1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "ir_reader.h"
25 #include "glsl_parser_extras.h"
26 #include "compiler/glsl_types.h"
27 #include "s_expression.h"
28 
29 static const bool debug = false;
30 
31 namespace {
32 
33 class ir_reader {
34 public:
35    ir_reader(_mesa_glsl_parse_state *);
36 
37    void read(exec_list *instructions, const char *src, bool scan_for_protos);
38 
39 private:
40    void *mem_ctx;
41    _mesa_glsl_parse_state *state;
42 
43    void ir_read_error(s_expression *, const char *fmt, ...);
44 
45    const glsl_type *read_type(s_expression *);
46 
47    void scan_for_prototypes(exec_list *, s_expression *);
48    ir_function *read_function(s_expression *, bool skip_body);
49    void read_function_sig(ir_function *, s_expression *, bool skip_body);
50 
51    void read_instructions(exec_list *, s_expression *, ir_loop *);
52    ir_instruction *read_instruction(s_expression *, ir_loop *);
53    ir_variable *read_declaration(s_expression *);
54    ir_if *read_if(s_expression *, ir_loop *);
55    ir_loop *read_loop(s_expression *);
56    ir_call *read_call(s_expression *);
57    ir_return *read_return(s_expression *);
58    ir_rvalue *read_rvalue(s_expression *);
59    ir_assignment *read_assignment(s_expression *);
60    ir_expression *read_expression(s_expression *);
61    ir_swizzle *read_swizzle(s_expression *);
62    ir_constant *read_constant(s_expression *);
63    ir_texture *read_texture(s_expression *);
64    ir_emit_vertex *read_emit_vertex(s_expression *);
65    ir_end_primitive *read_end_primitive(s_expression *);
66    ir_barrier *read_barrier(s_expression *);
67 
68    ir_dereference *read_dereference(s_expression *);
69    ir_dereference_variable *read_var_ref(s_expression *);
70 };
71 
72 } /* anonymous namespace */
73 
ir_reader(_mesa_glsl_parse_state * state)74 ir_reader::ir_reader(_mesa_glsl_parse_state *state) : state(state)
75 {
76    this->mem_ctx = state;
77 }
78 
79 void
_mesa_glsl_read_ir(_mesa_glsl_parse_state * state,exec_list * instructions,const char * src,bool scan_for_protos)80 _mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions,
81 		   const char *src, bool scan_for_protos)
82 {
83    ir_reader r(state);
84    r.read(instructions, src, scan_for_protos);
85 }
86 
87 void
read(exec_list * instructions,const char * src,bool scan_for_protos)88 ir_reader::read(exec_list *instructions, const char *src, bool scan_for_protos)
89 {
90    void *sx_mem_ctx = ralloc_context(NULL);
91    s_expression *expr = s_expression::read_expression(sx_mem_ctx, src);
92    if (expr == NULL) {
93       ir_read_error(NULL, "couldn't parse S-Expression.");
94       return;
95    }
96 
97    if (scan_for_protos) {
98       scan_for_prototypes(instructions, expr);
99       if (state->error)
100 	 return;
101    }
102 
103    read_instructions(instructions, expr, NULL);
104    ralloc_free(sx_mem_ctx);
105 
106    if (debug)
107       validate_ir_tree(instructions);
108 }
109 
110 void
ir_read_error(s_expression * expr,const char * fmt,...)111 ir_reader::ir_read_error(s_expression *expr, const char *fmt, ...)
112 {
113    va_list ap;
114 
115    state->error = true;
116 
117    if (state->current_function != NULL)
118       ralloc_asprintf_append(&state->info_log, "In function %s:\n",
119 			     state->current_function->function_name());
120    ralloc_strcat(&state->info_log, "error: ");
121 
122    va_start(ap, fmt);
123    ralloc_vasprintf_append(&state->info_log, fmt, ap);
124    va_end(ap);
125    ralloc_strcat(&state->info_log, "\n");
126 
127    if (expr != NULL) {
128       ralloc_strcat(&state->info_log, "...in this context:\n   ");
129       expr->print();
130       ralloc_strcat(&state->info_log, "\n\n");
131    }
132 }
133 
134 const glsl_type *
read_type(s_expression * expr)135 ir_reader::read_type(s_expression *expr)
136 {
137    s_expression *s_base_type;
138    s_int *s_size;
139 
140    s_pattern pat[] = { "array", s_base_type, s_size };
141    if (MATCH(expr, pat)) {
142       const glsl_type *base_type = read_type(s_base_type);
143       if (base_type == NULL) {
144 	 ir_read_error(NULL, "when reading base type of array type");
145 	 return NULL;
146       }
147 
148       return glsl_type::get_array_instance(base_type, s_size->value());
149    }
150 
151    s_symbol *type_sym = SX_AS_SYMBOL(expr);
152    if (type_sym == NULL) {
153       ir_read_error(expr, "expected <type>");
154       return NULL;
155    }
156 
157    const glsl_type *type = state->symbols->get_type(type_sym->value());
158    if (type == NULL)
159       ir_read_error(expr, "invalid type: %s", type_sym->value());
160 
161    return type;
162 }
163 
164 
165 void
scan_for_prototypes(exec_list * instructions,s_expression * expr)166 ir_reader::scan_for_prototypes(exec_list *instructions, s_expression *expr)
167 {
168    s_list *list = SX_AS_LIST(expr);
169    if (list == NULL) {
170       ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
171       return;
172    }
173 
174    foreach_in_list(s_list, sub, &list->subexpressions) {
175       if (!sub->is_list())
176 	 continue; // not a (function ...); ignore it.
177 
178       s_symbol *tag = SX_AS_SYMBOL(sub->subexpressions.get_head());
179       if (tag == NULL || strcmp(tag->value(), "function") != 0)
180 	 continue; // not a (function ...); ignore it.
181 
182       ir_function *f = read_function(sub, true);
183       if (f == NULL)
184 	 return;
185       instructions->push_tail(f);
186    }
187 }
188 
189 ir_function *
read_function(s_expression * expr,bool skip_body)190 ir_reader::read_function(s_expression *expr, bool skip_body)
191 {
192    bool added = false;
193    s_symbol *name;
194 
195    s_pattern pat[] = { "function", name };
196    if (!PARTIAL_MATCH(expr, pat)) {
197       ir_read_error(expr, "Expected (function <name> (signature ...) ...)");
198       return NULL;
199    }
200 
201    ir_function *f = state->symbols->get_function(name->value());
202    if (f == NULL) {
203       f = new(mem_ctx) ir_function(name->value());
204       added = state->symbols->add_function(f);
205       assert(added);
206    }
207 
208    /* Skip over "function" tag and function name (which are guaranteed to be
209     * present by the above PARTIAL_MATCH call).
210     */
211    exec_node *node = ((s_list *) expr)->subexpressions.get_head_raw()->next->next;
212    for (/* nothing */; !node->is_tail_sentinel(); node = node->next) {
213       s_expression *s_sig = (s_expression *) node;
214       read_function_sig(f, s_sig, skip_body);
215    }
216    return added ? f : NULL;
217 }
218 
219 static bool
always_available(const _mesa_glsl_parse_state *)220 always_available(const _mesa_glsl_parse_state *)
221 {
222    return true;
223 }
224 
225 void
read_function_sig(ir_function * f,s_expression * expr,bool skip_body)226 ir_reader::read_function_sig(ir_function *f, s_expression *expr, bool skip_body)
227 {
228    s_expression *type_expr;
229    s_list *paramlist;
230    s_list *body_list;
231 
232    s_pattern pat[] = { "signature", type_expr, paramlist, body_list };
233    if (!MATCH(expr, pat)) {
234       ir_read_error(expr, "Expected (signature <type> (parameters ...) "
235 			  "(<instruction> ...))");
236       return;
237    }
238 
239    const glsl_type *return_type = read_type(type_expr);
240    if (return_type == NULL)
241       return;
242 
243    s_symbol *paramtag = SX_AS_SYMBOL(paramlist->subexpressions.get_head());
244    if (paramtag == NULL || strcmp(paramtag->value(), "parameters") != 0) {
245       ir_read_error(paramlist, "Expected (parameters ...)");
246       return;
247    }
248 
249    // Read the parameters list into a temporary place.
250    exec_list hir_parameters;
251    state->symbols->push_scope();
252 
253    /* Skip over the "parameters" tag. */
254    exec_node *node = paramlist->subexpressions.get_head_raw()->next;
255    for (/* nothing */; !node->is_tail_sentinel(); node = node->next) {
256       ir_variable *var = read_declaration((s_expression *) node);
257       if (var == NULL)
258 	 return;
259 
260       hir_parameters.push_tail(var);
261    }
262 
263    ir_function_signature *sig =
264       f->exact_matching_signature(state, &hir_parameters);
265    if (sig == NULL && skip_body) {
266       /* If scanning for prototypes, generate a new signature. */
267       /* ir_reader doesn't know what languages support a given built-in, so
268        * just say that they're always available.  For now, other mechanisms
269        * guarantee the right built-ins are available.
270        */
271       sig = new(mem_ctx) ir_function_signature(return_type, always_available);
272       f->add_signature(sig);
273    } else if (sig != NULL) {
274       const char *badvar = sig->qualifiers_match(&hir_parameters);
275       if (badvar != NULL) {
276 	 ir_read_error(expr, "function `%s' parameter `%s' qualifiers "
277 		       "don't match prototype", f->name, badvar);
278 	 return;
279       }
280 
281       if (sig->return_type != return_type) {
282 	 ir_read_error(expr, "function `%s' return type doesn't "
283 		       "match prototype", f->name);
284 	 return;
285       }
286    } else {
287       /* No prototype for this body exists - skip it. */
288       state->symbols->pop_scope();
289       return;
290    }
291    assert(sig != NULL);
292 
293    sig->replace_parameters(&hir_parameters);
294 
295    if (!skip_body && !body_list->subexpressions.is_empty()) {
296       if (sig->is_defined) {
297 	 ir_read_error(expr, "function %s redefined", f->name);
298 	 return;
299       }
300       state->current_function = sig;
301       read_instructions(&sig->body, body_list, NULL);
302       state->current_function = NULL;
303       sig->is_defined = true;
304    }
305 
306    state->symbols->pop_scope();
307 }
308 
309 void
read_instructions(exec_list * instructions,s_expression * expr,ir_loop * loop_ctx)310 ir_reader::read_instructions(exec_list *instructions, s_expression *expr,
311 			     ir_loop *loop_ctx)
312 {
313    // Read in a list of instructions
314    s_list *list = SX_AS_LIST(expr);
315    if (list == NULL) {
316       ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
317       return;
318    }
319 
320    foreach_in_list(s_expression, sub, &list->subexpressions) {
321       ir_instruction *ir = read_instruction(sub, loop_ctx);
322       if (ir != NULL) {
323 	 /* Global variable declarations should be moved to the top, before
324 	  * any functions that might use them.  Functions are added to the
325 	  * instruction stream when scanning for prototypes, so without this
326 	  * hack, they always appear before variable declarations.
327 	  */
328 	 if (state->current_function == NULL && ir->as_variable() != NULL)
329 	    instructions->push_head(ir);
330 	 else
331 	    instructions->push_tail(ir);
332       }
333    }
334 }
335 
336 
337 ir_instruction *
read_instruction(s_expression * expr,ir_loop * loop_ctx)338 ir_reader::read_instruction(s_expression *expr, ir_loop *loop_ctx)
339 {
340    s_symbol *symbol = SX_AS_SYMBOL(expr);
341    if (symbol != NULL) {
342       if (strcmp(symbol->value(), "break") == 0 && loop_ctx != NULL)
343 	 return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
344       if (strcmp(symbol->value(), "continue") == 0 && loop_ctx != NULL)
345 	 return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_continue);
346    }
347 
348    s_list *list = SX_AS_LIST(expr);
349    if (list == NULL || list->subexpressions.is_empty()) {
350       ir_read_error(expr, "Invalid instruction.\n");
351       return NULL;
352    }
353 
354    s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
355    if (tag == NULL) {
356       ir_read_error(expr, "expected instruction tag");
357       return NULL;
358    }
359 
360    ir_instruction *inst = NULL;
361    if (strcmp(tag->value(), "declare") == 0) {
362       inst = read_declaration(list);
363    } else if (strcmp(tag->value(), "assign") == 0) {
364       inst = read_assignment(list);
365    } else if (strcmp(tag->value(), "if") == 0) {
366       inst = read_if(list, loop_ctx);
367    } else if (strcmp(tag->value(), "loop") == 0) {
368       inst = read_loop(list);
369    } else if (strcmp(tag->value(), "call") == 0) {
370       inst = read_call(list);
371    } else if (strcmp(tag->value(), "return") == 0) {
372       inst = read_return(list);
373    } else if (strcmp(tag->value(), "function") == 0) {
374       inst = read_function(list, false);
375    } else if (strcmp(tag->value(), "emit-vertex") == 0) {
376       inst = read_emit_vertex(list);
377    } else if (strcmp(tag->value(), "end-primitive") == 0) {
378       inst = read_end_primitive(list);
379    } else if (strcmp(tag->value(), "barrier") == 0) {
380       inst = read_barrier(list);
381    } else {
382       inst = read_rvalue(list);
383       if (inst == NULL)
384 	 ir_read_error(NULL, "when reading instruction");
385    }
386    return inst;
387 }
388 
389 ir_variable *
read_declaration(s_expression * expr)390 ir_reader::read_declaration(s_expression *expr)
391 {
392    s_list *s_quals;
393    s_expression *s_type;
394    s_symbol *s_name;
395 
396    s_pattern pat[] = { "declare", s_quals, s_type, s_name };
397    if (!MATCH(expr, pat)) {
398       ir_read_error(expr, "expected (declare (<qualifiers>) <type> <name>)");
399       return NULL;
400    }
401 
402    const glsl_type *type = read_type(s_type);
403    if (type == NULL)
404       return NULL;
405 
406    ir_variable *var = new(mem_ctx) ir_variable(type, s_name->value(),
407 					       ir_var_auto);
408 
409    foreach_in_list(s_symbol, qualifier, &s_quals->subexpressions) {
410       if (!qualifier->is_symbol()) {
411 	 ir_read_error(expr, "qualifier list must contain only symbols");
412 	 return NULL;
413       }
414 
415       // FINISHME: Check for duplicate/conflicting qualifiers.
416       if (strcmp(qualifier->value(), "centroid") == 0) {
417 	 var->data.centroid = 1;
418       } else if (strcmp(qualifier->value(), "sample") == 0) {
419          var->data.sample = 1;
420       } else if (strcmp(qualifier->value(), "patch") == 0) {
421          var->data.patch = 1;
422       } else if (strcmp(qualifier->value(), "invariant") == 0) {
423 	 var->data.invariant = 1;
424       } else if (strcmp(qualifier->value(), "uniform") == 0) {
425 	 var->data.mode = ir_var_uniform;
426       } else if (strcmp(qualifier->value(), "shader_storage") == 0) {
427 	 var->data.mode = ir_var_shader_storage;
428       } else if (strcmp(qualifier->value(), "auto") == 0) {
429 	 var->data.mode = ir_var_auto;
430       } else if (strcmp(qualifier->value(), "in") == 0) {
431 	 var->data.mode = ir_var_function_in;
432       } else if (strcmp(qualifier->value(), "shader_in") == 0) {
433          var->data.mode = ir_var_shader_in;
434       } else if (strcmp(qualifier->value(), "const_in") == 0) {
435 	 var->data.mode = ir_var_const_in;
436       } else if (strcmp(qualifier->value(), "out") == 0) {
437 	 var->data.mode = ir_var_function_out;
438       } else if (strcmp(qualifier->value(), "shader_out") == 0) {
439 	 var->data.mode = ir_var_shader_out;
440       } else if (strcmp(qualifier->value(), "inout") == 0) {
441 	 var->data.mode = ir_var_function_inout;
442       } else if (strcmp(qualifier->value(), "temporary") == 0) {
443 	 var->data.mode = ir_var_temporary;
444       } else if (strcmp(qualifier->value(), "stream1") == 0) {
445 	 var->data.stream = 1;
446       } else if (strcmp(qualifier->value(), "stream2") == 0) {
447 	 var->data.stream = 2;
448       } else if (strcmp(qualifier->value(), "stream3") == 0) {
449 	 var->data.stream = 3;
450       } else if (strcmp(qualifier->value(), "smooth") == 0) {
451 	 var->data.interpolation = INTERP_MODE_SMOOTH;
452       } else if (strcmp(qualifier->value(), "flat") == 0) {
453 	 var->data.interpolation = INTERP_MODE_FLAT;
454       } else if (strcmp(qualifier->value(), "noperspective") == 0) {
455 	 var->data.interpolation = INTERP_MODE_NOPERSPECTIVE;
456       } else {
457 	 ir_read_error(expr, "unknown qualifier: %s", qualifier->value());
458 	 return NULL;
459       }
460    }
461 
462    // Add the variable to the symbol table
463    state->symbols->add_variable(var);
464 
465    return var;
466 }
467 
468 
469 ir_if *
read_if(s_expression * expr,ir_loop * loop_ctx)470 ir_reader::read_if(s_expression *expr, ir_loop *loop_ctx)
471 {
472    s_expression *s_cond;
473    s_expression *s_then;
474    s_expression *s_else;
475 
476    s_pattern pat[] = { "if", s_cond, s_then, s_else };
477    if (!MATCH(expr, pat)) {
478       ir_read_error(expr, "expected (if <condition> (<then>...) (<else>...))");
479       return NULL;
480    }
481 
482    ir_rvalue *condition = read_rvalue(s_cond);
483    if (condition == NULL) {
484       ir_read_error(NULL, "when reading condition of (if ...)");
485       return NULL;
486    }
487 
488    ir_if *iff = new(mem_ctx) ir_if(condition);
489 
490    read_instructions(&iff->then_instructions, s_then, loop_ctx);
491    read_instructions(&iff->else_instructions, s_else, loop_ctx);
492    if (state->error) {
493       delete iff;
494       iff = NULL;
495    }
496    return iff;
497 }
498 
499 
500 ir_loop *
read_loop(s_expression * expr)501 ir_reader::read_loop(s_expression *expr)
502 {
503    s_expression *s_body;
504 
505    s_pattern loop_pat[] = { "loop", s_body };
506    if (!MATCH(expr, loop_pat)) {
507       ir_read_error(expr, "expected (loop <body>)");
508       return NULL;
509    }
510 
511    ir_loop *loop = new(mem_ctx) ir_loop;
512 
513    read_instructions(&loop->body_instructions, s_body, loop);
514    if (state->error) {
515       delete loop;
516       loop = NULL;
517    }
518    return loop;
519 }
520 
521 
522 ir_return *
read_return(s_expression * expr)523 ir_reader::read_return(s_expression *expr)
524 {
525    s_expression *s_retval;
526 
527    s_pattern return_value_pat[] = { "return", s_retval};
528    s_pattern return_void_pat[] = { "return" };
529    if (MATCH(expr, return_value_pat)) {
530       ir_rvalue *retval = read_rvalue(s_retval);
531       if (retval == NULL) {
532          ir_read_error(NULL, "when reading return value");
533          return NULL;
534       }
535       return new(mem_ctx) ir_return(retval);
536    } else if (MATCH(expr, return_void_pat)) {
537       return new(mem_ctx) ir_return;
538    } else {
539       ir_read_error(expr, "expected (return <rvalue>) or (return)");
540       return NULL;
541    }
542 }
543 
544 
545 ir_rvalue *
read_rvalue(s_expression * expr)546 ir_reader::read_rvalue(s_expression *expr)
547 {
548    s_list *list = SX_AS_LIST(expr);
549    if (list == NULL || list->subexpressions.is_empty())
550       return NULL;
551 
552    s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
553    if (tag == NULL) {
554       ir_read_error(expr, "expected rvalue tag");
555       return NULL;
556    }
557 
558    ir_rvalue *rvalue = read_dereference(list);
559    if (rvalue != NULL || state->error)
560       return rvalue;
561    else if (strcmp(tag->value(), "swiz") == 0) {
562       rvalue = read_swizzle(list);
563    } else if (strcmp(tag->value(), "expression") == 0) {
564       rvalue = read_expression(list);
565    } else if (strcmp(tag->value(), "constant") == 0) {
566       rvalue = read_constant(list);
567    } else {
568       rvalue = read_texture(list);
569       if (rvalue == NULL && !state->error)
570 	 ir_read_error(expr, "unrecognized rvalue tag: %s", tag->value());
571    }
572 
573    return rvalue;
574 }
575 
576 ir_assignment *
read_assignment(s_expression * expr)577 ir_reader::read_assignment(s_expression *expr)
578 {
579    s_expression *cond_expr = NULL;
580    s_expression *lhs_expr, *rhs_expr;
581    s_list       *mask_list;
582 
583    s_pattern pat4[] = { "assign",            mask_list, lhs_expr, rhs_expr };
584    s_pattern pat5[] = { "assign", cond_expr, mask_list, lhs_expr, rhs_expr };
585    if (!MATCH(expr, pat4) && !MATCH(expr, pat5)) {
586       ir_read_error(expr, "expected (assign [<condition>] (<write mask>) "
587 			  "<lhs> <rhs>)");
588       return NULL;
589    }
590 
591    ir_rvalue *condition = NULL;
592    if (cond_expr != NULL) {
593       condition = read_rvalue(cond_expr);
594       if (condition == NULL) {
595 	 ir_read_error(NULL, "when reading condition of assignment");
596 	 return NULL;
597       }
598    }
599 
600    unsigned mask = 0;
601 
602    s_symbol *mask_symbol;
603    s_pattern mask_pat[] = { mask_symbol };
604    if (MATCH(mask_list, mask_pat)) {
605       const char *mask_str = mask_symbol->value();
606       unsigned mask_length = strlen(mask_str);
607       if (mask_length > 4) {
608 	 ir_read_error(expr, "invalid write mask: %s", mask_str);
609 	 return NULL;
610       }
611 
612       const unsigned idx_map[] = { 3, 0, 1, 2 }; /* w=bit 3, x=0, y=1, z=2 */
613 
614       for (unsigned i = 0; i < mask_length; i++) {
615 	 if (mask_str[i] < 'w' || mask_str[i] > 'z') {
616 	    ir_read_error(expr, "write mask contains invalid character: %c",
617 			  mask_str[i]);
618 	    return NULL;
619 	 }
620 	 mask |= 1 << idx_map[mask_str[i] - 'w'];
621       }
622    } else if (!mask_list->subexpressions.is_empty()) {
623       ir_read_error(mask_list, "expected () or (<write mask>)");
624       return NULL;
625    }
626 
627    ir_dereference *lhs = read_dereference(lhs_expr);
628    if (lhs == NULL) {
629       ir_read_error(NULL, "when reading left-hand side of assignment");
630       return NULL;
631    }
632 
633    ir_rvalue *rhs = read_rvalue(rhs_expr);
634    if (rhs == NULL) {
635       ir_read_error(NULL, "when reading right-hand side of assignment");
636       return NULL;
637    }
638 
639    if (mask == 0 && (lhs->type->is_vector() || lhs->type->is_scalar())) {
640       ir_read_error(expr, "non-zero write mask required.");
641       return NULL;
642    }
643 
644    return new(mem_ctx) ir_assignment(lhs, rhs, condition, mask);
645 }
646 
647 ir_call *
read_call(s_expression * expr)648 ir_reader::read_call(s_expression *expr)
649 {
650    s_symbol *name;
651    s_list *params;
652    s_list *s_return = NULL;
653 
654    ir_dereference_variable *return_deref = NULL;
655 
656    s_pattern void_pat[] = { "call", name, params };
657    s_pattern non_void_pat[] = { "call", name, s_return, params };
658    if (MATCH(expr, non_void_pat)) {
659       return_deref = read_var_ref(s_return);
660       if (return_deref == NULL) {
661 	 ir_read_error(s_return, "when reading a call's return storage");
662 	 return NULL;
663       }
664    } else if (!MATCH(expr, void_pat)) {
665       ir_read_error(expr, "expected (call <name> [<deref>] (<param> ...))");
666       return NULL;
667    }
668 
669    exec_list parameters;
670 
671    foreach_in_list(s_expression, e, &params->subexpressions) {
672       ir_rvalue *param = read_rvalue(e);
673       if (param == NULL) {
674 	 ir_read_error(e, "when reading parameter to function call");
675 	 return NULL;
676       }
677       parameters.push_tail(param);
678    }
679 
680    ir_function *f = state->symbols->get_function(name->value());
681    if (f == NULL) {
682       ir_read_error(expr, "found call to undefined function %s",
683 		    name->value());
684       return NULL;
685    }
686 
687    ir_function_signature *callee =
688       f->matching_signature(state, &parameters, true);
689    if (callee == NULL) {
690       ir_read_error(expr, "couldn't find matching signature for function "
691                     "%s", name->value());
692       return NULL;
693    }
694 
695    if (callee->return_type == glsl_type::void_type && return_deref) {
696       ir_read_error(expr, "call has return value storage but void type");
697       return NULL;
698    } else if (callee->return_type != glsl_type::void_type && !return_deref) {
699       ir_read_error(expr, "call has non-void type but no return value storage");
700       return NULL;
701    }
702 
703    return new(mem_ctx) ir_call(callee, return_deref, &parameters);
704 }
705 
706 ir_expression *
read_expression(s_expression * expr)707 ir_reader::read_expression(s_expression *expr)
708 {
709    s_expression *s_type;
710    s_symbol *s_op;
711    s_expression *s_arg[4] = {NULL};
712 
713    s_pattern pat[] = { "expression", s_type, s_op, s_arg[0] };
714    if (!PARTIAL_MATCH(expr, pat)) {
715       ir_read_error(expr, "expected (expression <type> <operator> "
716 			  "<operand> [<operand>] [<operand>] [<operand>])");
717       return NULL;
718    }
719    s_arg[1] = (s_expression *) s_arg[0]->next; // may be tail sentinel
720    s_arg[2] = (s_expression *) s_arg[1]->next; // may be tail sentinel or NULL
721    if (s_arg[2])
722       s_arg[3] = (s_expression *) s_arg[2]->next; // may be tail sentinel or NULL
723 
724    const glsl_type *type = read_type(s_type);
725    if (type == NULL)
726       return NULL;
727 
728    /* Read the operator */
729    ir_expression_operation op = ir_expression::get_operator(s_op->value());
730    if (op == (ir_expression_operation) -1) {
731       ir_read_error(expr, "invalid operator: %s", s_op->value());
732       return NULL;
733    }
734 
735    /* Skip "expression" <type> <operation> by subtracting 3. */
736    int num_operands = (int) ((s_list *) expr)->subexpressions.length() - 3;
737 
738    int expected_operands = ir_expression::get_num_operands(op);
739    if (num_operands != expected_operands) {
740       ir_read_error(expr, "found %d expression operands, expected %d",
741                     num_operands, expected_operands);
742       return NULL;
743    }
744 
745    ir_rvalue *arg[4] = {NULL};
746    for (int i = 0; i < num_operands; i++) {
747       arg[i] = read_rvalue(s_arg[i]);
748       if (arg[i] == NULL) {
749          ir_read_error(NULL, "when reading operand #%d of %s", i, s_op->value());
750          return NULL;
751       }
752    }
753 
754    return new(mem_ctx) ir_expression(op, type, arg[0], arg[1], arg[2], arg[3]);
755 }
756 
757 ir_swizzle *
read_swizzle(s_expression * expr)758 ir_reader::read_swizzle(s_expression *expr)
759 {
760    s_symbol *swiz;
761    s_expression *sub;
762 
763    s_pattern pat[] = { "swiz", swiz, sub };
764    if (!MATCH(expr, pat)) {
765       ir_read_error(expr, "expected (swiz <swizzle> <rvalue>)");
766       return NULL;
767    }
768 
769    if (strlen(swiz->value()) > 4) {
770       ir_read_error(expr, "expected a valid swizzle; found %s", swiz->value());
771       return NULL;
772    }
773 
774    ir_rvalue *rvalue = read_rvalue(sub);
775    if (rvalue == NULL)
776       return NULL;
777 
778    ir_swizzle *ir = ir_swizzle::create(rvalue, swiz->value(),
779 				       rvalue->type->vector_elements);
780    if (ir == NULL)
781       ir_read_error(expr, "invalid swizzle");
782 
783    return ir;
784 }
785 
786 ir_constant *
read_constant(s_expression * expr)787 ir_reader::read_constant(s_expression *expr)
788 {
789    s_expression *type_expr;
790    s_list *values;
791 
792    s_pattern pat[] = { "constant", type_expr, values };
793    if (!MATCH(expr, pat)) {
794       ir_read_error(expr, "expected (constant <type> (...))");
795       return NULL;
796    }
797 
798    const glsl_type *type = read_type(type_expr);
799    if (type == NULL)
800       return NULL;
801 
802    if (values == NULL) {
803       ir_read_error(expr, "expected (constant <type> (...))");
804       return NULL;
805    }
806 
807    if (type->is_array()) {
808       unsigned elements_supplied = 0;
809       exec_list elements;
810       foreach_in_list(s_expression, elt, &values->subexpressions) {
811 	 ir_constant *ir_elt = read_constant(elt);
812 	 if (ir_elt == NULL)
813 	    return NULL;
814 	 elements.push_tail(ir_elt);
815 	 elements_supplied++;
816       }
817 
818       if (elements_supplied != type->length) {
819 	 ir_read_error(values, "expected exactly %u array elements, "
820 		       "given %u", type->length, elements_supplied);
821 	 return NULL;
822       }
823       return new(mem_ctx) ir_constant(type, &elements);
824    }
825 
826    ir_constant_data data = { { 0 } };
827 
828    // Read in list of values (at most 16).
829    unsigned k = 0;
830    foreach_in_list(s_expression, expr, &values->subexpressions) {
831       if (k >= 16) {
832 	 ir_read_error(values, "expected at most 16 numbers");
833 	 return NULL;
834       }
835 
836       if (type->is_float()) {
837 	 s_number *value = SX_AS_NUMBER(expr);
838 	 if (value == NULL) {
839 	    ir_read_error(values, "expected numbers");
840 	    return NULL;
841 	 }
842 	 data.f[k] = value->fvalue();
843       } else {
844 	 s_int *value = SX_AS_INT(expr);
845 	 if (value == NULL) {
846 	    ir_read_error(values, "expected integers");
847 	    return NULL;
848 	 }
849 
850 	 switch (type->base_type) {
851 	 case GLSL_TYPE_UINT: {
852 	    data.u[k] = value->value();
853 	    break;
854 	 }
855 	 case GLSL_TYPE_INT: {
856 	    data.i[k] = value->value();
857 	    break;
858 	 }
859 	 case GLSL_TYPE_BOOL: {
860 	    data.b[k] = value->value();
861 	    break;
862 	 }
863 	 default:
864 	    ir_read_error(values, "unsupported constant type");
865 	    return NULL;
866 	 }
867       }
868       ++k;
869    }
870    if (k != type->components()) {
871       ir_read_error(values, "expected %u constant values, found %u",
872 		    type->components(), k);
873       return NULL;
874    }
875 
876    return new(mem_ctx) ir_constant(type, &data);
877 }
878 
879 ir_dereference_variable *
read_var_ref(s_expression * expr)880 ir_reader::read_var_ref(s_expression *expr)
881 {
882    s_symbol *s_var;
883    s_pattern var_pat[] = { "var_ref", s_var };
884 
885    if (MATCH(expr, var_pat)) {
886       ir_variable *var = state->symbols->get_variable(s_var->value());
887       if (var == NULL) {
888 	 ir_read_error(expr, "undeclared variable: %s", s_var->value());
889 	 return NULL;
890       }
891       return new(mem_ctx) ir_dereference_variable(var);
892    }
893    return NULL;
894 }
895 
896 ir_dereference *
read_dereference(s_expression * expr)897 ir_reader::read_dereference(s_expression *expr)
898 {
899    s_expression *s_subject;
900    s_expression *s_index;
901    s_symbol *s_field;
902 
903    s_pattern array_pat[] = { "array_ref", s_subject, s_index };
904    s_pattern record_pat[] = { "record_ref", s_subject, s_field };
905 
906    ir_dereference_variable *var_ref = read_var_ref(expr);
907    if (var_ref != NULL) {
908       return var_ref;
909    } else if (MATCH(expr, array_pat)) {
910       ir_rvalue *subject = read_rvalue(s_subject);
911       if (subject == NULL) {
912 	 ir_read_error(NULL, "when reading the subject of an array_ref");
913 	 return NULL;
914       }
915 
916       ir_rvalue *idx = read_rvalue(s_index);
917       if (idx == NULL) {
918 	 ir_read_error(NULL, "when reading the index of an array_ref");
919 	 return NULL;
920       }
921       return new(mem_ctx) ir_dereference_array(subject, idx);
922    } else if (MATCH(expr, record_pat)) {
923       ir_rvalue *subject = read_rvalue(s_subject);
924       if (subject == NULL) {
925 	 ir_read_error(NULL, "when reading the subject of a record_ref");
926 	 return NULL;
927       }
928       return new(mem_ctx) ir_dereference_record(subject, s_field->value());
929    }
930    return NULL;
931 }
932 
933 ir_texture *
read_texture(s_expression * expr)934 ir_reader::read_texture(s_expression *expr)
935 {
936    s_symbol *tag = NULL;
937    s_expression *s_type = NULL;
938    s_expression *s_sampler = NULL;
939    s_expression *s_coord = NULL;
940    s_expression *s_offset = NULL;
941    s_expression *s_proj = NULL;
942    s_list *s_shadow = NULL;
943    s_expression *s_lod = NULL;
944    s_expression *s_sample_index = NULL;
945    s_expression *s_component = NULL;
946 
947    ir_texture_opcode op = ir_tex; /* silence warning */
948 
949    s_pattern tex_pattern[] =
950       { "tex", s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow };
951    s_pattern lod_pattern[] =
952       { "lod", s_type, s_sampler, s_coord };
953    s_pattern txf_pattern[] =
954       { "txf", s_type, s_sampler, s_coord, s_offset, s_lod };
955    s_pattern txf_ms_pattern[] =
956       { "txf_ms", s_type, s_sampler, s_coord, s_sample_index };
957    s_pattern txs_pattern[] =
958       { "txs", s_type, s_sampler, s_lod };
959    s_pattern tg4_pattern[] =
960       { "tg4", s_type, s_sampler, s_coord, s_offset, s_component };
961    s_pattern query_levels_pattern[] =
962       { "query_levels", s_type, s_sampler };
963    s_pattern texture_samples_pattern[] =
964       { "samples", s_type, s_sampler };
965    s_pattern other_pattern[] =
966       { tag, s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow, s_lod };
967 
968    if (MATCH(expr, lod_pattern)) {
969       op = ir_lod;
970    } else if (MATCH(expr, tex_pattern)) {
971       op = ir_tex;
972    } else if (MATCH(expr, txf_pattern)) {
973       op = ir_txf;
974    } else if (MATCH(expr, txf_ms_pattern)) {
975       op = ir_txf_ms;
976    } else if (MATCH(expr, txs_pattern)) {
977       op = ir_txs;
978    } else if (MATCH(expr, tg4_pattern)) {
979       op = ir_tg4;
980    } else if (MATCH(expr, query_levels_pattern)) {
981       op = ir_query_levels;
982    } else if (MATCH(expr, texture_samples_pattern)) {
983       op = ir_texture_samples;
984    } else if (MATCH(expr, other_pattern)) {
985       op = ir_texture::get_opcode(tag->value());
986       if (op == (ir_texture_opcode) -1)
987 	 return NULL;
988    } else {
989       ir_read_error(NULL, "unexpected texture pattern %s", tag->value());
990       return NULL;
991    }
992 
993    ir_texture *tex = new(mem_ctx) ir_texture(op);
994 
995    // Read return type
996    const glsl_type *type = read_type(s_type);
997    if (type == NULL) {
998       ir_read_error(NULL, "when reading type in (%s ...)",
999 		    tex->opcode_string());
1000       return NULL;
1001    }
1002 
1003    // Read sampler (must be a deref)
1004    ir_dereference *sampler = read_dereference(s_sampler);
1005    if (sampler == NULL) {
1006       ir_read_error(NULL, "when reading sampler in (%s ...)",
1007 		    tex->opcode_string());
1008       return NULL;
1009    }
1010    tex->set_sampler(sampler, type);
1011 
1012    if (op != ir_txs) {
1013       // Read coordinate (any rvalue)
1014       tex->coordinate = read_rvalue(s_coord);
1015       if (tex->coordinate == NULL) {
1016 	 ir_read_error(NULL, "when reading coordinate in (%s ...)",
1017 		       tex->opcode_string());
1018 	 return NULL;
1019       }
1020 
1021       if (op != ir_txf_ms && op != ir_lod) {
1022          // Read texel offset - either 0 or an rvalue.
1023          s_int *si_offset = SX_AS_INT(s_offset);
1024          if (si_offset == NULL || si_offset->value() != 0) {
1025             tex->offset = read_rvalue(s_offset);
1026             if (tex->offset == NULL) {
1027                ir_read_error(s_offset, "expected 0 or an expression");
1028                return NULL;
1029             }
1030          }
1031       }
1032    }
1033 
1034    if (op != ir_txf && op != ir_txf_ms &&
1035        op != ir_txs && op != ir_lod && op != ir_tg4 &&
1036        op != ir_query_levels && op != ir_texture_samples) {
1037       s_int *proj_as_int = SX_AS_INT(s_proj);
1038       if (proj_as_int && proj_as_int->value() == 1) {
1039 	 tex->projector = NULL;
1040       } else {
1041 	 tex->projector = read_rvalue(s_proj);
1042 	 if (tex->projector == NULL) {
1043 	    ir_read_error(NULL, "when reading projective divide in (%s ..)",
1044 	                  tex->opcode_string());
1045 	    return NULL;
1046 	 }
1047       }
1048 
1049       if (s_shadow->subexpressions.is_empty()) {
1050 	 tex->shadow_comparator = NULL;
1051       } else {
1052 	 tex->shadow_comparator = read_rvalue(s_shadow);
1053 	 if (tex->shadow_comparator == NULL) {
1054 	    ir_read_error(NULL, "when reading shadow comparator in (%s ..)",
1055 			  tex->opcode_string());
1056 	    return NULL;
1057 	 }
1058       }
1059    }
1060 
1061    switch (op) {
1062    case ir_txb:
1063       tex->lod_info.bias = read_rvalue(s_lod);
1064       if (tex->lod_info.bias == NULL) {
1065 	 ir_read_error(NULL, "when reading LOD bias in (txb ...)");
1066 	 return NULL;
1067       }
1068       break;
1069    case ir_txl:
1070    case ir_txf:
1071    case ir_txs:
1072       tex->lod_info.lod = read_rvalue(s_lod);
1073       if (tex->lod_info.lod == NULL) {
1074 	 ir_read_error(NULL, "when reading LOD in (%s ...)",
1075 		       tex->opcode_string());
1076 	 return NULL;
1077       }
1078       break;
1079    case ir_txf_ms:
1080       tex->lod_info.sample_index = read_rvalue(s_sample_index);
1081       if (tex->lod_info.sample_index == NULL) {
1082          ir_read_error(NULL, "when reading sample_index in (txf_ms ...)");
1083          return NULL;
1084       }
1085       break;
1086    case ir_txd: {
1087       s_expression *s_dx, *s_dy;
1088       s_pattern dxdy_pat[] = { s_dx, s_dy };
1089       if (!MATCH(s_lod, dxdy_pat)) {
1090 	 ir_read_error(s_lod, "expected (dPdx dPdy) in (txd ...)");
1091 	 return NULL;
1092       }
1093       tex->lod_info.grad.dPdx = read_rvalue(s_dx);
1094       if (tex->lod_info.grad.dPdx == NULL) {
1095 	 ir_read_error(NULL, "when reading dPdx in (txd ...)");
1096 	 return NULL;
1097       }
1098       tex->lod_info.grad.dPdy = read_rvalue(s_dy);
1099       if (tex->lod_info.grad.dPdy == NULL) {
1100 	 ir_read_error(NULL, "when reading dPdy in (txd ...)");
1101 	 return NULL;
1102       }
1103       break;
1104    }
1105    case ir_tg4:
1106       tex->lod_info.component = read_rvalue(s_component);
1107       if (tex->lod_info.component == NULL) {
1108          ir_read_error(NULL, "when reading component in (tg4 ...)");
1109          return NULL;
1110       }
1111       break;
1112    default:
1113       // tex and lod don't have any extra parameters.
1114       break;
1115    };
1116    return tex;
1117 }
1118 
1119 ir_emit_vertex *
read_emit_vertex(s_expression * expr)1120 ir_reader::read_emit_vertex(s_expression *expr)
1121 {
1122    s_expression *s_stream = NULL;
1123 
1124    s_pattern pat[] = { "emit-vertex", s_stream };
1125 
1126    if (MATCH(expr, pat)) {
1127       ir_rvalue *stream = read_dereference(s_stream);
1128       if (stream == NULL) {
1129          ir_read_error(NULL, "when reading stream info in emit-vertex");
1130          return NULL;
1131       }
1132       return new(mem_ctx) ir_emit_vertex(stream);
1133    }
1134    ir_read_error(NULL, "when reading emit-vertex");
1135    return NULL;
1136 }
1137 
1138 ir_end_primitive *
read_end_primitive(s_expression * expr)1139 ir_reader::read_end_primitive(s_expression *expr)
1140 {
1141    s_expression *s_stream = NULL;
1142 
1143    s_pattern pat[] = { "end-primitive", s_stream };
1144 
1145    if (MATCH(expr, pat)) {
1146       ir_rvalue *stream = read_dereference(s_stream);
1147       if (stream == NULL) {
1148          ir_read_error(NULL, "when reading stream info in end-primitive");
1149          return NULL;
1150       }
1151       return new(mem_ctx) ir_end_primitive(stream);
1152    }
1153    ir_read_error(NULL, "when reading end-primitive");
1154    return NULL;
1155 }
1156 
1157 ir_barrier *
read_barrier(s_expression * expr)1158 ir_reader::read_barrier(s_expression *expr)
1159 {
1160    s_pattern pat[] = { "barrier" };
1161 
1162    if (MATCH(expr, pat)) {
1163       return new(mem_ctx) ir_barrier();
1164    }
1165    ir_read_error(NULL, "when reading barrier");
1166    return NULL;
1167 }
1168