 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
2115 Qualifiers, SourceRange) {
2116 llvm_unreachable("Should have been special cased");
2117 }
mangleArrayType(const ArrayType * T)2118 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
2119 QualType ElementTy(T, 0);
2120 SmallVector<llvm::APInt, 3> Dimensions;
2121 for (;;) {
2122 if (ElementTy->isConstantArrayType()) {
2123 const ConstantArrayType *CAT =
2124 getASTContext().getAsConstantArrayType(ElementTy);
2125 Dimensions.push_back(CAT->getSize());
2126 ElementTy = CAT->getElementType();
2127 } else if (ElementTy->isIncompleteArrayType()) {
2128 const IncompleteArrayType *IAT =
2129 getASTContext().getAsIncompleteArrayType(ElementTy);
2130 Dimensions.push_back(llvm::APInt(32, 0));
2131 ElementTy = IAT->getElementType();
2132 } else if (ElementTy->isVariableArrayType()) {
2133 const VariableArrayType *VAT =
2134 getASTContext().getAsVariableArrayType(ElementTy);
2135 Dimensions.push_back(llvm::APInt(32, 0));
2136 ElementTy = VAT->getElementType();
2137 } else if (ElementTy->isDependentSizedArrayType()) {
2138 // The dependent expression has to be folded into a constant (TODO).
2139 const DependentSizedArrayType *DSAT =
2140 getASTContext().getAsDependentSizedArrayType(ElementTy);
2141 DiagnosticsEngine &Diags = Context.getDiags();
2142 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2143 "cannot mangle this dependent-length array yet");
2144 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
2145 << DSAT->getBracketsRange();
2146 return;
2147 } else {
2148 break;
2149 }
2150 }
2151 Out << 'Y';
2152 // <dimension-count> ::= <number> # number of extra dimensions
2153 mangleNumber(Dimensions.size());
2154 for (const llvm::APInt &Dimension : Dimensions)
2155 mangleNumber(Dimension.getLimitedValue());
2156 mangleType(ElementTy, SourceRange(), QMM_Escape);
2157 }
2158
2159 // <type> ::= <pointer-to-member-type>
2160 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2161 // <class name> <type>
mangleType(const MemberPointerType * T,Qualifiers Quals,SourceRange Range)2162 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, Qualifiers Quals,
2163 SourceRange Range) {
2164 QualType PointeeType = T->getPointeeType();
2165 manglePointerCVQualifiers(Quals);
2166 manglePointerExtQualifiers(Quals, PointeeType);
2167 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
2168 Out << '8';
2169 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2170 mangleFunctionType(FPT, nullptr, true);
2171 } else {
2172 mangleQualifiers(PointeeType.getQualifiers(), true);
2173 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2174 mangleType(PointeeType, Range, QMM_Drop);
2175 }
2176 }
2177
mangleType(const TemplateTypeParmType * T,Qualifiers,SourceRange Range)2178 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
2179 Qualifiers, SourceRange Range) {
2180 DiagnosticsEngine &Diags = Context.getDiags();
2181 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2182 "cannot mangle this template type parameter type yet");
2183 Diags.Report(Range.getBegin(), DiagID)
2184 << Range;
2185 }
2186
mangleType(const SubstTemplateTypeParmPackType * T,Qualifiers,SourceRange Range)2187 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
2188 Qualifiers, SourceRange Range) {
2189 DiagnosticsEngine &Diags = Context.getDiags();
2190 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2191 "cannot mangle this substituted parameter pack yet");
2192 Diags.Report(Range.getBegin(), DiagID)
2193 << Range;
2194 }
2195
2196 // <type> ::= <pointer-type>
2197 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
2198 // # the E is required for 64-bit non-static pointers
mangleType(const PointerType * T,Qualifiers Quals,SourceRange Range)2199 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
2200 SourceRange Range) {
2201 QualType PointeeType = T->getPointeeType();
2202 manglePointerCVQualifiers(Quals);
2203 manglePointerExtQualifiers(Quals, PointeeType);
2204 mangleType(PointeeType, Range);
2205 }
mangleType(const ObjCObjectPointerType * T,Qualifiers Quals,SourceRange Range)2206 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
2207 Qualifiers Quals, SourceRange Range) {
2208 QualType PointeeType = T->getPointeeType();
2209 manglePointerCVQualifiers(Quals);
2210 manglePointerExtQualifiers(Quals, PointeeType);
2211 // Object pointers never have qualifiers.
2212 Out << 'A';
2213 mangleType(PointeeType, Range);
2214 }
2215
2216 // <type> ::= <reference-type>
2217 // <reference-type> ::= A E? <cvr-qualifiers> <type>
2218 // # the E is required for 64-bit non-static lvalue references
mangleType(const LValueReferenceType * T,Qualifiers Quals,SourceRange Range)2219 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
2220 Qualifiers Quals, SourceRange Range) {
2221 QualType PointeeType = T->getPointeeType();
2222 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2223 Out << 'A';
2224 manglePointerExtQualifiers(Quals, PointeeType);
2225 mangleType(PointeeType, Range);
2226 }
2227
2228 // <type> ::= <r-value-reference-type>
2229 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
2230 // # the E is required for 64-bit non-static rvalue references
mangleType(const RValueReferenceType * T,Qualifiers Quals,SourceRange Range)2231 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
2232 Qualifiers Quals, SourceRange Range) {
2233 QualType PointeeType = T->getPointeeType();
2234 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2235 Out << "$$Q";
2236 manglePointerExtQualifiers(Quals, PointeeType);
2237 mangleType(PointeeType, Range);
2238 }
2239
mangleType(const ComplexType * T,Qualifiers,SourceRange Range)2240 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
2241 SourceRange Range) {
2242 QualType ElementType = T->getElementType();
2243
2244 llvm::SmallString<64> TemplateMangling;
2245 llvm::raw_svector_ostream Stream(TemplateMangling);
2246 MicrosoftCXXNameMangler Extra(Context, Stream);
2247 Stream << "?$";
2248 Extra.mangleSourceName("_Complex");
2249 Extra.mangleType(ElementType, Range, QMM_Escape);
2250
2251 mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
2252 }
2253
mangleType(const VectorType * T,Qualifiers Quals,SourceRange Range)2254 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
2255 SourceRange Range) {
2256 const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
2257 assert(ET && "vectors with non-builtin elements are unsupported");
2258 uint64_t Width = getASTContext().getTypeSize(T);
2259 // Pattern match exactly the typedefs in our intrinsic headers. Anything that
2260 // doesn't match the Intel types uses a custom mangling below.
2261 size_t OutSizeBefore = Out.tell();
2262 llvm::Triple::ArchType AT =
2263 getASTContext().getTargetInfo().getTriple().getArch();
2264 if (AT == llvm::Triple::x86 || AT == llvm::Triple::x86_64) {
2265 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
2266 mangleArtificalTagType(TTK_Union, "__m64");
2267 } else if (Width >= 128) {
2268 if (ET->getKind() == BuiltinType::Float)
2269 mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width));
2270 else if (ET->getKind() == BuiltinType::LongLong)
2271 mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
2272 else if (ET->getKind() == BuiltinType::Double)
2273 mangleArtificalTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
2274 }
2275 }
2276
2277 bool IsBuiltin = Out.tell() != OutSizeBefore;
2278 if (!IsBuiltin) {
2279 // The MS ABI doesn't have a special mangling for vector types, so we define
2280 // our own mangling to handle uses of __vector_size__ on user-specified
2281 // types, and for extensions like __v4sf.
2282
2283 llvm::SmallString<64> TemplateMangling;
2284 llvm::raw_svector_ostream Stream(TemplateMangling);
2285 MicrosoftCXXNameMangler Extra(Context, Stream);
2286 Stream << "?$";
2287 Extra.mangleSourceName("__vector");
2288 Extra.mangleType(QualType(ET, 0), Range, QMM_Escape);
2289 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()),
2290 /*IsBoolean=*/false);
2291
2292 mangleArtificalTagType(TTK_Union, TemplateMangling, {"__clang"});
2293 }
2294 }
2295
mangleType(const ExtVectorType * T,Qualifiers Quals,SourceRange Range)2296 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
2297 Qualifiers Quals, SourceRange Range) {
2298 mangleType(static_cast<const VectorType *>(T), Quals, Range);
2299 }
mangleType(const DependentSizedExtVectorType * T,Qualifiers,SourceRange Range)2300 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
2301 Qualifiers, SourceRange Range) {
2302 DiagnosticsEngine &Diags = Context.getDiags();
2303 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2304 "cannot mangle this dependent-sized extended vector type yet");
2305 Diags.Report(Range.getBegin(), DiagID)
2306 << Range;
2307 }
2308
mangleType(const ObjCInterfaceType * T,Qualifiers,SourceRange)2309 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
2310 SourceRange) {
2311 // ObjC interfaces have structs underlying them.
2312 mangleTagTypeKind(TTK_Struct);
2313 mangleName(T->getDecl());
2314 }
2315
mangleType(const ObjCObjectType * T,Qualifiers,SourceRange Range)2316 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, Qualifiers,
2317 SourceRange Range) {
2318 // We don't allow overloading by different protocol qualification,
2319 // so mangling them isn't necessary.
2320 mangleType(T->getBaseType(), Range);
2321 }
2322
mangleType(const BlockPointerType * T,Qualifiers Quals,SourceRange Range)2323 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
2324 Qualifiers Quals, SourceRange Range) {
2325 QualType PointeeType = T->getPointeeType();
2326 manglePointerCVQualifiers(Quals);
2327 manglePointerExtQualifiers(Quals, PointeeType);
2328
2329 Out << "_E";
2330
2331 mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
2332 }
2333
mangleType(const InjectedClassNameType *,Qualifiers,SourceRange)2334 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
2335 Qualifiers, SourceRange) {
2336 llvm_unreachable("Cannot mangle injected class name type.");
2337 }
2338
mangleType(const TemplateSpecializationType * T,Qualifiers,SourceRange Range)2339 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
2340 Qualifiers, SourceRange Range) {
2341 DiagnosticsEngine &Diags = Context.getDiags();
2342 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2343 "cannot mangle this template specialization type yet");
2344 Diags.Report(Range.getBegin(), DiagID)
2345 << Range;
2346 }
2347
mangleType(const DependentNameType * T,Qualifiers,SourceRange Range)2348 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
2349 SourceRange Range) {
2350 DiagnosticsEngine &Diags = Context.getDiags();
2351 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2352 "cannot mangle this dependent name type yet");
2353 Diags.Report(Range.getBegin(), DiagID)
2354 << Range;
2355 }
2356
mangleType(const DependentTemplateSpecializationType * T,Qualifiers,SourceRange Range)2357 void MicrosoftCXXNameMangler::mangleType(
2358 const DependentTemplateSpecializationType *T, Qualifiers,
2359 SourceRange Range) {
2360 DiagnosticsEngine &Diags = Context.getDiags();
2361 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2362 "cannot mangle this dependent template specialization type yet");
2363 Diags.Report(Range.getBegin(), DiagID)
2364 << Range;
2365 }
2366
mangleType(const PackExpansionType * T,Qualifiers,SourceRange Range)2367 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
2368 SourceRange Range) {
2369 DiagnosticsEngine &Diags = Context.getDiags();
2370 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2371 "cannot mangle this pack expansion yet");
2372 Diags.Report(Range.getBegin(), DiagID)
2373 << Range;
2374 }
2375
mangleType(const TypeOfType * T,Qualifiers,SourceRange Range)2376 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
2377 SourceRange Range) {
2378 DiagnosticsEngine &Diags = Context.getDiags();
2379 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2380 "cannot mangle this typeof(type) yet");
2381 Diags.Report(Range.getBegin(), DiagID)
2382 << Range;
2383 }
2384
mangleType(const TypeOfExprType * T,Qualifiers,SourceRange Range)2385 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
2386 SourceRange Range) {
2387 DiagnosticsEngine &Diags = Context.getDiags();
2388 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2389 "cannot mangle this typeof(expression) yet");
2390 Diags.Report(Range.getBegin(), DiagID)
2391 << Range;
2392 }
2393
mangleType(const DecltypeType * T,Qualifiers,SourceRange Range)2394 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
2395 SourceRange Range) {
2396 DiagnosticsEngine &Diags = Context.getDiags();
2397 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2398 "cannot mangle this decltype() yet");
2399 Diags.Report(Range.getBegin(), DiagID)
2400 << Range;
2401 }
2402
mangleType(const UnaryTransformType * T,Qualifiers,SourceRange Range)2403 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
2404 Qualifiers, SourceRange Range) {
2405 DiagnosticsEngine &Diags = Context.getDiags();
2406 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2407 "cannot mangle this unary transform type yet");
2408 Diags.Report(Range.getBegin(), DiagID)
2409 << Range;
2410 }
2411
mangleType(const AutoType * T,Qualifiers,SourceRange Range)2412 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
2413 SourceRange Range) {
2414 assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2415
2416 DiagnosticsEngine &Diags = Context.getDiags();
2417 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2418 "cannot mangle this 'auto' type yet");
2419 Diags.Report(Range.getBegin(), DiagID)
2420 << Range;
2421 }
2422
mangleType(const AtomicType * T,Qualifiers,SourceRange Range)2423 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
2424 SourceRange Range) {
2425 QualType ValueType = T->getValueType();
2426
2427 llvm::SmallString<64> TemplateMangling;
2428 llvm::raw_svector_ostream Stream(TemplateMangling);
2429 MicrosoftCXXNameMangler Extra(Context, Stream);
2430 Stream << "?$";
2431 Extra.mangleSourceName("_Atomic");
2432 Extra.mangleType(ValueType, Range, QMM_Escape);
2433
2434 mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
2435 }
2436
mangleType(const PipeType * T,Qualifiers,SourceRange Range)2437 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
2438 SourceRange Range) {
2439 DiagnosticsEngine &Diags = Context.getDiags();
2440 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2441 "cannot mangle this OpenCL pipe type yet");
2442 Diags.Report(Range.getBegin(), DiagID)
2443 << Range;
2444 }
2445
mangleCXXName(const NamedDecl * D,raw_ostream & Out)2446 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
2447 raw_ostream &Out) {
2448 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2449 "Invalid mangleName() call, argument is not a variable or function!");
2450 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2451 "Invalid mangleName() call on 'structor decl!");
2452
2453 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2454 getASTContext().getSourceManager(),
2455 "Mangling declaration");
2456
2457 msvc_hashing_ostream MHO(Out);
2458 MicrosoftCXXNameMangler Mangler(*this, MHO);
2459 return Mangler.mangle(D);
2460 }
2461
2462 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
2463 // <virtual-adjustment>
2464 // <no-adjustment> ::= A # private near
2465 // ::= B # private far
2466 // ::= I # protected near
2467 // ::= J # protected far
2468 // ::= Q # public near
2469 // ::= R # public far
2470 // <static-adjustment> ::= G <static-offset> # private near
2471 // ::= H <static-offset> # private far
2472 // ::= O <static-offset> # protected near
2473 // ::= P <static-offset> # protected far
2474 // ::= W <static-offset> # public near
2475 // ::= X <static-offset> # public far
2476 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
2477 // ::= $1 <virtual-shift> <static-offset> # private far
2478 // ::= $2 <virtual-shift> <static-offset> # protected near
2479 // ::= $3 <virtual-shift> <static-offset> # protected far
2480 // ::= $4 <virtual-shift> <static-offset> # public near
2481 // ::= $5 <virtual-shift> <static-offset> # public far
2482 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
2483 // <vtordisp-shift> ::= <offset-to-vtordisp>
2484 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
2485 // <offset-to-vtordisp>
mangleThunkThisAdjustment(const CXXMethodDecl * MD,const ThisAdjustment & Adjustment,MicrosoftCXXNameMangler & Mangler,raw_ostream & Out)2486 static void mangleThunkThisAdjustment(const CXXMethodDecl *MD,
2487 const ThisAdjustment &Adjustment,
2488 MicrosoftCXXNameMangler &Mangler,
2489 raw_ostream &Out) {
2490 if (!Adjustment.Virtual.isEmpty()) {
2491 Out << '$';
2492 char AccessSpec;
2493 switch (MD->getAccess()) {
2494 case AS_none:
2495 llvm_unreachable("Unsupported access specifier");
2496 case AS_private:
2497 AccessSpec = '0';
2498 break;
2499 case AS_protected:
2500 AccessSpec = '2';
2501 break;
2502 case AS_public:
2503 AccessSpec = '4';
2504 }
2505 if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
2506 Out << 'R' << AccessSpec;
2507 Mangler.mangleNumber(
2508 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
2509 Mangler.mangleNumber(
2510 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
2511 Mangler.mangleNumber(
2512 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2513 Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
2514 } else {
2515 Out << AccessSpec;
2516 Mangler.mangleNumber(
2517 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2518 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2519 }
2520 } else if (Adjustment.NonVirtual != 0) {
2521 switch (MD->getAccess()) {
2522 case AS_none:
2523 llvm_unreachable("Unsupported access specifier");
2524 case AS_private:
2525 Out << 'G';
2526 break;
2527 case AS_protected:
2528 Out << 'O';
2529 break;
2530 case AS_public:
2531 Out << 'W';
2532 }
2533 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2534 } else {
2535 switch (MD->getAccess()) {
2536 case AS_none:
2537 llvm_unreachable("Unsupported access specifier");
2538 case AS_private:
2539 Out << 'A';
2540 break;
2541 case AS_protected:
2542 Out << 'I';
2543 break;
2544 case AS_public:
2545 Out << 'Q';
2546 }
2547 }
2548 }
2549
2550 void
mangleVirtualMemPtrThunk(const CXXMethodDecl * MD,raw_ostream & Out)2551 MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
2552 raw_ostream &Out) {
2553 MicrosoftVTableContext *VTContext =
2554 cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
2555 const MicrosoftVTableContext::MethodVFTableLocation &ML =
2556 VTContext->getMethodVFTableLocation(GlobalDecl(MD));
2557
2558 msvc_hashing_ostream MHO(Out);
2559 MicrosoftCXXNameMangler Mangler(*this, MHO);
2560 Mangler.getStream() << "\01?";
2561 Mangler.mangleVirtualMemPtrThunk(MD, ML);
2562 }
2563
mangleThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk,raw_ostream & Out)2564 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
2565 const ThunkInfo &Thunk,
2566 raw_ostream &Out) {
2567 msvc_hashing_ostream MHO(Out);
2568 MicrosoftCXXNameMangler Mangler(*this, MHO);
2569 Mangler.getStream() << "\01?";
2570 Mangler.mangleName(MD);
2571 mangleThunkThisAdjustment(MD, Thunk.This, Mangler, MHO);
2572 if (!Thunk.Return.isEmpty())
2573 assert(Thunk.Method != nullptr &&
2574 "Thunk info should hold the overridee decl");
2575
2576 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
2577 Mangler.mangleFunctionType(
2578 DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
2579 }
2580
mangleCXXDtorThunk(const CXXDestructorDecl * DD,CXXDtorType Type,const ThisAdjustment & Adjustment,raw_ostream & Out)2581 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
2582 const CXXDestructorDecl *DD, CXXDtorType Type,
2583 const ThisAdjustment &Adjustment, raw_ostream &Out) {
2584 // FIXME: Actually, the dtor thunk should be emitted for vector deleting
2585 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
2586 // mangling manually until we support both deleting dtor types.
2587 assert(Type == Dtor_Deleting);
2588 msvc_hashing_ostream MHO(Out);
2589 MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type);
2590 Mangler.getStream() << "\01??_E";
2591 Mangler.mangleName(DD->getParent());
2592 mangleThunkThisAdjustment(DD, Adjustment, Mangler, MHO);
2593 Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
2594 }
2595
mangleCXXVFTable(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)2596 void MicrosoftMangleContextImpl::mangleCXXVFTable(
2597 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2598 raw_ostream &Out) {
2599 // <mangled-name> ::= ?_7 <class-name> <storage-class>
2600 // <cvr-qualifiers> [<name>] @
2601 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2602 // is always '6' for vftables.
2603 msvc_hashing_ostream MHO(Out);
2604 MicrosoftCXXNameMangler Mangler(*this, MHO);
2605 if (Derived->hasAttr<DLLImportAttr>())
2606 Mangler.getStream() << "\01??_S";
2607 else
2608 Mangler.getStream() << "\01??_7";
2609 Mangler.mangleName(Derived);
2610 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2611 for (const CXXRecordDecl *RD : BasePath)
2612 Mangler.mangleName(RD);
2613 Mangler.getStream() << '@';
2614 }
2615
mangleCXXVBTable(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)2616 void MicrosoftMangleContextImpl::mangleCXXVBTable(
2617 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2618 raw_ostream &Out) {
2619 // <mangled-name> ::= ?_8 <class-name> <storage-class>
2620 // <cvr-qualifiers> [<name>] @
2621 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2622 // is always '7' for vbtables.
2623 msvc_hashing_ostream MHO(Out);
2624 MicrosoftCXXNameMangler Mangler(*this, MHO);
2625 Mangler.getStream() << "\01??_8";
2626 Mangler.mangleName(Derived);
2627 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
2628 for (const CXXRecordDecl *RD : BasePath)
2629 Mangler.mangleName(RD);
2630 Mangler.getStream() << '@';
2631 }
2632
mangleCXXRTTI(QualType T,raw_ostream & Out)2633 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
2634 msvc_hashing_ostream MHO(Out);
2635 MicrosoftCXXNameMangler Mangler(*this, MHO);
2636 Mangler.getStream() << "\01??_R0";
2637 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2638 Mangler.getStream() << "@8";
2639 }
2640
mangleCXXRTTIName(QualType T,raw_ostream & Out)2641 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
2642 raw_ostream &Out) {
2643 MicrosoftCXXNameMangler Mangler(*this, Out);
2644 Mangler.getStream() << '.';
2645 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2646 }
2647
mangleCXXVirtualDisplacementMap(const CXXRecordDecl * SrcRD,const CXXRecordDecl * DstRD,raw_ostream & Out)2648 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
2649 const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
2650 msvc_hashing_ostream MHO(Out);
2651 MicrosoftCXXNameMangler Mangler(*this, MHO);
2652 Mangler.getStream() << "\01??_K";
2653 Mangler.mangleName(SrcRD);
2654 Mangler.getStream() << "$C";
2655 Mangler.mangleName(DstRD);
2656 }
2657
mangleCXXThrowInfo(QualType T,bool IsConst,bool IsVolatile,bool IsUnaligned,uint32_t NumEntries,raw_ostream & Out)2658 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst,
2659 bool IsVolatile,
2660 bool IsUnaligned,
2661 uint32_t NumEntries,
2662 raw_ostream &Out) {
2663 msvc_hashing_ostream MHO(Out);
2664 MicrosoftCXXNameMangler Mangler(*this, MHO);
2665 Mangler.getStream() << "_TI";
2666 if (IsConst)
2667 Mangler.getStream() << 'C';
2668 if (IsVolatile)
2669 Mangler.getStream() << 'V';
2670 if (IsUnaligned)
2671 Mangler.getStream() << 'U';
2672 Mangler.getStream() << NumEntries;
2673 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2674 }
2675
mangleCXXCatchableTypeArray(QualType T,uint32_t NumEntries,raw_ostream & Out)2676 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
2677 QualType T, uint32_t NumEntries, raw_ostream &Out) {
2678 msvc_hashing_ostream MHO(Out);
2679 MicrosoftCXXNameMangler Mangler(*this, MHO);
2680 Mangler.getStream() << "_CTA";
2681 Mangler.getStream() << NumEntries;
2682 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2683 }
2684
mangleCXXCatchableType(QualType T,const CXXConstructorDecl * CD,CXXCtorType CT,uint32_t Size,uint32_t NVOffset,int32_t VBPtrOffset,uint32_t VBIndex,raw_ostream & Out)2685 void MicrosoftMangleContextImpl::mangleCXXCatchableType(
2686 QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
2687 uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
2688 raw_ostream &Out) {
2689 MicrosoftCXXNameMangler Mangler(*this, Out);
2690 Mangler.getStream() << "_CT";
2691
2692 llvm::SmallString<64> RTTIMangling;
2693 {
2694 llvm::raw_svector_ostream Stream(RTTIMangling);
2695 msvc_hashing_ostream MHO(Stream);
2696 mangleCXXRTTI(T, MHO);
2697 }
2698 Mangler.getStream() << RTTIMangling.substr(1);
2699
2700 // VS2015 CTP6 omits the copy-constructor in the mangled name. This name is,
2701 // in fact, superfluous but I'm not sure the change was made consciously.
2702 llvm::SmallString<64> CopyCtorMangling;
2703 if (!getASTContext().getLangOpts().isCompatibleWithMSVC(
2704 LangOptions::MSVC2015) &&
2705 CD) {
2706 llvm::raw_svector_ostream Stream(CopyCtorMangling);
2707 msvc_hashing_ostream MHO(Stream);
2708 mangleCXXCtor(CD, CT, MHO);
2709 }
2710 Mangler.getStream() << CopyCtorMangling.substr(1);
2711
2712 Mangler.getStream() << Size;
2713 if (VBPtrOffset == -1) {
2714 if (NVOffset) {
2715 Mangler.getStream() << NVOffset;
2716 }
2717 } else {
2718 Mangler.getStream() << NVOffset;
2719 Mangler.getStream() << VBPtrOffset;
2720 Mangler.getStream() << VBIndex;
2721 }
2722 }
2723
mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl * Derived,uint32_t NVOffset,int32_t VBPtrOffset,uint32_t VBTableOffset,uint32_t Flags,raw_ostream & Out)2724 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
2725 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
2726 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
2727 msvc_hashing_ostream MHO(Out);
2728 MicrosoftCXXNameMangler Mangler(*this, MHO);
2729 Mangler.getStream() << "\01??_R1";
2730 Mangler.mangleNumber(NVOffset);
2731 Mangler.mangleNumber(VBPtrOffset);
2732 Mangler.mangleNumber(VBTableOffset);
2733 Mangler.mangleNumber(Flags);
2734 Mangler.mangleName(Derived);
2735 Mangler.getStream() << "8";
2736 }
2737
mangleCXXRTTIBaseClassArray(const CXXRecordDecl * Derived,raw_ostream & Out)2738 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
2739 const CXXRecordDecl *Derived, raw_ostream &Out) {
2740 msvc_hashing_ostream MHO(Out);
2741 MicrosoftCXXNameMangler Mangler(*this, MHO);
2742 Mangler.getStream() << "\01??_R2";
2743 Mangler.mangleName(Derived);
2744 Mangler.getStream() << "8";
2745 }
2746
mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl * Derived,raw_ostream & Out)2747 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
2748 const CXXRecordDecl *Derived, raw_ostream &Out) {
2749 msvc_hashing_ostream MHO(Out);
2750 MicrosoftCXXNameMangler Mangler(*this, MHO);
2751 Mangler.getStream() << "\01??_R3";
2752 Mangler.mangleName(Derived);
2753 Mangler.getStream() << "8";
2754 }
2755
mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)2756 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
2757 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2758 raw_ostream &Out) {
2759 // <mangled-name> ::= ?_R4 <class-name> <storage-class>
2760 // <cvr-qualifiers> [<name>] @
2761 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2762 // is always '6' for vftables.
2763 llvm::SmallString<64> VFTableMangling;
2764 llvm::raw_svector_ostream Stream(VFTableMangling);
2765 mangleCXXVFTable(Derived, BasePath, Stream);
2766
2767 if (VFTableMangling.startswith("\01??@")) {
2768 assert(VFTableMangling.endswith("@"));
2769 Out << VFTableMangling << "??_R4@";
2770 return;
2771 }
2772
2773 assert(VFTableMangling.startswith("\01??_7") ||
2774 VFTableMangling.startswith("\01??_S"));
2775
2776 Out << "\01??_R4" << StringRef(VFTableMangling).drop_front(5);
2777 }
2778
mangleSEHFilterExpression(const NamedDecl * EnclosingDecl,raw_ostream & Out)2779 void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
2780 const NamedDecl *EnclosingDecl, raw_ostream &Out) {
2781 msvc_hashing_ostream MHO(Out);
2782 MicrosoftCXXNameMangler Mangler(*this, MHO);
2783 // The function body is in the same comdat as the function with the handler,
2784 // so the numbering here doesn't have to be the same across TUs.
2785 //
2786 // <mangled-name> ::= ?filt$ <filter-number> @0
2787 Mangler.getStream() << "\01?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
2788 Mangler.mangleName(EnclosingDecl);
2789 }
2790
mangleSEHFinallyBlock(const NamedDecl * EnclosingDecl,raw_ostream & Out)2791 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
2792 const NamedDecl *EnclosingDecl, raw_ostream &Out) {
2793 msvc_hashing_ostream MHO(Out);
2794 MicrosoftCXXNameMangler Mangler(*this, MHO);
2795 // The function body is in the same comdat as the function with the handler,
2796 // so the numbering here doesn't have to be the same across TUs.
2797 //
2798 // <mangled-name> ::= ?fin$ <filter-number> @0
2799 Mangler.getStream() << "\01?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
2800 Mangler.mangleName(EnclosingDecl);
2801 }
2802
mangleTypeName(QualType T,raw_ostream & Out)2803 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
2804 // This is just a made up unique string for the purposes of tbaa. undname
2805 // does *not* know how to demangle it.
2806 MicrosoftCXXNameMangler Mangler(*this, Out);
2807 Mangler.getStream() << '?';
2808 Mangler.mangleType(T, SourceRange());
2809 }
2810
mangleCXXCtor(const CXXConstructorDecl * D,CXXCtorType Type,raw_ostream & Out)2811 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
2812 CXXCtorType Type,
2813 raw_ostream &Out) {
2814 msvc_hashing_ostream MHO(Out);
2815 MicrosoftCXXNameMangler mangler(*this, MHO, D, Type);
2816 mangler.mangle(D);
2817 }
2818
mangleCXXDtor(const CXXDestructorDecl * D,CXXDtorType Type,raw_ostream & Out)2819 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
2820 CXXDtorType Type,
2821 raw_ostream &Out) {
2822 msvc_hashing_ostream MHO(Out);
2823 MicrosoftCXXNameMangler mangler(*this, MHO, D, Type);
2824 mangler.mangle(D);
2825 }
2826
mangleReferenceTemporary(const VarDecl * VD,unsigned ManglingNumber,raw_ostream & Out)2827 void MicrosoftMangleContextImpl::mangleReferenceTemporary(
2828 const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
2829 msvc_hashing_ostream MHO(Out);
2830 MicrosoftCXXNameMangler Mangler(*this, MHO);
2831
2832 Mangler.getStream() << "\01?$RT" << ManglingNumber << '@';
2833 Mangler.mangle(VD, "");
2834 }
2835
mangleThreadSafeStaticGuardVariable(const VarDecl * VD,unsigned GuardNum,raw_ostream & Out)2836 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
2837 const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
2838 msvc_hashing_ostream MHO(Out);
2839 MicrosoftCXXNameMangler Mangler(*this, MHO);
2840
2841 Mangler.getStream() << "\01?$TSS" << GuardNum << '@';
2842 Mangler.mangleNestedName(VD);
2843 Mangler.getStream() << "@4HA";
2844 }
2845
mangleStaticGuardVariable(const VarDecl * VD,raw_ostream & Out)2846 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
2847 raw_ostream &Out) {
2848 // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
2849 // ::= ?__J <postfix> @5 <scope-depth>
2850 // ::= ?$S <guard-num> @ <postfix> @4IA
2851
2852 // The first mangling is what MSVC uses to guard static locals in inline
2853 // functions. It uses a different mangling in external functions to support
2854 // guarding more than 32 variables. MSVC rejects inline functions with more
2855 // than 32 static locals. We don't fully implement the second mangling
2856 // because those guards are not externally visible, and instead use LLVM's
2857 // default renaming when creating a new guard variable.
2858 msvc_hashing_ostream MHO(Out);
2859 MicrosoftCXXNameMangler Mangler(*this, MHO);
2860
2861 bool Visible = VD->isExternallyVisible();
2862 if (Visible) {
2863 Mangler.getStream() << (VD->getTLSKind() ? "\01??__J" : "\01??_B");
2864 } else {
2865 Mangler.getStream() << "\01?$S1@";
2866 }
2867 unsigned ScopeDepth = 0;
2868 if (Visible && !getNextDiscriminator(VD, ScopeDepth))
2869 // If we do not have a discriminator and are emitting a guard variable for
2870 // use at global scope, then mangling the nested name will not be enough to
2871 // remove ambiguities.
2872 Mangler.mangle(VD, "");
2873 else
2874 Mangler.mangleNestedName(VD);
2875 Mangler.getStream() << (Visible ? "@5" : "@4IA");
2876 if (ScopeDepth)
2877 Mangler.mangleNumber(ScopeDepth);
2878 }
2879
mangleInitFiniStub(const VarDecl * D,char CharCode,raw_ostream & Out)2880 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
2881 char CharCode,
2882 raw_ostream &Out) {
2883 msvc_hashing_ostream MHO(Out);
2884 MicrosoftCXXNameMangler Mangler(*this, MHO);
2885 Mangler.getStream() << "\01??__" << CharCode;
2886 Mangler.mangleName(D);
2887 if (D->isStaticDataMember()) {
2888 Mangler.mangleVariableEncoding(D);
2889 Mangler.getStream() << '@';
2890 }
2891 // This is the function class mangling. These stubs are global, non-variadic,
2892 // cdecl functions that return void and take no args.
2893 Mangler.getStream() << "YAXXZ";
2894 }
2895
mangleDynamicInitializer(const VarDecl * D,raw_ostream & Out)2896 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
2897 raw_ostream &Out) {
2898 // <initializer-name> ::= ?__E <name> YAXXZ
2899 mangleInitFiniStub(D, 'E', Out);
2900 }
2901
2902 void
mangleDynamicAtExitDestructor(const VarDecl * D,raw_ostream & Out)2903 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
2904 raw_ostream &Out) {
2905 // <destructor-name> ::= ?__F <name> YAXXZ
2906 mangleInitFiniStub(D, 'F', Out);
2907 }
2908
mangleStringLiteral(const StringLiteral * SL,raw_ostream & Out)2909 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
2910 raw_ostream &Out) {
2911 // <char-type> ::= 0 # char
2912 // ::= 1 # wchar_t
2913 // ::= ??? # char16_t/char32_t will need a mangling too...
2914 //
2915 // <literal-length> ::= <non-negative integer> # the length of the literal
2916 //
2917 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including
2918 // # null-terminator
2919 //
2920 // <encoded-string> ::= <simple character> # uninteresting character
2921 // ::= '?$' <hex digit> <hex digit> # these two nibbles
2922 // # encode the byte for the
2923 // # character
2924 // ::= '?' [a-z] # \xe1 - \xfa
2925 // ::= '?' [A-Z] # \xc1 - \xda
2926 // ::= '?' [0-9] # [,/\:. \n\t'-]
2927 //
2928 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
2929 // <encoded-string> '@'
2930 MicrosoftCXXNameMangler Mangler(*this, Out);
2931 Mangler.getStream() << "\01??_C@_";
2932
2933 // <char-type>: The "kind" of string literal is encoded into the mangled name.
2934 if (SL->isWide())
2935 Mangler.getStream() << '1';
2936 else
2937 Mangler.getStream() << '0';
2938
2939 // <literal-length>: The next part of the mangled name consists of the length
2940 // of the string.
2941 // The StringLiteral does not consider the NUL terminator byte(s) but the
2942 // mangling does.
2943 // N.B. The length is in terms of bytes, not characters.
2944 Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth());
2945
2946 auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) {
2947 unsigned CharByteWidth = SL->getCharByteWidth();
2948 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2949 unsigned OffsetInCodeUnit = Index % CharByteWidth;
2950 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2951 };
2952
2953 auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) {
2954 unsigned CharByteWidth = SL->getCharByteWidth();
2955 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2956 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
2957 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2958 };
2959
2960 // CRC all the bytes of the StringLiteral.
2961 llvm::JamCRC JC;
2962 for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I)
2963 JC.update(GetLittleEndianByte(I));
2964
2965 // The NUL terminator byte(s) were not present earlier,
2966 // we need to manually process those bytes into the CRC.
2967 for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2968 ++NullTerminator)
2969 JC.update('\x00');
2970
2971 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
2972 // scheme.
2973 Mangler.mangleNumber(JC.getCRC());
2974
2975 // <encoded-string>: The mangled name also contains the first 32 _characters_
2976 // (including null-terminator bytes) of the StringLiteral.
2977 // Each character is encoded by splitting them into bytes and then encoding
2978 // the constituent bytes.
2979 auto MangleByte = [&Mangler](char Byte) {
2980 // There are five different manglings for characters:
2981 // - [a-zA-Z0-9_$]: A one-to-one mapping.
2982 // - ?[a-z]: The range from \xe1 to \xfa.
2983 // - ?[A-Z]: The range from \xc1 to \xda.
2984 // - ?[0-9]: The set of [,/\:. \n\t'-].
2985 // - ?$XX: A fallback which maps nibbles.
2986 if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
2987 Mangler.getStream() << Byte;
2988 } else if (isLetter(Byte & 0x7f)) {
2989 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
2990 } else {
2991 const char SpecialChars[] = {',', '/', '\\', ':', '.',
2992 ' ', '\n', '\t', '\'', '-'};
2993 const char *Pos =
2994 std::find(std::begin(SpecialChars), std::end(SpecialChars), Byte);
2995 if (Pos != std::end(SpecialChars)) {
2996 Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
2997 } else {
2998 Mangler.getStream() << "?$";
2999 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
3000 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
3001 }
3002 }
3003 };
3004
3005 // Enforce our 32 character max.
3006 unsigned NumCharsToMangle = std::min(32U, SL->getLength());
3007 for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E;
3008 ++I)
3009 if (SL->isWide())
3010 MangleByte(GetBigEndianByte(I));
3011 else
3012 MangleByte(GetLittleEndianByte(I));
3013
3014 // Encode the NUL terminator if there is room.
3015 if (NumCharsToMangle < 32)
3016 for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
3017 ++NullTerminator)
3018 MangleByte(0);
3019
3020 Mangler.getStream() << '@';
3021 }
3022
3023 MicrosoftMangleContext *
create(ASTContext & Context,DiagnosticsEngine & Diags)3024 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
3025 return new MicrosoftMangleContextImpl(Context, Diags);
3026 }
3027