1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2014 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 #include "protobuf.h"
32 
33 #include <math.h>
34 
35 #include <ruby/encoding.h>
36 
37 // -----------------------------------------------------------------------------
38 // Ruby <-> native slot management.
39 // -----------------------------------------------------------------------------
40 
41 #define DEREF(memory, type) *(type*)(memory)
42 
native_slot_size(upb_fieldtype_t type)43 size_t native_slot_size(upb_fieldtype_t type) {
44   switch (type) {
45     case UPB_TYPE_FLOAT:   return 4;
46     case UPB_TYPE_DOUBLE:  return 8;
47     case UPB_TYPE_BOOL:    return 1;
48     case UPB_TYPE_STRING:  return sizeof(VALUE);
49     case UPB_TYPE_BYTES:   return sizeof(VALUE);
50     case UPB_TYPE_MESSAGE: return sizeof(VALUE);
51     case UPB_TYPE_ENUM:    return 4;
52     case UPB_TYPE_INT32:   return 4;
53     case UPB_TYPE_INT64:   return 8;
54     case UPB_TYPE_UINT32:  return 4;
55     case UPB_TYPE_UINT64:  return 8;
56     default: return 0;
57   }
58 }
59 
value_from_default(const upb_fielddef * field)60 static VALUE value_from_default(const upb_fielddef *field) {
61   switch (upb_fielddef_type(field)) {
62     case UPB_TYPE_FLOAT:   return DBL2NUM(upb_fielddef_defaultfloat(field));
63     case UPB_TYPE_DOUBLE:  return DBL2NUM(upb_fielddef_defaultdouble(field));
64     case UPB_TYPE_BOOL:
65       return upb_fielddef_defaultbool(field) ? Qtrue : Qfalse;
66     case UPB_TYPE_MESSAGE: return Qnil;
67     case UPB_TYPE_ENUM: {
68       const upb_enumdef *enumdef = upb_fielddef_enumsubdef(field);
69       int32_t num = upb_fielddef_defaultint32(field);
70       const char *label = upb_enumdef_iton(enumdef, num);
71       if (label) {
72         return ID2SYM(rb_intern(label));
73       } else {
74         return INT2NUM(num);
75       }
76     }
77     case UPB_TYPE_INT32:   return INT2NUM(upb_fielddef_defaultint32(field));
78     case UPB_TYPE_INT64:   return LL2NUM(upb_fielddef_defaultint64(field));;
79     case UPB_TYPE_UINT32:  return UINT2NUM(upb_fielddef_defaultuint32(field));
80     case UPB_TYPE_UINT64:  return ULL2NUM(upb_fielddef_defaultuint64(field));
81     case UPB_TYPE_STRING:
82     case UPB_TYPE_BYTES: {
83       size_t size;
84       const char *str = upb_fielddef_defaultstr(field, &size);
85       return rb_str_new(str, size);
86     }
87     default: return Qnil;
88   }
89 }
90 
is_ruby_num(VALUE value)91 static bool is_ruby_num(VALUE value) {
92   return (TYPE(value) == T_FLOAT ||
93           TYPE(value) == T_FIXNUM ||
94           TYPE(value) == T_BIGNUM);
95 }
96 
native_slot_check_int_range_precision(upb_fieldtype_t type,VALUE val)97 void native_slot_check_int_range_precision(upb_fieldtype_t type, VALUE val) {
98   if (!is_ruby_num(val)) {
99     rb_raise(rb_eTypeError, "Expected number type for integral field.");
100   }
101 
102   // NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper
103   // bound; we just need to do precision checks (i.e., disallow rounding) and
104   // check for < 0 on unsigned types.
105   if (TYPE(val) == T_FLOAT) {
106     double dbl_val = NUM2DBL(val);
107     if (floor(dbl_val) != dbl_val) {
108       rb_raise(rb_eRangeError,
109                "Non-integral floating point value assigned to integer field.");
110     }
111   }
112   if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) {
113     if (NUM2DBL(val) < 0) {
114       rb_raise(rb_eRangeError,
115                "Assigning negative value to unsigned integer field.");
116     }
117   }
118 }
119 
native_slot_encode_and_freeze_string(upb_fieldtype_t type,VALUE value)120 VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value) {
121   rb_encoding* desired_encoding = (type == UPB_TYPE_STRING) ?
122       kRubyStringUtf8Encoding : kRubyString8bitEncoding;
123   VALUE desired_encoding_value = rb_enc_from_encoding(desired_encoding);
124 
125   // Note: this will not duplicate underlying string data unless necessary.
126   value = rb_str_encode(value, desired_encoding_value, 0, Qnil);
127 
128   if (type == UPB_TYPE_STRING &&
129       rb_enc_str_coderange(value) == ENC_CODERANGE_BROKEN) {
130     rb_raise(rb_eEncodingError, "String is invalid UTF-8");
131   }
132 
133   // Ensure the data remains valid.  Since we called #encode a moment ago,
134   // this does not freeze the string the user assigned.
135   rb_obj_freeze(value);
136 
137   return value;
138 }
139 
native_slot_set(upb_fieldtype_t type,VALUE type_class,void * memory,VALUE value)140 void native_slot_set(upb_fieldtype_t type, VALUE type_class,
141                      void* memory, VALUE value) {
142   native_slot_set_value_and_case(type, type_class, memory, value, NULL, 0);
143 }
144 
native_slot_set_value_and_case(upb_fieldtype_t type,VALUE type_class,void * memory,VALUE value,uint32_t * case_memory,uint32_t case_number)145 void native_slot_set_value_and_case(upb_fieldtype_t type, VALUE type_class,
146                                     void* memory, VALUE value,
147                                     uint32_t* case_memory,
148                                     uint32_t case_number) {
149   // Note that in order to atomically change the value in memory and the case
150   // value (w.r.t. Ruby VM calls), we must set the value at |memory| only after
151   // all Ruby VM calls are complete. The case is then set at the bottom of this
152   // function.
153   switch (type) {
154     case UPB_TYPE_FLOAT:
155       if (!is_ruby_num(value)) {
156         rb_raise(rb_eTypeError, "Expected number type for float field.");
157       }
158       DEREF(memory, float) = NUM2DBL(value);
159       break;
160     case UPB_TYPE_DOUBLE:
161       if (!is_ruby_num(value)) {
162         rb_raise(rb_eTypeError, "Expected number type for double field.");
163       }
164       DEREF(memory, double) = NUM2DBL(value);
165       break;
166     case UPB_TYPE_BOOL: {
167       int8_t val = -1;
168       if (value == Qtrue) {
169         val = 1;
170       } else if (value == Qfalse) {
171         val = 0;
172       } else {
173         rb_raise(rb_eTypeError, "Invalid argument for boolean field.");
174       }
175       DEREF(memory, int8_t) = val;
176       break;
177     }
178     case UPB_TYPE_STRING:
179     case UPB_TYPE_BYTES: {
180       if (CLASS_OF(value) != rb_cString) {
181         rb_raise(rb_eTypeError, "Invalid argument for string field.");
182       }
183 
184       DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
185       break;
186     }
187     case UPB_TYPE_MESSAGE: {
188       if (CLASS_OF(value) == CLASS_OF(Qnil)) {
189         value = Qnil;
190       } else if (CLASS_OF(value) != type_class) {
191         rb_raise(rb_eTypeError,
192                  "Invalid type %s to assign to submessage field.",
193                  rb_class2name(CLASS_OF(value)));
194       }
195       DEREF(memory, VALUE) = value;
196       break;
197     }
198     case UPB_TYPE_ENUM: {
199       int32_t int_val = 0;
200       if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) {
201         rb_raise(rb_eTypeError,
202                  "Expected number or symbol type for enum field.");
203       }
204       if (TYPE(value) == T_SYMBOL) {
205         // Ensure that the given symbol exists in the enum module.
206         VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value);
207         if (lookup == Qnil) {
208           rb_raise(rb_eRangeError, "Unknown symbol value for enum field.");
209         } else {
210           int_val = NUM2INT(lookup);
211         }
212       } else {
213         native_slot_check_int_range_precision(UPB_TYPE_INT32, value);
214         int_val = NUM2INT(value);
215       }
216       DEREF(memory, int32_t) = int_val;
217       break;
218     }
219     case UPB_TYPE_INT32:
220     case UPB_TYPE_INT64:
221     case UPB_TYPE_UINT32:
222     case UPB_TYPE_UINT64:
223       native_slot_check_int_range_precision(type, value);
224       switch (type) {
225       case UPB_TYPE_INT32:
226         DEREF(memory, int32_t) = NUM2INT(value);
227         break;
228       case UPB_TYPE_INT64:
229         DEREF(memory, int64_t) = NUM2LL(value);
230         break;
231       case UPB_TYPE_UINT32:
232         DEREF(memory, uint32_t) = NUM2UINT(value);
233         break;
234       case UPB_TYPE_UINT64:
235         DEREF(memory, uint64_t) = NUM2ULL(value);
236         break;
237       default:
238         break;
239       }
240       break;
241     default:
242       break;
243   }
244 
245   if (case_memory != NULL) {
246     *case_memory = case_number;
247   }
248 }
249 
native_slot_get(upb_fieldtype_t type,VALUE type_class,const void * memory)250 VALUE native_slot_get(upb_fieldtype_t type,
251                       VALUE type_class,
252                       const void* memory) {
253   switch (type) {
254     case UPB_TYPE_FLOAT:
255       return DBL2NUM(DEREF(memory, float));
256     case UPB_TYPE_DOUBLE:
257       return DBL2NUM(DEREF(memory, double));
258     case UPB_TYPE_BOOL:
259       return DEREF(memory, int8_t) ? Qtrue : Qfalse;
260     case UPB_TYPE_STRING:
261     case UPB_TYPE_BYTES:
262     case UPB_TYPE_MESSAGE:
263       return DEREF(memory, VALUE);
264     case UPB_TYPE_ENUM: {
265       int32_t val = DEREF(memory, int32_t);
266       VALUE symbol = enum_lookup(type_class, INT2NUM(val));
267       if (symbol == Qnil) {
268         return INT2NUM(val);
269       } else {
270         return symbol;
271       }
272     }
273     case UPB_TYPE_INT32:
274       return INT2NUM(DEREF(memory, int32_t));
275     case UPB_TYPE_INT64:
276       return LL2NUM(DEREF(memory, int64_t));
277     case UPB_TYPE_UINT32:
278       return UINT2NUM(DEREF(memory, uint32_t));
279     case UPB_TYPE_UINT64:
280       return ULL2NUM(DEREF(memory, uint64_t));
281     default:
282       return Qnil;
283   }
284 }
285 
native_slot_init(upb_fieldtype_t type,void * memory)286 void native_slot_init(upb_fieldtype_t type, void* memory) {
287   switch (type) {
288     case UPB_TYPE_FLOAT:
289       DEREF(memory, float) = 0.0;
290       break;
291     case UPB_TYPE_DOUBLE:
292       DEREF(memory, double) = 0.0;
293       break;
294     case UPB_TYPE_BOOL:
295       DEREF(memory, int8_t) = 0;
296       break;
297     case UPB_TYPE_STRING:
298     case UPB_TYPE_BYTES:
299       DEREF(memory, VALUE) = rb_str_new2("");
300       rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ?
301                        kRubyString8bitEncoding : kRubyStringUtf8Encoding);
302       break;
303     case UPB_TYPE_MESSAGE:
304       DEREF(memory, VALUE) = Qnil;
305       break;
306     case UPB_TYPE_ENUM:
307     case UPB_TYPE_INT32:
308       DEREF(memory, int32_t) = 0;
309       break;
310     case UPB_TYPE_INT64:
311       DEREF(memory, int64_t) = 0;
312       break;
313     case UPB_TYPE_UINT32:
314       DEREF(memory, uint32_t) = 0;
315       break;
316     case UPB_TYPE_UINT64:
317       DEREF(memory, uint64_t) = 0;
318       break;
319     default:
320       break;
321   }
322 }
323 
native_slot_mark(upb_fieldtype_t type,void * memory)324 void native_slot_mark(upb_fieldtype_t type, void* memory) {
325   switch (type) {
326     case UPB_TYPE_STRING:
327     case UPB_TYPE_BYTES:
328     case UPB_TYPE_MESSAGE:
329       rb_gc_mark(DEREF(memory, VALUE));
330       break;
331     default:
332       break;
333   }
334 }
335 
native_slot_dup(upb_fieldtype_t type,void * to,void * from)336 void native_slot_dup(upb_fieldtype_t type, void* to, void* from) {
337   memcpy(to, from, native_slot_size(type));
338 }
339 
native_slot_deep_copy(upb_fieldtype_t type,void * to,void * from)340 void native_slot_deep_copy(upb_fieldtype_t type, void* to, void* from) {
341   switch (type) {
342     case UPB_TYPE_STRING:
343     case UPB_TYPE_BYTES: {
344       VALUE from_val = DEREF(from, VALUE);
345       DEREF(to, VALUE) = (from_val != Qnil) ?
346           rb_funcall(from_val, rb_intern("dup"), 0) : Qnil;
347       break;
348     }
349     case UPB_TYPE_MESSAGE: {
350       VALUE from_val = DEREF(from, VALUE);
351       DEREF(to, VALUE) = (from_val != Qnil) ?
352           Message_deep_copy(from_val) : Qnil;
353       break;
354     }
355     default:
356       memcpy(to, from, native_slot_size(type));
357   }
358 }
359 
native_slot_eq(upb_fieldtype_t type,void * mem1,void * mem2)360 bool native_slot_eq(upb_fieldtype_t type, void* mem1, void* mem2) {
361   switch (type) {
362     case UPB_TYPE_STRING:
363     case UPB_TYPE_BYTES:
364     case UPB_TYPE_MESSAGE: {
365       VALUE val1 = DEREF(mem1, VALUE);
366       VALUE val2 = DEREF(mem2, VALUE);
367       VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2);
368       return ret == Qtrue;
369     }
370     default:
371       return !memcmp(mem1, mem2, native_slot_size(type));
372   }
373 }
374 
375 // -----------------------------------------------------------------------------
376 // Map field utilities.
377 // -----------------------------------------------------------------------------
378 
tryget_map_entry_msgdef(const upb_fielddef * field)379 const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) {
380   const upb_msgdef* subdef;
381   if (upb_fielddef_label(field) != UPB_LABEL_REPEATED ||
382       upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
383     return NULL;
384   }
385   subdef = upb_fielddef_msgsubdef(field);
386   return upb_msgdef_mapentry(subdef) ? subdef : NULL;
387 }
388 
map_entry_msgdef(const upb_fielddef * field)389 const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) {
390   const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
391   assert(subdef);
392   return subdef;
393 }
394 
is_map_field(const upb_fielddef * field)395 bool is_map_field(const upb_fielddef *field) {
396   return tryget_map_entry_msgdef(field) != NULL;
397 }
398 
map_field_key(const upb_fielddef * field)399 const upb_fielddef* map_field_key(const upb_fielddef* field) {
400   const upb_msgdef* subdef = map_entry_msgdef(field);
401   return map_entry_key(subdef);
402 }
403 
map_field_value(const upb_fielddef * field)404 const upb_fielddef* map_field_value(const upb_fielddef* field) {
405   const upb_msgdef* subdef = map_entry_msgdef(field);
406   return map_entry_value(subdef);
407 }
408 
map_entry_key(const upb_msgdef * msgdef)409 const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) {
410   const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD);
411   assert(key_field != NULL);
412   return key_field;
413 }
414 
map_entry_value(const upb_msgdef * msgdef)415 const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) {
416   const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD);
417   assert(value_field != NULL);
418   return value_field;
419 }
420 
421 // -----------------------------------------------------------------------------
422 // Memory layout management.
423 // -----------------------------------------------------------------------------
424 
align_up_to(size_t offset,size_t granularity)425 static size_t align_up_to(size_t offset, size_t granularity) {
426   // Granularity must be a power of two.
427   return (offset + granularity - 1) & ~(granularity - 1);
428 }
429 
create_layout(const upb_msgdef * msgdef)430 MessageLayout* create_layout(const upb_msgdef* msgdef) {
431   MessageLayout* layout = ALLOC(MessageLayout);
432   int nfields = upb_msgdef_numfields(msgdef);
433   upb_msg_field_iter it;
434   upb_msg_oneof_iter oit;
435   size_t off = 0;
436 
437   layout->fields = ALLOC_N(MessageField, nfields);
438 
439   for (upb_msg_field_begin(&it, msgdef);
440        !upb_msg_field_done(&it);
441        upb_msg_field_next(&it)) {
442     const upb_fielddef* field = upb_msg_iter_field(&it);
443     size_t field_size;
444 
445     if (upb_fielddef_containingoneof(field)) {
446       // Oneofs are handled separately below.
447       continue;
448     }
449 
450     // Allocate |field_size| bytes for this field in the layout.
451     field_size = 0;
452     if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
453       field_size = sizeof(VALUE);
454     } else {
455       field_size = native_slot_size(upb_fielddef_type(field));
456     }
457     // Align current offset up to |size| granularity.
458     off = align_up_to(off, field_size);
459     layout->fields[upb_fielddef_index(field)].offset = off;
460     layout->fields[upb_fielddef_index(field)].case_offset =
461         MESSAGE_FIELD_NO_CASE;
462     off += field_size;
463   }
464 
465   // Handle oneofs now -- we iterate over oneofs specifically and allocate only
466   // one slot per oneof.
467   //
468   // We assign all value slots first, then pack the 'case' fields at the end,
469   // since in the common case (modern 64-bit platform) these are 8 bytes and 4
470   // bytes respectively and we want to avoid alignment overhead.
471   //
472   // Note that we reserve 4 bytes (a uint32) per 'case' slot because the value
473   // space for oneof cases is conceptually as wide as field tag numbers. In
474   // practice, it's unlikely that a oneof would have more than e.g. 256 or 64K
475   // members (8 or 16 bits respectively), so conceivably we could assign
476   // consecutive case numbers and then pick a smaller oneof case slot size, but
477   // the complexity to implement this indirection is probably not worthwhile.
478   for (upb_msg_oneof_begin(&oit, msgdef);
479        !upb_msg_oneof_done(&oit);
480        upb_msg_oneof_next(&oit)) {
481     const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
482     upb_oneof_iter fit;
483 
484     // Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between
485     // all fields.
486     size_t field_size = NATIVE_SLOT_MAX_SIZE;
487     // Align the offset.
488     off = align_up_to(off, field_size);
489     // Assign all fields in the oneof this same offset.
490     for (upb_oneof_begin(&fit, oneof);
491          !upb_oneof_done(&fit);
492          upb_oneof_next(&fit)) {
493       const upb_fielddef* field = upb_oneof_iter_field(&fit);
494       layout->fields[upb_fielddef_index(field)].offset = off;
495     }
496     off += field_size;
497   }
498 
499   // Now the case fields.
500   for (upb_msg_oneof_begin(&oit, msgdef);
501        !upb_msg_oneof_done(&oit);
502        upb_msg_oneof_next(&oit)) {
503     const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
504     upb_oneof_iter fit;
505 
506     size_t field_size = sizeof(uint32_t);
507     // Align the offset.
508     off = (off + field_size - 1) & ~(field_size - 1);
509     // Assign all fields in the oneof this same offset.
510     for (upb_oneof_begin(&fit, oneof);
511          !upb_oneof_done(&fit);
512          upb_oneof_next(&fit)) {
513       const upb_fielddef* field = upb_oneof_iter_field(&fit);
514       layout->fields[upb_fielddef_index(field)].case_offset = off;
515     }
516     off += field_size;
517   }
518 
519   layout->size = off;
520 
521   layout->msgdef = msgdef;
522   upb_msgdef_ref(layout->msgdef, &layout->msgdef);
523 
524   return layout;
525 }
526 
free_layout(MessageLayout * layout)527 void free_layout(MessageLayout* layout) {
528   xfree(layout->fields);
529   upb_msgdef_unref(layout->msgdef, &layout->msgdef);
530   xfree(layout);
531 }
532 
field_type_class(const upb_fielddef * field)533 VALUE field_type_class(const upb_fielddef* field) {
534   VALUE type_class = Qnil;
535   if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
536     VALUE submsgdesc =
537         get_def_obj(upb_fielddef_subdef(field));
538     type_class = Descriptor_msgclass(submsgdesc);
539   } else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) {
540     VALUE subenumdesc =
541         get_def_obj(upb_fielddef_subdef(field));
542     type_class = EnumDescriptor_enummodule(subenumdesc);
543   }
544   return type_class;
545 }
546 
slot_memory(MessageLayout * layout,const void * storage,const upb_fielddef * field)547 static void* slot_memory(MessageLayout* layout,
548                          const void* storage,
549                          const upb_fielddef* field) {
550   return ((uint8_t *)storage) +
551       layout->fields[upb_fielddef_index(field)].offset;
552 }
553 
slot_oneof_case(MessageLayout * layout,const void * storage,const upb_fielddef * field)554 static uint32_t* slot_oneof_case(MessageLayout* layout,
555                                  const void* storage,
556                                  const upb_fielddef* field) {
557   return (uint32_t *)(((uint8_t *)storage) +
558       layout->fields[upb_fielddef_index(field)].case_offset);
559 }
560 
561 
layout_get(MessageLayout * layout,const void * storage,const upb_fielddef * field)562 VALUE layout_get(MessageLayout* layout,
563                  const void* storage,
564                  const upb_fielddef* field) {
565   void* memory = slot_memory(layout, storage, field);
566   uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
567 
568   if (upb_fielddef_containingoneof(field)) {
569     if (*oneof_case != upb_fielddef_number(field)) {
570       return value_from_default(field);
571     }
572     return native_slot_get(upb_fielddef_type(field),
573                            field_type_class(field),
574                            memory);
575   } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
576     return *((VALUE *)memory);
577   } else {
578     return native_slot_get(upb_fielddef_type(field),
579                            field_type_class(field),
580                            memory);
581   }
582 }
583 
check_repeated_field_type(VALUE val,const upb_fielddef * field)584 static void check_repeated_field_type(VALUE val, const upb_fielddef* field) {
585   RepeatedField* self;
586   assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED);
587 
588   if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
589       RTYPEDDATA_TYPE(val) != &RepeatedField_type) {
590     rb_raise(rb_eTypeError, "Expected repeated field array");
591   }
592 
593   self = ruby_to_RepeatedField(val);
594   if (self->field_type != upb_fielddef_type(field)) {
595     rb_raise(rb_eTypeError, "Repeated field array has wrong element type");
596   }
597 
598   if (self->field_type == UPB_TYPE_MESSAGE ||
599       self->field_type == UPB_TYPE_ENUM) {
600     if (self->field_type_class !=
601         get_def_obj(upb_fielddef_subdef(field))) {
602       rb_raise(rb_eTypeError,
603                "Repeated field array has wrong message/enum class");
604     }
605   }
606 }
607 
check_map_field_type(VALUE val,const upb_fielddef * field)608 static void check_map_field_type(VALUE val, const upb_fielddef* field) {
609   const upb_fielddef* key_field = map_field_key(field);
610   const upb_fielddef* value_field = map_field_value(field);
611   Map* self;
612 
613   if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
614       RTYPEDDATA_TYPE(val) != &Map_type) {
615     rb_raise(rb_eTypeError, "Expected Map instance");
616   }
617 
618   self = ruby_to_Map(val);
619   if (self->key_type != upb_fielddef_type(key_field)) {
620     rb_raise(rb_eTypeError, "Map key type does not match field's key type");
621   }
622   if (self->value_type != upb_fielddef_type(value_field)) {
623     rb_raise(rb_eTypeError, "Map value type does not match field's value type");
624   }
625   if (upb_fielddef_type(value_field) == UPB_TYPE_MESSAGE ||
626       upb_fielddef_type(value_field) == UPB_TYPE_ENUM) {
627     if (self->value_type_class !=
628         get_def_obj(upb_fielddef_subdef(value_field))) {
629       rb_raise(rb_eTypeError,
630                "Map value type has wrong message/enum class");
631     }
632   }
633 }
634 
635 
layout_set(MessageLayout * layout,void * storage,const upb_fielddef * field,VALUE val)636 void layout_set(MessageLayout* layout,
637                 void* storage,
638                 const upb_fielddef* field,
639                 VALUE val) {
640   void* memory = slot_memory(layout, storage, field);
641   uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
642 
643   if (upb_fielddef_containingoneof(field)) {
644     if (val == Qnil) {
645       // Assigning nil to a oneof field clears the oneof completely.
646       *oneof_case = ONEOF_CASE_NONE;
647       memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
648     } else {
649       // The transition between field types for a single oneof (union) slot is
650       // somewhat complex because we need to ensure that a GC triggered at any
651       // point by a call into the Ruby VM sees a valid state for this field and
652       // does not either go off into the weeds (following what it thinks is a
653       // VALUE but is actually a different field type) or miss an object (seeing
654       // what it thinks is a primitive field but is actually a VALUE for the new
655       // field type).
656       //
657       // In order for the transition to be safe, the oneof case slot must be in
658       // sync with the value slot whenever the Ruby VM has been called. Thus, we
659       // use native_slot_set_value_and_case(), which ensures that both the value
660       // and case number are altered atomically (w.r.t. the Ruby VM).
661       native_slot_set_value_and_case(
662           upb_fielddef_type(field), field_type_class(field),
663           memory, val,
664           oneof_case, upb_fielddef_number(field));
665     }
666   } else if (is_map_field(field)) {
667     check_map_field_type(val, field);
668     DEREF(memory, VALUE) = val;
669   } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
670     check_repeated_field_type(val, field);
671     DEREF(memory, VALUE) = val;
672   } else {
673     native_slot_set(upb_fielddef_type(field), field_type_class(field),
674                     memory, val);
675   }
676 }
677 
layout_init(MessageLayout * layout,void * storage)678 void layout_init(MessageLayout* layout,
679                  void* storage) {
680   upb_msg_field_iter it;
681   for (upb_msg_field_begin(&it, layout->msgdef);
682        !upb_msg_field_done(&it);
683        upb_msg_field_next(&it)) {
684     const upb_fielddef* field = upb_msg_iter_field(&it);
685     void* memory = slot_memory(layout, storage, field);
686     uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
687 
688     if (upb_fielddef_containingoneof(field)) {
689       memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
690       *oneof_case = ONEOF_CASE_NONE;
691     } else if (is_map_field(field)) {
692       VALUE map = Qnil;
693 
694       const upb_fielddef* key_field = map_field_key(field);
695       const upb_fielddef* value_field = map_field_value(field);
696       VALUE type_class = field_type_class(value_field);
697 
698       if (type_class != Qnil) {
699         VALUE args[3] = {
700           fieldtype_to_ruby(upb_fielddef_type(key_field)),
701           fieldtype_to_ruby(upb_fielddef_type(value_field)),
702           type_class,
703         };
704         map = rb_class_new_instance(3, args, cMap);
705       } else {
706         VALUE args[2] = {
707           fieldtype_to_ruby(upb_fielddef_type(key_field)),
708           fieldtype_to_ruby(upb_fielddef_type(value_field)),
709         };
710         map = rb_class_new_instance(2, args, cMap);
711       }
712 
713       DEREF(memory, VALUE) = map;
714     } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
715       VALUE ary = Qnil;
716 
717       VALUE type_class = field_type_class(field);
718 
719       if (type_class != Qnil) {
720         VALUE args[2] = {
721           fieldtype_to_ruby(upb_fielddef_type(field)),
722           type_class,
723         };
724         ary = rb_class_new_instance(2, args, cRepeatedField);
725       } else {
726         VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) };
727         ary = rb_class_new_instance(1, args, cRepeatedField);
728       }
729 
730       DEREF(memory, VALUE) = ary;
731     } else {
732       native_slot_init(upb_fielddef_type(field), memory);
733     }
734   }
735 }
736 
layout_mark(MessageLayout * layout,void * storage)737 void layout_mark(MessageLayout* layout, void* storage) {
738   upb_msg_field_iter it;
739   for (upb_msg_field_begin(&it, layout->msgdef);
740        !upb_msg_field_done(&it);
741        upb_msg_field_next(&it)) {
742     const upb_fielddef* field = upb_msg_iter_field(&it);
743     void* memory = slot_memory(layout, storage, field);
744     uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
745 
746     if (upb_fielddef_containingoneof(field)) {
747       if (*oneof_case == upb_fielddef_number(field)) {
748         native_slot_mark(upb_fielddef_type(field), memory);
749       }
750     } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
751       rb_gc_mark(DEREF(memory, VALUE));
752     } else {
753       native_slot_mark(upb_fielddef_type(field), memory);
754     }
755   }
756 }
757 
layout_dup(MessageLayout * layout,void * to,void * from)758 void layout_dup(MessageLayout* layout, void* to, void* from) {
759   upb_msg_field_iter it;
760   for (upb_msg_field_begin(&it, layout->msgdef);
761        !upb_msg_field_done(&it);
762        upb_msg_field_next(&it)) {
763     const upb_fielddef* field = upb_msg_iter_field(&it);
764 
765     void* to_memory = slot_memory(layout, to, field);
766     uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
767     void* from_memory = slot_memory(layout, from, field);
768     uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);
769 
770     if (upb_fielddef_containingoneof(field)) {
771       if (*from_oneof_case == upb_fielddef_number(field)) {
772         *to_oneof_case = *from_oneof_case;
773         native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
774       }
775     } else if (is_map_field(field)) {
776       DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE));
777     } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
778       DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE));
779     } else {
780       native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
781     }
782   }
783 }
784 
layout_deep_copy(MessageLayout * layout,void * to,void * from)785 void layout_deep_copy(MessageLayout* layout, void* to, void* from) {
786   upb_msg_field_iter it;
787   for (upb_msg_field_begin(&it, layout->msgdef);
788        !upb_msg_field_done(&it);
789        upb_msg_field_next(&it)) {
790     const upb_fielddef* field = upb_msg_iter_field(&it);
791 
792     void* to_memory = slot_memory(layout, to, field);
793     uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
794     void* from_memory = slot_memory(layout, from, field);
795     uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);
796 
797     if (upb_fielddef_containingoneof(field)) {
798       if (*from_oneof_case == upb_fielddef_number(field)) {
799         *to_oneof_case = *from_oneof_case;
800         native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
801       }
802     } else if (is_map_field(field)) {
803       DEREF(to_memory, VALUE) =
804           Map_deep_copy(DEREF(from_memory, VALUE));
805     } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
806       DEREF(to_memory, VALUE) =
807           RepeatedField_deep_copy(DEREF(from_memory, VALUE));
808     } else {
809       native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
810     }
811   }
812 }
813 
layout_eq(MessageLayout * layout,void * msg1,void * msg2)814 VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) {
815   upb_msg_field_iter it;
816   for (upb_msg_field_begin(&it, layout->msgdef);
817        !upb_msg_field_done(&it);
818        upb_msg_field_next(&it)) {
819     const upb_fielddef* field = upb_msg_iter_field(&it);
820 
821     void* msg1_memory = slot_memory(layout, msg1, field);
822     uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, field);
823     void* msg2_memory = slot_memory(layout, msg2, field);
824     uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, field);
825 
826     if (upb_fielddef_containingoneof(field)) {
827       if (*msg1_oneof_case != *msg2_oneof_case ||
828           (*msg1_oneof_case == upb_fielddef_number(field) &&
829            !native_slot_eq(upb_fielddef_type(field),
830                            msg1_memory,
831                            msg2_memory))) {
832         return Qfalse;
833       }
834     } else if (is_map_field(field)) {
835       if (!Map_eq(DEREF(msg1_memory, VALUE),
836                   DEREF(msg2_memory, VALUE))) {
837         return Qfalse;
838       }
839     } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
840       if (!RepeatedField_eq(DEREF(msg1_memory, VALUE),
841                             DEREF(msg2_memory, VALUE))) {
842         return Qfalse;
843       }
844     } else {
845       if (!native_slot_eq(upb_fielddef_type(field),
846                           msg1_memory, msg2_memory)) {
847         return Qfalse;
848       }
849     }
850   }
851   return Qtrue;
852 }
853 
layout_hash(MessageLayout * layout,void * storage)854 VALUE layout_hash(MessageLayout* layout, void* storage) {
855   upb_msg_field_iter it;
856   st_index_t h = rb_hash_start(0);
857   VALUE hash_sym = rb_intern("hash");
858   for (upb_msg_field_begin(&it, layout->msgdef);
859        !upb_msg_field_done(&it);
860        upb_msg_field_next(&it)) {
861     const upb_fielddef* field = upb_msg_iter_field(&it);
862     VALUE field_val = layout_get(layout, storage, field);
863     h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0)));
864   }
865   h = rb_hash_end(h);
866 
867   return INT2FIX(h);
868 }
869 
layout_inspect(MessageLayout * layout,void * storage)870 VALUE layout_inspect(MessageLayout* layout, void* storage) {
871   VALUE str = rb_str_new2("");
872 
873   upb_msg_field_iter it;
874   bool first = true;
875   for (upb_msg_field_begin(&it, layout->msgdef);
876        !upb_msg_field_done(&it);
877        upb_msg_field_next(&it)) {
878     const upb_fielddef* field = upb_msg_iter_field(&it);
879     VALUE field_val = layout_get(layout, storage, field);
880 
881     if (!first) {
882       str = rb_str_cat2(str, ", ");
883     } else {
884       first = false;
885     }
886     str = rb_str_cat2(str, upb_fielddef_name(field));
887     str = rb_str_cat2(str, ": ");
888 
889     str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0));
890   }
891 
892   return str;
893 }
894