1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #include "MaximumMinimum.h"
20 #include "IndexedShapeWrapper.h"
21 #include "OperationsUtils.h"
22 #include "Tracing.h"
23 
24 namespace android {
25 namespace nn {
26 namespace maximum_minimum {
27 
28 namespace {
29 
30 template <typename T>
evalGeneric(const T * aData,const Shape & aShape,const T * bData,const Shape & bShape,bool isMinimum,T * outputData,const Shape & outputShape)31 bool evalGeneric(const T* aData, const Shape& aShape, const T* bData, const Shape& bShape,
32                  bool isMinimum, T* outputData, const Shape& outputShape) {
33     IndexedShapeWrapper aShapeIndexed(aShape);
34     IndexedShapeWrapper bShapeIndexed(bShape);
35     IndexedShapeWrapper outputShapeIndexed(outputShape);
36 
37     std::vector<uint32_t> curIndex(outputShape.dimensions.size(), 0);
38     bool lastIndex = false;
39     do {
40         uint32_t outputFlatIndex;
41         NN_CHECK(outputShapeIndexed.indexToFlatIndex(curIndex, &outputFlatIndex));
42         uint32_t aFlatIndex;
43         NN_CHECK(aShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &aFlatIndex));
44         uint32_t bFlatIndex;
45         NN_CHECK(bShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &bFlatIndex));
46 
47         outputData[outputFlatIndex] = isMinimum ? std::min(aData[aFlatIndex], bData[bFlatIndex])
48                                                 : std::max(aData[aFlatIndex], bData[bFlatIndex]);
49 
50         NN_CHECK(outputShapeIndexed.nextIndexInplace(&curIndex, &lastIndex));
51     } while (!lastIndex);
52 
53     return true;
54 }
55 
evalQuant8(const uint8_t * aData,const Shape & aShape,const uint8_t * bData,const Shape & bShape,bool isMinimum,uint8_t * outputData,const Shape & outputShape)56 bool evalQuant8(const uint8_t* aData, const Shape& aShape, const uint8_t* bData,
57                 const Shape& bShape, bool isMinimum, uint8_t* outputData,
58                 const Shape& outputShape) {
59     IndexedShapeWrapper aShapeIndexed(aShape);
60     IndexedShapeWrapper bShapeIndexed(bShape);
61     IndexedShapeWrapper outputShapeIndexed(outputShape);
62 
63     std::vector<uint32_t> curIndex(outputShape.dimensions.size(), 0);
64     bool lastIndex = false;
65     do {
66         uint32_t outputFlatIndex;
67         NN_CHECK(outputShapeIndexed.indexToFlatIndex(curIndex, &outputFlatIndex));
68         uint32_t aFlatIndex;
69         NN_CHECK(aShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &aFlatIndex));
70         uint32_t bFlatIndex;
71         NN_CHECK(bShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &bFlatIndex));
72 
73         uint8_t aValue = requantize(aData[aFlatIndex], aShape, outputShape);
74         uint8_t bValue = requantize(bData[bFlatIndex], bShape, outputShape);
75         outputData[outputFlatIndex] =
76                 isMinimum ? std::min(aValue, bValue) : std::max(aValue, bValue);
77 
78         NN_CHECK(outputShapeIndexed.nextIndexInplace(&curIndex, &lastIndex));
79     } while (!lastIndex);
80 
81     return true;
82 }
83 
84 }  // namespace
85 
prepare(const Shape & in1,const Shape & in2,Shape * out)86 bool prepare(const Shape& in1, const Shape& in2, Shape* out) {
87     NN_CHECK(in1.type == in2.type);
88     return calculateBroadcastedShape(in1, in2, out);
89 }
90 
eval(const void * in1,const Shape & shape1,const void * in2,const Shape & shape2,bool isMinimum,void * output,const Shape & outputShape)91 bool eval(const void* in1, const Shape& shape1, const void* in2, const Shape& shape2,
92           bool isMinimum, void* output, const Shape& outputShape) {
93     NNTRACE_COMP("maximum_minimum::eval");
94     switch (shape1.type) {
95         case OperandType::TENSOR_FLOAT16: {
96             return evalGeneric(reinterpret_cast<const _Float16*>(in1), shape1,
97                                reinterpret_cast<const _Float16*>(in2), shape2, isMinimum,
98                                reinterpret_cast<_Float16*>(output), outputShape);
99         }
100         case OperandType::TENSOR_FLOAT32: {
101             return evalGeneric(reinterpret_cast<const float*>(in1), shape1,
102                                reinterpret_cast<const float*>(in2), shape2, isMinimum,
103                                reinterpret_cast<float*>(output), outputShape);
104         }
105         case OperandType::TENSOR_INT32: {
106             return evalGeneric(reinterpret_cast<const int32_t*>(in1), shape1,
107                                reinterpret_cast<const int32_t*>(in2), shape2, isMinimum,
108                                reinterpret_cast<int32_t*>(output), outputShape);
109         }
110         case OperandType::TENSOR_QUANT8_ASYMM: {
111             return evalQuant8(reinterpret_cast<const uint8_t*>(in1), shape1,
112                               reinterpret_cast<const uint8_t*>(in2), shape2, isMinimum,
113                               reinterpret_cast<uint8_t*>(output), outputShape);
114         }
115         default: {
116             LOG(ERROR) << "Unsupported data type: " << toString(shape1.type);
117             return false;
118         }
119     }
120 }
121 
122 }  // namespace maximum_minimum
123 }  // namespace nn
124 }  // namespace android
125